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Abstract—Two kinds of interface contract violations can occur in component-based software: A client component can fail to satisfy a

requirement of a component it is using, or a component implementation can fail to fulfill its obligations to the client. The traditional

approach to detecting and reporting such violations is to embed assertion checks into component source code, with compile-time

control over whether they are enabled. This works well for the original component developers, but it fails to meet the needs of

component clients who do not have access to source code for such components. A wrapper-based approach, in which contract

checking is not hard-coded into the underlying component but is “layered” on top of it, offers several relative advantages. It is practical

and effective for C++ classes. Checking code can be distributed in binary form along with the underlying component, it can be installed

or removed without requiring recompilation of either the underlying component or the client code, it can be selectively enabled or

disabled by the component client on a per-component basis, and it does not require the client to have access to any special tools

(which might have been used by the component developer) to support wrapper installation and control. Experimental evidence

indicates that wrappers in C++ impose modest additional overhead compared to inlining assertion checks.

Index Terms—Assertion checkers, binary components, design by contract, preconditions, postconditions, class invariants, coding

techniques, debugging aids, specification.

�

1 INTRODUCTION

Afundamental goal of modern software engineering is
to enable predictable and modular construction of

software systems by assembling components. Bertrand
Meyer’s design-by-contract principles [20], [21] lay out a
clear division of responsibilities between a component
implementation and client code that uses it. A contract
delineates what each party may assume and what each
party is obligated to ensure. A contract violation occurs
when one party does not live up to this contract. Being
behavioral rather than syntactic in nature, a contract
violation generally is not detected until runtime. When
integration testing reveals that a component’s contract with
a client is violated, assigning responsibility for it can
demand a substantial investment of debugging effort. Not
detecting such a violation until after deployment can be
even more expensive. Worse still, a system can behave
properly on all test cases even as internal interface
contracts—those where the component plays the role of
client to its subcomponents—are violated. Failures resulting
from such violations are revealed only in the form of
accidents after deployment. The benefits of using runtime
assertion checks to enable early detection of contract
violations are, therefore, substantial and well-known [32],

[35], [21], [10]. As component-based approaches gather
momentum, runtime checking can address some of the risks
faced by component clients [33].

Szyperski defines a component as “a unit of composition
with contextually specified interfaces and explicit context
dependencies only...[and that] can be deployed indepen-
dently and is subject to third-party composition” [30], and
this is the definition we use in this paper. However, to make
the presentation of contract-checking concerns concrete, we
consider only checking the behavior of classes in C++ rather
than components in the more general setting of technologies
such as CORBA, EJB, or .NET. Regardless, the most
important issues involved in packaging and managing
assertion-checking code for components remain the same.
In particular, the critical concerns exposed when distribut-
ing components in compiled form noted by Szyperski [30]
also arise in the case of C++ class libraries distributed in
compiled form.

1.1 Contract Checking Revisited

The traditional approach to contract checking is to include
assertion checks within the source code for component
methods. This is useful for component developers—those who
have direct access to component source code and can easily
recompile it with alternative assertion-checking settings.
Indeed, it is common when using assertion checking to
enable checking code during development and testing, and
to disable or remove it before delivery [21], [17], [18].

The primary limitation of this approach impacts not
component developers, but component clients, when a
component is distributed in compiled form only. When
assertion checks are embedded directly within the compo-
nent being checked, either the client must relinquish the
benefits of assertion checks, or the client must pay some
runtime penalty for the checks because there is no option to
recompile without checks to eliminate this overhead.
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The approach described in this paper provides runtime

precondition, postcondition, and invariant checks by using

contract-checking wrappers. Rather than placing assertion-

checking code inside the component, such a wrapper (also

called a decorator [12]) isolates checks in a separate layer

between the component and its client(s), as shown in Fig. 1.

The wrapper’s sole responsibility is to implement interface

violation checks.
A contract-checking wrapper provides the same interface

as the component it checks, and delegates the work

involved in carrying out each operation to that underlying

component. The wrapper performs runtime checks both

before and after each method invocation in order to detect

interface violations. The concept of using wrappers is a

strategy that fully separates the assertion checks from both

the client’s code and the underlying component’s code. The

fundamental principles on which this approach is based are

presented in the form of essential requirements for contract

checking, in Sections 1.2 and 1.3.

1.2 Contract-Checking Requirements of
Component Developers

To see why the traditional approach to contract checking is

a good idea, yet still inadequate, it helps to identify the

requirement it was designed to satisfy—that of a compo-

nent developer.

Requirement #1: The contract-checking approach should

allow checking code to be inserted or removed (e.g., for

development or for deployment, respectively) without

editing source code.

Meyer [21] argued persuasively against hard-coding

assertion checks into code—either by incorporating check-

ing code in the component or by incorporating it into the

client. Hard-coding an assertion check inside a component

forces the check to be executed, with its consequent

performance penalty. Placing checking code in the client

causes its proliferation (i.e., at the site of every call) as well

as unnecessarily coupling the client to the component being

checked.

Meyer’s solution in Eiffel was to add linguistic support
to allow checking code (automatically generated from an
Eiffel executable assertion) to be automatically inserted into,
or omitted from, the generated object code for the
component at compile time, and at the developer’s
discretion. This strategy typifies virtually all mainstream
runtime assertion checking techniques. Assertion checks are
conditionally inserted into the component being checked
based on a compile-time switch. Popular use of assert()
macros in C++ and similar utility classes in Java are much
the same. Such a strategy provides all the support necessary
when one views assertion checks as a developer-only tool to
be used before the commercial release of an application.

Requirement #2: At a minimum, the approach should allow
categories of checks (e.g., preconditions, postconditions,
or invariants) to be selectively enabled or disabled for
each class individually.

