
Traditional Assignment Considered Harmful

Scott M. Pike
Texas A&M University

pike@cs.tamu.edu

Wayne D. Heym Bruce Adcock
Derek Bronish Jason Kirschenbaum

Bruce W. Weide
The Ohio State University

w.heym@ieee.org, {adcockb, bronish, kirschen,
weide}@cse.ohio-state.edu

Abstract
Data movement in nearly all modern imperative languages
is based on a single primitive: traditional assignment. (With
traditional assignment, data are moved between variables by
copying.) Unfortunately, traditional assignment poses many
known software engineering drawbacks with respect to effi-
ciency for value types, and with respect to modular reason-
ing for reference types. Moreover, its entrenched legacy has
stifled serious regard of potentially superior data-movement
primitives. Exploration of the complete design space for
data-movement primitives supports the following conclu-
sions: (1) traditional assignment is fundamentally flawed,
and (2) any other data-movement primitive would be better.

Categories and Subject Descriptors D.3.3 [Programming
Languages]: Language Constructs and Features

General Terms theory

Keywords aliasing, assignment, data movement, parameter
passing, swapping

1. The Data Movement Question
The issue of how to achieve data movement between vari-
ables is a technical problem that must be addressed by all
software developers and by all designers of programming
languages. We pose this problem as the data-movement
question: How does some variable (say, x) get the value of
another variable (say, y)?

Before answering this question, many people legitimately
ask another: Why would one ever want to make some vari-
able (say, x) get the value of another variable (say, y)? In
other words, if the value of y is needed at some point in a

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
OOPSLA 2009, October 25–29, 2009, Orlando, Florida, USA.
Copyright c© 2009 ACM 978-1-60558-768-4/09/10. . . $10.00

program, why not just use y directly, rather than first making
x get that value and then using x? Some of the more common
and important reasons follow.

1. Parameters passed to (and results returned from) calls
must be transmitted between callers and callees. For ex-
ample, the value of a formal parameter (say, x) must get
the value of a corresponding actual parameter (say, y)
when an operation declared as “P(x)” is invoked by a
client as “P(y)”.

2. Sometimes a value needs to be remembered for future use
(e.g., an intermediate result, checkpoint data, etc.) or for
separate use in two or more computations.

3. Repetition constructs must establish their loop invariants
at the end of each iteration. This often involves making
the value of some variable (say, x) — denoting some
important quantity at the beginning of the loop body —
get the value of a corresponding variable (say, y) at the
end of the prior iteration of the loop body.

4. When storing elements into a collection, the code imple-
menting the collection component must make some vari-
able (say, x) in a collection’s representation get the value
of another variable (say, y) that is to be stored there.

The canonical answer to the data-movement question —
implicit in case 1 and explicit in cases 2, 3, and 4 — is to use
the traditional assignment primitive “x := y” (also written
as “x = y” in many languages). This built-in solution to
data movement runs thick in the bloodline of all popular
imperative languages, e.g., Fortran, C, C++, Java, and C#.

Operationally, traditional assignment is straightforward.
At the level of hardware instruction sets, traditional assign-
ment simply copies the data stored in location y into loca-
tion x, replacing the data previously stored in location x.
This is something that all computer hardware is designed
to do efficiently, so it is no surprise to see a direct high-
level-language manifestation of such an important low-level
mechanism. Virtually all modern software systems have
been engineered with this data-movement primitive in mind.
The choice of traditional assignment as the built-in primitive

909

for data movement seems so basic, obvious, and authorized
as not to merit serious reflection or reconsideration.

We claim that this received viewpoint is unwarranted; the
traditional assignment primitive is fundamentally flawed and
leads to suboptimal software designs in several dimensions.
The goal of this paper is to break the genealogical grasp of
traditional assignment on both software design and program-
ming language design.

We start by revisiting some known problems with tradi-
tional assignment (also called preserving assignment here-
after) in Section 2. In Sections 3 and 4, we characterize
and explore the full solution space of alternative answers to
the data-movement question. Our analysis in Section 4 con-
cludes that the assignment variants exchanging assignment
(swapping), replacing assignment, and destructive assign-
ment are all superior to traditional preserving assignment
as a foundation for software engineering and programming
language design. These alternatives better support modular
reasoning about software system behavior and lead to im-
proved efficiency, simpler storage management, and easier
software component specification and understanding.

The contributions of this paper are in recognizing, charac-
terizing, and analyzing a simple question that is, in essence,
a cornerstone of software design. We develop a common an-
alytical framework for integrating and unifying prior work
on data movement. Furthermore, we suggest how simple
changes in imperative languages can enable software engi-
neers to take advantage of other data-movement primitives.

2. Technical Framework
This section outlines technical and historical factors that
underpin the analysis in Sections 3 and 4. We postpone a
broader treatment of related work to Section 5, in which
we survey the impact of various assignment primitives on
programming languages and modular reasoning systems.

