
A Formal Approach to Component-Based Software Engineering:
Education and Evaluation

 Murali Sitaraman Timothy J. Long E. James Harner
 Dept. Computer Science Bruce W. Weide Liqing Wang
 Clemson University Dept. Computer & Info. Science Dept. Statistics
 Clemson, SC 29634-0974, USA The Ohio State University West Virginia University
 +1 864 656 3444 Columbus, OH 43210, USA Morgantown, WV 26506, USA
 murali@cs.clemson.edu +1 614 292 5813 +1 304 293 3607
 {long, weide}@cis.ohio-state.edu {jharner, lwang2}@stat.wvu.edu

ABSTRACT
This paper summarizes an approach for introducing
component-based software engineering (CBSE) early in the
undergraduate CS curriculum, and an evaluation of the
impact of the approach at two institutions. Principles
taught include a modular style of software development, an
emphasis on human understanding of component behavior
even while using formal specifications, and the importance
of maintainability, as well as classical issues such as
efficiency analysis and reasoning. Qualitative and
quantitative evaluations of student outcomes and end-to-
end changes in student attitudes show mostly positive
results that are statistically significant, confirming that (1)
it is possible to teach CBSE principles without displacing
“classical” principles usually taught in introductory
courses, (2) students can understand and reuse formally-
specified components without knowing their
implementations, and (3) student attitudes towards software
engineering can be altered in directions heretofore often
assumed to be difficult to achieve.
Keywords
components, formal specifications, objects, reasoning,
software engineering, statistical evaluation
1 INTRODUCTION
The increasing importance of introducing component-based
software engineering principles early in introductory
undergraduate computer science education is widely
recognized. While there is still considerable debate among
educators on the principles to be taught, there is reasonable
consensus that students should be educated (at least) on the
following fundamental software development principles:
• Independent software development: Large software

systems are necessarily assembled from components
developed by different people. To facilitate
independent development, it is essential to decouple
developers and users of components through abstract
and implementation-neutral interface specifications of
behavior for components.

• Reusability: While some parts of a large system will
necessarily be special-purpose software, it is essential

to design and assemble pre-existing components
(within or across domains) in developing new
components.

• Software quality: A component or system needs to be
shown to have desired behavior, either through logical
reasoning, tracing, and/or testing. The quality
assurance approach must be modular to be scalable.

• Maintainability: A software system should be
understandable, and easy to evolve.

We have taught the above component-based software
engineering principles in introductory CS education,
spanning multiple courses, at The Ohio State University
and West Virginia University1 for the past several years.
The technical foundations of our CBSE approach are based
on RESOLVE [1]. The approach is highlighted by a
“systems thinking” philosophy and formal specifications of
component behavior to facilitate independent software
development. It uses “design-time relationships” to capture
elements of reusability and software composition, and
emphasizes both formal reasoning and testing to assure
high quality. (These principles are more fully described in
the next section.) Introduction of CBSE principles early in
the CS curriculum and the particular approach that we have
used naturally raise a few basic questions:
• Is it possible to teach new CBSE principles without

displacing concepts such as efficiency analysis,
dynamic storage management, and recursion that are
typically taught in introductory courses?

• Is it possible to teach such topics as formal
specification and sophisticated reuse techniques to
(early) undergraduate CS students in a way that
students can understand and appreciate the significance
of the principles?

• Is it possible to effect significant changes in student
attitudes about software engineering?

The contribution of this paper is in addressing and
answering these questions, for the most part in the
affirmative. Section 2 summarizes the essential and novel
aspects of our approach and educational philosophy.
Section 3 explains our educational approach and provides a
listing of major topics covered in the courses to address the

1 Sitaraman was with the Department of Computer Science and
Electrical Engineering at West Virginia University, while teaching
and evaluating the CBSE approach presented in this paper.