This requirement provides fine-grained control over
assertions during development. Many existing tools sup-
port selective enabling of assertions by allowing the
developer to select which categories of assertions will be
inserted into a given class and letting the developer
recompile with alternate options to change such a decision.
It is even possible to conceive of checking strategies that
allow much finer control over assertion behavior, such as
controlling individual assertions on individual methods to
be enabled on a per-object basis. While it is feasible to
implement such capabilities, there may be a point of
diminishing returns where control at too fine a scale
actually makes specifying which features are enabled or
disabled more cumbersome than the benefits gained. As a
result, Requirement #2 defines a minimum level of control
that is comparable to that in other developer-oriented tools
[25], including iContract [15], Eiffel [21], the low-level
assertion facilities in the Java Virtual Machine and Micro-
soft’s Common Language Infrastructure [32], and logging
tools such as log4j [13].

1.3 Contract-Checking Requirements of
Component Clients

Two results of the success of modern component technol-
ogies raise new requirements for a contract-checking
approach. First, commercial components often are distrib-
uted in binary form [30], both for simplicity of deployment
and for protection of intellectual property and trade secrets.
Second, component clients often use components they
acquire from others to build and deliver new components,
not just end-user applications. A more comprehensive
approach to contract checking should, therefore, seek to
satisfy the needs of component clients, too.

Requirement #3: The contract-checking approach should
not require recompilation of the component(s) being
checked, the contract-checking code, or client code.

It is clear that a component client should not be required
to recompile a component or contract-checking code that is
not provided in source code form. Additionally, however,
this client might be developing his/her own higher-level
components that are not to be distributed in source code
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assertion checking.



form. Some methods of these new components might, in

fact, be methods of the lower-level components (e.g.,

through inheritance). In other words, the contract-checking

approach should scale up uniformly and naturally from

lower-level components through higher-level components

—implying that client code, too, should not require

recompilation in order to enable/disable contract-checking

features.
For contract checking to provide the greatest added

value commercially, the component client also should be

able to selectively control which assertion-checking features

are in use and which are suppressed (Requirement #2)

without recompilation. This will allow clients to benefit

from checks where checking is appropriate, yet not incur

any unwanted overhead where checking is not appropriate.

Requirement #4: The client should be able to control which

action(s) are taken in response to detected contract

violations.

Again, to provide the greatest added value to the

component client, the developer should not hard-code a

fixed response to failed assertion checks, even if that

response is sufficient during component development.

Instead, the client should have the flexibility to choose an

action appropriate to his/her use of the checks. Currently,

most runtime assertion checking strategies either halt a

program with a diagnostic message or throw an exception.

Halting the program provides no flexibility to the client.

Throwing an exception, on the other hand, requires the

client either to ignore the exception (typical result: halting

the program), or to write exception-handling code within

the client. Including assertion-specific exception handling

code within the client makes it difficult to remove or

disable assertion-related code from a final product unless

conditional compilation or a similar technique is used

(conflicting with Requirement #3). Ideally, the client

should be able to choose among responses to a detected

violation—e.g., throwing an exception, halting with a

diagnostic message, popping up an informational dialog,

transferring to a debugger, logging to a file or logging via

an offsite connection and continuing execution, or any

other response.

Requirement #5: The contract-checking approach should

not require the client to use special support tools that

might have been used by the component developer.

Among the many approaches to packaging and mana-

ging runtime assertion checks, most rely on a specific

development tool. Certainly, special tools are powerful (and

perhaps even essential) in effectively producing contract-

checking code—e.g., automatically generating checks from

behavioral descriptions. Once the checking code is com-

piled, however, the process by which customers receive,

enable, disable, install, or remove runtime checking support

should not depend on their use of such a special tool that

might be available only to the component developer and not

to every client.

1.4 Contributions

Together, these five requirements—which we show how to
meet in the context of C++ components—capture the
fundamental design goals of our contract-checking ap-
proach. At the same time, they help delineate how this
approach differs from previous work. Many existing
techniques [21], [17], [18] support Requirements #1 and #2.
The benefits of Requirement #4 are explained in [3] and are
supported by the Annotation Pre-Processor [26]. But, earlier
techniques require recompilation to add or remove asser-
tions (against Requirement #3), and use a special prepro-
cessor or a separate phase of a compiler to conditionally
insert checks in the underlying component (against Re-
quirement #5). Moreover, although several researchers have
used wrappers around individual methods [7], [18], [11], all
such approaches have continued to place the checks in the
original class rather than in a separate class where it can be
managed more easily by clients. The added value of
contract-checking wrappers as implemented here lies in
their ability to meet Requirements #3-5 above, in addition to
Requirements #1-2.

It is also worth noting a requirement that is not listed as a
design goal here: one cannot retrofit new assertion checking
capabilities onto binary-only, third-party classes or compo-
nents that were not written to support this technique.
Instead, we envision a developer who writes his or her own
wrapper along with the component to be checked and then
distributes it in binary form along with the underlying
component as a value-added service for customers. A
customer can then enable or disable the wrapper to
dynamically check proper component behavior in a new
composition context, supporting the detection and resolu-
tion of component mismatches, composition errors, and
glue code bugs. While supporting the ability to retrofit
assertion checks onto pre-existing components is a worthy
goal, it does not appear to be technically possible in C++
without changing the checked component’s implementa-
tion, which presumably would require recompilation.

Experience indicates that the modularity of our approach
allows it to scale up to nontrivial C++ systems [13]. This
paper explains how to build contract-checking wrappers for
C++ components, and provides experimental evidence to
show wrappers have minimal impact on performance.
Without reservations, we make use of features specific to
C++ in this paper. This is necessary to build and use
wrappers elegantly in C++. However, it is possible to
generalize and adapt the ideas to other languages, e.g., Java
[31]. Together with previous work on specification [38] and
dynamic checking [36] of C++ components, the present
paper makes practical and effective use of component
technology possible.

Section 2 presents the design and implementation of a
C++ contract-checking wrapper through an example,
together with the practical aspects of using such wrappers.
Section 3 reports results from experience as well as an
evaluation of performance impact. Section 4 contains a
discussion of the limitations of the approach and directions
for further research. Section 5 compares the proposed
approach with related work and presents our conclusions.

