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Abstract. It is widely agreed that component interactions should be
based on the import and export of interface information only, not on
knowledge of implementation-specific details. This can be achieved in
many cases either by explicit parameterization using templates (in lan-
guages that have them) or by using some variant of the abstract factory
pattern. We introduce an alternative: the use of service facilities. This
technique is similar both to the use of templates and to the use of fac-
tories, but it is preferable to both in several important ways. Service
facilities can be used to decouple design-time concrete-to-concrete com-
ponent dependencies in any reasonable programming language and with
any component infrastructure that is based on design-by-contract prin-
ciples.

1 Introduction

Direct design-time dependencies between concrete components are widely rec-
ognized as undesirable because they complicate software maintenance activities.
Any change in the design of a single concrete component may well entail major
changes in the rest of any system that uses it — a phenomenon termed “the hair-
ball effect” by Clemens Szyperski. The reason is that a change might affect the
interaction of the component being modified with the other components that
were designed to depend on it, and changes there might affect the interactions
with the components that were designed to depend on them, and so on [9].

It is, therefore, commonly recommended that design-time component depen-
dencies generally should be limited to those between a concrete component and
the abstract components that it implements and uses (or otherwise communi-
cates with) [B]. In fact, all popular commercial component technologies are now
based on this principle — variously called “design by contract”, “programming
by contract”, “design to interfaces”, “decoupling”, etc. Modern programming
languages such as Java and C# support the idea by giving interfaces (abstract
components) the same linguistic status as classes (concrete components). A sim-
ple rule that supports good component design in these languages is that design-
time coupling should be from classes to interfaces, not from classes to classes.
Common advice for easing maintenance is that new interfaces may be intro-
duced, but existing ones should remain fixed once they are deployed in a setting
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where reuse is expected. The internal details of classes that implement those
interfaces may change even after deployment, so long as they continue to im-
plement the same interfaces. Just as importantly, however, new implementation
classes may be added for existing interfaces and thereby become available as new
implementation options for clients of those interfaces.

Eventually, of course — at the latest just before code is executed — someone
must select some concrete component to implement each abstract component
that is used in building a larger component or final system. This means that
it is helpful when discussing component-based systems to distinguish between
component design time and component integration (composition) time. By the
former we mean the time at which a component is considered fully designed and
is entered into a component library, i.e., where it still exists out of the context of
any larger component or final system in which it might be (re)used. (Design time
is when concrete-to-concrete dependencies should be avoided.) By the latter, we
mean the time at which the component is selected for use from the library and
assembled into a larger component or final system. Integration time with respect
to a library component might occur at design time, or at compile time, link time,
or run time, with respect to the larger component or system in which it is used.

An important question in component-based software engineering concerns
how to reconcile the desire to decouple concrete-to-concrete dependencies at
component design time with the need for easy assembly of concrete compo-
nents at integration time. Two basic techniques have been suggested for this.
Parameterization of components using a template mechanism, a.k.a. generics,
is one decoupling approach [1J§]. As a template, a concrete component can be
designed so that it depends on one or more abstract components, implemen-
tations of which are technically parameters that can be selected and bound at
integration time as opposed to being fixed at design time. In languages with
template support, integration time (the binding of concrete components to the
abstract components they implement) means compile time because integration
is achieved through template instantiation. This is relatively early integration-
time binding but still much better from the maintenance standpoint than forcing
such implementation commitments to occur at design time.

In modern distributed computing environments, compile time sometimes is
not late enough for component integration to occur. Some information about
concrete component availability or suitability simply may not be known until
run time. Moreover, even where compile-time binding is appropriate, template
mechanisms are not available in widely-used languages such as Java and C#,
and they are not part of COM IDL, CORBA IDL, WSDL, .NET, etc., which
are becoming widely used as the basis for component-based software today. So,
explicit parameterization as a decoupling mechanism is effectively limited to
compile-time use in C++ [7Jg].