2.1 Different Kinds of Right-Hand-Sides
We begin by noting that traditional assignment, despite some
languages’ typographical evidence to the contrary, is an
asymmetric operation. So, we write x ← y for any variant of
assignment to emphasize that the recipient of data is x, and
the source of the data is y.

There seems to be no room for debate over how any
variant of assignment of y to x impacts x: it gets the value
indicated by y. There are also cases where the impact of such
an assignment on y seems incontrovertible. If y is a declared
constant or a literal, it is unchanged. If y is an expression or a
call to a side-effect free function, the universally understood
meaning is first to evaluate y and then to let x get that result.
We therefore proceed in the rest of the paper to discuss only
how an assignment of y to x impacts y in the problematic
case: when y is just a “bare” variable.

It should be noted at the outset that a move away from
traditional assignment does not mean a total abandonment of

aliasing, nor of value-copying. To achieve the effect of tradi-
tional assignment, one can introduce a function (say Replica)
that returns a copy of whatever is passed to it, reference or
value. By the previous discussion, one can see that there is
only one reasonable meaning for x ← Replica(y), namely,
set the value of x to be the value returned by Replica(y).
Therefore, the effect of traditional assignment for both val-
ues and references can still be achieved in the cases where it
is desired, even with other variants of assignment.

2.2 Aliasing and Reasoning Complexity
A well-known folk theorem in computing circles is that “all
problems in computer science can be solved by another level
of indirection, but that will usually create another problem.”1

Like most folklore, this claim is partially true — a fact not
lost on programming language designers, who have consis-
tently delivered a variety of language constructs to make it
easier to write programs that use indirection. Unfortunately,
one problem exacerbated by indirection is reasoning about
software system behavior. Aliasing is a potential result of
using indirection and is widely acknowledged as a primary
source of reasoning difficulty for imperative programs.2

Indeed, it is not just actual aliasing but the mere potential
for aliasing that complicates both formal specification and
verification [Weide and Heym 2001], and hence informal un-
derstanding of — and informal (but sound) reasoning about
— software system behavior. This has been preached for
decades. As early as 1973, Hoare remarked of pointers that
“their introduction into high-level languages has been a step
backward from which we may never recover” [Hoare 1989].
In 1976, Kieburtz explained why we should be “program-
ming without pointer variables” [Kieburtz 1976]. Cook’s
seminal 1978 paper on the soundness and relative complete-
ness of Hoare logic identified aliasing (of arguments to calls,
i.e., even in a language without pointers or reference vari-
ables) as the key technical impediment to sound modular
verification of imperative programs [Cook]. In writing about
aliasing, Hogg noted that, “The big lie of object-oriented
programming is that objects provide encapsulation” [Hogg
1991], which is not the case when aliasing can cross puta-
tive encapsulation boundaries.

2.3 Traditional Assignment
As a data-movement primitive, traditional assignment re-
veals the conflict between the inefficiency of value types
and the (aliasing-induced) reasoning problems of reference
types. Traditional assignment has two related interpretations
in modern high-level imperative languages, depending on
whether x and y are variables of a value type or variables of
a reference type. If x and y are variables of a value type, e.g.,
int, then copying leaves x and y independent of each other,

1 This aphorism, which is frequently attributed to Turing Award winner But-
ler Lampson, is actually due to David Wheeler, inventor of the subroutine.
2 By aliasing, we mean what is often called visible aliasing; that is, having
multiple names for a mutable entity.

910

so all subsequent changes to x do not affect y, and vice versa.
This is fine for the small built-in types, but it is inefficient for
user-defined types with potentially large representations.

On the other hand, if x and y are variables of a refer-
ence type, then the references x and y can be changed inde-
pendently, i.e., without affecting each other. But the objects
referenced by x and y are not independent, because subse-
quent method calls that change the object referenced by x
also change the object referenced by y, and vice versa. This
dramatically complicates formal specification [Weide and
Heym 2001] and modular reasoning about program behav-
ior [Hogg et al. 1992]. Note also that when reference types
are involved, after a traditional assignment statement there is
generally one more reference to some object and one fewer
reference to another object, so there are storage management
implications either for the programmer in a language such as
C++, or for the garbage collection mechanism in languages
such as Java and C#.

Despite the potential for reasoning problems, both tradi-
tional assignment and the value-reference type dichotomy
have been codified into modern commercial software tech-
nologies, including C++, Java, and the .NET framework.
From a software engineering standpoint, this is a step back-
wards into ontological dualism. That is, programmers must
be aware that variables of some types have ordinary val-
ues, while variables of other types hold references to objects
(where the objects have the actual values). Such dualism un-
dermines a simple, coherent, and unified view of specify-
ing and reasoning about types. Ideally, we would like a uni-
form type ontology that provides the reasoning simplicity of
value types together with the execution efficiency of refer-
ence types. Simply put, the traditional assignment primitive
falls short of this ideal.