796 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 30, NO. 11, NOVEMBER 2004



2 THE PRACTICE OF CONTRACT-CHECKING

WRAPPERS IN C++

The design of a contract-checking wrapper is best intro-

duced by example. Section 2.1 introduces an example class

interface and implementation, while Section 2.2 shows how

this class is used in client code. Section 2.3 presents a

corresponding contract-checking wrapper and its internal

construction. Section 2.4 describes how wrapper support

can be installed without requiring source code changes or

recompilation, while mechanisms to provide client-level

control over wrapper options are discussed in Section 2.5.

Finally, Section 2.6 addresses the creation of a wrapper for a

subclass by simply extending the ancestor’s wrapper.

2.1 An Example: The Notification Center

To illustrate the approach for detecting contract violations,

Fig. 2 presents a simplified interface for a C++ “notification

center”—a simple event registry and broadcast service. A

separate class, called Event, is at the root of the event
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hierarchy. The Event_Listener interface must be im-

plemented by any object that wishes to receive notification

of signaled events. At any time, one can register a new

listener for a specific category of events, unregister a

currently registered listener, or signal an event—with the

result that all currently registered listeners will be notified.
The notification center described here is similar in spirit to

the Observer design pattern [12], except that listeners

(observers) can selectively register for specific events with

the notification center, and those events may be triggered

by any number of (unknown) source objects, rather that an

explicitly identified object playing the role of the “obser-

vable” entity. Fig. 2 includes only a core set of methods for

brevity and simplicity.
The Notification_Center interface shown in Fig. 2

also includes a behavioral description to explain to clients

how the class operates. The notation used here is based on

RESOLVE [28], though any other model-based specification

language [37] would do as well. An informal behavioral
description might also suffice, although the developer

needs a precise idea of the required behavior when

producing contract-checking code.
The behavioral description of the notification center

presents an abstract model of its state as a set of pairs, each

consisting of an event category and an associated pointer to

an event listener interested in events of that category. The

behavior of each method is then described in terms of this

abstract model. Note that the comments in Fig. 2 use

self(rather than *this) to refer to the abstract view of the

current object, for readability. The constructor, for example,

ensures that each newly constructed notification center is

an empty set, containing no associations. The register_-

listener() method requires as a precondition that the

listener to be added is not already registered for the given

event category. When properly invoked, it promises in its

post-condition to add the given category/listener pair to

the notification center. Within postconditions in this

behavioral description, the # prefix refers to the value of

an object before a method is called (the prestate), while the

same object name without a # prefix refers to the new value
after the method has completed (the poststate).

Fig. 3 shows part of one possible implementation of the
notification center interface. This implementation builds on
the Standard Template Library (STL) [22], using a map to
associate each event category with a vector of pointers to
listeners. Adding or removing listeners involves simple
map and vector operations. Signaling an event involves
looking up the corresponding vector of listeners in the map
and then using the std::foreach() algorithm to notify
each listener.

Fig. 3 also shows a representation invariant [8]—a class

invariant dealing with internal, implementation-oriented

concerns rather than client-visible abstract state. As with the

abstract model, the representation invariant is phrased in

prose rather than in a particular formal specification

notation because the focus of this paper lies on how

runtime checks are packaged, rather than how they are

generated. For tool-supported generation of assertion

checks, an appropriate specification notation would be

used instead. As expressed, however, the representation

invariant states that no vector within the map contains the

same listener multiple times. This representation invariant

reflects (but should not be confused with) an abstract,

client-level invariant property implicit in the specification—

as a mathematical set, the abstract state model allows no

duplicate pairs. Although it is simple, the notification center

involves several key features that make it a useful example

for illustrating contract-checking issues.

2.2 Client Usage

The contract-checking wrapper strategy is simple and easy
to use from the point of view of client code. The critical
question is: How can one conditionally insert wrappers around
checked objects without requiring source code changes (or
recompilation)? Since client code is coupled to the identity
of the concrete class implementing an abstract interface only
at object creation, a factory [12] is an ideal solution. The idea
of using a factory to isolate client code from decisions about
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which particular concrete class is used when creating new
objects is standard practice for many object-oriented
developers. Any reasonable factory approach is viable here,
leading to client code similar to the following:

// Objects are created using a factory

Notification_Center* center =

Notifier_Factory::create();

center->register_listener( my_category,

my_listener );

center->notify( next_event );

Since construction of new objects is handled through the
factory pattern [12], decisions about whether or not to use
wrappers (or which checks to enable) can be controlled and
localized elsewhere. Thus, client code does not require
recompilation to switch between wrapped and unwrapped
objects. Section 2.4 describes how wrappers can be
“plugged in” as a link-time option without requiring any
recompilation (simply by adding the wrapper’s object file in
the linking sequence), while Section 2.5 shows how
wrapper creation can be enabled or disabled at runtime if
the corresponding object code has been linked into an
application.

In practice, a “smart pointer” template [1], [2] could be
used to manage the heap-allocated notification center object
automatically. In addition, the factory call could be
encapsulated inside a template constructor on such a smart

pointer—something that could be achieved with a simple
extension to Batov’s Handle template [2], for example.

2.3 A Contract-Checking Wrapper

Now that the client code perspective has been addressed,

the issues of implementing a contract-checking wrapper can

be explored. If the runtime checks are separated from the

underlying component implementation, how will those

runtime checks be implemented? A simple approach is to

allow the checking code to have direct access to the internal

data stored within the underlying component. Elsewhere,

this approach has been compared to more sophisticated

alternatives that do not require direct access to internal

component state [9]. To simplify exposition, here we use the

direct access approach.