Consequently, several design patterns have been proposed to address the
decoupling problem for use in languages that do not offer linguistic support for
templates. In some cases, e.g., when developing COM components, such patterns
must be used even when coding in languages such as C++ that do support
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templates. The abstract factory pattern [4] is the canonical representative of
these. When taken to the logical conclusion suggested by the metaphor on which
it is based, the abstract factory pattern can be used rather effectively to decouple
concrete-to-concrete dependencies.

But, as we will see, there remain drawbacks to both the above methods.
In this paper, we introduce an alternative approach to decoupling concrete-
to-concrete dependencies that is logically tantamount to using templates. This
facilitates sound and modular reasoning about software behavior and has other
advantages over the use of informal design patterns. However, like the abstract
factory pattern, it can be employed in languages and that do not support tem-
plates but that permit component integration as late as at run time. We call
the key elements of this approach service facilities. The name is intended to
suggest a parallel to factories, because the idea is most easily explained using a
service-oriented rather than a manufacturing-oriented metaphor.

Following introductions to abstract factories and service facilities (Sections
and B), we present an example to illustrate how service facilities can be coded
in Java (Section H]), discuss some points of comparison between service facilities
and abstract factories (Section[d), and finally summarize our contributions and
conclude (Section [H).

The problem of decoupling design-time concrete-to-concrete dependencies is
inherent in system design (in fact, not just for software systems [9]), and it is
common to all practical programming models today. The solutions presented
in this paper are intended to be general enough to address the problem in dis-
tributed software systems built using component technologies such as COM,
CORBA, and .NET. However, for the sake of simplicity of presentation, we use
Java to illustrate service facilities. All the concepts map directly to programming
constructs in commercial distributed component infrastructures.

2 The Abstract Factory Pattern

Readers who are familiar with the abstract factory pattern may wish to skim
this section and proceed to Section[3l Unfortunately, the idea of a service facility
is unlikely to make much sense to anyone who is not familiar with both the
rationale for and some technical details of the abstract factory pattern, and the
comparison between service facilities and abstract factories in SectionBlis certain
to be difficult to follow without this background.

The abstract factory pattern is an approach that can dramatically reduce —
but not quite eliminate — dependencies between classes (i.e., concrete compo-
nents). If it is adopted uniformly, then every class has a corresponding factory
class whose objects (class instances) can manufacture/construct/create objects
of the original class, which is called the product class. The client program de-
pends almost entirely on the interfaces (i.e., abstract components) implemented
by the factory class and by the product class.

The binding of a reference to the factory object, which pins down the prod-
uct’s implementation class, technically happens at run time and hence can be
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based on information that is not known until run time. However, in most lan-
guages the set of possible implementation choices must be known at compile
time. For example, Java (like most other object-oriented languages) effectively
dooms any approach to decoupling concrete-to-concrete dependencies so that
the strongest possible conclusion is that it “almost” works. The reason is that
everywhere a constructor is invoked, Java expects to see the name of the class
the object is to be an instance of — not the name of an interface. Identifying
constructor names with class names is known to introduce other problems as
well [6]. But the goal of design patterns is not to suggest how to change the
language deficiencies we are stuck with but to record the best ways people have
found to work around them [2]. The objective of the abstract factory pattern is,
therefore, not to remove this language restriction but to allow us to live with it.

The result of using the abstract factory pattern is that it is possible to localize
each concrete-to-concrete dependency to a single line of code where the factory
implementation class finally must be chosen if the client code is to compile. Now
all objects of the product class are constructed not by invoking the product
class’s constructor but by invoking a non-constructor method of the factory
object. The lines of code that ask factory objects to construct product objects do
not introduce concrete-to-concrete dependencies, and need not change when the
factory and product implementation classes are replaced by different ones that
implement the same interfaces (functional behavior) with different performance
or other non-functional properties.

2.1 Example: A Sequence Component

This section introduces a running example that has been chosen to illustrate
what we are talking about, not because it is so complex that it compellingly
demonstrates either the rationale for or the advantages of any particular ap-
proach to decoupling.

