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ABSTRACT 
This paper summarizes an approach for introducing 
component-based software engineering (CBSE) early in the 
undergraduate CS curriculum, and an evaluation of the 
impact of the approach at two institutions.  Principles 
taught include a modular style of software development, an 
emphasis on human understanding of component behavior 
even while using formal specifications, and the importance 
of maintainability, as well as classical issues such as 
efficiency analysis and reasoning.  Qualitative and 
quantitative evaluations of student outcomes and end-to-
end changes in student attitudes show mostly positive 
results that are statistically significant, confirming that (1) 
it is possible to teach CBSE principles without displacing 
“classical” principles usually taught in introductory 
courses, (2) students can understand and reuse formally-
specified components without knowing their 
implementations, and (3) student attitudes towards software 
engineering can be altered in directions heretofore often 
assumed to be difficult to achieve. 
Keywords 
components, formal specifications, objects, reasoning, 
software engineering, statistical evaluation 
1 INTRODUCTION 
The increasing importance of introducing component-based 
software engineering principles early in introductory 
undergraduate computer science education is widely 
recognized.  While there is still considerable debate among 
educators on the principles to be taught, there is reasonable 
consensus that students should be educated (at least) on the 
following fundamental software development principles: 
• Independent software development: Large software 

systems are necessarily assembled from components 
developed by different people.  To facilitate 
independent development, it is essential to decouple 
developers and users of components through abstract 
and implementation-neutral interface specifications of 
behavior for components. 

• Reusability: While some parts of a large system will 
necessarily be special-purpose software, it is essential 

to design and assemble pre-existing components 
(within or across domains) in developing new 
components. 

• Software quality:  A component or system needs to be 
shown to have desired behavior, either through logical 
reasoning, tracing, and/or testing.   The quality 
assurance approach must be modular to be scalable. 

• Maintainability: A software system should be 
understandable, and easy to evolve. 

We have taught the above component-based software 
engineering principles in introductory CS education, 
spanning multiple courses, at The Ohio State University 
and West Virginia University1 for the past several years. 
The technical foundations of our CBSE approach are based 
on RESOLVE [1].  The approach is highlighted by a 
“systems thinking” philosophy and formal specifications of 
component behavior to facilitate independent software 
development.  It uses “design-time relationships” to capture 
elements of reusability and software composition, and 
emphasizes both formal reasoning and testing to assure 
high quality.  (These principles are more fully described in 
the next section.)  Introduction of CBSE principles early in 
the CS curriculum and the particular approach that we have 
used naturally raise a few basic questions: 
• Is it possible to teach new CBSE principles without 

displacing concepts such as efficiency analysis, 
dynamic storage management, and recursion that are 
typically taught in introductory courses?  

• Is it possible to teach such topics as formal 
specification and sophisticated reuse techniques to 
(early) undergraduate CS students in a way that 
students can understand and appreciate the significance 
of the principles? 

• Is it possible to effect significant changes in student 
attitudes about software engineering? 

The contribution of this paper is in addressing and 
answering these questions, for the most part in the 
affirmative.  Section 2 summarizes the essential and novel 
aspects of our approach and educational philosophy.  
Section 3 explains our educational approach and provides a 
listing of major topics covered in the courses to address the 