For parameterized components — which have become
popularized by generic programming constructs such as tem-
plates — this creates a special problem. Inside a component
that is parameterized by a type Item, there is no way to know
prior to template instantiation time whether traditional as-
signment of one Item to another will copy a value or a ref-
erence. Of course, we can hack a “fix” as it is done in Java
by introducing otherwise-redundant reference types to im-
mutable objects (such as Integer) that correspond to value
types (such as int). Actual template parameters can then be
limited to reference types, but the bloated type ontology ex-
hibits a marked lack of parsimony. The technique known as
“boxing” is a cosmetic improvement in terms of syntax, but
fails to remove the value-reference dichotomy or the need to
understand its ramifications for program behavior.

Alternatively, we can adopt a design discipline that tries
to make user-defined class types act like value types rather
than reference types. A popular approach in this direction
is Coplien’s orthodox canonical form for C++ [Coplien],
in which assignment and copy constructors make “deep
copies”, so that “variables created from your classes can

be assigned, declared, and passed as arguments just like
any C variable” (page 38). Indeed, users of the C++ Stan-
dard Template Library (STL) are told to follow this ad-
vice [Musser et al. 2001]. Accordingly, we refer to tradi-
tional assignment as preserving assignment, since it pre-
serves the value of the right-hand side.

In summary, going the direction of making everything
a reference rather than a value only exacerbates the com-
plications for specification and modular reasoning that are
caused by potentially aliased references. It is true that the
reasoning problems created by aliasing could, in principle,
be avoided by requiring that all reference types should refer
to immutable objects. This would be tantamount to mandat-
ing pure functional programming in a nominally imperative
language, and to our knowledge no one is seriously propos-
ing this as a solution.

Indeed, the prevailing advice for software component de-
signers and clients would be better characterized as moving-
toward-values — except that while this works in C++, it
does not work in other popular languages that provide little
or no ability to override assignment and copy constructors
(e.g., Java). Hence, the collection classes in java.util, for ex-
ample, have been designed with preserving assignment of
references as the underlying data-movement primitive; and
there is little a client using these classes can do about it.

2.4 Exchanging Assignment
One alternative data-movement primitive, exchanging as-
signment or swapping [Kieburtz 1976, Harms and Weide
1991], has been studied more carefully and used more sys-
tematically than the other two equivalence classes of al-
ternatives evaluated in Section 3. Like preserving assign-
ment, exchanging assignment has been used as the basis for
the design of a research language, Resolve [Sitaraman and
Weide 1994], and associated component libraries. Resolve,
adapted as a discipline for C++ programming, has been
evaluated in both educational and industrial software set-
tings, including a 100K+ SLOC commercial software prod-
uct [Hollingsworth et al. 2000]; the code shown later in
this section is representative of what is in that product. Pre-
vious work [Harms and Weide 1991, Hollingsworth et al.
2000] also has addressed how exchanging assignment inter-
acts with other programming language issues and software
design issues. With exchanging assignment, the answer to
the data-movement question becomes: “x :=: y”. For in-
stance, if x = −42 and y = 97 before x :=: y, then x = 97
and y = −42 afterward.

We use exchanging assignment to illustrate how both
software component design and client code differ when pre-
serving assignment is not taken for granted as the under-
lying data-movement primitive. As an example, consider a
FIFO queue component with methods to Enqueue and De-
queue an item from the queue, to get the queue’s Length, and
perhaps others. Most of these methods do what anyone us-
ing a FIFO queue component might expect from experience

911

with a component design based on traditional assignment.
However, Enqueue is different: it moves the argument value
onto the queue and hence changes the argument’s value in
the client program. In the component design discipline used
in the study mentioned above [Hollingsworth et al. 2000],
the appropriate value for the argument upon return from En-
queue is an initial value for the argument’s type; but this is
not the only design possible.

How is such a queue component used in a client program?
Here is sample client code for finding and removing a small-
est item from a non-empty queue q and returning it in min,
possibly permuting q in the process. This code illustrates one
of the few new programming idioms that arise when using
exchanging assignment, i.e., how to iterate over a collection
by using a “catalyst” variable rather than an iterator [Weide
et al. 1994]. (For efficiency, one probably would see an it-
erator in the STL or java.util version of such code, because
these libraries are based on preserving assignment.) The C++

operator &= is used in this code for :=: because there is no
native exchanging assignment in C++ . The component de-
signer provides this exchanging assignment data-movement
operator, by convention, for each new user-defined type.

void Remove_Min (Queue_Of_Item& q, Item& min)

{

Queue_Of_Item q1;

q.Dequeue (min);

while (q.Length () > 0) {

Item x;

q.Dequeue (x);

if (x < min) {

x &= min;

}

q1.Enqueue (x);

}

q &= q1;

}

Perhaps surprisingly, as illustrated here, using exchang-
ing assignment demands few changes in programming style
[Hollingsworth et al. 2000]. One’s investment in software
engineering and programming knowledge is not lost merely
because the data-movement primitive is different.