Figure Mshows the design structure of a system that uses a Sequence product
interface along with a SequenceF factory interface for this product. Only one se-
quence implementation “R1” (for “realization (implementation) number 1”; the
name is unimportant) is shown in the figure. The two implementation classes for
this implementation are SequenceF_R1 and Sequence_R1. Of course, an important
reason for using factories is that it is expected that there are or eventually might
be other implementations of sequences with the same two interfaces that could
be selected for use in the client program. For example, the Sequence interface
might include methods to add, remove, and update sequence entries by position.
The “R1” implementation might take best-case constant and worst-case linear
time time for each of these methods, and another implementation might always
take log time for each of them. Supporting easy substitution of one such imple-
mentation for another, based on the client’s performance needs, is one major
reason for decoupling concrete-to-concrete dependencies.

Without the abstract factory pattern, the client program would have to con-
struct sequences as follows, spreading the name of the class throughout the code:
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Fig. 1. Design based on the abstract factory pattern

Sequence s1 = new Sequence_R1 ();
Sequence s2 = new Sequence_R1 ();

sl.add (x, 3);
y = s2.remove (i);

The following code snippet shows how the client takes advantage of the ab-
stract factory pattern:

SequenceF seqF = new SequenceF_R1 (); // Select implementation
Sequence sl = seqF.create ();
Sequence s2 = seqF.create ();

sl.add (x, 3);
y = s2.remove (i);

This client can now easily switch to a different implementation for Sequence,
the only code change being a change to the factory constructor, which appears
in just one place in the code. A change from “_R1” to “_R2”, for example, does
not lead to a change in the client code except in this one inherently (in Java)
unavoidable place. Note that the client declares both factory and product objects
to have interface types.

2.2 Outsourcing

We continue by elaborating the above example a bit. Suppose the Sequence_R1
representation of sequences is built not just by using Java’s built-in types, but
by using other components, each of which might also have several alternative
implementations. How can we design Sequence_R1 so it is possible to delay until
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integration time the binding of implementation classes for these components
used in the sequence representation?

To be specific, suppose the representation of a sequence in Sequence_R1 con-
sists of two stacks (call them beforeStack and afterStack) positioned so that the
tops of the two stacks “face each other” in the interior of the sequence they
represent. That is, the top entries of the two stacks hold consecutive elements in
the sequence. All additions to and removals from a sequence can be performed
by shifting entries between the two stacks until the break between them is at
the appropriate position in the sequence, followed by a push or a pop on af-
terStack. This code depends only on the Stack interface, not on any particular
implementation of it, as illustrated in Figure

void add (Object x, int pos)

{
this.setLengthOfBeforeStack (pos); // Shift entries between stacks
this.afterStack.push (x); // Push x onto afterStack

}

Fig. 2. Sequence_R1.add (Object x, int pos)

How do factories come into play here if they are not needed in the method
bodies? In a real-life factory, a factory produces a product. The typical modern
factory does not manufacture its product from scratch, however. Various parts
of the product are built by other factories through outsource manufacturing, and
various parts of their products are built by still others, and so on. An automobile
factory assembles engines, doors, headlights, etc., but most of these pieces are
not built in the automobile factory itself but outsourced from suppliers.

Returning from physical factories to the abstract factories used in software
component design, the obvious software parallel of outsourcing is that factories
(or perhaps products; the metaphor is not terribly revealing here) should know
about the factories that create their constituent parts. Product creation is the
only place where these factories are apparent; other methods such as add above
typically do not involve factories of any kind. So a reasonable approach is to have
a SequenceF_R1 factory object hold a reference to a second factory object that
creates stacks, which the former can use when asked to create a new Sequence_R1
object.

Outsourcing entails adding either a new method or a constructor with param-
eters to the SequenceF_R1 class. This permits a client program, when components
are assembled, to create a factory for stacks and then give the sequence factory
a reference to it. The simple integration-time code from before:

SequenceF seqF = new SequenceF_R1 (); // Select implementation

is now slightly more complex:
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StackF stkF = new StackF_R4 (); // Select stack implementation
SequenceF seqF = new SequenceF_R1 (); // Select sequence implementation
seqF .setStackF (stkF); // Set stack outsource factory

The advantage of the more complex code is that we have decoupled the cho-
sen implementation of sequences from the implementation of the stacks used to
represent them. Binding implementation classes together is now done at integra-
tion time, not at design time, of Sequence_R1.