0-7695-1050-7/01 $10.00 © 2001 IEEE
601

first question. It also discusses how new and traditional
principles are taught in a seamless fashion. Section 4
contains summary results from qualitative and quantitative
student evaluations that we administered between 1996 and
1999 to study the impact of our educational approach. It
addresses the second and third questions raised above. The
last section includes a discussion of lessons we learned in
this process and our conclusions.
2 A SUMMARY OF TECHNICAL FOUNDATIONS
This section provides a summary of the salient aspects of
our CBSE approach, and explains how they are directly
motivated by general software engineering principles of
independent software development, reusability, and quality
assurance. These principles are also the central ones we try
to communicate to our students.
To facilitate independent development of components and
systems, it is essential to separate the “outside” or
“abstract” view of the user of a system from the “inside” or
“concrete” implementation-oriented view of the system.
This is the essence of the systems thinking philosophy. For
systems thinking to work, it is crucial that the abstract user-
oriented descriptions of systems contain only necessary and
sufficient information. To be precise, the abstract
descriptions must be stated in the language of mathematics.
Otherwise the very intent of having the abstract
descriptions—to minimize communication overhead and to
eliminate miscommunication among developers and users
of systems—will be compromised.
Inevitably, all large systems must be assembled from
components. In the process of designing any big system, it
may be necessary to instantiate or extend previously
designed components or to build new ones. To understand
a system of components and to ease maintenance, it is
therefore essential to understand and document the “design-
time” relationships among participating components.
A key benefit of CBSE is that it permits a modular
approach to ensuring software quality. Modularity is
essential for the reasoning process to be scalable. In a
modular or compositional reasoning approach, it possible to
verify the correctness of an implementation of one
component at a time using only the specifications of other
components upon which it depends; implementations of
reused components are not needed. Modular reasoning, of
course, demands that each component C in the system have
an abstract behavioral specification so that internal details
of its use in composition can be ignored when reasoning
about systems built using C. The property of modular
reasoning requires (in addition to its reliance on
specifications) careful software design.
Component specifications are also useful for specification-
based integration and regression testing. In our approach,
we define one-way checking (or pre-condition checking)
and two-way checking (pre- and post-condition checking)
components that correspond to each component in the
system. Most mechanical aspects of the checking
components can be generated automatically, though non-
trivial condition checking, in general, requires explicit
programming. The checking components help classify
errors as either arising from bad components or bad client
usage, i.e., they help assign responsibility for defects. By
systematically employing and removing checking versions
of components, it becomes possible to detect internal

interface-related errors among components. In summary,
the following are the central elements of our approach to
CBSE:
• systems thinking, i.e., developing a “systems” view of

software in which components can be viewed from the
outside as indivisible units, or from the inside as
compositions of other such systems (a.k.a.
subsystems);

• interface specifications using mathematical modeling,
i.e., not settling for mere qualitative descriptions of
behaviors of components, but creating unambiguous
and implementation-neutral formal descriptions using
mathematics.

• design-time relationships, explicitly and precisely
describing design-time behavioral relationships
between (new and reused) components, including
implementation, instantiation, extension, and
composition of parameterized (template) components;

• modular reasoning, i.e., reasoning about client usage
based on specifications, and on specification-based
substitutability properties; and

• interface violation testing, i.e., developing test plans
from specifications and using violation-checking
component wrappers to detect and isolate bugs in a
modular fashion.

While there are naturally differences among researchers on
which principles should be considered core CBSE
principles, and differences among educators on which
principles ought to be taught in introductory CS classes, it
is clear that there is a significant overlap between the above
principles and principles suggested by other authors [9].
This is because the central tenets of software engineering,
outlined in the introduction, remain the same. Related
discussions may be found in [2, 3, 4, 9].
3 THE EDUCATIONAL APPROACH
The CBSE principles have been taught, using variations of
RESOLVE as the delivery vehicle [1], beginning in the
early 1990’s at The Ohio State University (OSU) and at
West Virginia University (WVU). At both institutions,
instructors employed active learning approaches to
teaching. This section discusses particulars of the different
course sequences used at the two institutions to
communicate CBSE principles. It highlights how other
universities can adapt and teach CBSE principles in a way
that best fits their institutional needs.
The CBSE principles have been taught in the first three-
quarter sequence of undergraduate courses in CS at OSU,
using RESOLVE/C++, a disciplined version of C++, as the
programming language [5]. The first course provides an
introduction to CBSE concentrating on the client
perspective in reusing previously-developed components
based on their behavioral specifications. The second
course focuses on using, then at mid-term switches to
implementing, generic abstract data types such as stacks,
queues, lists, and maps. A typical implementation in this
course is layered by reusing one or more other components.
The third course focuses on completing a non-trivial
component-based system using components developed in
the previous courses as well as new components.

602

At WVU, the principles have been taught in the second
semester course in CS, and on a selective basis in the
junior-level software engineering course. In the second-
semester course, an annotated version of Ada with
RESOLVE-style specifications was used. The sections of
this course examined in the surveys in this paper used
RESOLVE specifications directly, with Ada reserved for
lab work only. The first half of the course focused on the
client perspective and the second half was devoted to
implementation of abstract data types. The course
emphasized specifications and specification-based
reasoning [6]. In the software engineering course,
principles were taught directly using RESOLVE. In
addition to learning principles of requirements analysis and
design, students also implemented a component-based
system using components with behavioral specifications.
A summary of topics covered in the courses at OSU and
WVU is given below. The listing of topics suggests how
classical concepts of efficiency analysis, dynamic memory
management, etc., can be taught in a component-based
setting. For example, efficiency analysis techniques are
introduced to compare alternative implementations of the
same specification. Pointers and dynamic storage issues
are discussed later as techniques for implementing
“unbounded” data abstractions, and as a “from scratch”
alternative to layered implementations. Loops and
recursion are used to motivate inductive reasoning about
correctness, and the importance of termination arguments.
More details about these courses appear in [7, 8].