As we explain further below, exchanging assignment is
safe with respect to modular reasoning, because the effect of
data movement does not introduce aliasing. Moreover, it al-
lows all types to be viewed as values without compromising
efficient execution. Types with small representations can be
exchanged directly by swapping values. The component de-
signer (or, if :=: is a language primitive, the compiler) can
introduce one level of hidden indirection for representations
larger than a given threshold, and swap pointers to the repre-
sentations of x and y in order to effect the logical exchange of
x and y as values. To a large extent, the other two alternatives
to preserving assignment also offer these relative advantages
with comparably subtle — but crucial — changes in compo-
nent design and client coding idioms, as we see next.

3. Solution Space and Criteria
First, we need to characterize all the possible ways one could
define a (binary) data movement primitive. We use “←”
to denote this primitive operator — in English we might
pronounce it “gets” — so by definition the answer to the
data movement question is: x ← y. Again note that y here
is simply a “bare” variable, since the cases of assigning
the result of an expression evaluation or a function call
are generally unproblematic with respect to data movement.
The key to identifying and classifying all possible meanings
for ← is to note that while ← is required to leave x with
the old value of y in order to solve the stated problem,
there is complete flexibility in the way that ← provides a
new value for y. Pragmatically, these alternatives can be
subsumed under four equivalence classes that characterize
the possible values of y after executing x ← y:
1. Destructive Assignment: y has no value (undefined)

2. Replacing Assignment: y has a legal value of its type,
chosen from a statically-specified set of values

3. Preserving Assignment: y has its own old value

4. Exchanging Assignment: y has x’s old value
These exhaust the possibilities that make any sense. There
are only two specific values in sight as the problem is stated:
the old value of y and the old value of x. Other than these, we
can select the new value of y without regard to the old values
of x and y, from among all the values of its type, in two ways:
we can give y no value (the “undefined” option), or we can
give it some value chosen arbitrarily (non-deterministically)
from among a set of admissible values. This second case
could be further partitioned in obvious ways; for example,
considering only a singleton set of admissible values deter-
mines a unique statically-specified final value for y. It turns
out that nothing hinges on this further partitioning. Also,
non-deterministic choice could also be replaced by proba-
bilistic choice of some kind, but again it turns out that this
does not affect any of our conclusions. Hence we do not fur-
ther discuss these variants.

The four possibilities above apply both for values and
references. First, suppose the type of x and y is int, a value
type. If beforehand, x = −42 and y = 97, then after x ← y
we must have x = 97. But we could leave y undefined
(i.e., unusable in subsequent computations until it gets re-
initialized with a new value of type int); we could leave y
with some statically-specified value (e.g., a natural choice
for type int might be 0); we could leave y with its old value
(i.e., 97); or we could leave y with x’s old value (i.e., −42).

Now suppose the type of x and y is a reference to objects
of type T. If beforehand, x = ref-to-B and y = ref-to-A
(where A and B are objects of type T), then after x ← y we
must have x = ref-to-A. But we could leave y undefined
(i.e., unusable in later computations until it gets re-initialized
with a new reference to type T); we could leave y with some
admissible value (e.g., a natural choice for all reference types

912

Evaluation
V/R

Destructive
(#1)

Replacing
(#2)

Preserving
(#3)

Exchanging
(#4)

Ease of
specifica-
tion and

reasoning

–/ – +/ + +/ – +/ +

Efficiency
of←

+/ + –/ + –/ + +/ +

Ease of
storage

manage-
ment

+/ + +/ + +/ – +/ +

Table 1. Evaluation summary for data movement operators with respect
to value types (V)/reference types (R). Since aliasing is not at issue for
value types, support for modular reasoning and ease of storage management
are uncomplicated. The primary deficiencies arise for efficiency and ease
of specification, principally because potentially large representations are
expensive to create (#2) and to copy (#3), and because specifications and/or
their understandability are complicated by undefined values. For reference
types, the use of indirection makes all four alternatives potentially efficient.
As with the value types, however, reasoning is complicated by undefined
and/or null references. Additionally, the potential for aliasing undermines
modular reasoning and complicates storage management in the case of
traditional preserving assignment (#3). See Figures 1–4 for details.

might be null, or possibly ref-to-O, where O is any object of
type T); we could leave y with its old value (i.e., ref-to-A);
or we could leave y with x’s old value (i.e., ref-to-B).

Before analyzing the equivalence classes for data move-
ment operators, we need a set of criteria that might bear on
an evaluation of “better” versus “worse”. In Section 4, we
consider the following desiderata that are obviously of gen-
eral interest and could differ from one data movement oper-
ator to another.

