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Abstract. Modularization along the boundaries of data structures and
algorithms is a commonly-used software decomposition technique in com-
puter science research and practice. When applied, however, it results in
incomplete segregation of data structure handling and algorithm code
into separate modules. The resulting tight coupling between modules
makes it difficult to develop these modules independently, difficult to
understand them independently, and difficult to change them indepen-
dently. Object-oriented computing has maintained the traditional di-
chotomy between data structures and algorithms by encapsulating only
data structures as objects, leaving algorithms to be encapsulated as sin-
gle procedures whose parameters are such objects. For the full software
engineering benefits of the information hiding principle to be realized,
data abstractions that encapsulate data structures and algorithms to-
gether are essential.

1 Introduction

The dichotomy of data structures and algorithms is pervasive in computing,
and this separation has been used routinely as a criterion for modularization in
both structured and object-oriented software development. But the suitability
of this criterion for decomposition has rarely been questioned from a software
engineering perspective in the data structures and algorithms literature. Cor-
men, Leisersen, and Rivest, authors of probably the most widely used textbook
on algorithms [2], admit to as much, as they set the following stage for their
discourse on algorithms:

We shall typically describe algorithms as programs written in pseu-
docode that is very much like C, Pascal, or Algol, ... not typically con-
cerned with issues of software engineering. Issues of data abstraction,
modularity, and error handling are often ignored to convey the essence
of the algorithm more concisely.
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Though it is arguably useful to understand the design and details of algorithms
without concern for software engineering, Parnas has argued that the criteria to
be used for module decomposition are at least as important in development of
real software systems [§]. In the conventional data structure/algorithm decom-
position, the code that stores “input” values into data structures, and the code
that retrieves “output” values from data structures, resides in the calling module.
The algorithm that transforms the inputs to outputs using the data structures,
and which is typically a procedure whose parameters are these data structures,
resides in a separate module. The major processing steps—input/output data
structure handling and execution of the algorithm—have been turned into sep-
arate modules that communicate through data structures. Parnas has argued
against this form of processing-based decomposition, noting that it makes it
difficult to develop the modules independently, difficult to understand modules
independently, and difficult to change modules independently. He has proposed
“information hiding” as an alternative criterion for module decomposition [g]:

...it is almost always incorrect to begin the decomposition of a sys-
tem into modules on the basis of a flowchart. We propose instead that
one begins with a list of difficult design decisions or design decisions that
are likely to change. Each module is then designed to hide such a deci-
sion from others. Since, in most cases, design decisions transcend time
of execution, modules will not correspond to steps in processing.

While the information hiding criterion has had some impact on hiding decisions
about the data structures involved in representing “container” abstract data
types such as stacks and queues, it has had little effect on modularization that
respects the classical dichotomy of data structures and algorithms. The objec-
tive of this paper is to expose the weaknesses of this widely used modularization
along data structure/algorithm boundaries and to discuss an alternative based
on the information hiding criterion. In this approach, data structures and algo-
rithms are encapsulated together to produce new data abstractions. The result-
ing modularization arguably has desirable properties of module decomposition
detailed in [§], including ease of independent module development, ease of use,
and ease of change. In addition, the data abstraction interface approach provides
performance advantages. For a given data abstraction, it becomes possible to de-
velop alternative plug-compatible implementations that differ both in the data
structures/algorithms used in computing the results, and in whether results are
computed incrementally or in batch, allowing temporal flexibility. Through their
interface specifications and support for alternative implementations, reusable
data abstractions of this nature supplement (functional and performance) flexi-
bility benefits of generic programming [7], with software engineering benefits.

The rest of the paper is organized as follows. Section [ examines a classical
example from the algorithms literature from a software engineering perspective.
Section Blpresents a data abstraction alternative. Section Ml discusses performance
benefits of the data abstraction-based modularization. The last section contains
a discussion of related work and our conclusions.
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2 A Conventional Modularization That Respects
the Data Structure/Algorithm Dichotomy

To illustrate the ramifications of modularization based on separation of data
structures and algorithms, we begin with an instance of a shortest path problem:

Given a graph, a source vertex, and a set of destination vertices, find the
shortest paths between the source and the destinations, if such paths exist, and
their costs.