Implementing a checkingwrapper is then straightforward

in principle: Simply move any contract violation checks one

would normally place inside the methods of the underlying

component into a new class, and ensure that within this new

class, all internal data members in the underlying imple-

mentation are visible. In C++, this can be achieved by adding

a friend declaration to the corresponding concrete class,

such as the Notification_Center_Using_Map imple-

mentation in Fig. 3.
Fig. 4 outlines the contract-checking wrapper class for

the notification center implementation shown in Fig. 3. Like
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the underlying class, the wrapper implements the same

abstract Notification_Center interface. The wrapper

contains only two data members: A pointer to the wrapped

object to which all the real work will be delegated and a

reference to a “preferences” object that defines the options

for controlling the behavior of this wrapper (Section 2.5).

Values for both data members are passed as parameters to

the wrapper’s constructor.
In addition to implementing the public methods declared

in the Notification_Center interface, the wrapper also

declares a number of internal methods for use in performing

its checks. Only check_invariant() and pre and post-

condition check operations for register_listener()

are shown in Fig. 4 for brevity. Each such helper operation is

a Boolean-valued function that embodies a specific runtime

assertion check to perform.
Each public Notification_Center method is over-

ridden to wrap contract-checking actions around a call to

the corresponding method on the wrapped object. Fig. 5

shows how such a method is implemented, using regis-

ter_listener() as an example. The preferences object

determines whether or not to perform each check, meeting

Requirement #2. If a check fails, the preferences object also

determines how best to handle the failure (Requirement #4).
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In Fig. 5, first, the invariant is checked if desired. This is
because, in modular reasoning, the representation invariant
is required to be true at the beginning of every publicmethod
and guaranteed to be true at the end. If the invariant is false
before beginning amethod, then the object’s state is corrupt.1

The actual checking code does not appear inline in this
method, but is instead placed inside check_invariant(),
allowing the invariant to be strengthened or extended easily
by wrappers for subclasses (Section 2.6). Second, the
precondition for register_listener() is checked. A
precondition failure signals a violation of the public contract
by the client code invoking the method. If the precondition
fails, the appropriate handling action is invoked and the
remainder of the method is skipped in order to protect the
integrity of the underlying object from the invalid client call.
Third, the wrapper tests to see if postconditions are enabled.
If so, fourth, it saves the state of the wrapped object and any
method parameters that might be modified by the under-
lying operation. This step is generally needed for full
postcondition checking, since a typical postcondition (in-
cluding this method’s) describes an object’s new state or a
method’s return value in terms of the “old” values at the time
of method invocation.2 Deep copying (provided by
std::map’s copy constructor) is used to capture a complete
picture of the prestate before method invocation. No deep
copy of the given event listener pointer is performed in Fig. 5
since the contract is specified in terms of the pointer’s value
rather than the value of the object to which the pointer refers
(a full deep copy would be performed if it were required to
check the postcondition). Fifth, the wrapper calls the
corresponding method on the wrapped object. Sixth, the
wrapped object’s invariant is checked again, and seventh,
the postcondition is checked. It is necessary to check the
invariant at the end because every public method must
guarantee that the invariant holds on exit. Proper ordering of
invariant checks aids in detecting erroneous object states that
could potentially cause other checks to crash. If postcondi-
tion checking is not enabled, an alternate branch allows the
cost of copying prestate values to be avoided. This is much
easier to achieve with minimal code duplication when both
the checking code and the underlying implementation are in
separate methods.

The internal checking methods are executable imple-
mentations of the corresponding behavioral descriptions in
the component’s contract. Ideally, an appropriate tool for
the chosen behavioral description notation can be used to
generate them, although the focus here is on how they are
packaged and distributed. Fig. 6 shows the implementa-
tions for the invariant check and the register_listen-

er() precondition check, as well as an outline for the
register_listener() postcondition check. Pre and
postcondition checking operations for the other Notifi-

cation_Center public methods are similar. Here, it is
worth noting that although check_invariant() sorts

the listeners in each vector, it is not modifying the original
map—instead, it is sorting an independent copy of each
vector, created by copy construction when initializing the
local variable L. This important step prevents the check
from altering the map’s internal state, which potentially
could mask latent defects in the underlying notifier class.

With wrappers, the focus is on checking the contract
“between” the client and the underlying component and,
therefore, assertion checks are only performed on entry to
and exit from the public methods. Since the underlying
component makes no reference to the wrapper when calling
other methods defined in the underlying class (or any of its
ancestors), self-calls or super-calls within the implementa-
tion proceed without checking. Generally, this is appro-
priate because our error detection concerns clients without
access to and without the knowledge of the internal code.
Further, all contract violations visible to the client will be
detected and reported. Nevertheless, the difficulty in
checking self-calls in the wrapper approach is a limitation
and it is discussed in Section 4.

For simplicity, exception handling issues are omitted
from the wrapper design presented here. For behavioral
description techniques that include exception specifications,
the approach used by JML is suitable [4]. This involves
creating a separate postcondition checker method for each
class of exception that can be thrown from a method,
placing the call to the wrapped object in a try block, and
providing a catch handler for each exception class that
invokes the corresponding postcondition checker. An
additional handler to catch unexpected exceptions and
signal a postcondition failure is also required. The invariant
must be checked regardless of the manner by which control
is transferred out of the method. Cheon and Leavens also
provide a discussion of how one can handle exceptions that
arise during the execution of assertion checks [4].

2.4 Installing Wrapper Support without
Recompilation

Although the mechanics of contract-checking wrapper
construction are straightforward, another issue remains
(Requirements #1 and #3): How can support for contract-
checking wrappers be installed or removed from an application
without requiring source code changes (or recompilation)? This
goal can be achieved by combining the factory concept
used for object creation with careful use of dynamic
binding. Fig. 7 shows a simple implementation of a
notification center factory that demonstrates the concept.
The Notifier_Factory provides a minimal public
interface: just a create() method that can be called to
create new objects. For wrapped objects that support
multiple constructors, overloaded versions of create()

are a natural extension. In a C++ design, the declaration
for this factory class would normally appear in the same
header file as the Notification_Center interface;
together, these two classes provide all of the information
necessary for client code to access and use notification
center services.

