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On the Practical Need for Abstraction Relations
to Verify Abstract Data Type Representations
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Abstract —The typical correspondence between a concrete representation and an abstract conceptual value of an abstract data
type (ADT) variable (object) is a many-to-one function. For example, many different pointer aggregates give rise to exactly the same
binary tree. The theoretical possibility that this correspondence generally should be relational has long been recognized. By using a
nontrivial ADT for handling an optimization problem, we show why the need for generalizing from functions to relations arises
naturally in practice. Making this generalization is among the steps essential for enhancing the practical applicability of formal
reasoning methods to industrial-strength software systems.

Index Terms —Abstract data type, abstraction function, abstraction mapping, abstraction relation, data abstraction, formal
specification, greedy algorithm, program verification, nondeterminism, optimization problem, relation.

——————————   ✦   ——————————

1 INTRODUCTION

HE need to separate the specifications and implementa-
tions of abstract data types is widely recognized. To

keep a specification purely conceptual and unbiased with
respect to its many alternative implementations, the be-
havioral explanation should employ an implementation-
neutral abstract model rather than any particular represen-
tation model. The formal verification that a given imple-
mentation does meet this conceptual specification then in-
volves a correspondence mapping, traditionally called an
abstraction function, between the model used in the imple-
mentation (the concrete or representation model) and the
model used in the specification (the abstract or conceptual
model) [10].

For some ADT specifications and implementations, the
natural connection between concrete and abstract models
turns out to be relational, not functional. That is, in some
cases a particular concrete value may represent any of sev-
eral abstract values; see Fig. 1.

The theoretical importance of abstraction relations has
long been recognized. Precluding their expression results in
modular verification systems which are incomplete in the
technical sense that there are implementations that are cor-
rect with respect to their specifications, but which cannot be
proved to be so using only abstraction functions. Moreover,
insisting upon using an abstraction function even when it is
technically possible may increase verification complexity to
the point where it effectively thwarts modular reasoning

about correctness. And it is crucial for tractability and reuse
that the verification of an ADT’s implementation code
should be modular. This means that the proof of correct-
ness should rely only on the given specification of behavior
to be implemented and on given specifications of lower-
level components that are used in the code. The correctness
argument should be independent of the implementations of
the lower-level components and independent of other parts
of the system that use the code being verified [7], [23].

Here, we formally establish the requirement for sup-
porting abstraction relations by exhibiting a nontrivial ADT
for a practical optimization problem, where not just the
value of—but the outright need for—an abstraction relation
naturally arises. The nature of the example argues that for-
mal reasoning systems must be able to generalize to handle
abstraction relations if they are to be applied with confi-
dence to new and nontrivial data abstractions.

Fig. 1. Abstraction function (left) and abstraction relation (right).

1.1 Prior Work on Abstraction Relations
Previous work involving modular verification of ADTs
with model-based specifications leaves the practical role of
abstraction relations unsettled. Leavens notes the value of
“simulation relations” (essentially abstraction relations) in
defining behavioral subtyping [13]. Jones [11, p. 219] and
Schoett [19] independently observe that, technically, ab-
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straction relations might be needed in some cases to verify
implementations of ADTs whose specifications are
“biased,” or “not fully abstract”. Schoett’s work is based on
the assumption that nonfully abstract specifications might
arise in practice. But Jones notes that [11, p. 182], “If differ-
ent abstract values correspond to one concrete value, it is
intuitively obvious that such values could have been
merged in the abstraction. So, in the situation where the
objects used in the specification were abstract enough, the
many-to-one situation would not arise.”

There also has been some work on abstraction relations
in the context of algebraic specifications. For example, to
show the theoretical need for abstraction relations, Nipkow
describes a construction involving algebras of nondetermi-
nistic data types [18]. The relationship between this work
and the practical need for abstraction relations to verify
implementations of model-based specifications is unclear,
however. So while there are subtle differences in the posi-
tions taken by different authors on the topic, the comments
of Liskov and Wing in their corrigendum to an earlier pa-
per [14] probably best characterize the common belief
among software engineers who use formal methods: Ab-
straction relations are occasionally helpful and might even
be technically necessary in some cases; however, [15, p. 4]
“for most practical purposes, abstraction functions are ade-
quate (compared to relations).”