                                                           
1 Sitaraman was with the Department of Computer Science and 
Electrical Engineering at West Virginia University, while teaching 
and evaluating the CBSE approach presented in this paper. 
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first question.  It also discusses how new and traditional 
principles are taught in a seamless fashion.  Section 4 
contains summary results from qualitative and quantitative 
student evaluations that we administered between 1996 and 
1999 to study the impact of our educational approach. It 
addresses the second and third questions raised above.  The 
last section includes a discussion of lessons we learned in 
this process and our conclusions. 
2 A SUMMARY OF TECHNICAL FOUNDATIONS 
This section provides a summary of the salient aspects of 
our CBSE approach, and explains how they are directly 
motivated by general software engineering principles of 
independent software development, reusability, and quality 
assurance.  These principles are also the central ones we try 
to communicate to our students. 
To facilitate independent development of components and 
systems, it is essential to separate the “outside” or 
“abstract” view of the user of a system from the “inside” or 
“concrete” implementation-oriented view of the system.  
This is the essence of the systems thinking philosophy.  For 
systems thinking to work, it is crucial that the abstract user-
oriented descriptions of systems contain only necessary and 
sufficient information.  To be precise, the abstract 
descriptions must be stated in the language of mathematics.  
Otherwise the very intent of having the abstract 
descriptions—to minimize communication overhead and to 
eliminate miscommunication among developers and users 
of systems—will be compromised.   
Inevitably, all large systems must be assembled from 
components.   In the process of designing any big system, it 
may be necessary to instantiate or extend previously 
designed components or to build new ones.  To understand 
a system of components and to ease maintenance, it is 
therefore essential to understand and document the “design-
time” relationships among participating components. 
A key benefit of CBSE is that it permits a modular 
approach to ensuring software quality.  Modularity is 
essential for the reasoning process to be scalable.  In a 
modular or compositional reasoning approach, it possible to 
verify the correctness of an implementation of one 
component at a time using only the specifications of other 
components upon which it depends; implementations of 
reused components are not needed.  Modular reasoning, of 
course, demands that each component C in the system have 
an abstract behavioral specification so that internal details 
of its use in composition can be ignored when reasoning 
about systems built using C.  The property of modular 
reasoning requires (in addition to its reliance on 
specifications) careful software design. 
Component specifications are also useful for specification-
based integration and regression testing.  In our approach, 
we define one-way checking (or pre-condition checking) 
and two-way checking (pre- and post-condition checking) 
components that correspond to each component in the 
system.  Most mechanical aspects of the checking 
components can be generated automatically, though non-
trivial condition checking, in general, requires explicit 
programming.  The checking components help classify 
errors as either arising from bad components or bad client 
usage, i.e., they help assign responsibility for defects.  By 
systematically employing and removing checking versions 
of components, it becomes possible to detect internal 

interface-related errors among components. In summary, 
the following are the central elements of our approach to 
CBSE: 
• systems thinking, i.e., developing a “systems” view of 

software in which components can be viewed from the 
outside as indivisible units, or from the inside as 
compositions of other such systems (a.k.a. 
subsystems);  

• interface specifications using mathematical modeling, 
i.e., not settling for mere qualitative descriptions of 
behaviors of components, but creating unambiguous 
and implementation-neutral formal descriptions using 
mathematics. 

• design-time relationships, explicitly and precisely 
describing design-time behavioral relationships 
between (new and reused) components, including 
implementation, instantiation, extension, and 
composition of parameterized (template) components;  

• modular reasoning, i.e., reasoning about client usage 
based on specifications, and on specification-based 
substitutability properties; and 

• interface violation testing, i.e., developing test plans 
from specifications and using violation-checking 
component wrappers to detect and isolate bugs in a 
modular fashion. 

While there are naturally differences among researchers on 
which principles should be considered core CBSE 
principles, and differences among educators on which 
principles ought to be taught in introductory CS classes, it 
is clear that there is a significant overlap between the above 
principles and principles suggested by other authors [9].  
This is because the central tenets of software engineering, 
outlined in the introduction, remain the same.  Related 
discussions may be found in [2, 3, 4, 9].   
3 THE EDUCATIONAL APPROACH 
The CBSE principles have been taught, using variations of 
RESOLVE as the delivery vehicle [1], beginning in the 
early 1990’s at The Ohio State University (OSU) and at 
West Virginia University (WVU).   At both institutions, 
instructors employed active learning approaches to 
teaching.  This section discusses particulars of the different 
course sequences used at the two institutions to 
communicate CBSE principles.  It highlights how other 
universities can adapt and teach CBSE principles in a way 
that best fits their institutional needs. 
The CBSE principles have been taught in the first three-
quarter sequence of undergraduate courses in CS at OSU, 
using RESOLVE/C++, a disciplined version of C++, as the 
programming language [5].  The first course provides an 
introduction to CBSE concentrating on the client 
perspective in reusing previously-developed components 
based on their behavioral specifications.  The second 
course focuses on using, then at mid-term switches to 
implementing, generic abstract data types such as stacks, 
queues, lists, and maps.  A typical implementation in this 
course is layered by reusing one or more other components.  
The third course focuses on completing a non-trivial 
component-based system using components developed in 
the previous courses as well as new components.   
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At WVU, the principles have been taught in the second 
semester course in CS, and on a selective basis in the 
junior-level software engineering course.  In the second-
semester course, an annotated version of Ada with 
RESOLVE-style specifications was used.  The sections of 
this course examined in the surveys in this paper used 
RESOLVE specifications directly, with Ada reserved for 
lab work only.  The first half of the course focused on the 
client perspective and the second half was devoted to 
implementation of abstract data types.  The course 
emphasized specifications and specification-based 
reasoning [6].  In the software engineering course, 
principles were taught directly using RESOLVE.  In 
addition to learning principles of requirements analysis and 
design, students also implemented a component-based 
system using components with behavioral specifications. 
A summary of topics covered in the courses at OSU and 
WVU is given below.  The listing of topics suggests how 
classical concepts of efficiency analysis, dynamic memory 
management, etc., can be taught in a component-based 
setting.  For example, efficiency analysis techniques are 
introduced to compare alternative implementations of the 
same specification.  Pointers and dynamic storage issues 
are discussed later as techniques for implementing 
“unbounded” data abstractions, and as a “from scratch” 
alternative to layered implementations.  Loops and 
recursion are used to motivate inductive reasoning about 
correctness, and the importance of termination arguments.    
More details about these courses appear in [7, 8]. 