Fig. 7 also shows the implementation for the Noti-

fier_Factory class methods, which can be compiled
separately. Internally, the factory’s create() method first
creates a new notification center object using the underlying
concrete class. Next, it checks for an installed wrapper
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creation function. Such a wrapper creation function can be
registered by storing its address in the factory’s static
wrap_fn data member. If a wrapper creation function is
registered, the newly created notification center object is
passed to it for “wrapping.” The resulting object is returned
to the client. The factory does not define any wrapper
creation function itself and will work seamlessly without
one. Instead, it simply initializes the function pointer to be
null. In effect, the wrap_fn pointer represents an explicit
binding to a wrapper creation service that can be changed at
runtime. Changes to this pointer value will affect object
creation through the factory without being visible to the
client and without requiring client code to be recompiled.

To complete wrapper installation, an appropriate
wrapper creation function must be registered. Fig. 8
shows the Wrapper_Factory, which defines a wrapper

creation function called add_wrapper() as a static
method. The Wrapper_Factory class is a subclass of
Notifier_Factory and can access the wrap_fn static
variable to register add_wrapper().

Fig. 8 also shows a static declaration for a Wrap-

per_Factory object. The sole purpose of this object is
to cause the Wrapper_Factory constructor to be
executed before the main() routine begins executing.
C++ static variable initialization rules require that the
constant data initialization of wrap_fn to null (in Fig. 7)
occur before any constructors for global or static objects
are executed [29], so the Wrapper_Factory constructor
will execute after this initialization. This provides for
clean, predictable wrapper registration before main()

begins. It is worth noting that, if any global, statically
allocated objects declared in a separate compilation unit
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call the Notifier_Factory::create() method in

their constructor, the C++ language standard does not

specify in which order the constructors will be executed.

This means a Notification_Center object created as

part of such a static initialization may potentially be

unwrapped because it was created before add_wrap-

per() was registered. Otherwise, all objects created after

the start of main() can be wrapped.
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The code shown in Fig. 8 can be included in the same
source file as the implementation of the wrapper class.
When the wrapper code is linked into a program, its
wrapper creation function will automatically be registered
with the corresponding factory. When the wrapper’s object
code is omitted from program linking, its wrapper creation
function will not be registered and only unwrapped objects
will be used. The result is a simple scheme for installing
wrapper support at link time without requiring any source
code changes or recompilation.

2.5 Controlling Wrapper Options

Figs. 4, 5, and 8 all use a Contract_Prefs class to tailor
runtime behavior, in support of Requirements #2 and #4. In
spirit, this class simply stores Boolean-valued preferences
for the various actions the wrapper can perform. Fig. 9
shows the interface of such a class, although other
implementation choices are possible. The remainder of this
section explains the design used for obtaining the perfor-
mance data in Section 3.

The set of preferences are defined by an enumeration
within Contract_Prefs. Individual settings are retrieved
using the enabled() method. Fig. 8 shows one Con-

tract_Prefs object being created for use with all
Notification_Center_Using_Map_Wrapper objects.
The preferences object is given the name of the class to be
wrapped when it is initialized.3 In addition to controlling
which checks (invariants, preconditions, and/or postcondi-
tions) are enabled, the preferences object is also consulted
when installing wrapper support at startup. If this pre-
ference is false, then no wrapper support will be installed at
start up, and client code will operate just as if the wrapper

class (and associated factory extension) were not linked into
the program. Assuming the wrapper creation function is
installed, the preferences object is queried on each object
creation to see if the customer wishes for the underlying
class to be wrapped.

The Contract_Prefs class also allows the customer to
control the response action to failed checks. As shown in
Fig. 5, when a contract check fails, the preference object’s
handle() method is invoked. The preference object thus
decouples the response action from the wrapper. Internally,
the Contract_Prefs object references a “violation hand-
ler” object. Different violation handler implementations
with a common interface support different responses:
throwing an exception, popping up an information dialog,
or any other action. The desired action can be looked up
using the same mechanism as for other preference settings,
and user-defined handler actions can be supported.

The Contract_Prefs class separates choices regarding
which features are enabled and how violations are handled
from both the underlying component and the client code.
Paired with a mechanism for adjusting preferences at
runtime, the client has flexible control over wrapper
behavior on a per-class basis. The result is a clean
mechanism for addressing Requirements #2 and #4 without
requiring source code changes.

2.6 Subclassing with Wrappers

The traditional approach of generating checks inside the
methods being checked poses many problems in the face of
subclasses. In particular, embedding the checks in the
parent’s methods makes it difficult for subclasses to reuse
the checks without duplication, to extend the checks, or to
call parent methods without performing unnecessary
checks.

When using wrappers with subclassing, one can define a
parallel hierarchy of public interfaces that captures the
external contract of a parent class and its subclasses.
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3. Instead, initial preference values might be read from a separate
initialization file or a registry service. The preference object could even
dynamically register itself with a separate manager object [6] so settings
could be controlled dynamically through a GUI control panel—similar to
iControl [15], but at runtime.

Fig. 9. The interface for a wrapper behavior preference class.



Further, a mirror hierarchy of wrapper classes can provide
assertion checking support for each concrete class under
consideration. A separate factory can then be provided for
each concrete class so that client code can exercise control
over exactly which type of object is created at any given
point. This structure raises the question of how a wrapper
for a subclass, which inherits from the superclass’s
wrapper, can define its own checks in a clean way.

Our approach is based on the technique implemented
in JML. The JML technique [18] takes advantage of prior
work [7], [11] and relies on renaming the original methods
and augmenting the checked class with wrapper methods,
rather than placing the checks in a separate class.
However, JML places the code implementing the checks
into helper methods in a manner similar to that shown in
Figs. 4 and 5. As a result, when the externally visible
contract (interface) for a subclass strengthens a postcondi-
tion or weakens a precondition on an overridden method,
or strengthens a class invariant, the subclass’s wrapper
need only override the corresponding check. Further, the
subclass wrapper’s overriding definition for this check can
easily reuse the parent wrapper’s code for the same check
by directly calling it—the checking code for the concrete
parent class is no longer inline in the main operation.