1.2 Contributions
We show that abstraction relations are practically important
for software specification and modular verification. Techni-
cally, abstraction relations are necessary in order to avoid
incompleteness. Practically, they are necessary in order to
deal with new and nontrivial ADTs such as those resulting
from modern software component design techniques.

We use a sample specification based on the technique of
“recasting” algorithms as data abstractions [24]. This soft-
ware component, if it is to lend support to the claim for
practical significance of abstraction relations, must have
three properties:

1) Realism. The specification must not be artificial and
conceived just for showing the need, i.e., it must be of
a sort that is actually likely to arise in practical sys-
tems. Otherwise, the fact that a reasoning system
based solely on abstraction functions cannot handle it
would have little practical import. Our sample speci-
fication captures solutions to a practical optimization
problem and serves as an exemplar for a larger class
of similar components.

2) Quality. The sample specification must be well-
designed. In particular, it must be fully abstract; i.e.,
every two different conceptual values of the abstract
data type being defined must be computationally dis-
tinguishable [11], [12], [25]. Otherwise, the relational
nature of the correspondence mapping could merely
arise from the sloppiness of the conceptual specifica-
tion. Our sample component is a well-designed, fully
abstract specification.

3) Provable resistance to verification with abstraction func-
tions. There must be an actual proof that shows why
no abstraction function can be found to verify that a

correct implementation satisfies the sample specifica-
tion. Our sample component comes with a correct and
practical realization that we prove cannot be verified
using any abstraction function (but which can be veri-
fied using an abstraction relation).

2 INHERENTLY RELATIONAL BEHAVIOR
SPECIFICATIONS

Optimization problems are a general category of problems in
which relational specifications arise naturally. In many such
problems, it is easy to find multiple solutions which satisfy
the constraints yet which all evaluate to the same objective
function value. The specification for software to solve such a
problem is inherently relational because it should allow an
implementation to produce any optimum solution. The natu-
ral correspondence between such implementations and speci-
fications tends to be relational (even though a functional cor-
respondence might exist in some cases).

2.1 A Realistic Software Component Example
As a sample relational problem specification we use the
Spanning_Forest_Machine_Template from our recent
paper on “recasting” algorithms as objects [24]. This speci-
fication exhibits the relational behavior we seek because it
requires that some minimum spanning forest (MSF) of a
given graph must be found; there might be ties and any
best answer is acceptable. For a fully connected graph an
MSF is also a minimum spanning tree (MST). For a general
unconnected graph, an MSF is a union of edges of MSTs for
each of the connected components [4].

The concept for Spanning_Forest_Machine_Template
defines a type Spanning_Forest_Machine (a variable of
which type we henceforth call a “machine” for brevity) and
suitable operations. A typical client repeatedly calls opera-
tion Insert to add the edges of the graph for which an
MSF is to be found (one at a time) into a machine; calls
Change_To_Extraction_Phase to change the machine to
extraction phase, and finally makes multiple calls to Ex-
tract to remove, one at a time, the edges of one of the
(possibly many) MSFs of that graph. Operation Insert re-
quires that the machine be in the insertion phase at the time
of the call, whereas Change_To_Extraction_Phase and
Extract operations require that the machine be in the ex-
traction phase. Is_In_Insertion_Phase tests whether a
machine is in insertion phase. Size returns the number of
MSF edges in the graph and is restricted to be called only
when in the extraction phase (for purposes of simplicity in
this paper).