The best-known solution to the single source shortest paths problem is Di-
jkstra’s greedy algorithm for finding shortest paths to all (connected) vertices
from a single source [2]. Details of the data structures used in this solution are
given below.

procedure SSSP_Dijkstra
inputs G, w, s
outputs S, distances, predecessors

Input data structures: G is a graph represented by an adjacency list data struc-
ture. w is a weight function that returns the cost of the edge joining a given pair
of vertices. s is the source vertex.

Output data structures: S is a set of vertices that can be reached from s.
distances is a structure that contains the cost of the shortest path from s
to every vertex in S. predecessors is a structure that holds the penultimate
vertex on a shortest path from the source to each vertex.

In this modularization, responsibility for the algorithm is given to one mod-
ule (procedure SSSP_Dijkstra) and responsibility for storing information into
and retrieving information from input/output data structures is given to the
calling module. This responsibility assignment thwarts independent module de-
velopment, because both modules rely on details of the data structures. The
significant coupling between the calling module and the procedure that encodes
the algorithm is obvious in this example. To understand and reason about the
procedure, the data structures in the calling module need to be understood;
and to understand the reason for choosing a particular representation for a data
structure in the calling module (e.g., adjacency list representation for graphs), it
is essential to understand some details of the algorithm. Any changes to details
of the data structures in the calling module may affect the called procedure,
and any changes to the algorithm may affect the responsibilities of the caller.
Every use of the procedure requires the calling module to set up non-trivial data
structures. And even when a caller is not interested in all results (paths, costs,
paths to all destinations), all the data structures must be set up, if the intent is
not to modify the code of the reusable procedure.

Another fundamental problem in separating data structures from algorithms
arises when different algorithms for solving a problem demand different data
structures. In such cases, when a client desires to switch from one algorithm
to another, significant changes may be needed to the calling code. It may be
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essential to use a different algorithm to improve performance or because of ap-
parently minor changes to the problem requirements. Suppose that the shortest
path problem were modified slightly as below:

Given a graph, a set of source vertices, and a set of destination vertices, find
the shortest paths between the sources and the destinations, if paths exists, and
their cost.

One solution to this problem is to call the single source shortest paths proce-
dure repeatedly with different sources. If the set of sources is small, this indeed
may be the right choice. But if the paths need to be computed from a larger set
of sources, then the Floyd-Warshall algorithm that computes efficiently shortest
paths from all source vertices to all destination vertices may be more appropriate.
In the Floyd-Warshall algorithm, the following data structures are used:

procedure ASSP_Floyd_Warshall
input G
outputs distances, predecessors

Input data structures: G is a graph represented by an adjacency matrix.
Output data structures: distances is a |V| x |[V| matrix that contains distances
of the shortest path from every source to every destination vertex. predecessors
is a |V| x |V] matrix holding the penultimate vertex on a shortest path from
each source to each destination vertex.

The differences in the input/output data structures and their representations
between Dijkstra’s algorithm and Floyd-Warshall’s algorithm are significant, and
they demand considerable change in the client module to switch from one algo-
rithm to the other.

3 Modularization Based on Information Hiding

A key design decision in classical examples, such as the ones discussed in the
last section, is making a suitable choice for data structures/representations for
a particular algorithm. Most algorithms work efficiently only when used with
particular data structures and their workings are often intricately intertwined
with those data structures. Rarely are the choices so independent that arbitrary
combinations are meaningful. In addition, as illustrated above, when algorithms
need to be changed for performance or for software evolution reasons, the data
structures are likely to change as well.