In the remainder of this paper, we do not address the question of whether
or how a client programmer should have any knowledge of the representation
of Sequence objects, let alone enough to determine which Stack implementation
should produce the best performance profile for a particular client situation. Suf-
fice to say that there is a straightforward way to develop new implementations
of the Sequence interface from a fully decoupled one, so that some or all imple-
mentation class selection decisions can be made by the component implementers
or by “middlemen” with access to enough performance-related information to
select reasonable subcomponent implementations for ultimate use by clients [g].
Such partially instantiated concrete components are no longer decoupled from
other concrete components; the trade-off is between ease of implementation sub-
stitution and ease of integration for the client. Here we have simply opened up
this aspect of the design to the client in order to illustrate the idea of outsourcing
as directly as possible.

3 Service Facilities

The abstract factory pattern is based on a manufacturing-industry metaphor.
What happens if we use a service-industry metaphor to address the decoupling
problem?

Consider a safe deposit box that can be rented from a bank. The client
initially needs to ask the bank for one. The bank continues to hold the box; the
client merely gets a key for it. However, any change to the contents of the box
can be made only at the client’s behest. The bank cannot add anything to or
remove anything from the box on its own. In fact, the bank cannot even open
the box (except possibly under extreme legal circumstances) because it needs
the other key from the client. Similarly, the client cannot change the contents of
the box on his own — he needs the bank’s key to open it. In short, any change
to the contents of the box is initiated by the client, and the client and the bank
cooperate in opening the box and changing its contents.

Notice that the bank can, if it is deemed necessary or desirable, change
the physical location of the safe deposit box, as long as its contents are left
unchanged. This does not affect the client’s logical view of the box. The client
is not concerned about where his safe deposit box is physically located, as long
as he has access to it and he alone can control the contents of the box.

This situation is different from the factory metaphor is several ways. The
most important is that a factory’s role is limited to product creation. After that,
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the factory is out of the picture and the client is on his own to change the
product (or, in terms of the usual OOP metaphor, to ask the product to change
itself). The bank’s role is significant throughout the lifetime of the safe deposit
box because without the bank the client can do nothing to the box. The bank
also controls the location of the box and is responsible for securing it so that
only the client can access its contents.

We call the software analogue of a safe deposit box a data object because
it holds information for a client but cannot manipulate that data on its own.
That is, neither the data object nor the client can manipulate a data object’s
value unless the client explicit requests participation by the bank. We call the
software analogue of the bank a service facility object because it must be
asked to help perform all services on, i.e., manipulations of, the data objects for
which it is responsible.

Here is a summary of the software design differences between service facilities
and factories:

Service Facilities — There are two kinds of objects at run time: service facil-
ity objects and data objects. Each service facility object is responsible for
creating certain data objects and then “keeping track of” and “protecting”
all those data objects. All methods for manipulating the data objects are
supplied by the service facility objects that created them. Data objects have
no methods of their own.

Factories — There are two kinds of objects at run time: factory objects and
product objects. Each factory object is responsible only for creating certain
product objects. The client is responsible for “keeping track of” and “pro-
tecting” all the product objects that the factory objects have created for
it. All methods for manipulating the product objects after their creation are
supplied by the product objects themselves. Factory objects have no methods
except for product creation.

3.1 A Simple Example: A Sequence Component

Figure shows the design structure of a system that uses a SequenceSF ser-
vice facility interface and a SequenceData data interface. Again, only one im-
plementation “R1” is shown. It has two implementation classes, SequenceSF_R1
and SequenceSF_R1::SequenceData_R1. The latter is, as we code service facil-
ities in Java, an inner class that defines the data representation used by the
sequence manipulation methods that are implemented in SequenceSF_R1. Other
techniques that achieve the same visibility conditions might be more appropriate
in other languages. The important condition is that the data representation in
SequenceSF_R1.SequenceData_R1 must be hidden from clients but visible within
SequenceSF_R1.