First Quarter: Component-based software from client
programmer's perspective; intellectual foundations of
software engineering; mathematical modeling;
specification of object-oriented components; layering;
recursion; testing and debugging layered operations.

Second Quarter: Templates for generalization and
decoupling; container components; component-based
software from implementer's perspective; data
representation using layering and using pointers.

Third Quarter: Tree and binary tree components and
binary search trees; context-free grammars; tokenizing,
parsing, and code generating components; sorting
components and sorting algorithms.
Figure 1: Course Descriptions for the OSU Courses

Second Semester: Principles of object-based software
engineering including specification, design,
implementation, and reasoning. Components
developed and used in the course include generic,
reusable data abstractions such as queues, stacks, lists,
trees, and sorting and searching. Comparison of
implementation techniques; analysis of efficiency;
dynamic allocation; recursion.

Fourth Semester: Techniques and methodologies for
software engineering, including principles of
requirements analysis, specification, design,
implementations and quality assurance. The emphasis
will be on rigorous object-based software construction.
Figure 2: Course Descriptions for the WVU Courses

Some principles such as classifying and decoupling design-
time relationships receive more emphasis at OSU, whereas
formal reasoning was emphasized more (in some sections)
at WVU. We expect such differences to arise naturally
when CBSE principles are taught at different institutions.
The feedback from students confirms that they learn and
see the importance of both classical topics and new CBSE
principles in these courses. This is seen, for example, from
Table 1 that contains a summary of top responses from
students, when asked to list the most important principles
learned in CS2 at the end of that course at WVU. (19
students responded to the question.) Only 3 students
directly mentioned efficiency analysis, choosing instead to
use terms such as “best algorithm” or “multiple
implementation trade-off”. We do not present any detailed
analysis of this feedback, which has been used mainly in
revising and improving course materials. The results
indicate student perceptions in one representative section,
and are not sufficient to enable us to draw any general
conclusions.

Table 1: Key Principles Learned in CS2 at WVU

Principle Number of students
who claimed they
learned and
understood
importance

Component-based reuse 15

Specifications 11

Dynamic storage management 8

Specification-based reasoning 6

Specific ADTs, (e.g., lists) 6

Recursion 5

4 EVALUATION
To evaluate the impact of the courses on student learning
and attitudes, under grants from FIPSE (U.S Department of
Education) and the National Science Foundation we
administered a series of voluntary student surveys between
1996 and 1999. Three different kinds of instruments were
used, in addition to regular homework/lab assignments and
examinations. The first kind was concerned with providing
feedback to us on how the material could be revised and
better presented in subsequent course offerings. The
second kind used essay questions administered near the
ends of the courses to help the students tell in their own
words what principles they thought they learned and what
they believed were important principles for software
construction. The third instrument focused on student
attitudes. These questions were asked of the students at the
beginning of each of the courses in the sequence and at the
end of the last course. The objective was to evaluate
whether student attitudes about various matters changed
according to our pre-survey hypotheses. Summaries of the
latter two surveys, and our interpretations of the results,
follow.

603

Qualitative Evaluation
For the qualitative evaluation, we asked students to provide
written responses to the following questions at the end of
the courses:
1. List and briefly explain what you believe to be the

three most crucial aspects of designing and building
good software. And, which, if any, of these aspects
would you have listed prior to taking the course
sequence?

2. Compare and contrast your view of what a software
system “should look like” with your view before
taking this course sequence. If possible, organize your
answer into before and after sections.

The student responses were not identified in any way to the
instructors; students knew that their answers to the
questions would have no effect on their grades. Though we
collected responses from a number of sections, analysis of
the data has proved time consuming, and we are able to
present summary results from just two sections of two
courses, one each at OSU (36 students) and WVU (19
students). At WVU, the questions were only asked at the
end of CS2, not at the end of the sequence. These results
are indicative of possible trends, and by themselves, do not
confirm any hypothesis. Their likely best use for us and
for others is to suggest questions that should be asked
explicitly on new quantitative survey instruments in the
future. Tables 2-5 contain summary results from student
responses at OSU and WVU.
The OSU summary indicates more students listed design,
reusability, modularity as a crucial aspect of software
construction at the end of the sequence, compared to the
beginning. The WVU summary indicates more students
felt at the end that it was important to design/specify before
coding and that it was important to reason/test to ensure
software behaves as intended. More interesting trends are
seen in analyzing responses to the second question. At
OSU, 19 out of 24 students (whose responses could be
classified) changed from having no view or a view of
software as monolithic code with some use of procedures
and functions, to a component-based view. At WVU, 15
out of 19 students at the end of CS2 reached a view of a
software system that involved components with
specifications.
While essay-type questions are costly to analyze, they can
reveal interesting student perceptions. For example, at
WVU, 3 out of 19 students made it clear in their responses
that they already held a component-based software system
view and claimed that the course had no impact on them.
Other students found the course to have had more utility,
and offered insightful comments, such as, “There is more to
specs than appears at first glance”, “I believe that the most
important aspect is specs…Before I would not have even
really considered this…let alone made it a top priority”,
and “view before [was]…as long as the stinking code
works everything is fine.”
Table 2: Responses to Question 1, End of OSU Sequence