The information hiding criterion suggests that the design decision of match-
ing proper structures with algorithms is a difficult choice that is quite likely to
change (e.g., if the client decides to use a different algorithm), and it therefore
must be hidden inside a module. To use a module that computes shortest paths,
it should not be essential for the calling module to understand how graphs are
represented or what structures are used to store inputs and results. For the short-
est path problems, the interface of the data abstraction must permit a client to
supply information about a graph and get answers to questions about shortest
paths. Use of a data abstraction essentially decouples an implementation of the
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abstraction from its use, in turn facilitating independent development, ease of
use, and ease of change

The basic idea is easily explained. The abstract state space for an ADT (ab-
stract data type) for solving the class of shortest path finding problems includes
the edges of the graph under consideration. Operations on the ADT allow a
graph to be defined and questions about shortest paths to be asked. One oper-
ation allows a user to input graph edges, one at a time. Other operations allow
a user to ask whether there is a path between two vertices and if one exists, to
request the cost of the shortest such path. The ADT also includes an operation
that gives the edges on a shortest path from a source to a destination, one at
a time. Other than an object of the ADT under discussion, in this design the
only other parameters to operations are values of simple types such as edge in-
formation, booleans, and real numbers. No complex data structures are passed
as parameters, because suitable data structures together with algorithms that
manipulate them are hidden in the implementation(s) of the ADT. Clients nei-
ther need to understand nor need to set up any fancy data structures. Instead
they see only an ADT and operations to manipulate objects of that type.

One interesting new issue arises in designing an interface for a data abstrac-
tion such as the one described here. Unlike data abstractions that encapsulate
classical “container” data structures, where, in general, there are few or no re-
strictions on the order in which the operations may be called, the data abstrac-
tion described here demands that all graph information be available before the
queries begin. It is easy to specify such restrictions by embellishing the abstract
state model in a formal specification of the data abstraction, as explained in the
next subsection.

Formal Specification of a Data Abstraction

A formal specification for a data abstraction that captures the shortest path
problems in a dialect of the RESOLVE notation [I0], is given in Figure 1. We
have used the name “least cost path” instead of “shortest path”, so weights on
edges are interpreted more generally as costs instead of distances.

concept Least_Cost_Path_Finding Template (
type Edge_Index,
constant Max_Vertex: Integer

math subtype Edge is (

vl: integer,
v2: integer,
id: Edge_Index,
cost: real

)

exemplar e

constraint
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1 <= e.v1l <= Max_Vertex and
1 <= e.v2 <= Max_Vertex and
e.cost > 0.0

definition CONNECTING_PATH_EXISTS (
graph_edges: finite set of Edge,
vl, v2: integer
): boolean
= (* true iff there is a connecting path from
vl to v2 in graph_edges *)

definition IS_A_LEAST_COST_PATH (
graph_edges: finite set of Edge,
vl, v2: integer,
s: finite set of Edge
): boolean
= (x true iff s is the set of edges on a least
cost path from vl to v2 in graph_edges *)

type Path_Finder is modeled by (
edges: finite set of Edge,
insertion_phase: boolean
)
exemplar m
initialization
ensures m = ({}, true)

operation Insert_Edge (

alters m: Path_Finder,
consumes vl: Integer,
consumes v2: Integer,
consumes id: Edge_Index,
consumes cost: Real

)

requires m.insertion_phase and

1 <= v1 <= Max_Vertex and

1 <= v2 <= Max_Vertex and
e.cost > 0.0

107

ensures m.edges = #m.edges union {(#v1, #v2, #id, #cost)}

and m.insertion_phase = #m.insertion_phase

operation Stop_Accepting_Edges (
alters m: Path_Finder

)

ensures m.edges = #m.edges and
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m.insertion_phase = false

operation Connecting Path_Exists (
preserves m: Path_Finder,
preserves vl, v2: Integer
) returns result: Boolean
requires not m.insertion_phase
ensures result = CONNECTING_PATH_EXISTS (m.edges, v1, v2)

operation Find_Least_Cost (

preserves m: Path_Finder,
preserves vl, v2: Integer

) returns result: Real

requires not m.insertion_phase and
CONNECTING_PATH_EXISTS (m.edges, vi, v2)

ensures there exists s: set of Edge
(IS_A_LEAST_COST_PATH (m.edges, v1, v2, s) and
result = sum e: Edge where (e is in s) (e.cost))

operation Get_Last_Stop (
preserves m: Path_Finder,
preserves vl, v2: Integer,
produces stop: Integer,
produces id: Edge_Index,
produces cost: Real
)
requires not m.insertion_phase and
CONNECTING_PATH_EXISTS (m.edges, vi, v2)
ensures CONNECTING_PATH_EXISTS (m, v1, v2) and
there exists s: set of Edge
(IS_A_LEAST_COST_PATH (m.edges, vl, stop, s) and
IS_A_LEAST_COST_PATH (m.edges, v1, v2,
s union {(stop, v2, id, cost)}))