First Quarter: Component-based software from client 
programmer's perspective; intellectual foundations of 
software engineering; mathematical modeling; 
specification of object-oriented components; layering; 
recursion; testing and debugging layered operations. 

Second Quarter: Templates for generalization and 
decoupling; container components; component-based 
software from implementer's perspective; data 
representation using layering and using pointers. 

Third Quarter: Tree and binary tree components and 
binary search trees; context-free grammars; tokenizing, 
parsing, and code generating components; sorting 
components and sorting algorithms. 
Figure 1: Course Descriptions for the OSU Courses 

Second Semester: Principles of object-based software 
engineering including specification, design, 
implementation, and reasoning.  Components 
developed and used in the course include generic, 
reusable data abstractions such as queues, stacks, lists, 
trees, and sorting and searching. Comparison of 
implementation techniques; analysis of efficiency; 
dynamic allocation; recursion. 

Fourth Semester: Techniques and methodologies for 
software engineering, including principles of 
requirements analysis, specification, design, 
implementations and quality assurance.  The emphasis 
will be on rigorous object-based software construction. 
Figure 2: Course Descriptions for the WVU Courses 

 

Some principles such as classifying and decoupling design-
time relationships receive more emphasis at OSU, whereas 
formal reasoning was emphasized more (in some sections) 
at WVU.  We expect such differences to arise naturally 
when CBSE principles are taught at different institutions.  
The feedback from students confirms that they learn and 
see the importance of both classical topics and new CBSE 
principles in these courses.  This is seen, for example, from 
Table 1 that contains a summary of top responses from 
students, when asked to list the most important principles 
learned in CS2 at the end of that course at WVU.  (19 
students responded to the question.)  Only 3 students 
directly mentioned efficiency analysis, choosing instead to 
use terms such as “best algorithm” or “multiple 
implementation trade-off”.  We do not present any detailed 
analysis of this feedback, which has been used mainly in 
revising and improving course materials.  The results 
indicate student perceptions in one representative section, 
and are not sufficient to enable us to draw any general 
conclusions. 

Table 1: Key Principles Learned in CS2 at WVU 

Principle Number of students 
who claimed they 
learned and 
understood 
importance 

Component-based reuse  15 

Specifications 11 

Dynamic storage management 8 

Specification-based reasoning 6 

Specific ADTs, (e.g., lists) 6 

Recursion 5 
 
4 EVALUATION 
To evaluate the impact of the courses on student learning 
and attitudes, under grants from FIPSE (U.S Department of 
Education) and the National Science Foundation we 
administered a series of voluntary student surveys between 
1996 and 1999.  Three different kinds of instruments were 
used, in addition to regular homework/lab assignments and 
examinations.  The first kind was concerned with providing 
feedback to us on how the material could be revised and 
better presented in subsequent course offerings.  The 
second kind used essay questions administered near the 
ends of the courses to help the students tell in their own 
words what principles they thought they learned and what 
they believed were important principles for software 
construction.  The third instrument focused on student 
attitudes.  These questions were asked of the students at the 
beginning of each of the courses in the sequence and at the 
end of the last course.  The objective was to evaluate 
whether student attitudes about various matters changed 
according to our pre-survey hypotheses.  Summaries of the 
latter two surveys, and our interpretations of the results, 
follow.   
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Qualitative Evaluation 
For the qualitative evaluation, we asked students to provide 
written responses to the following questions at the end of 
the courses: 
1. List and briefly explain what you believe to be the 

three most crucial aspects of designing and building 
good software. And, which, if any, of these aspects 
would you have listed prior to taking the course 
sequence? 

2. Compare and contrast your view of what a software 
system “should look like” with your view before 
taking this course sequence. If possible, organize your 
answer into before and after sections. 