The concept described informally above, and specified
formally in Fig. 2, is quite different from one providing a sin-
gle procedure that finds an MSF of a graph. Our component
prescribes what computation needs to take place, but not
when. Viewed through its abstract interface, the component
does not reveal to a user when (i.e., in which operation or
operations) an MSF is actually being computed. The design
gives the implementer freedom both in how and in when to
do computations, and the attendant performance flexibility
of various kinds of cost amortization, which is part of the
rationale for the recasting technique illustrated by this inter-
face [24]. This observation reinforces an important principle
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concept  Spanning_Forest_Machine_Template

   context
      global context
         facility  Standard_Boolean_Facility
         facility  Standard_Integer_Facility

      parametric context
         constant  max_vertex: Integer
            restriction  max_vertex > 0

      local  context
         math subtype  EDGE is  (
                 v1: integer
                 v2: integer
                 w: integer
              )
            exemplar  e
            constraint
               1 <= e.v1 <= max_vertex and
               1 <= e.v2 <= max_vertex and
               e.w > 0
         math subtype  GRAPH is finite set of  EDGE
         math operation  IS_MSF (
               msf: GRAPH
               g: GRAPH
              ): boolean
            definition
              (* true iff msf is an MSF of g *)

   interface
      type  Spanning_Forest_Machine is modeled by  (
                 edges: GRAPH
                 insertion_ phase: boolean
              )
         exemplar  m
         constraint  IS_MSF (m.edges, m.edges)
         initialization  ensures
            m = ( empty_set , true )

      operation  Change_To_Insertion_Phase (
               alters      m: Spanning_Forest_Machine
            )
         requires
            not  m.insertion_phase
         ensures
            m = ( empty_set , true )

      operation  Insert (
              alters       m: Spanning_Forest_Machine
              consumes     v1: Integer
              consumes     v2: Integer
              consumes     w: Integer
            )
         requires
            m.insertion_phase and
            1 <= v1 <= max_vertex and
            1 <= v2 <= max_vertex and
            w > 0
         ensures
            IS_MSF (m.edges, #m.edges union  {(#v1, #v2, #w)}) and
            m.insertion_phase

      operation  Change_To_Extraction_Phase (
              alters       m: Spanning_Forest_Machine
           )
         requires
           m.insertion_phase
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         ensures
           m = (#m.edges, false )

      operation  Extract (
              alters         m: Spanning_Forest_Machine
              produces       v1: Integer
              produces       v2: Integer
              produces       w: Integer
           )
         requires
           m.edges /= empty_set and
           not  m.insertion_phase
         ensures
           (v1, v2, w) is in  #m.edges and
           m = (#m.edges - {(v1, v2, w)}, false )

      operation  Size (
              preserves   m: Spanning_Forest_Machine
           ): Integer
         requires
           not  m.insertion_phase
         ensures
           Size = |m.edges|

      operation  Is_In_Insertion_Phase (
              preserves  m: Spanning_Forest_Machine
           ): Boolean
         ensures
           Is_In_Insertion_Phase = m.insertion_phase

end  Spanning_Forest_Machine_Template

Fig. 2. Specification of Spanning_Forest_Machine_Template.

for implementers of model-based specifications: They must
always distinguish abstract models from concrete representa-
tions and must not let the abstract view bias how or when to
manipulate the concrete representation.

2.2 Recasting and Abstraction Relations
We might have used any of a number of recasting examples in
this paper. When optimization algorithms, such as those for
finding MSFs as well as others such as those for finding single-
source shortest paths, are recast as data abstractions, abstraction
relations arise naturally in verifying some of their implementa-
tions. To see this general need for an entire class of situations
similar to the one used in our sample, consider the relational
specification of any graph optimization problem where the out-
put is specified to be any one of many possible optimum values.
Assume that the specification delineates two distinct phases as
in the case of Spanning_Forest_Machine_Template: an in-
sertion phase in which edges of a graph can be inserted and an
extraction phase in which an optimum answer (say, a set of
edges) can be extracted one at a time.