operation Is_In_Insertion_Phase (
preserves m: Path_Finder
) returns result: Boolean
ensures result = m.insertion_phase

end Least_Cost_Path_Finding Template
Figure 1. Least_Cost_Path_Finding Template
To use the template in Figure 1, a client needs to create an instance by pick-

ing a suitable value for max_vertex and an identification type for Edges (e.g.,
names). The module provides an ADT, named Path_Finder. The abstract state
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of the type has been modeled mathematically as an ordered pair: a finite set
of (graph) edges and a boolean value that is true iff edges are allowed to be
inserted. In the description of this mathematical model, we have used a mathe-
matical subtype Edge [4)9]: values of this type are constrained to be such that
edge weights are positive. The essential purpose of the subtype is to make the
specification easier to understand.

The initialization ensures clause specifies that every newly-declared object
of type Path_Finder contains no graph edges and is ready for insertion. Edges of
the graph, for which least cost paths need to be found, are inserted one at a time
to through calls to Insert_Edge operation. The operation takes as its parameters
an object m, and information on the edge that is inserted. The operation has a
pre-condition as specified in its requires clause: m.insertion_phase must be
true. The operation alters the state of the machine m as specified in the post-
condition and consumes the edge information. In the ensures clause, #m denotes
the value of the object that is input to the operation and m denotes its value
after the operation. (In the requires clause, all parameter names refer to input
values.) The values of the consumed parameters are left unspecified. They have
initial values of their types after the operation.

The three operations Connecting Path_Exists, Find_Least_Cost, and
Get_Last_Stop require m.insertion_phase to be false, i.e., all edges must be
available. Through these requires clauses, the specification dictates conceptually
the order in which the operations can be called. In particular, the
Stop_Accepting_Edges operation, which ensures that m.insertion_phase is
false, must be called before the path query operations. The last operation
Is_In_Insertion_Phase can be used to determine the insertion status of the
object.

The operation Connecting_Path_Exists returns true iff there is a connect-
ing path between the two given vertices in the graph. In the ensures clause, we
have used a mathematical predicate CONNECTING_PATH_EXISTS with the obvi-
ous meaning. A formal definition of this predicate should be included in the
specification, but has been omitted here for brevity. In the specification of oper-
ations Find_Least_Cost and Get_Last_Stop, we have used another predicate
IS_A_LEAST_COST_PATH (e, v1, v2, s). This predicate is true iff the set of
edges s constitutes a least cost path from v1 to v2 in the graph whose edges
are in e. The Get_Last_Stop operation returns the penultimate vertex (and the
corresponding edge) in a least cost path from v1 to v2. By calling this operation
repeatedly, with the returned vertex as the destination, all edges on a least cost
path from v1 to v2 can be found, incrementally. Similarly, by calling the opera-
tion with suitable parameters, the least cost paths between different sources and
destinations can be found.

The specification of the data abstraction serves as the contract between mod-
ules that implement the abstraction and modules that use the abstraction. Dif-
ferent implementations of the abstraction hide both the data structures and
algorithms used in computing the results, as well as whether the results are com-
puted in batch or incrementally. For calling modules, finding least costs paths
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using the data abstraction is as simple as using a more typical ADT such as a
stack or a queue. Switching from one implementation of the data abstraction to
another is just as easy.

4 Performance Ramifications

Unlike the conventional modularization in Section [2 in which algorithms are
encoded as batch computing procedures, the data abstraction interface in Sec-
tion B] permits incremental inputs and outputs. This distinction may not make
a difference for problems where no incremental input processing is meaningful
because all known algorithms require knowledge of all inputs. For some other
problems, all known algorithms may need the same execution time to compute
full or partial solutions, and the distinction may not matter either. But there
are other problems, such as those discussed in this paper and elsewhere [R[13],
where such is not the case. In these cases, the separation of processing from
input/output steps leads to computation of expensive and complete solutions,
even when the applications may need only a subset of outputs.