Figure shows the abstract factory pattern for the same situation, slightly
elaborated from Figure[Ilto include explicit interfaces Factory and Product. These
counterparts of ServiceFacility and Data in the service facility design help make
clear the similarities and differences between the two designs. They also are
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Fig. 3. Comparison of abstract factories and service facilities

important in allowing the abstract factory solution to deal with the fact that
the sequences we have in mind are intended to be homogeneous, i.e., to contain
the same kinds of entries in all positions. We discuss this point further in the
next subsection.

The following code snippet shows how the client takes advantage of service
facilities:
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SequenceSF seqSF = new SequenceSF_R1 (); // Select implementation
Sequence sl = seqSF.create ();
Sequence s2 = seqSF.create ();

seqSF.add (s1, x, 3);
y = seqSF.remove (s2, i);

As areminder, here again is the same code with a design based on the abstract
factory pattern:

SequenceF seqF = new SequenceF_R1 (); // Select implementation
Sequence sl = seqF.create ();
Sequence s2 = seqF.create ();

sl.add (x, 3);
y = s2.remove (i);

There is little difference in the code the client writes with these two ap-
proaches. With service facilities, the receiver object in the add and remove calls
is a service facility object, so the corresponding data object is now an explicit
parameter. With factories, the receiver object is a product object and the factory
object is not involved. It should be noted that the same similarity is observed if
outsourcing is used.

Which raises the question: What is the counterpart to outsourcing in the
bank metaphor? A client with a safe deposit box may decide to store in that
box the key to another safe deposit box at another bank. In other words, with
service facilities, it might make metaphorical sense for the data objects to hold
references to the service facilities that are responsible for their data members.
This is not necessary, though, because the only code that can manipulate these
data members is in the service facility that is responsible for those data objects.
It is therefore more economical for service facility objects to hold references to
other service facility objects (as well as to their own data objects), and for data
objects to hold only references to other data objects. This is how we have coded
service facilities in the Java example detailed in the next section.

This client can now switch to a different implementation for Sequence, the
only code change being a change to the service facility constructor, which appears
in just one line. A change from “_R1” to “_R2”, for example, does not lead to
a change in the client code except in this one unavoidable place. Note that the
client declares both service facility and data objects to have interface types.
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3.2 Homogeneous Containers

Since Java has no template mechanism, container or collection types are normally
handled by taking advantage of the fact that Object is at the root of the class
hierarchy. If we simply make sequences of Objects then everything seems fine —
except for some nasty issues that are typically swept under the rug. The source
of the problem is manifest underdefinition of the entry type. The compile-time
type of entries is so “weak” that the compiler support a client programmer
normally expects in finding type errors is effectively lost. One consequence is
that it now becomes possible for a client program to have a container object
whose entries are a heterogeneous collection of objects of different types. This
complicates reasoning about client program behavior, and it usually is not what
the component designer or the client had in mind in any case, but it is not caught
at compile time. Another problem is that upon removal from a container, the
type of an entry can be unknown to the client program and must be cast to the
type the client programmer thinks (hopes) it was when it was inserted. Since
inserting into a container and removal from it might take place in two distant
locations in a large client program, this can be a significant problem. (We has an
unpleasant first-hand experience with this situation while using a java.util.Map
implementation.) Java’s reflection feature can help here in principle, but the
client code is an ugly mess.

Moreover, because of underdefinition of the entry type, the implementation
classes for Sequence cannot do anything to entries that cannot be done to Objects.
A clear symptom of this problem involves cloning, i.e., making a “deep copy”
of a container object. The popular java.util package, for example, defines many
container classes. Each has a clone method which, it might be hoped, would
make a deep copy of this. It is a surprise to most potential clients of this package
(at least to those who read the documentation or encounter mysterious bugs)
that clone does not make a deep copy for these objects; it makes what the
documentation calls a “shallow copy”. The reason? If the declared entry type
for the method that inserts an entry into a Sequence object is Object, then the
compiler does not know that the actual entry type has a clone method of its
own. It might seem that this problem could be avoided merely by enforcing the
condition that the entries inserted must implement Java’s Cloneable interface.
But this does not work because Cloneable is an empty “marker” interface that
merely suggests by wishful naming that any implementing class should have a
clone method. When the compiler is presented with code like y = x.clone() in the
clone method for a Sequence implementation class, it is unhappy because x is
not known to have a clone method. There are many other possible workarounds,
none of which is at all satisfactory.