The student responses were not identified in any way to the 
instructors; students knew that their answers to the 
questions would have no effect on their grades.  Though we 
collected responses from a number of sections, analysis of 
the data has proved time consuming, and we are able to 
present summary results from just two sections of two 
courses, one each at OSU (36 students) and WVU (19 
students).   At WVU, the questions were only asked at the 
end of CS2, not at the end of the sequence.  These results 
are indicative of possible trends, and by themselves, do not 
confirm any hypothesis.   Their likely best use for us and 
for others is to suggest questions that should be asked 
explicitly on new quantitative survey instruments in the 
future.  Tables 2-5 contain summary results from student 
responses at OSU and WVU. 
The OSU summary indicates more students listed design, 
reusability, modularity as a crucial aspect of software 
construction at the end of the sequence, compared to the 
beginning.  The WVU summary indicates more students 
felt at the end that it was important to design/specify before 
coding and that it was important to reason/test to ensure 
software behaves as intended.  More interesting trends are 
seen in analyzing responses to the second question.  At 
OSU, 19 out of 24 students (whose responses could be 
classified) changed from having no view or a view of 
software as monolithic code with some use of procedures 
and functions, to a component-based view.   At WVU, 15 
out of 19 students at the end of CS2 reached a view of a 
software system that involved components with 
specifications. 
While essay-type questions are costly to analyze, they can 
reveal interesting student perceptions.  For example, at 
WVU, 3 out of 19 students made it clear in their responses 
that they already held a component-based software system 
view and claimed that the course had no impact on them.  
Other students found the course to have had more utility, 
and offered insightful comments, such as, “There is more to 
specs than appears at first glance”, “I believe that the most 
important aspect is specs…Before I would not have even 
really considered this…let alone made it a top priority”, 
and “view before [was]…as long as the stinking code 
works everything is fine.” 
Table 2: Responses to Question 1, End of OSU Sequence 

Response Before After 
Readable and understandable  9 13 

Design before coding 2 9 

Reusable 0 10 

Efficient 4 6 

Modular 0 5 
Table 3: Responses to Question 1, End of CS2 at WVU 

Response Before After 
Readable and understandable  5 10 

Design/specify before coding 4 12 

Reusable 1 5 

Efficient 1 6 

Reasoning and testing 0 7 
 

Table 4: Responses to Question 2, End of OSU Sequence 

Response Before After 
No view, monolithic code with 
some procedures 

24 3 

Somewhat component-based 6 0 

Component-based 0 24 

Other 6 9 
 

Table 5: Responses to Question 2, End of CS2 at WVU 

Response Before After 
No view, monolithic code, some 
procedures 

12 0 

Component-based, specification-
based 

4 15 

Other 3 4 
 
Attitudinal Evaluation 
Table 6 contains the attitudinal survey along with our pre-
survey hypotheses on trends.  In the table “+” denotes 
statements where we expected more students to tend 
towards agreement at the end of the sequence compared to 
the beginning, and “–” denotes statements for which we 
expect more students to tend to disagree at the end.  For 
statement #19, we agreed early-on that the wording was 
ambiguous and could not agree on which trend to predict.  
Statements 23 to 29 were administered only at OSU. 
For each statement, students were asked to make one of six 
choices:  Strongly disagree, disagree, moderately disagree, 
moderately agree, agree, and strongly agree.  Intentionally, 
the students were forced make an agree/disagree decision 
without providing them a way out, such as “other”.  At 
OSU, students took four surveys: one at the beginning of 
each of the three courses and one at the end of the last 
course.  At WVU, the students also did four surveys, but 
one each at the beginning and at the end of the two 
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semester courses.  (While most students at OSU go through 
the sequence in more or less consecutive quarters, at WVU 
students tend to take other courses between the second 
semester CS course and the junior-level software 
engineering course.) 
 
Table 6: Attitudinal Survey Questions/Expected Trends 

1. Software development is a challenging activity. 
(+) 

2. If I worked for a company and was asked to 
develop 10,000 lines of software to solve a 
problem, I feel capable of designing and 
developing that software. (+) 

3. The difficulty in understanding and modifying a 
10,000 line software system has more to do with 
the style in which the software is written, and less 
to do with how smart I am. (+) 

4. The difficulty in understanding and modifying a 
10,000 line software system has more to do with 
the style in which the software is written, and less 
to do with the programming language in which it 
is written. (+) 

5. Software development can benefit from carefully 
designing each component before coding it, as 
opposed to quickly coding and experimenting 
with it. (+) 

6. Some of my friends and I know and follow a 
disciplined approach to software design and 
development. It is therefore easy for us to write 
parts of a large software system separately and 
then put them together easily. (+) 

7. The main challenge of software construction lies 
in coding the design in a programming language, 
and not so much in specifying what needs to be 
done. (–) 