Response Before After
Readable and understandable 9 13

Design before coding 2 9

Reusable 0 10

Efficient 4 6

Modular 0 5
Table 3: Responses to Question 1, End of CS2 at WVU

Response Before After
Readable and understandable 5 10

Design/specify before coding 4 12

Reusable 1 5

Efficient 1 6

Reasoning and testing 0 7

Table 4: Responses to Question 2, End of OSU Sequence

Response Before After
No view, monolithic code with
some procedures

24 3

Somewhat component-based 6 0

Component-based 0 24

Other 6 9

Table 5: Responses to Question 2, End of CS2 at WVU

Response Before After
No view, monolithic code, some
procedures

12 0

Component-based, specification-
based

4 15

Other 3 4

Attitudinal Evaluation
Table 6 contains the attitudinal survey along with our pre-
survey hypotheses on trends. In the table “+” denotes
statements where we expected more students to tend
towards agreement at the end of the sequence compared to
the beginning, and “–” denotes statements for which we
expect more students to tend to disagree at the end. For
statement #19, we agreed early-on that the wording was
ambiguous and could not agree on which trend to predict.
Statements 23 to 29 were administered only at OSU.
For each statement, students were asked to make one of six
choices: Strongly disagree, disagree, moderately disagree,
moderately agree, agree, and strongly agree. Intentionally,
the students were forced make an agree/disagree decision
without providing them a way out, such as “other”. At
OSU, students took four surveys: one at the beginning of
each of the three courses and one at the end of the last
course. At WVU, the students also did four surveys, but
one each at the beginning and at the end of the two

604

semester courses. (While most students at OSU go through
the sequence in more or less consecutive quarters, at WVU
students tend to take other courses between the second
semester CS course and the junior-level software
engineering course.)

Table 6: Attitudinal Survey Questions/Expected Trends

1. Software development is a challenging activity.
(+)

2. If I worked for a company and was asked to
develop 10,000 lines of software to solve a
problem, I feel capable of designing and
developing that software. (+)

3. The difficulty in understanding and modifying a
10,000 line software system has more to do with
the style in which the software is written, and less
to do with how smart I am. (+)

4. The difficulty in understanding and modifying a
10,000 line software system has more to do with
the style in which the software is written, and less
to do with the programming language in which it
is written. (+)

5. Software development can benefit from carefully
designing each component before coding it, as
opposed to quickly coding and experimenting
with it. (+)

6. Some of my friends and I know and follow a
disciplined approach to software design and
development. It is therefore easy for us to write
parts of a large software system separately and
then put them together easily. (+)

7. The main challenge of software construction lies
in coding the design in a programming language,
and not so much in specifying what needs to be
done. (–)

8. It is possible to show that a software component
works without actually running it on the
computer. (+)

9. Programming language statements -- even in the
absence of comments -- are well-suited for
describing precisely what a software component
is supposed to do. (–)

10. Successful software development has a lot to do
with mathematical models and proofs. (+)

11. To understand what a 10,000 line program does,
you need to understand every procedure and
function used in that program. (–)

12. When I try to develop correct software, my
tendency is to code quickly, but to spend as much
time as possible in testing and debugging. (–)

13. It is possible to have an understanding of
software that is independent of the programming
language used. (+)

14. Correct software can best be constructed by

building it from scratch. (–)

15. Software development is so challenging that I
often doubt if my programs are 100% correct. (–)

16. My conception of what software is has changed
markedly over time. (+)

17. Successful software development is not possible
without having a precise mathematical
description of what each software component is
supposed to do. (+)

18. My conception of how to build software has
changed markedly over time. (+)

19. The programming language used is a very
important factor in successful software
development. (N/A)

20. When working in teams, natural language
descriptions of the different components, such as
a descriptions in English, are sufficient for
communication among team members. (–)

21. Before I run my code on a computer, I make it a
practice to hand trace through the statements on
example inputs to see if it works. (+)

22. There is really not much difference between what
a software part does and how it does it. (–)

Remaining Questions Administered Only at OSU
23. Thinking first about each software component in

terms of its implementation details is important
for successful software development. (–)

24. Software development can benefit from carefully
thinking and reasoning about each software
component's correct behavior even before
running it, as opposed to quickly testing and
debugging it on the computer. (+)

25. Physical metaphors, such as plastic cups and
Lego blocks, can help in understanding software.
(+)

26. My respect for the challenge of software
development has changed markedly over time.
(+)

27. It is sufficient to have a natural language
description, such as a description in English, of
what each software component is supposed to do.
(–)