The use of abstract factories reveals another symptom of the underdefinition
problem. Specifically, if an implementation class for Sequence ever needs to con-
struct a new object of the entry type by invoking its factory’s create method,
then it cannot do so (for essentially the same reason it cannot invoke the en-
try’s clone method). To address this problem as well as some of the others noted
above, SequenceF can demand that each implementation class have a method,
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say setltemF, that can be used to give each SequenceF object a reference to a
factory object that can create its entry items. The new interface Factory in Fig-
ure @ is now required as the type of the formal parameter to setltemF; but
including this interface is a good idea in any case in order to document the
details of the abstract factory pattern.

With service facilities, there is a corresponding method setltemSF in the in-
terface SequenceSF. But the service facility for sequence items not only creates
new entry objects, it is used to manipulate them. So it is possible to require that
the argument to setltemSF be an implementation of some extension of Service-
Facility, e.g., one that includes a method to make a replica (clone) of its Data
objects. For brevity and in order to concentrate on other points of comparison
with abstract factories, we do not pursue the details of this suggestion here.

4 Example: Implementing Service Facilities in Java

In this section, we present the most important aspects of implementing the
sequence example presented in Section

4.1 The ServiceFacility and Data interfaces

The ServiceFacility interface is the root of all service facilities. This interface has
the signature of one method, create(), that a client of a service facility calls to
request a new object to be created. Figure M shows this interface.

4.2 The Data Interface

The return type of the create() method, Data, is also an interface. This interface
serves as the root of all data objects that are used by a client in this model.
Data is an empty interface, and serves only the purpose of enforcing some type
safety. This interface is shown in Figure

4.3 The SequenceSF Interface

The abstract component SequenceSF defines a generic homogeneous sequence
component that could be specialized to contain items of any particular type.
The SequenceSF interface therefore provides methods that a client would use to

package SF; package SF;
public interface ServiceFacility public interface Data
{ {
public Data create();
} }

Fig. 4. The ServiceFacility interface Fig. 5. The Data interface
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specialize the service facility to contain items of a certain type (in this case, just
one: setltemSF). It also contains the signatures of the methods to manipulate
sequences (say, for simplicity, just add, remove and length). The interface is pre-
sented in Figure[6] The SequenceData interface (not shown) extends Data but is
otherwise empty.

package SF.Sequence;
import SF.*;

public interface SequenceSF extends ServiceFacility

{
public void setltemSF (ServiceFacility sf);
public void add (SequenceData s, int pos, Data x);
public Data remove (SequenceData s, int pos);
public int length (SequenceData s);

}

Fig. 6. The SequenceSF interface

4.4 SequenceSF_R1: An Implementation of SequenceSF

Figure [[ shows some parts of the SequenceSF_R1 class — an implementation of
the Sequence. SequenceSF_R1 uses the two-stack representation as described in
Section 2.2l For want of space, only one of the operations (add) is implemented
completely here. There are similarly trivial bodies for the other operations.

The setStackSF method is used by the client to specify which implementa-
tion of the stack component is to be used in the sequence representation. This
method is specific to the “_R1” implementation of sequence, which is why it is
in the implementation class only, not in the SequenceSF interface. The private
setLengthOfBefore operation simplifies the public method bodies. It is respon-
sible for positioning the two stacks such that the item at position pos of the
sequence is at the top of afterStack.

The structure of the SequenceSF_R1 class is the general structure of any
service facility implementation in Java, as we code them. Note that the repre-
sentation of the sequence, SequenceData_R1, is implemented as an inner class.
The reason for this is that the service facility class needs access to the data
members of that class. In C++, the same idea can be implemented using friend
classes — SequenceSF_R1 must be a friend of SequenceData_R1.