8. It is possible to show that a software component 
works without actually running it on the 
computer. (+) 

9. Programming language statements -- even in the 
absence of comments -- are well-suited for 
describing precisely what a software component 
is supposed to do. (–) 

10. Successful software development has a lot to do 
with mathematical models  and proofs. (+) 

11. To understand what a 10,000 line program does, 
you need to understand every procedure and 
function used in that program. (–) 

12. When I try to develop correct software, my 
tendency is to code quickly, but to spend as much 
time as possible in testing and debugging. (–) 

13. It is possible to have an understanding of 
software that is independent of the programming 
language used. (+) 

14. Correct software can best be constructed by 

building it from scratch. (–) 

15. Software development is so challenging that I 
often doubt if my programs are 100% correct. (–) 

16. My conception of what software is has changed 
markedly over time. (+) 

17. Successful software development is not possible 
without having a precise mathematical 
description of what each software component is 
supposed to do. (+) 

18. My conception of how to build software has 
changed markedly over time. (+) 

19. The programming language used is a very 
important factor in successful software 
development. (N/A) 

20. When working in teams, natural language 
descriptions of the different components, such as 
a descriptions in English, are sufficient for 
communication among team members. (–) 

21. Before I run my code on a computer, I make it a 
practice to hand trace through the statements on 
example inputs to see if it works. (+) 

22. There is really not much difference between what 
a software part does and how it does it. (–) 

Remaining Questions Administered Only at OSU 
23. Thinking first about each software component in 

terms of its implementation details is important 
for successful software development. (–) 

24. Software development can benefit from carefully 
thinking and reasoning about each software 
component's correct behavior even before 
running it, as opposed to quickly testing and 
debugging it on the computer. (+) 

25. Physical metaphors, such as plastic cups and 
Lego blocks, can help in understanding software. 
(+) 

26. My respect for the challenge of software 
development has changed markedly over time. 
(+) 

27. It is sufficient to have a natural language 
description, such as a description in English, of 
what each software component is supposed to do. 
(–) 

28. It is important to take a consistent approach to 
design and development of software. (+) 

29. How I personally develop software has changed 
markedly over time. (+) 

 
The last six digits of student identification numbers were 
used to identify each student. This was essential to track 
student attitudes, without disclosing the identity of the 
students.  In the analysis given in the paper, we compared 
the “average” attitudes of students with respect to each 
question at the beginning and at the end of course 
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sequence.  To avoid noise, we restricted comparisons only 
to the attitudes of the students who filled out both a “pre-
sequence” survey and a “post-sequence” survey.  Since the 
surveys were strictly voluntary, we could identify only 47 
students who took both the first and last surveys at OSU 
between 1997 and 1999, though the total number of 
students completing surveys is much larger (about 700 at 
the beginning and about 150 at the end).  Another problem 
that made it difficult to track individuals was just that 
several students failed to include their identifications on 
one or more of the surveys.  However, the sample size of 
47 at OSU is a substantially large enough to allow initial 
conclusions, though further studies are needed.  For similar 
reasons, only 15 surveys were matched using student 
identifications at WVU.  Also at WVU, only some of the 
sections used the CBSE approach in the fourth semester 
software engineering course (i.e., the second course in the 
sequence).  
Tables 7 and 8 present a summary of results from 
attitudinal evaluations at OSU and WVU, respectively.  (A 
large number of students did not respond to question #29 at 
OSU, hence it is not included in the analysis.)    

Table 7: Summary of Attitude Changes at OSU 

No. Before After Diff P-
value 

Significan
t? 