For example, suppose we want to create a subclass of
Notification_Center_Using_Map that eliminates the
precondition on register_listener(). This new sub-
class would have a corresponding wrapper class that
subclasses Notification_Center_Using_Map_Wrap-

per. The wrapper subclass would not have to redefine
the register_listener() method; instead, it would
only need to redefine the pre_register_listener()

helper method corresponding to the precondition of
interest.

The manner in which subclass checks are implemented
depends on the interpretation given to a subclass’s
behavioral description, an issue orthogonal to the contribu-
tions of this paper. Some specification approaches interpret
a subclass contract as an extension of its parent’s contract,
where additional precondition clauses in the subclass
indicate additional prestates that are acceptable beyond
those captured in the parent contract, and where subclass
postcondition or invariant clauses indicate additional
guarantees provided by the subclass. In this case, the
wrapper for a subclass can extend checks by using
disjunction to combine new precondition clauses with the
parent’s check, and by using conjunction to combine new
postcondition or invariant clauses with the parent’s check.
Alternatively, one can consider the subclass’s behavioral
description to completely replace (rather than add to) its
parent’s. This may allow a subclass’s behavioral description
to conflict with that of its parent. Findler et al. [11] describe
an approach to checking subclass contracts that can detect
when such a subclass contract is not LSP-compliant from
the perspective of the client code.

3 EXPERIENCE AND EVALUATION

3.1 Practical Experience Using Wrappers

Contract-checking wrappers have been used successfully
on a realistic scale and are an effective means of managing

runtime assertions. A wrapper-based technique (a pre-
cursor to that described here) has been employed by
Hollingsworth in commercial development [13]. The
product uses about 250 components implemented in
approximately 100,000 lines of C++ code. Since its
introduction in 1993, the product has developed a
customer base of about 2,000 sites.

Throughout product development, contract-checking
wrappers supporting precondition checks were used dur-
ing unit development, unit testing, integration, and system
testing. The developers cited this practice as important in
achieving such a high level of quality [13]:

This approach detected almost all of the client [component]’s
original defects during unit testing and system integration.
Very few defects were revealed during system testing, and
only two were detected postrelease. [...] Unit testing and
system integration with checking components in place
dramatically reduced the effort needed for system testing
and debugging compared to a more traditional approach.
[emphasis in original]

Hollingsworth’s wrappers did not employ factories and
thus required recompilation for removal. In this experience,
primarily due to the C++ design strategies chosen, no
special issues arose with regard to postcondition checking
in the face of exceptions, or with regard to composing
subclass checks with superclass checks in wrappers for
subclasses. The developers reported that using wrappers
provided a dramatic increase in the confidence they had in
the correctness of their code.

In addition to this commercial experience, wrappers also
have been used in the laboratory. Edwards has carried out
an experiment using contract-checking wrappers to detect
bugs while measuring the effectiveness of test suites [10].
Runtime contract-checking identified 100 percent of the
artificially seeded defects triggered by the test data—the
only undetected bugs were those that were not exercised by
the test suites under examination.

3.2 Impact of Factory-Based Object Creation

Two questions arise about the performance cost of the
wrapper approach: What is the impact of factory-based
object creation, and what additional overhead is imposed
by the wrappers themselves? To address these questions, a
small experiment was conducted using the notification
center example presented in Section 2.

Since the factory code is virtually identical for all
wrappers, the additional overhead imposed will be ap-
proximately the same for every class for which wrapper
support is installed. To measure this overhead, the actual
running time of a sequence of 50 allocation and deallocation
operations was collected for four alternatives:

1. Direct allocation of the underlying class using
operator new (the baseline).

2. Factory-based allocation of an unwrapped object.
3. Factory-based allocation of a wrapped object, with-

out testing the Contract_Prefs.
4. Factory-based allocation of a wrapped object

including the cost of checking the corresponding
Contract_Prefs setting at runtime.

Times were collected on a 1.2GHz Athlon processor
running Windows 2000 Professional with 256MB of
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memory, using code generated using GNU g++ 3.0.4
compiled with optimization (-O3). Times were measured
using the approach described by Musser [22] for timing
C++ library operations.

Table 1 summarizes the results. Using a factory to create

unwrapped objects instead of directly allocating objects

using operator new adds no measurable amount of

overhead. This is due to the fact that the vast majority of

the running time for such an operation is taken up in heap

management activities, and the addition of a single function

call (which can be inlined easily and optimized away) is

negligible in comparison. Thus, the approach described

here will have negligible performance impact on the final

product when wrapper support is not installed.
Table 1 indicates that creating the wrapper in addition

to the underlying object increases object creation time by
less than 20 percent. This relative amount will vary
depending on the cost of creating the underlying object,
but on an absolute scale it should remain fixed for all
wrappers because the wrapper allocation overhead is
independent of the underlying class. Naively, one might
assume that it will take approximately twice as long to
create the wrapper together with the underlying object.
However, the Notification_Center_Using_Map class
includes an std::map that contains other heap-allocated
structures internally. Creating such an object requires
several heap operations, while creating the wrapper
requires only one more. Table 1 also indicates that
checking the preferences object to see if wrapper creation
is desired on every factory call adds a negligible amount
of overhead relative to the allocation cost.

3.3 Impact of Wrapper-Based Contract Checking

The impact on basic object method calls was also studied. A

sequence of 100 notification center operations was timed,

consisting of 5 percent register_listener() calls,

5 percent unregister_listener() calls, and 90 percent

notify() calls. This sequence is intended to be a coarse

approximation of notification center usage, where event

broadcasts predominate. No assertion violations were

triggered in this sequence of calls—the normal case for

which performance (as opposed to defect detection and

isolation) is an issue. The same code was timed against four

separate notification center objects:

1. An unwrapped Notification_Center_Using_-

Map.

2. A modified Notification_Center_Using_Map

class that uses the same contract checks placed inline
using assert() macros.