5 Comparison to Abstract Factories

The design structures presented in Figure [B] suggest that abstract factories are
very similar to service facilities. However, as we have observed earlier, there are
some subtle differences between the two approaches that lead to some interesting
consequences, which are described below.
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public class SequenceSF_R1 implements SequenceSF

{

private class SequenceData_R1 implements SequenceData
{
StackData beforeStack, afterStack;
public SequenceData_R1 ()
{
beforeStack = (StackData) stkSF.create ();
afterStack = (StackData) stkSF.create ();

}
}

private ServiceFacility itemSF;
private StackSF stkSF;

public void setltemSF (ServiceFacility sf)
{ this.itemSF = sf; }

public void setStackSF (StackSF sf)

{ this.stkSF = sf; }

private void setLengthOfBefore (StackData before, StackData after, int len)

while (this.stkSF.length (before) < len)

{ this.stkSF.push (beforeStack, this.stkSF.pop (afterStack)); }
while (this.stkSF.length (beforeStack) > len)

{ this.stkSF.push (afterStack, this.stkSF.pop (beforeStack)); }
}

public Data create ()
{ return new SequenceData_R1 (); }

public void add (SequenceData s, int pos, Data x)

{

this.setLengthOfBefore (s.beforeStack, s.afterStack, pos);
this.stkSF.push (s.beforeStack, x);

}

public Data remove (SequenceData s, int pos) { ... }
public int length (SequenceDatas) { ... }

Fig. 7. The SequenceSF_R1 class

5.1 Binary Operations

Consider a Point class shown in the code fragment in Figure Bl There is some-
thing different about the isEqualTo method, which tests the equality of two Point
objects. Logically, equality checking is a binary operator, but as it is written in
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class Point
private int xVal;
private int yVal;

publicintx () { ... }

publicinty () { ... }
public bool isEqualTo (Point p)

{ return ((this.xVal == p.x ()) && (this.yVal == p.y ())); }

Fig. 8. The Point class

this class, the method takes only one parameter. The other parameter is the
object on which the method is invoked; i.e., binary methods are asymmetric in
standard object-oriented style. This causes several known problems with binary
methods [3].

In the abstract factory approach, binary methods remain a problem, since
the factory object only performs the task of creating a product object and all
other operations are still associated with those product objects. With service
facilities, however, the situation is different. The service facility class contains the
methods used to operate on data objects, and each method takes as parameters
all the data objects it has to operate upon. So, for the Point example, with a
PointSF class that provides all the methods, equality checking no longer looks
special with respect to the other methods. All methods in the PointSF class
(shown in Figure [) take at least one Point object as parameter. The areEqual
method takes two parameters of the same type, and therefore actually looks
like a binary operator. Gone with the funky asymmetric syntax are the usual
problems associated with OO binary methods.

class PointSF_R1
{
public int x (Point p) { ... }
public int y (Point p) { ... }
public bool areEqual (Point p, Point q)
} { return ((x (p) ==x (a)) && (v (p) ==y (a))); }

Fig. 9. The PointSF class
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5.2 Layered Operations

Suppose that we want to implement an extension to the sequence component, to
permit sorting of sequences. If designed with the abstract factory pattern, this
extension is a derived class that inherits from the Sequence_R1 class. Suddenly,
we have lost some of the decoupling we have gained from using abstract factories.
This is because this extension only works for this particular sequence implemen-
tation. Now if the client wants to switch implementations for the underlying
sequence component, the extension is no longer valid.

Another approach, one that respects decoupling, is to extend the interface
(not the class) and to pass the sequence object to be sorted as an explicit param-
eter to the Sort operation. Such a class does not have any dependencies on other
classes. Now, even if the client changes the implementation of sequences, no new
implementation for the sort operation is required. This is a layered extension.

Layered extensions are natural to service facilities. If a sortable sequence
is needed, we implement a new service facility class that holds a reference to
some sequence service facility. This new class, SequenceSortSF_Ext, has the Sort
method, which takes as a parameter the sequence data object to be sorted,
and uses the underlying sequence service facility’s methods to rearrange that
sequence into sorted order.