28. It is important to take a consistent approach to
design and development of software. (+)

29. How I personally develop software has changed
markedly over time. (+)

The last six digits of student identification numbers were
used to identify each student. This was essential to track
student attitudes, without disclosing the identity of the
students. In the analysis given in the paper, we compared
the “average” attitudes of students with respect to each
question at the beginning and at the end of course

605

sequence. To avoid noise, we restricted comparisons only
to the attitudes of the students who filled out both a “pre-
sequence” survey and a “post-sequence” survey. Since the
surveys were strictly voluntary, we could identify only 47
students who took both the first and last surveys at OSU
between 1997 and 1999, though the total number of
students completing surveys is much larger (about 700 at
the beginning and about 150 at the end). Another problem
that made it difficult to track individuals was just that
several students failed to include their identifications on
one or more of the surveys. However, the sample size of
47 at OSU is a substantially large enough to allow initial
conclusions, though further studies are needed. For similar
reasons, only 15 surveys were matched using student
identifications at WVU. Also at WVU, only some of the
sections used the CBSE approach in the fourth semester
software engineering course (i.e., the second course in the
sequence).
Tables 7 and 8 present a summary of results from
attitudinal evaluations at OSU and WVU, respectively. (A
large number of students did not respond to question #29 at
OSU, hence it is not included in the analysis.)

Table 7: Summary of Attitude Changes at OSU

No. Before After Diff P-
value

Significan
t?

1 1.8 4.7 +2.9 < 0.01 High

2 3.5 4.1 +0.6 0.05 Marginal

3 2.1 4.5 +2.4 < 0.01 High

4 2.5 4.5 +2.0 < 0.01 High

5 2.0 4.9 +2.9 < 0.01 High

6 3.1 4.1 +1.0 < 0.01 High

7 3.9 3.0 -0.9 < 0.01 High

8 3.1 4.5 +1.4 < 0.01 High

9 3.7 3.4 -0.3 0.8 No

10 2.9 4.0 +1.1 < 0.01 High

11 3.0 3.2 +0.2 0.3 No

12 3.5 3.2 -0.3 0.8 No

13 2.2 4.7 +2.5 < 0.01 High

14 3.6 3.4 -0.2 0.4 No

15 3.5 3.4 -0.1 0.6 No

16 2.9 4.6 +1.7 < 0.01 High

17 2.9 4.3 +1.4 < 0.01 High

18 3.0 3.7 +0.7 < 0.01 High

19 2.4 4.9 +2.5 N/A N/A

20 3.3 3.4 +0.1 0.7 No

21 3.5 2.6 -0.9 0.99 Neg. High

22 2.7 4.9 +2.2 0.99 Neg. High

23 2.6 3.6 +1.0 0.99 Neg. High

24 2.0 4.0 +2.0 < 0.01 High

25 2.4 4.8 +2.4 < 0.01 High

26 2.4 4.5 +2.1 < 0.01 High

27 2.6 5.0 +2.4 0.99 Neg. High

28 2.3 4.8 +2.5 < 0.01 High

Table 8: Summary of Attitude Changes at WVU

No. Before After Diff P-
value

Significan
t?

1 5.2 5.0 -0.2 0.6 No

2 3.8 4.6 +0.8 0.09 Marginal

3 4.3 4.8 +0.5 0.6 No

4 4.3 5.1 +0.8 0.02 Yes

5 5.6 5.6 0.0 0.7 No

6 4.5 4.8 +0.3 0.3 No

7 3.2 1.8 -1.4 < 0.01 High

8 3.3 5.2 +1.9 < 0.01 High

9 3.6 2.7 -0.9 0.07 Yes

10 4.1 4.5 +0.4 0.2 No

11 3.7 2.2 -1.5 < 0.01 High

12 3.2 2.5 -0.7 0.07 Marginal

13 4.7 5.7 +1.0 < 0.01 High

14 3.9 2.1 -1.8 < 0.01 High

15 4.0 3.5 -0.5 0.1 No

16 3.6 4.9 +1.3 0.02 Yes

17 3.1 4.5 +1.4 < 0.01 High

18 4.5 5.3 +0.8 0.02 Yes

19 3.5 2.4 -1.1 N/A N/A

20 4.2 2.8 -1.4 0.02 Yes

21 3.9 4.4 +0.5 0.4 No

22 3.3 2.3 -1.0 0.02 Yes

It is important to note that the surveys come from students
who took the courses at different times under different
instructors (including teaching assistants at OSU), and
therefore, it is reasonable to conclude that the impact of
specific instructors is minimal.
In each table, the first column indicates the statement
number. Each response was given a score of 1 to 6,
ranging from 1 for “strongly disagree” and 6 for “strongly
agree”. The second and third columns show the average
agreement scores for all students for each statement at the