For the least cost path problem, for example, conventional modularization
leads to a procedure that computes all shortest paths from the source, though the
caller may be willing to abandon computation once the shortest path(s) to de-
sired destination(s) are found. This performance problem is a result of the rigid
input/process/output computing that is introduced when an algorithm is de-
signed as a single procedure. In this case, the caller has no communication mecha-
nism to stop computation once questions of interest have been answered. But the
incremental interface of the data abstraction for the problem provides the calling
module this flexibility. This is clear from considering procedure SSSP_Dijkstra
in Section [2 and operations Find_Least_Cost/Get_Last_Stop in Section [3

Consider an implementation of Least_Cost_Path_Finding_Template using
Dijkstra’s greedy algorithm. This algorithm has the property that at any time
during computation, for the destination vertices in a set S, the shortest paths
and costs for those paths are available in the other structures. When one of the
operations Find_Least_Cost or Get_Last_Stop is called, the implementation
can stop computation as soon as S contains the desired destination, and store
all intermediate results. This approach can offer significant performance savings
on the average. In addition, if the intermediate results are stored in a transitive
closure matrix, when operations Find_Least_Cost or Get_Last_Stop are called
with different sources or destinations, the information in the matrix can be
used without re-computation. Such an implementation is superior to both of the
procedures outlined in the last section for applications that need partial results.

Though incremental /amortized cost computing is a key benefit of the data
abstraction interface, it is important to note that the interface does not pre-
clude batch computing implementations that compute all results. For example,
a different implementation of the Least_Cost_Path_Finding Template may
use Floyd_Warshall’s algorithm and compute all shortest paths, when the op-
eration Stop_Accepting_Edges is called. In other words, the data abstraction
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interface allows the plug-compatible implementation strategies that differ both
in how and when results are computed.

The least cost path problem is an illustrative example that typifies how other
classical algorithms can be packaged as data abstractions. We have discussed
elsewhere, for example, data abstractions for classical algorithms such as sorting,
graph algorithms such as finding a minimum spanning forest of a graph, and
other optimization problems [13/12]. A data abstraction that encapsulates an
ordering algorithm and related data structures, for instance, allows alternative
implementations that order inputs incrementally as they are inserted, or in batch
after all items are inserted, or in an amortized fashion during extraction of
outputs, or using a combination of strategies. We have also documented the
more general impact of both duration and limited storage capacity considerations
on data abstraction interface design for a graph algorithm [TT]. In every case,
the result is a data abstraction that allows independent team development of
modules, ease of use, ease of change, and performance flexibility and incremental
computation.

5 Conclusions

Classical data structure/algorithm modularization continues to dictate software
modularization, despite its disadvantages for software engineering. Even modern
object-based approaches typically encapsulate data structures alone. They treat
data structures such as queues, lists, trees, sets, and maps as objects, but leave
algorithms as procedures/methods that manipulate these objects [1J5].

Typical object-oriented code for Dijkstra’s algorithm for finding a shortest
path, for example, is similar to that in [2], except that it might use encapsulated
graph and set objects instead of unencapsulated graph and set data structures
Bl6l14]. Tt is especially instructive to compare the above data abstraction so-
lution to the shortest path problem with the approach used by Weihe in [14].
Weihe shares our objective of making algorithms more reusable, without sacri-
ficing efficiency. His approach also allows performance “tuning” of a client to
use a particular algorithm (e.g., by stopping computation early), by having in-
terface operations that take smaller steps. However, without a data abstraction
approach to the problem, considerable modifications to client code are essential
to use different algorithms that provide “order of magnitude” performance im-
provements. The traditional modularization problems that preclude independent
software development, originally catalogued by Parnas, remain.

The performance issues discussed in this paper have also brought into focus
the need for “online” algorithms. In the data abstraction view, these algorithms
become natural alternative implementations and provide additional performance
flexibility to clients. However, the interfaces need to be designed carefully to allow
use of such algorithms.

In this paper, we have illustrated how new kinds of data abstractions can
be developed following the principle of information hiding. Unless such data
abstractions are defined and implemented to replace the traditional data struc-
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ture/algorithm modularization, the full potential of the information hiding prin-
ciple for software engineering cannot be realized.
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