3. A wrapped Notification_Center_Using_Map.
4. A wrapped Notification_Center_Using_-

Map where all checks are disabled using
Contract_Prefs.

Table 2 summarizes the time taken for the subject code
sequence. Wrappers impose some additional overhead
beyond inline assertions, adding approximately 8 percent
in this example.

3.4 Wrapper-Independent Overhead Costs

What is more striking is the large cost of executing the
runtime checks at all, whether or not they are inlined. To
explore this issue, additional timing runs were used to
identify the relative contributions of the various parts of the
contract-checking code to this running time. Fig. 10 shows
the breakdown of the overhead for both inline and
wrapper-based assertions. In Fig. 10, “delegation” is the
cost of the virtual dispatch to the underlying component,
“dynamic binding of checkers” is the cost of the four virtual
calls to the checking helper methods, and “preference tests”
is the cost of calling enabled() on the Contract_Prefs.

As Fig. 10 shows, the dominating contributors to
assertion checking overhead are independent of the
wrapper strategy. The majority of the overhead is devoted
to one task: saving the prestate values before calling the
checked method. While saving the values of incoming
parameters is not expensive in this case, saving the value of
the current notification center object is time consuming. The
STL implementation provided with GNU g++ implements
std::map as a red-black tree with heap-allocated nodes.
Further, each node in this tree contains a pair: an event
category together with a vector of listeners. The vector in
each pair contains a heap-allocated array. As a result,
copying the prestate value of a map involves numerous
heap allocations.

Similarly, when the copy is finalized as it goes out of
scope, corresponding deallocation operations occur. These
heap operations dominate the overhead. This information
highlights the use of two alternate branches in Fig. 5, one
that saves prestate values when postconditions are being
checked, and one that avoids this cost when it is not needed,
resulting in improved performance when checks are
disabled (Table 2). Further, when prestate values are not
needed to check a postcondition, one branch can be
eliminated entirely.
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The second-largest contributor to the overhead is

checking the invariant, the code for which is in Fig. 6.

Although checking the invariant does not copy the entire

map, it does copy each vector in the map before sorting it,

involving more heap operations. In both cases, the extra

copying is due in part to the value-oriented semantics of

STL abstractions. However, in practice, this copying is

critical; runtime checks must not modify the representation

of the underlying object in any way. Any such modification

might mask a defect by accidentally “erasing” its effect, or
worse, it might introduce defective behavior of its own.

However, the performance issues with generalized heap
memory management are well-known. Alexandrescu pre-
sents custom allocators that can significantly improve the
situation [1]. A custom allocator using a simple free list
reduced the overhead by two thirds, yielding a wrapper-
based time of 53.9 �s compared to an assert()-based time
of 47.1 �s, and further reductions may be possible. For
example, the overhead imposed by dynamic binding of
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checking helper methods can be eliminated in C++ by using
template composition rather than virtual methods [1].
Template composition would allow subclasses to extend
superclass assertions easily, while also allowing static
binding (and potential code inlining) within wrapper
methods [9].

4 LIMITATIONS AND FUTURE DIRECTIONS

This section summarizes limitations of our current efforts
and future directions. First, we outline and address key
issues in transitioning the principles to other languages,
such as Java. Then, we discuss more fundamental improve-
ments to the core wrapper technology itself.

4.1 Wrapper Technology Transition to Other
Languages

The core concepts behind the strategy discussed here—
wrapper classes, delegation, and the factory pattern—can
be applied in most object-oriented languages. The difficulty
in applying this strategy to other languages lies in two of
the implementation details: how wrappers gain access to
the data within the underlying class, and how factory
registration can be achieved. Because of language differ-
ences, unique solutions for these issues must be devised in
different languages. For example, a similar wrapper design
has been proposed and tested for Java [31]. It addresses
field access by promoting fields to a protected level of
visibility and including the wrapper in the same package as
the wrapped class. Wrapper registration within a factory
can be achieved using Java’s dynamic class loading facility:
The factory can search for the desired wrapper using the
current class loader when it is initialized, and conditionally
load and install wrapper support only if it is found. As part
of future work, we plan to explore the remaining issues in
transitioning this approach to languages other than C++.

4.2 Limitations and Directions for Improvement

While the wrapper-based approach to managing contract-
checking code is a useful contribution toward addressing
the needs of component clients, more work must be done to
provide full contract-checking support. One of the most
significant limitations is lack of support for checking self
and super-calls. While contract violations by a self-call
indicate issues that fall entirely “within the box” of the
original component developer’s responsibilities, intuitively
one would prefer to check them if possible. Tan and
Edwards [31] suggest one path toward a solution: include a
“pointer to self” data member within the original class, and
initialize this field via the factory. The field would point to
the current object if it were unwrapped, or to the enclosing
wrapper if one existed. The class could then be modified so
that all self- and super-calls went through this data
member. However, this approach requires much more
invasive changes to the underlying component. While the
concept of employing load-time bytecode transformations
to achieve such changes automatically is enticing in
language runtimes that support it (e.g., Java and .NET),
the question of how best to address this issue in languages
such as C++ is still open.

This limitation also suggests that subclassing in the face
of wrappers is another issue needing further exploration.

While Section 2.6 provides an outline of how a developer
can provide a family of components related by inheritance,
and how wrappers for subclasses can reuse the checks
embedded in wrappers for their parent(s), other issues
remain. In particular, if a client wishes to write new
subclasses of such a commercial component, the lack of
checking on self- and super-calls within wrapped objects
may allow client-authored defects in subclasses to go
undetected. This issue has already been addressed in
several other assertion checking approaches, and adapting
an appropriate technique for wrapper-based checks is an
issue that must be addressed.

Another important consideration is that this paper does
not address assertion generation (which has been well-
covered by other researchers), but focuses only on packa-
ging and managing the runtime checking code. We have
experimented with automatically generating contract-
checking wrapper support code [9], [27]. The next logical
step is to combine a mature contract-based assertion
generation tool with the wrapper-based assertion deploy-
ment strategy. We are currently working with the devel-
opers of JML to modify its assertion generator to package
runtime checks in separate wrapper classes similar in
design to those presented here [31].