5.3 Dynamic Relocation of Data Objects

As the safe deposit metaphor suggests, the service facility has full control of
where a particular data object is physically located. In certain situations such
as load balancing, fault recovery, etc., a service facility might decide to move the
data objects it “controls” and “protects” to a different physical location. This
kind of movement can be completely transparent to the client if the contents of
the data objects are not altered in any way.

Such a behind-the-scenes optimization is difficult with the abstract factory
pattern, because after a product object has been created, the factory no longer
has any control over it. The client deals directly with the product object, and is
the only party that “knows” about it, including where it is physically located.
There are other ways to deal with this, but the abstract factory pattern itself
does not help.

5.4 Dynamic Substitution of Implementations

It is common now for many systems — especially those for highly-available or
reactive applications — to be non-terminating. They are required to run contin-
uously, so upgrades and corrective maintenance must be done “on the fly”. By
way of analogy, consider one of the most important highly-available, reactive
systems: humans. Replacing biological components, such as a kidney transplant,
must be accomplished without killing the host! So too it should be with software:
we should be able to “hot swap” components without killing the system.
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We briefly allude to two kinds of scenarios where such implementation sub-
stitutions apply. One is the need to change only the algorithm used to compute
something, while retaining the same data representation. This kind of substi-
tution is extremely easy with service facilities. All we need to do is rebind the
current service facility to a different service facility that provides the new al-
gorithm. Nothing else in the client code changes if both the old and the new
service facilities implement the same interface and rely on the same data rep-
resentations. An example is changing the algorithm that should be used in the
implementation of Sort described in Section

On the other hand, it is often the case that different algorithms for imple-
menting existing interfaces require different or novel data representations. For
example, hashing and binary search tree algorithms for implementing a map
component operate on dramatically different data structures. In this scenario,
the representation of existing data needs to be converted to suit the new imple-
mentation. This is not free; but it can be done by a “representation converter”.
These kinds of substitutions are not supported by abstract factories, but they
are readily handled with no additional complication (beyond what is obviously
required in any solution) by service facilities.

6 Conclusions

The most common specific use of the abstract factory pattern is to decouple
object declarations from object constructors, so that an object may be declared
independently of any design-time commitment to its implementation. In general,
abstract factories can be used to localize other concrete-to-concrete dependencies
native to object-oriented systems. Despite their popular success in this area,
though, abstract factories are insufficient for separating advanced component
dependencies that arise in layered, hierarchically composed, and/or dynamically
reconfigurable software.

We therefore propose the use of service facilities as a new technique that
is powerful enough to address such higher-order considerations that arise in
reusable component-based software. Service facilities leverage practitioner fa-
miliarity with abstract factories to address these concerns; and they solve a
superset of the problems addressed by abstract factories. By uniformly replac-
ing concrete-to-concrete dependencies with concrete-to-abstract dependencies,
service facilities permit clients to assemble components independently of any
design-time commitments to the implementations of their subcomponents. The
commitments are deferred until integration time. Service facilities also allow
familiar composition mechanisms such as parameterization to inductively prop-
agate the benefits of abstract factories (and more) through all levels of a hierar-
chically composed system. Thus the decoupling problem can be solved once for
each component, and the solution can be reused at all levels of a hierarchy.

We note that service facilities are offered as a design approach rather than a
language mechanism. A language-neutral technique makes the benefits of using
service facilities available in any OO-style implementation language or compo-
nent infrastructure.
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Finally, we readily admit that we do not yet have significant experience us-
ing service facilities in the design of large software systems. We offer the idea
here in order to stimulate much-needed discussion of various techniques that can
help decouple dependencies in such systems. Some of our current work involves
building a programming environment for component-based software, including
compilation of RESOLVE code [8] into Java (as the target language). This com-
piler generates Java code that uses service facilities as described here. It is an
open question whether “real Java programmers” or “real .NET programmers”
can be persuaded to embrace service facilities without significant promotion by
their industrial sponsors. Our hope is that the clear similarities to abstract fac-
tories that we have emphasized will make the learning curve small for those who
dare try them, encouraging others to experiment with service facilities and to
assess and report on their practical effectiveness.
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