606

beginning and at the end of our course sequences, rounded
to the nearest tenth. An average score of 3.0, for example,
denotes that the average response was “moderately
disagree”. The fourth column indicates the change in
average response before and after the sequence. Column 5
contains P-values derived from one-sided paired t-tests on
the raw data. This involves computation of the change in
the attitude of each student using their identification
numbers, and it determines whether the average change in
the previous column is statistically significant. P-values
below 0.01 denote high significance, and those between
0.01 and 0.05 denote significance. P-values that are above
0.99 denote high significance in the wrong direction.
Strictly, such P-values suggest that 2-sided evaluations
should have been used.
The OSU survey summary shows that the attitudes changed
highly significantly for 16 out of 27 statements, towards our
expectations. No trends were seen for 6 statements, and 4
statements showed significant trends that were against our
expectations. For one statement, the change was marginal.
In the WVU survey, no trends were against our initial
expectations. For 12 out of 22 statements, the attitude
changes are significantly or highly significantly towards
our expectations. For 2 statements, changes are marginally
significant. For the other 7 statements, no appreciable
changes could be detected. These results strongly suggest
that the trends are not coincidental.
For several statements in the OSU survey, the average
attitude score changes are highly significant, with average
changes around 2.0. For example, in the case of statement
#3, students shifted their attitudes toward believing that
with regard to understanding and maintaining a system,
their intelligence is a less important factor than how the
software is built. We suspect that changes in such attitudes,
as in the notion that software can be understood
independently of the particular programming language
involved (#4) and the importance of designing before
coding (#5), would be difficult to duplicate without
considerable impact from the educational philosophy and
approach. At OSU, students follow a rigorous discipline of
software construction using a single language C++ in their
three-course sequence. The impact of this approach is seen
in their attitudes on statements such as #6, #16, #18, and
#28 concerning discipline and conceptions of software.
Students also found that physical metaphors, such as plastic
cups and Lego blocks, can help considerably in
understanding software (#25).
In the case of some statements, e.g., #9, it is unlikely that
students would have been able even to understand such a
subtle statement at the beginning of the sequence.
Nonetheless, most students agreed at the beginning with
this one, so their attitudes did not change much as a result
of taking the courses.
The trends in responses to some questions indicate that the
uncertainty in student answers (around 3.5 average) was
not altered by the courses. For example, students at OSU
remained ambivalent about the broad role of precise
specifications (#20), but felt required to assert the rightful
role of natural languages in software engineering (#27),
despite the great emphasis the courses placed on
formalization. For these questions, the attitudes in the
WVU survey show change in the anticipated direction.

This difference is probably explained by the fact that the
WVU course sequence includes an explicit requirements
analysis part using natural language descriptions. Taught
this explicit connection between natural and formal
specification languages, students were likely able to see the
importance of both in large-scale software engineering.
Students in the OSU survey apparently equated the use of
formal specifications in those courses to mean avoiding
natural language descriptions completely, despite repeated
examples showing that formalization in no way implies that
natural language descriptions are taboo.
The WVU survey summary contains trends towards our
goals. The attitude changes are large for statements #7, #8,
#13, #16, #17, and #20. Like the OSU students, WVU
students emphasize the importance of specifying before
coding (#7) and agree with the notion that it is possible to
have an understanding of software independent of the
language used (#13). Both OSU and WVU students agree
that the courses have changed their conceptions of software
(#16). WVU students emphasize the role and importance
of specifications more than their OSU counterparts. As
seen from the trends for statements #17 and #20, WVU
students are considerably more in agreement on the
importance of precise specifications. The trend for
statement #19 (along with #13) also shows that the students
view programming language to be less of a factor in
software engineering. These positive trends at WVU may
be a result of the use of RESOLVE notation, unencumbered
by C++, in some classes.
For some questions, there is little change in WVU student
attitudes compared to OSU students. This is the case for
statements such as #1, #3, #4, and #5. This is possibly due
to a combination of factors. At OSU, students entered the
sequence beginning with their first course in CS except for
having had a basic introductory programming course
(perhaps in high school), and almost all change in their
attitudes towards software came during the sequence. At
WVU, students had already had a first course in CS, and in
some cases and on some statements their attitudes were
already where we wanted them to be, leaving little room for
significant improvement.
Lessons Learned
This section presents a few of the difficulties encountered
in teaching our CBSE approach in multiple courses, and
evaluating its impact. For the principles to be taught
effectively, it is important to have multiple faculty
members who understand and agree with the underlying
philosophy, and who are willing to communicate the
principles enthusiastically in their courses. We were
fortunate in this regard. It is also essential to develop and
continuously revise course materials based on student
feedback using qualitative evaluations.
Evaluation of educational results, given the variety of
confounding factors, is non-trivial. It is a long-term
activity involving many people, and several things can go
wrong. For example, it is important to have the right words
and context in attitudinal survey questions and statements.
It is a challenge to develop unbiased wordings which are
understandable to students before taking the courses and
which can produce meaningful information about attitude
changes. In some cases, our wordings were such that the
responses tended to be where we wanted them to be right at