• Ease of specification and reasoning: How much com-
plication does← add to the creation of component spec-
ifications and their use in modular reasoning by compo-
nent clients? Any scalable engineering discipline must be
able to verify component properties in isolation without
having them “break” when the component is subject to
composition. We consider less complication to be better
because this foundation is required for any scalable soft-
ware engineering discipline [Weide et al. 1995].

• Efficiency: How much time does← take to execute? We
consider faster to be better.

• Ease of storage management: How much complication
does← introduce into storage management? We consider
less complication to be better, not only because it is easier
to understand, but also because it is likely to mean better
efficiency in terms of overall execution time.

This set of evaluation criteria is not complete. For ex-
ample, another criterion might be maximization of client
knowledge; that is, how much information does the client
know about the state of the program after “x← y” executes?
Arguably, more information is better, in the sense that (if all
other things are equal) a more-deterministic program is eas-

ier to reason about than a less-deterministic one — and in
some cases it can be more efficient, too, if clients can use the
additional information to their advantage.

Another legitimate (although less general) criterion might
be appropriateness for a particular software development
paradigm — for example, compatibility with hierarchical
subtyping. We return to this issue in Section 4, following
an overview of the results.

4. Analysis, Results and Discussion
Table 1 summarizes the analysis of this section using a
coarse “good” (+) versus “deficient” (–) scale for each evalu-
ation criterion from Section 3. The results for data movement
between both value types and reference types are shown.
Each column corresponds to one of the four alternatives for
the value of y after executing “x← y”.

We find deficiencies in all but #4 (i.e., exchanging as-
signment). Notably, the column with the most difficulties is
#3, in which y’s new value equals its old value (i.e., tradi-
tional preserving assignment). The other two options also
could be considered better approaches than preserving as-
signment, which — as an unfortunate legacy of early lan-
guages without user-defined types — has been hardwired
into every widely-used commercial software technology.

x

x← y;

y

x y

−42 97

97 ⊥

(a) Destructive assignment for
value types. Variable y is unde-
fined after “x← y”

{1, 2, 3}

{1, 2, 3}

{4, 5}

{4, 5}

x

x

y

y

x← y;

⊥

(b) Destructive assign-
ment for reference types.
Reference y is undefined
after “x← y”

Figure 1. Leaving y undefined requires the introduction of a new value
for each type: undefined. This adds additional complication to the pro-
grammer’s reasoning process; now implementers must specify and clients
must understand exactly what behavior modules will have in the presence
of this special value. Java programmers, especially those familiar with spec-
ifying Java in JML, know the minor mess caused by allowing null values
for reference variables. The preconditions and postconditions both add ex-
tra conjuncts and implications, respectively, to ensure the desired behavior
is described. The same style arises when variables are allowed to be unde-
fined.

A careful reader might wonder whether the criteria were
“rigged” to produce this outcome. Doesn’t exchanging as-
signment have any problems? An early assessment sug-
gested that programmers who are used to traditional as-
signment might have to learn a new paradigm of program-
ming in order to use exchanging assignment [Hogg et al.
1992]. However, subsequent experience with using this data
movement operator suggests that not much changes for

913

x

x← y;

y

x y

−42 97

97 0

(a) Replacing assignment for
value types. Variable y has some
(statically) specified value after
“x ← y”. Here 0 is given as a
suitable possible value for int
objects, but any set of values
could be specified.

{1, 2, 3}

{1, 2, 3}

{4, 5}

{4, 5}

x

x

y

y

x← y;

{}

(b) Replacing assignment for reference
types. Reference y has some (statically)
specified value after “x ← y”. This
figure suggests Ref-to-EmptySet as a
suitable possible value.

Figure 2. Replacing assignment can be achieved in two different ways.
One can either specify a unique statically-determined value for y, or let y
take on some value from a statically-determined set of admissible values.
Leaving y with a unique default value of its type is a reasonably good ap-
proach, except for the efficiency of ← for value types, particularly those
with large representations. Not only must that admissible value be con-
structed for y, but also the old value of x must be reclaimed. For reference
types there is no efficiency problem (null is a perfectly reasonable default
value), but of course this introduces the same reasoning issues that afflict
destructive assignment; the inventor of null references recently went so far
as to call them a “billion dollar mistake” [Hoare 2009]. Alternatively, leav-
ing y with one of an admissible set of values is also a sensible approach.
It doesn’t suffer from the efficiency concerns because one correct imple-
mentation is to specify the set of alternatives as containing all (legal) values
of the type, and then simply exchange the values of y and x (see Figure 3).
The only question, then, is why you would not want to tell the client the new
value of y in order to maximize the client’s knowledge of the values of the
program’s variables. Not doing so slightly compromises ease of reasoning.

the programmer except the quality of the resulting soft-
ware [Hollingsworth et al. 2000].