1 1.8 4.7 +2.9 < 0.01 High 

2 3.5 4.1 +0.6 0.05 Marginal 

3 2.1 4.5 +2.4 < 0.01 High 

4 2.5 4.5 +2.0 < 0.01 High 

5 2.0 4.9 +2.9 < 0.01 High 

6 3.1 4.1 +1.0 < 0.01 High 

7 3.9 3.0 -0.9 < 0.01 High 

8 3.1 4.5 +1.4 < 0.01 High 

9 3.7 3.4 -0.3 0.8 No 

10 2.9 4.0 +1.1 < 0.01 High 

11 3.0 3.2 +0.2 0.3 No 

12 3.5 3.2 -0.3 0.8 No 

13 2.2 4.7 +2.5 < 0.01 High 

14 3.6 3.4 -0.2 0.4 No 

15 3.5 3.4 -0.1 0.6 No 

16 2.9 4.6 +1.7 < 0.01 High 

17 2.9 4.3 +1.4 < 0.01 High 

18 3.0 3.7 +0.7 < 0.01 High 

19 2.4 4.9 +2.5 N/A N/A 

20 3.3 3.4 +0.1 0.7 No 

21 3.5 2.6 -0.9 0.99 Neg. High 

22 2.7 4.9 +2.2 0.99 Neg. High 

23 2.6 3.6 +1.0 0.99 Neg. High 

24 2.0 4.0 +2.0 < 0.01 High 

25 2.4 4.8 +2.4 < 0.01 High 

26 2.4 4.5 +2.1 < 0.01 High 

27 2.6 5.0 +2.4 0.99 Neg. High 

28 2.3 4.8 +2.5 < 0.01 High 
 

Table 8: Summary of Attitude Changes at WVU 

No. Before After Diff P-
value 

Significan
t? 

1 5.2 5.0 -0.2 0.6 No 

2 3.8 4.6 +0.8 0.09 Marginal 

3 4.3 4.8 +0.5 0.6 No 

4 4.3 5.1 +0.8 0.02 Yes 

5 5.6 5.6 0.0 0.7 No 

6 4.5 4.8 +0.3 0.3 No 

7 3.2 1.8 -1.4 < 0.01 High 

8 3.3 5.2 +1.9 < 0.01 High 

9 3.6 2.7 -0.9 0.07 Yes 

10 4.1 4.5 +0.4 0.2 No 

11 3.7 2.2 -1.5 < 0.01 High 

12 3.2 2.5 -0.7 0.07 Marginal 

13 4.7 5.7 +1.0 < 0.01 High 

14 3.9 2.1 -1.8 < 0.01 High 

15 4.0 3.5 -0.5 0.1 No 

16 3.6 4.9 +1.3 0.02 Yes 

17 3.1 4.5 +1.4 < 0.01 High 

18 4.5 5.3 +0.8 0.02 Yes 

19 3.5 2.4 -1.1 N/A N/A 

20 4.2 2.8 -1.4 0.02 Yes 

21 3.9 4.4 +0.5 0.4 No 

22 3.3 2.3 -1.0 0.02 Yes 
 
It is important to note that the surveys come from students 
who took the courses at different times under different 
instructors (including teaching assistants at OSU), and 
therefore, it is reasonable to conclude that the impact of 
specific instructors is minimal.    
In each table, the first column indicates the statement 
number.  Each response was given a score of 1 to 6, 
ranging from 1 for “strongly disagree” and 6 for “strongly 
agree”. The second and third columns show the average 
agreement scores for all students for each statement at the 
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beginning and at the end of our course sequences, rounded 
to the nearest tenth.  An average score of 3.0, for example, 
denotes that the average response was “moderately 
disagree”.  The fourth column indicates the change in 
average response before and after the sequence.  Column 5 
contains P-values derived from one-sided paired t-tests on 
the raw data.  This involves computation of the change in 
the attitude of each student using their identification 
numbers, and it determines whether the average change in 
the previous column is statistically significant.  P-values 
below 0.01 denote high significance, and those between 
0.01 and 0.05 denote significance.  P-values that are above 
0.99 denote high significance in the wrong direction.  
Strictly, such P-values suggest that 2-sided evaluations 
should have been used. 
The OSU survey summary shows that the attitudes changed 
highly significantly for 16 out of 27 statements, towards our 
expectations. No trends were seen for 6 statements, and 4 
statements showed significant trends that were against our 
expectations.  For one statement, the change was marginal.  
In the WVU survey, no trends were against our initial 
expectations.  For 12 out of 22 statements, the attitude 
changes are significantly or highly significantly towards 
our expectations. For 2 statements, changes are marginally 
significant.  For the other 7 statements, no appreciable 
changes could be detected.  These results strongly suggest 
that the trends are not coincidental. 
For several statements in the OSU survey, the average 
attitude score changes are highly significant, with average 
changes around 2.0.  For example, in the case of statement 
#3, students shifted their attitudes toward believing that 
with regard to understanding and maintaining a system, 
their intelligence is a less important factor than how the 
software is built.  We suspect that changes in such attitudes, 
as in the notion that software can be understood 
independently of the particular programming language 
involved (#4) and the importance of designing before 
coding (#5), would be difficult to duplicate without 
considerable impact from the educational philosophy and 
approach. At OSU, students follow a rigorous discipline of 
software construction using a single language C++ in their 
three-course sequence.  The impact of this approach is seen 
in their attitudes on statements such as #6, #16, #18, and 
#28 concerning discipline and conceptions of software.  
Students also found that physical metaphors, such as plastic 
cups and Lego blocks, can help considerably in 
understanding software (#25). 
In the case of some statements, e.g., #9, it is unlikely that 
students would have been able even to understand such a 
subtle statement at the beginning of the sequence.  
Nonetheless, most students agreed at the beginning with 
this one, so their attitudes did not change much as a result 
of taking the courses.  
The trends in responses to some questions indicate that the 
uncertainty in student answers (around 3.5 average) was 
not altered by the courses.  For example, students at OSU 
remained ambivalent about the broad role of precise 
specifications (#20), but felt required to assert the rightful 
role of natural languages in software engineering (#27), 
despite the great emphasis the courses placed on 
formalization.  For these questions, the attitudes in the 
WVU survey show change in the anticipated direction.  