A straightforward model of the ADT defined by the above
specification might be an ordered triple: a boolean phase that
indicates the phase of machine m, an input set of edges that
captures the graph edges inserted into m, and an output set
of edges that defines an optimum solution. Initially, phase
indicates insertion phase, and input and output are empty
sets. The specification of the Insert operation changes only
input as it adds a new edge. The postcondition of Change_To_
Extraction_Phase is relational and dictates merely that out-
put should become an optimum solution for input. The

Extract operation is specified to return one of the re-
maining edges of output. In this specification, then, it
appears that a solution is computed in “batch” fashion
when Change_To_Extraction_Phase is called.

But other implementations might be possible and rea-
sonable. Consider an amortized cost implementation
that accumulates graph edges during the insertion phase
but does no special computation in the Insert or
Change_To_Extraction_Phase operations; it com-
putes and returns each edge of an optimum solution
only incrementally whenever an Extract operation is
called. For example, this is how any “greedy” algorithm
might be naturally amortized. In the extraction phase,
the natural correspondence between the internal repre-
sentation and the abstract model is relational. It is of the
general form:

IS_AN_OPTIMUM_SOLUTION (m.output, S(m.rep))

where S is a function from the specific representation of
m to the mathematical set of edges not yet processed.
While there might exist abstraction functions for some
implementations such as outlined here, since abstraction
relations introduce no significant additional complexity
to verification and may actually simplify the condi-
tions—as argued later in this paper—a practical formal
system should facilitate the use of abstraction relations
in cases like this where they are natural.

The Spanning_Forest_Machine_Template can be
specified in ways other than the one outlined above [22].
But regardless of how the concept is specified, abstrac-
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tion relations arise because the specification needs to capture
and allow only MSFs of the input graphs, whereas some im-
plementations might not compute an MSF when the specifica-
tion suggests. Such situations are typical when the recasting
technique is employed.

3 THE PRACTICAL NEED FOR ABSTRACTION
RELATIONS

Section 2 addressed the realistic nature of our sample compo-
nent. Now we introduce its formal specification; demonstrate
its quality in the sense that this specification is fully abstract
and, therefore, not defective in the sense discussed in Section
1.1 [11]; and finally prove that there are practical and correct
implementations of this component that cannot be verified
using any abstraction function.

3.1 A Formal Specification of
Spanning_Forest_Machine_Template

Fig. 2 is a reproduction of the Spanning_Forest_Machine_
Template specification from [24] as expressed in the model-
based specification language RESOLVE [21].1 The specification
language does not affect the issues discussed in this paper. Any
model-based formal specification language [26] would suffice.

To specify the behavior of the operations described infor-
mally in Section 2, we model a value of type Span-
ning_Forest_Machine as an ordered pair: a weighted graph
edges which is treated as a finite set of positively-weighted
edges, and a boolean flag insertion_phase which is true iff the
machine is in the insertion phase. The specification defines
and uses a mathematical predicate IS_MSF(msf, g) which is
true iff the graph msf is a minimum spanning forest of the
graph g. The details of this definition are elided in Fig. 2 but
they are straightforward.

From the specification it appears that a machine in insertion
phase retains only an MSF for the edges inserted so far—not the
entire set of edges inserted so far—thus giving an external ob-
server the impression that an MSF is kept incrementally all
along. But, as noted earlier, because a client of the component
cannot see the representation, an implementation actually might
keep all the inserted edges until Change_To_Extraction_
Phase is called and then batch-process them to weed out
nonMSF edges; or it might use an amortized cost implementa-
tion.

The specification in Fig. 2 raises an important question:
Does it really allow an implementation to produce during the
extraction phase any MSF of the inserted edges, or does the
specified incremental nature of the Insert operation rule out
some possible MSFs? It turns out that the specification is not
restrictive, a fact that follows directly from a lemma from
graph theory about MSF properties:

"
» fi

$ Ÿ »

G G GRAPH e EDGE

IS MSF G G e

G GRAPH IS MSF G G IS MSF G G e

1 2

1 2

3 3 2 1 3

, : , :
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: ( _ ( , ) _ ( , { })))

1. A summary of RESOLVE specificaiton notations essential for understand-
ing this paper is given in Appendix A. There are a few minor changes in this
specification from the one in [24] to reflect current RESOLVE syntax. The one
substantive change is that the Size operation here has a precondition; it can-
not be called during the insertion phase (but there is no reason to do so in any
case). This change permits a simplified presentation in Section 3 but does not
materially affect any of the issues we raise.