As was mentioned in Section 2.1, it is possible to achieve
traditional assignment effects using the other assignment
operators. More specifically, the utility of indirection men-
tioned in Section 2.2 remains available, and programmers
will inevitably wish to introduce aliases in some cases as
long as there are references types. Use of the Replica func-
tion discussed in Section 2.1 (e.g., “x ← Replica(y)”) is one
way to retain this ability regardless of what assignment prim-
itive← actually denotes; it makes the right hand side an un-
problematic function call.

One other potential problem with exchanging assignment
has been suggested [Minsky 1996]: because of its symme-
try, exchanging assignment does not mesh well with the in-
herently asymmetric notion of subtyping in object-oriented
languages. Suppose y is of type S and x is of type T, where S
is a behavioral subtype of T [Liskov and Wing 1994, Leav-
ens and Weihl 1990]. (The actual objection to exchanging
assignment on the grounds of its interaction with subtyp-
ing fails to note that if we are not talking about behavioral
subtypes, then not even traditional assignment should be al-
lowed.) The claimed problem is that O-O programmers want

x

x← y;

y

x y

−42 97

97 97

(a) Traditional preserving as-
signment for value types. Vari-
able y has its original value after
“x← y”.

{1, 2, 3}

{1, 2, 3}

{4, 5}

{4, 5}

x

x

y

y

x← y;

(b) Traditional preserv-
ing assignment for refer-
ence types. Reference y
refers to its original ob-
ject after “x← y”.

Figure 3. For value types, preserving assignment presents a serious ef-
ficiency concern when the value to be preserved has a large representation.
Furthermore, for reference types, preserving assignment is undesirable due
to the automatic aliasing it induces. This primitive suffers from both ef-
ficiency and modular reasoning drawbacks. The efficiency problem arises
when copying value types with possibly large data representations. Rea-
soning problems arise when traditional assignment is used to copy refer-
ences/pointers as so-called “shallow copies”. Other papers (e.g., [Harms
and Weide 1991], [Hogg et al. 1992], [Weide et al. 1995]) have already ex-
amined the many problems this causes. Indeed, the traditional assignment
operator is the only data movement approach where support for modular
reasoning is an issue, because it alone introduces aliased references on its
own. All the other solutions are alias-free unless the programmer explicitly
wants to create an alias, as explained in Section 2.1, which also simplifies
their storage management requirements compared to traditional preserving
assignment.

x

x← y;

y

x y

−42 97

97 −42

(a) Exchanging assignment for
value types. Variable y has the
original (old) value of x after “x
← y”.

{1, 2, 3}

{1, 2, 3}

{4, 5}

{4, 5}

x

x

y

y

x← y;

(b) Exchanging assign-
ment for reference types.
Reference y refers to
the object previously re-
ferred to by x.

Figure 4. Exchanging assignment swaps its operands (be they values or
references), so no aliases are created to possibly thwart modular reasoning,
and no garbage is created to complicate either implicit or explicit storage
management. Exchanging assignment also maximizes the client’s knowl-
edge of the program state after execution, because it specifies a unique
(dynamically determined) value for y which sometimes can be used to ad-
vantage in subsequent code. It also incurs neither aliasing nor efficiency
penalties. As mentioned earlier, an exchanging assignment can be imple-
mented efficiently to execute in constant time by (i) copy-exchanging small
representations directly and by (ii) introducing a hidden level of indirection
for larger representations. The key insight behind why this is possible is
that — from the client’s perspective — there is no logical difference be-
tween exchanging two object references and exchanging the two values of
the referenced objects. That is, exchanging the name bindings is logically
indistinguishable from exchanging the actual object values.

914

to be able to assign y to x in this case, but not vice versa —
so exchanging assignment cannot be used.

We do not give a complete analysis of this issue here, but
briefly explain one aspect of it. Indeed, exchanging assign-
ment cannot be permitted where the variables’ types do not
match, if the situation involves an explicit use of exchang-
ing assignment. However, the first and by far most common
use of data movement is for parameter passing, and here ex-
changing assignment can be used even in the presence of
subtyping. The declared type of the actual parameter (i.e.,
in the example, S) must be a subtype of the declared type
(i.e., T) of the formal parameter. For purposes of exchanging
assignment to pass this parameter to this call to the method
M (and again for the return), simply consider the type of the
formal parameter to be the same as the type of the actual pa-
rameter (i.e., S). Now the actual and formal are swappable.
This does not affect the soundness of the separate reasoning
about the correctness of M’s method body because that rea-
soning uses T as the type of the formal, and by assumption
S is a behavioral subtype of T. It just happens that only T
methods are invoked in the body of M.

Even if incompatibility with subtyping were to be a sig-
nificant objection to exchanging assignment, either destruc-
tive or replacing assignment would still be better than tradi-
tional assignment, and they are not subject to the symmetry
objection; see Tako [Kulczycki and Vasudeo 2006]. These
two are the best choices for those who prefer asymmetry in
their data movement operator in the presence of subtyping.