This difference is probably explained by the fact that the 
WVU course sequence includes an explicit requirements 
analysis part using natural language descriptions.  Taught 
this explicit connection between natural and formal 
specification languages, students were likely able to see the 
importance of both in large-scale software engineering.  
Students in the OSU survey apparently equated the use of 
formal specifications in those courses to mean avoiding 
natural language descriptions completely, despite repeated 
examples showing that formalization in no way implies that 
natural language descriptions are taboo. 
The WVU survey summary contains trends towards our 
goals.  The attitude changes are large for statements #7, #8, 
#13, #16, #17, and #20.    Like the OSU students, WVU 
students emphasize the importance of specifying before 
coding (#7) and agree with the notion that it is possible to 
have an understanding of software independent of the 
language used (#13).  Both OSU and WVU students agree 
that the courses have changed their conceptions of software 
(#16).  WVU students emphasize the role and importance 
of specifications more than their OSU counterparts.  As 
seen from the trends for statements #17 and #20, WVU 
students are considerably more in agreement on the 
importance of precise specifications.  The trend for 
statement #19 (along with #13) also shows that the students 
view programming language to be less of a factor in 
software engineering.  These positive trends at WVU may 
be a result of the use of RESOLVE notation, unencumbered 
by C++, in some classes.     
For some questions, there is little change in WVU student 
attitudes compared to OSU students.  This is the case for 
statements such as #1, #3, #4, and #5. This is possibly due 
to a combination of factors.  At OSU, students entered the 
sequence beginning with their first course in CS except for 
having had a basic introductory programming course 
(perhaps in high school), and almost all change in their 
attitudes towards software came during the sequence.  At 
WVU, students had already had a first course in CS, and in 
some cases and on some statements their attitudes were 
already where we wanted them to be, leaving little room for 
significant improvement.  
Lessons Learned 
This section presents a few of the difficulties encountered 
in teaching our CBSE approach in multiple courses, and 
evaluating its impact.  For the principles to be taught 
effectively, it is important to have multiple faculty 
members who understand and agree with the underlying 
philosophy, and who are willing to communicate the 
principles enthusiastically in their courses. We were 
fortunate in this regard.  It is also essential to develop and 
continuously revise course materials based on student 
feedback using qualitative evaluations.   
Evaluation of educational results, given the variety of 
confounding factors, is non-trivial.  It is a long-term 
activity involving many people, and several things can go 
wrong. For example, it is important to have the right words 
and context in attitudinal survey questions and statements.  
It is a challenge to develop unbiased wordings which are 
understandable to students before taking the courses and 
which can produce meaningful information about attitude 
changes. In some cases, our wordings were such that the 
responses tended to be where we wanted them to be right at 
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the beginning, leaving little room for improvement.   In 
spite of our best efforts, we cannot be sure that the initial 
responses from students were based on reasonable 
interpretations of the words.  We also realized too late that 
the wording of some questions was not as balanced as it 
should have been, resulting in the desired trends being 
toward agreement for more than half the statements 
(including the first six).  Fortunately, this seems to have 
had little impact on student responses, because there is 
considerable disagreement at the beginning of the course.  
Finally, it is important to have effective means to get most 
students to answer the surveys and to include their 
identifications without fail for evaluation purposes.  
It is clear that essay-type questions used at the end of the 
courses provided useful information.  When employed in 
conjunction with other surveys, they can be powerful tools 
in helping justify/reject initial hypotheses.  However, 
qualitative evaluations need to be analyzed manually, 
because automated key word analysis is suspect.  Such 
evaluations should be used to suggest future quantitative 
instruments.  
5 CONCLUSIONS 
It is becoming increasingly clear that academic institutions 
should educate undergraduate students in advanced 
component-based software engineering principles.  It is 
also clear that such education should start early in the 
curriculum.  When software engineering is taught as a set 
of add-on principles near the end of the degree, students 
find it hard to “unlearn” previous habits and do not have 
sufficient time to experiment with software engineering 
principles in their education.  To address these problems, 
we have adapted a formal approach to CBSE for 
introduction in introductory undergraduate CS courses, 