607

the beginning, leaving little room for improvement. In
spite of our best efforts, we cannot be sure that the initial
responses from students were based on reasonable
interpretations of the words. We also realized too late that
the wording of some questions was not as balanced as it
should have been, resulting in the desired trends being
toward agreement for more than half the statements
(including the first six). Fortunately, this seems to have
had little impact on student responses, because there is
considerable disagreement at the beginning of the course.
Finally, it is important to have effective means to get most
students to answer the surveys and to include their
identifications without fail for evaluation purposes.
It is clear that essay-type questions used at the end of the
courses provided useful information. When employed in
conjunction with other surveys, they can be powerful tools
in helping justify/reject initial hypotheses. However,
qualitative evaluations need to be analyzed manually,
because automated key word analysis is suspect. Such
evaluations should be used to suggest future quantitative
instruments.
5 CONCLUSIONS
It is becoming increasingly clear that academic institutions
should educate undergraduate students in advanced
component-based software engineering principles. It is
also clear that such education should start early in the
curriculum. When software engineering is taught as a set
of add-on principles near the end of the degree, students
find it hard to “unlearn” previous habits and do not have
sufficient time to experiment with software engineering
principles in their education. To address these problems,
we have adapted a formal approach to CBSE for
introduction in introductory undergraduate CS courses,
without displacing classical concepts normally taught in
those courses. By trying and evaluating this approach at
two major public institutions, we have illustrated that other
schools might be able to adapt and apply similar principles
in their settings.
An excellent collection of software engineering education
efforts, including education in formal methods principles at
the undergraduate level, may be found in [9]. Our work
differs from earlier studies not merely in technical CBSE
details, but also in our methods of evaluating the impact.
Our study has shown that students are able to appreciate the
significance and understand principles of formal
specifications and component-based reuse. We have
employed qualitative and quantitative evaluations to study
the impact of our education on student learning and
attitudes over a 3-year period. The summary results are
statistically significant, showing intended outcomes on
most indicators. While we have studied the impact
immediately after the courses, additional studies are needed
to determine if the impact on attitude changes on students
persists in the long-term.
ACKNOWLEDGEMENTS
Many people contributed important ideas to this work
and/or made helpful comments about drafts of this article.
We would especially like to thank Sheila Arbaugh, Paolo
Bucci, Greg Kulczycki, Mike Henry, and Bill Ogden.
We also gratefully acknowledge financial support from our
own institutions, from the National Science Foundation
under grants CCR-9311702, DUE-9555062, and CDA-

9634425, from the Fund for the Improvement of Post-
Secondary Education under project number P116B60717,
from the Defense Advanced Research Projects Agency
under project number DAAH04-96-1-0419 monitored by
the U.S. Army Research Office, and from Microsoft
Research. Any opinions, findings, and conclusions or
recommendations expressed in this paper are those of the
authors and do not necessarily reflect the views of the
National Science Foundation, the U.S. Department of
Education, the U.S. Department of Defense, or Microsoft.
REFERENCES
1. “Special Feature: Component-Based Software Using

RESOLVE,” ACM SIGSOFT Software Engineering
Notes 19, No. 4, Eds. M. Sitaraman and B. W. Weide,
October 1994, 21-67.

2. Ford, G, SEI Report on Undergraduate Software
Engineering Education, CMU/SEI-90-TR-003
ADA223881, 1990.

3. Parnas, D.L., “Teaching Programming as
Engineering”, in ZUM `95: The Z Formal
Specification Notation, 9th International Conference
of Z Users, Bowen J.P., Hinchey M.G. (eds.), Lecture
Notes in Computer Science 967, Springer-Verlag,
1995, pp. 471-481.

4. Tomer, T.S., Baldwin, D., and Fox, C. J., “Integration
of Mathematical Topics in CS1 and CS2,” Proceedings
of the 31st SIGCSE Technical Symposium on
Computer Science Education, ACM, 1998, 364-365.

5. Weide, B.W., Software Component Engineering, OSU
Reprographics, Columbus, OH, 1996.

6. Sitaraman, M., An Introduction to Software
Engineering Using Properly Conceptualized Objects,
WVU Publications, Morgantown, WV, 1997.

7. Long, T.J., Weide, B. W., Bucci, P., Gibson, D. S.,
Hollingsworth, J., Sitaraman, M., and Edwards, S.,
“Providing Intellectual Focus to CS1/CS2,”
Proceedings of the 29th SIGCSE Technical Symposium
on Computer Science Education, ACM, 1998, 252-
256.