5. Related Work
Not only is there nothing sacred about traditional assign-
ment as an answer to the data movement question, it is the
worst choice among many better alternatives. We include
this brief section on related work to indicate the spectrum of
research on problems associated with traditional assignment
and aliasing.

One form of reasoning with pointers and aliasing is to add
an explicit store parameter to each operation. Since point-
ers and array indices are equivalent in this formulation, rea-
soning about pointer structures can be exactly like reason-
ing about arrays [Horning 1978]. This idea still remains
the basic approach to specifying and reasoning with refer-
ences [Weide and Heym 2001]. Later came explicit mod-
eling of the state of memory in specifications and in veri-
fication conditions [Luckham and Suzuki 1979]. The treat-
ment of abstraction and user-defined types was a notable ad-
vance [Ernst and Ogden 1980]; an extension of that work by
the same authors [Ernst et al. 1994] allowed for a common
store within module implementations, if the only possible
sources of aliasing come from within a module.

More recent related work has involved specification and
verification of standard object-oriented software. The prob-
lems addressed include specifying behavior of components
involving references, and potential aliasing both from copy-

ing references and from parameter passing anomalies [Leino
and Nelson 2002]. JML [Cheon and Leavens 2002] supports
specifications with references and with values.

In summary, the fundamental problem of how to specify
and verify programs with reference types is technically solv-
able by making sure that abstract state variables associated
with references “follow them around” throughout specifica-
tions, programs, and proofs. However, because the potential
for aliasing complicates specification and reasoning, many
researchers have sought to limit aliasing.

In the 1990s, this research area experienced a resurgence
of activity. A helpful classification taxonomy for the area,
defines the terms for alias detection, advertisement, control,
and prevention [Hogg et al. 1992]. Detection is the static
or dynamic diagnosis of potential or actual aliasing. Ad-
vertisements are annotations that help modularize detection
by declaring aliasing properties. Control is the provision of
tools and techniques enabling the programmer to “manage”
aliasing. Prevention is the use of constructs that rule out
aliasing in a statically checkable fashion. Among these tech-
niques, prevention would seem to afford the greatest sim-
plification of specification and reasoning. It also seems that
many of the control techniques might provide greater sim-
plification than would techniques of detection and advertise-
ment. Hogg et al.urged that “aliasing must be detected when
it occurs, advertised when it is possible, prevented where it
is not wanted, and controlled where it is needed” [Hogg et al.
1992]. Due to space constraints here, we omit discussion of
other papers. A paper summarizing work in all these cate-
gories appeared in 1999 [Noble et al. 1999] and more com-
plete survey can be found in [Pike et al. 2009].

6. Conclusions
Since traditional assignment was introduced at a time when
languages had only value types with small representations,
it was a perfectly good data movement solution for its day.
With the advent of languages having user-defined types and
reference types, though, it has become sub-optimal for gen-
eral use; i.e., it should not be the built-in data movement
primitive in modern languages. But traditional assignment
is deeply woven into the fabric of computing for most soft-
ware engineers, whose early computing education typically
involved programming only with built-in value types having
small representations. Languages could still allow traditional
assignment in such situations.

The other data movement primitives all have several ad-
vantages over traditional preserving assignment as the built-
in data movement primitive that is available for every type.
Most importantly, they do not interfere with modular reason-
ing. Some are efficiently implementable for all value and ref-
erence types, regardless of their data representation sizes. All
dramatically simplify storage management: unless Replica
is used, there is only one reference to any object, hence the
clean-up discipline is to reclaim resources when a variable

915

goes out of scope. Additionally, exchanging assignment sim-
plifies specification and reasoning by unifying values and
references in a fundamental way: there is no logical differ-
ence to the client between exchanging two object references
and exchanging the values of the referenced objects. This
means that introducing the exchanging assignment in place
of preserving assignment — and in this case in preference to
the other two possible data movement operators as well —
facilitates a move toward a uniform value semantics. This is
precisely the opposite route taken by Java and .NET. Further
details on the consequences of such a move are discussed
in [Weide and Heym 2001].

7. Acknowledgments
This work was supported in part by the National Science
Foundation under grants number CCR-0081596, and CCF-
0811737. We also wish to thank other current and for-
mer members of the Resolve/Reusable Software Research
Group, and especially Neil Coplin and Olga Volgin, for their
useful comments and contributions.

References
Yoonsik Cheon and Gary T. Leavens. A simple and practical ap-

proach to unit testing: The JML and JUnit way. In Proceedings
of ECOOP 2002, volume 2374 of Lecture Notes in Computer
Science, pages 231–255. Springer-Verlag, 2002.

S. A. Cook. Soundness and completeness of an axiom system for
program verification. SIAM Journal on Computing, 7:70–90,
1978.

James O. Coplien. Advanced C++ Programming Styles and Id-
ioms. Addison-Welsey, New York, NY, 1992.