without displacing classical concepts normally taught in 
those courses.  By trying and evaluating this approach at 
two major public institutions, we have illustrated that other 
schools might be able to adapt and apply similar principles 
in their settings. 
An excellent collection of software engineering education 
efforts, including education in formal methods principles at 
the undergraduate level, may be found in [9].  Our work 
differs from earlier studies not merely in technical CBSE 
details, but also in our methods of evaluating the impact. 
Our study has shown that students are able to appreciate the 
significance and understand principles of formal 
specifications and component-based reuse. We have 
employed qualitative and quantitative evaluations to study 
the impact of our education on student learning and 
attitudes over a 3-year period.  The summary results are 
statistically significant, showing intended outcomes on 
most indicators.  While we have studied the impact 
immediately after the courses, additional studies are needed 
to determine if the impact on attitude changes on students 
persists in the long-term.   
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Appendix: Example Component Specification 
This appendix shows the specification of a List type in 
RESOLVE notation (reproduced from [10]).  
List_Template is a generic concept (specification template) 
which is parameterized by the type of entries to be 
contained in lists.  To provide abstract mathematical 
explanations of the operations, an object of type List is 
modeled by an ordered pair of mathematical strings of 
entries.  A string is similar to, but simpler than, a 
“sequence” because it does not explicitly include the notion 
of a position.  The operator “*” denotes string concatena-
tion; “<x>” denotes the string containing the entry x; and 
“|s|” denotes the length of s. 
Conceptualizing a List object as a pair of strings makes it 
easy to explain insertion and removal from the “middle”.  
A sample value of a List of Integers object, for example, is 
the ordered pair (<3,4,5>,<4,1>).  Insertions and removals 
can be explained as taking place between the two strings, 
e.g., at the left end of the right string.   
The declaration of type List introduces the mathematical 
model and says that an object of type List initially (i.e., 
upon declaration) is “empty”: both its left and right strings 
are empty strings.   Each operation is specified by a re-
quires clause (precondition), which is an obligation for the 
caller; and an ensures clause (postcondition), which is a 
guarantee from a correct implementation.  In the postcondi-
tion of Insert, for example, #s and #x denote the incoming 
values of s and x, respectively, and s and x denote the out-
going values.  Insert has no requirement, and it ensures that 
the incoming value of x is concatenated onto the left end of 
the right string of the incoming value of s; the left string is 
not affected.  Notice that the postcondition describes how 
the operation updates the value of s, but the return value of 
x  (which has the mode alters) remains unspecified. 
Given this specification, students act as clients and use lists 
in problem solving within the first few weeks of their 
second quarter/second semester course. They use a 
specification-based “natural” or forward reasoning method 
to reason about correctness [10]. Only later they learn how 
to implement lists using pointer structures.  In addition to 
classical examples such as Lists, students also see data 
abstractions that result from recasting classical algorithms 
as objects [11], and aspects of specification-based interface 
violation testing using wrapper components [12]. 
RESOLVE specifications use a combination of standard 
mathematical models such as integers, sets, functions, and 
relations, in addition to tuples and strings.  The explicit in-
troduction of mathematical models allows use of standard 
notations associated with those models in explaining the 
operations.  Our experience is that this notation—which is 
precise and formal—is nonetheless fairly easy to learn to 
understand even for beginning computer science students, 

because they have seen most of it before in high school and 
earlier.    

Concept List Template (type Entry)
Type List is modeled by

(left: string of Entry,
right: string of Entry)

exemplar s
initialization ensures
|s.left| = 0 and |s.right| = 0

Operation Insert (
alters x: Entry
updates s: List

)
ensures s.left = #s.left and

s.right = <#x> * #s.right

Operation Remove (
replaces x: Entry
updates s: List

)
requires |s.right| > 0
ensures s.left = #s.left and

#s.right = <x> * s.right

Operation Advance (
updates s: List

)
requires |s.right| > 0
ensures s.left * s.right =

#s.left * #s.right and
|s.left| = |#s.left| + 1

Operation Reset (
updates s: List

)
ensures |s.left| = 0 and

s.right = #s.left * #s.right

Operation Advance To End (
updates s: List

)
ensures |s.right| = 0 and

s.left = #s.left * #s.right

Operation Left Length (
restores s: List

): Integer
ensures Left Length = |s.left|

Operation Right Length (
restores s: List

): Integer
ensures Right Length = |s.right|

end List Template
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