We also intend to carry out more experiments in Java to
explore the runtime costs of using wrappers by comparing
wrapper-based assertions with prior JML assertions, iCon-
tract-style assertions, and assertions implemented using the
new assert feature in the latest version of the Java
Development Kit. This will require extending wrappers to
handle thread-safe access to shared objects in a concurrent
environment, a concern inherent to Java. In addition, we
have also described how behavioral contracts described
using abstract, model-based specifications can be checked at
the abstract level using an “abstract value conversion”
approach [9]—a strategy that boils down to using a
program-version of an abstraction function to manipulate
object state from an abstract view. This strategy naturally
meshes with JML’s model-based specification support.
Further, although executing the programmatic version of
an abstraction function might seem to impose a significant
performance burden, it replaces the need for copying
prestate object values. We plan to conduct an empirical
evaluation of the impact of such an approach relative to pre-
state copying to assess the performance trade offs.

To move from C++ classes to supporting a more
sophisticated notion of software component, one could
extend this approach to an object-based component model,
such as JavaBeans. While all of the issues in client-oriented
support of assertion checks arise in the simpler case of
object-oriented classes, the benefits are even more compel-
ling in the case of commercially popular component
models. Fortunately, most component models already
require the use of public interfaces for accessing behavior
and factories for object creation to maintain compile-time
independence between components. As a result, difficult
issues in dealing with plain classes are addressed more
easily in such component-oriented settings.

Finally, perhaps the most significant open problem
worthy of investigation is: How can one retrofit runtime
assertion checking onto an existing binary-only component
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for which no source is available, when that component was
never written to support such an addition? While this seems
infeasible for C++, other languages may present different
opportunities. In particular, bytecode editing capabilities in
Java or the .NET framework may allow for such possibilities
in other settings, as described in [31]. Extending wrappers
in such a direction would be a notable advancement.

5 RELATED WORK AND CONCLUSIONS

The responsibilities for interface checks in our framework
are probably best presented by Bertrand Meyer in the
design-by-contract method [20]: Preconditions of operations
are obligations on callers and postconditions are obligations
on implementers who may assume that the preconditions
hold at the time of invocation. The roots of this approach
go back at least as far as Parnas [23]. Although some
researchers have proposed alternate divisions of responsi-
bilities [19], [24], Meyer’s view is embraced by most
contract-checking tools.

Eiffel’s design-by-contract support [21] is exemplary of
many existing tools. Assertions are expressed in the original
component using annotations and the compiler can either
generate corresponding checking code inline within meth-
ods, or omit such code, based on a compile-time option.
iContract [17] and JML [18], [16] provide similar capabilities
for Java, with variations in the assertion language used to
describe behaviors. iControl [15] is an add-on tool for
iContract that provides a GUI for selecting which categories
of assertions are generated on a per-class basis, although
changing these decisions still requires recompilation. Simple
assert() macros in C and C++ are a primitive form of the
same idea. Rosenblum’s Annotation Pre-Processor (APP)
[26] provides more sophisticated assertion generation
capabilities for C. APP allows customizing the action taken
when an assertion fails (Requirement #4), although this must
be done by changing the text of the assertion and
recompiling. APP also supports different levels of severity
and allows runtime enabling or disabling of assertion checks
based on severity level. Unlike our approach, these
techniques all require recompilation to insert or remove
checking code (against Requirement #3) and all require
special tool support to do so (against Requirement #5).

Plösch summarizes and evaluates the assertion support
in eight distinct tools targeting Java [25]. His evaluation
criteria are primarily focused on the expressive capabilities
of the notations used to express runtime-checkable contract
properties, but the evaluation also includes criteria relevant
to packaging and management design goals considered in
the wrapper approach. In particular, Plösch considers
flexibility in reporting violations, fine-grained control over
enabling and disabling checks, and efficiency impacts when
assertions are turned off. While many of the Java-oriented
tools he evaluated address one or more of the five
requirements laid out in Section 1.2, all of the tools
discussed require either source component code to be
available or utilize bytecode editing strategies at load time.
As a result, while Plösch recognizes the need for several of
our requirements, none of the tools included in the survey
fulfill all of them in a way applicable to C++.

Several researchers also have used wrapping to add
assertions to a component. JML, for example, augments the

underlying component by renaming its original methods,
and replacing each one with a “wrapper” method that
performs checks before and after calling through to the
now-renamed original. Findler et al. [11] employ a similar
strategy; their focus is on assigning proper blame when
assertions fail, particularly in the case where a subclass does
not properly live up to the contract of its ancestor(s).
Duncan and Hölzle [7] use the same technique in Hand-
shake. While these three systems all wrap individual
methods, none pushes the checking code into a separate
wrapper class. Both JML and the Java contract compiler of
Findler et al. require recompilation to add or remove
checking code. Handshake goes further, however, by
generating checking code fragments separately and then
inserting them into checked classes when the corresponding
Java bytecode is read from a file at load time. While this
meets Requirement #3, it relies on techniques specific to
Java’s bytecode representation that cannot be applied in
most other languages, including C++.

Runtime assertion checks can offer significant benefits to
both component developers and clients. While existing
approaches do an excellent job at allowing developers to
insert, remove, enable, and disable checks without changing
source code, our wrapper-based packaging and delivery
strategy does this for C++ classes while also meeting
important client-oriented requirements. It allows checking
code to be added or removed at link time without requiring
changes to source code or recompilation of either the
underlying component or the client code. Further, the
wrapper design presented here enables the client to
selectively enable or disable various assertion features on
a per-class basis, as well as to provide alternative “handler”
responses to failed assertions without modifying the source
code of the client. Finally, experimental evidence suggests
that wrappers in C++ impose only modest overhead
compared to inlining assertion checks.
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