George W. Ernst and William F. Ogden. Specification of Abstract
Data Types in Modula. ACM Trans. on Programming Languages
and Systems (TOPLAS), 2(4):522–543, 1980.

George W. Ernst, Raymond J. Hookway, and William F. Ogden.
Modular verification of data abstractions with shared realiza-
tions. IEEE Trans. on Software Engineering, 20(4):288–307,
1994.

Douglas E. Harms and Bruce W. Weide. Copying and swapping:
influences on the design of reusable software components. IEEE
Trans. on Software Engineering, 17(5):424–435, May 1991.

C.A.R. Hoare. Hints on programming-language design. In C.A.R.
Hoare and C.B. Jones, editors, Essays in Computing Science.
Prentice Hall, 1989.

C.A.R. Hoare. Null references: The billion dollar mistake. Presen-
tation at QCon London, March 2009.

John Hogg. Islands: aliasing protection in object-oriented lan-
guages. In Proceedings of OOPSLA ’91, pages 271–285. ACM
Press, 1991.

John Hogg, Doug Lea, Alan Wills, Dennis deChampeaux, and
Richard Holt. The Geneva convention on the treatment of object
aliasing. ACM SIGPLAN OOPS Messenger, 3(2):11–16, 1992.

Joseph E. Hollingsworth, Lori Blankenship, and Bruce W. Weide.
Experience report: using RESOLVE/C++ for commercial soft-

ware. In Proceedings of the ACM SIGSOFT 8th International
Symposium on the Foundations of Software Engineering (FSE-
00), ACM Software Engineering Notes, pages 11–19, New York,
NY, USA, November 2000. ACM Press.

J. J. Horning. A case study in language design: Euclid. In F. L.
Bauer and M. Broy, editors, Program Construction, volume 69
of Lecture Notes in Computer Science, pages 113–132. Springer
Verlag, 1978.

R. B. Kieburtz. Programming without pointer variables. ACM SIG-
PLAN Notices, 11(3S):95–107, March 1976.

Gregory Kulczycki and Jyotindra Vasudeo. Simplifying reason-
ing about objects with Tako. In Fifth International Workshop
on Specification and Verification of Component-Based Systems,
pages 57–64, New York, NY, USA, 2006. ACM.

Gary T. Leavens and William E. Weihl. Reasoning about object-
oriented programs that use subtypes. In Proceedings of the Joint
ECOOP/OOPSLA Conferences, pages 212–223. ACM Press,
1990.

K. Rustan M. Leino and Greg Nelson. Data abstraction and infor-
mation hiding. ACM Trans. on Programming Languages and
Systems (TOPLAS), 24(5):491–553, 2002.

Barbara H. Liskov and Jeannette M. Wing. A behavioral notion
of subtyping. ACM Trans. on Programming Languages and
Systems (TOPLAS), 16(6):1811–1841, 1994.

David C. Luckham and Norihisa Suzuki. Verification of Array,
Record, and Pointer Operations in Pascal. ACM Trans. on Prog.
Languages and Systems (TOPLAS), 1(2):226–244, 1979.

Naftaly H. Minsky. Towards alias-free pointers. In Proceedings
of ECOOP ’96, volume 1098 of Lecture Notes in Computer
Science, pages 189–209. Springer-Verlag, 1996.

D. Musser, G. Derge, and A. Saini. STL Tutorial and Reference
Guide, Second Edition. Addison-Wesley, Reading, 2001.

James Noble, Jan Vitek, Doug Lea, and Paulo Sergio Almeida.
Aliasing in object oriented systems. In ECOOP ’99 Workshops,
volume 1743 of Lecture Notes in Computer Science, pages 136–
163. Springer-Verlag, 1999.

Scott M. Pike, Wayne D. Heym, Bruce Adcock, Derek Bronish,
Jason Kirschenbaum, and Bruce W. Weide. A systematic anal-
ysis of assignment primitives. Technical Report OSU-CISRC-
8/09-TR39, Department of Computer Science, The Ohio State
University, Columbus, OH, August 2009.

Murali Sitaraman and Bruce W. Weide. Component-based software
using RESOLVE. ACM SIGSOFT Software Engineering Notes,
19(4):21–67, 1994.

B. Weide, S. Edwards, D. Harms, and D. Lamb. Design and
specification of iterators using the swapping paradigm. IEEE
Trans. on Software Engineering, 20(8):631–643, August 1994.

Bruce W. Weide and Wayne D. Heym. Specification and ver-
ification with references. In 2001 OOPSLA Workshop on
Specification and Verification of Component-Based Systems.
http://www.cs.iastate.edu/ leavens/SAVCBS/papers-2001, 2001.

B.W. Weide, W.D. Heym, and J.E. Hollingsworth. Reverse en-
gineering of legacy code exposed. In Proceedings of the 17th
ICSE, pages 327–331. ACM Press, 1995.

916