8. Long, T.J., Weide, B. W., Bucci, P., and Sitaraman,
M., “Client-View First: An Exodus from
Implementation-Biased Teaching”, Proceedings of the
30th SIGCSE Technical Symposium on Computer
Science Education, ACM , 1999, 136-140.

9. Software Engineering Education, Eds. Coulter, N. S.,
Gibbs, N. E., Annals of Software Engineering 6, 1998
(1-90, 365-453).

10. Sitaraman, M., Atkinson, S., Kulczycki, G., Weide, B.
W., Long, T. J., Bucci, P., Heym, W., Pike, S., and
Hollingsworth, J. E., “Reasoning About Software-
Component Behavior,” in Frakes, W.B., ed., Software
Reuse: Advances in Software Reusability (Proceedings
Sixth International Conference on Software Reuse),
Springer-Verlag LNCS 1844, 2000, 266-283.

11. Sitaraman, M., Weide, B. W., Long, T.J., Ogden, W.
F., “A Data Abstraction Alternative to Data
Structure/Algorithm Modularization,” LNCS 1766

608

Volume on Generic Programming, Eds. D. Musser and
M. Jazayeri, Springer-Verlag, 2000, 102-113.

12. Edwards, S., Shakir, G., Sitaraman, M., Weide, B. W.,
and Hollingsworth, J., “A Framework for Detecting
Interface Violations in Component-Based
Software,”Proceedings of the Fifth International
Conference on Software Reuse, IEEE Computer
Society Press, Victoria, Canada, June 1998, pp. 46-55.

Appendix: Example Component Specification
This appendix shows the specification of a List type in
RESOLVE notation (reproduced from [10]).
List_Template is a generic concept (specification template)
which is parameterized by the type of entries to be
contained in lists. To provide abstract mathematical
explanations of the operations, an object of type List is
modeled by an ordered pair of mathematical strings of
entries. A string is similar to, but simpler than, a
“sequence” because it does not explicitly include the notion
of a position. The operator “*” denotes string concatena-
tion; “<x>” denotes the string containing the entry x; and
“|s|” denotes the length of s.
Conceptualizing a List object as a pair of strings makes it
easy to explain insertion and removal from the “middle”.
A sample value of a List of Integers object, for example, is
the ordered pair (<3,4,5>,<4,1>). Insertions and removals
can be explained as taking place between the two strings,
e.g., at the left end of the right string.
The declaration of type List introduces the mathematical
model and says that an object of type List initially (i.e.,
upon declaration) is “empty”: both its left and right strings
are empty strings. Each operation is specified by a re-
quires clause (precondition), which is an obligation for the
caller; and an ensures clause (postcondition), which is a
guarantee from a correct implementation. In the postcondi-
tion of Insert, for example, #s and #x denote the incoming
values of s and x, respectively, and s and x denote the out-
going values. Insert has no requirement, and it ensures that
the incoming value of x is concatenated onto the left end of
the right string of the incoming value of s; the left string is
not affected. Notice that the postcondition describes how
the operation updates the value of s, but the return value of
x (which has the mode alters) remains unspecified.
Given this specification, students act as clients and use lists
in problem solving within the first few weeks of their
second quarter/second semester course. They use a
specification-based “natural” or forward reasoning method
to reason about correctness [10]. Only later they learn how
to implement lists using pointer structures. In addition to
classical examples such as Lists, students also see data
abstractions that result from recasting classical algorithms
as objects [11], and aspects of specification-based interface
violation testing using wrapper components [12].
RESOLVE specifications use a combination of standard
mathematical models such as integers, sets, functions, and
relations, in addition to tuples and strings. The explicit in-
troduction of mathematical models allows use of standard
notations associated with those models in explaining the
operations. Our experience is that this notation—which is
precise and formal—is nonetheless fairly easy to learn to
understand even for beginning computer science students,

because they have seen most of it before in high school and
earlier.

Concept List Template (type Entry)
Type List is modeled by

(left: string of Entry,
right: string of Entry)

exemplar s
initialization ensures
|s.left| = 0 and |s.right| = 0

Operation Insert (
alters x: Entry
updates s: List

)
ensures s.left = #s.left and

s.right = <#x> * #s.right

Operation Remove (
replaces x: Entry
updates s: List

)
requires |s.right| > 0
ensures s.left = #s.left and

#s.right = <x> * s.right

Operation Advance (
updates s: List

)
requires |s.right| > 0
ensures s.left * s.right =

#s.left * #s.right and
|s.left| = |#s.left| + 1

Operation Reset (
updates s: List

)
ensures |s.left| = 0 and

s.right = #s.left * #s.right

Operation Advance To End (
updates s: List

)
ensures |s.right| = 0 and

s.left = #s.left * #s.right

Operation Left Length (
restores s: List

): Integer
ensures Left Length = |s.left|

Operation Right Length (
restores s: List

): Integer
ensures Right Length = |s.right|

end List Template

609