�A proof of the lemma involves standard arguments from
graph theory, where a case analysis based on whether e is
in G1 yields a construction for G3. The proof of correctness
of a batch-style implementation of Spanning_Forest_
Machine_Template (see Appendix B) explains the rele-
vance of this lemma and the conclusion that it demon-
strates why the specification in Fig. 2 is not restrictive.

We conclude this section by noting that the specifica-
tion in Fig. 2 is fully abstract, i.e., it is both “observable”
and “controllable” [25]. To be observable (hence fully
abstract), the specification must make it possible to dis-
tinguish every two abstract model values through the
provided operations [11], [12]. We specify that a machine
keeps only MSF edges at all times; clearly any two dif-
ferent MSFs can be distinguished by a sequence of calls
to Extract operations. To be controllable, the specifica-
tion must make it possible to construct every abstract
model value. This also is permitted because any par-
ticular MSF can be constructed through an appropriate
sequence of calls to Insert with just that MSF’s edges.

3.2 A Class of Implementations that Need
Abstraction Relations

To prove the practical need for abstraction relations, it
remains to show the existence of a valid and practical im-
plementation of this specification that cannot be proved
correct using any abstraction function, but which can be
verified using an abstraction relation. The argument is
organized as follows. First we characterize a set of valid
“nonmonotonic, deterministic, batch-style” implementa-
tions, any of whose members could serve as this unverifi-
able implementation. Next we show why these imple-
mentations cannot be proved correct using any abstraction
function. In the last subsection, we explain how abstrac-
tion relations can be used to verify these implementations
in a modular proof system [7].

In this discussion, it is important to note that the
specificity of the particular class of implementations to
be considered arises only because we seek to show the
resistance to verification using abstraction functions,
with minimal “hand waving.” Other than this there is
nothing special about the class of implementations con-
sidered. Amortized cost implementations, for example,
would have served equally well.

3.2.1 Deterministic Batch-Style Implementations
Let B be the class of valid deterministic batch-style im-
plementations of Spanning_Forest_Machine_Template.
The implementations in B are, first, deterministic: the out-
puts computed by each operation are entirely determined
by its inputs. Two abstract operations (Insert and Ex-
tract) have behavioral specifications that are relational,
but their implementations may have deterministic func-
tional behavior. In order to be valid, an implementation
need only exhibit a behavior pattern that is consistent
with the specified relation; it is not necessary for the im-
plementation actually or even potentially to give differ-
ent results when run multiple times with the same in-
puts. We restrict our attention to deterministic imple-
mentations both because deterministic behavior for an
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implementation is a typical situation in practice, and because
this determinism simplifies the proof that abstraction relations
are required for verification.

The implementations in B also are batch-style. This means
they just store all the inserted graph edges while a machine
is in insertion phase, deferring computation of a minimum
spanning forest to the start of the extraction phase. So ini-
tially, the edge collection representing a machine state is
empty.2 The Insert operation adds a new edge to it. Change_
To_Extraction_Phase computes a minimum spanning for-
est of the edge collection (e.g., using Kruskal’s algorithm) and
stores only the resulting MSF edges back into the edge collec-
tion. The Extract operation simply removes and returns
any edge from the edge collection. The Size operation re-
turns the number of edges in that collection, and
Change_To_Insertion_Phase empties it.

Why are such batch-style implementations correct, i.e., why
should we consider them to behave as specified? This question
about correctness has to do with the timing of events: Is it pos-
sible for a client of Spanning_Forest_Machine_Template to
detect that a batch-style implementation is being used, as op-
posed to an “eager beaver” implementation that seems natural
from the specification? The behavior of any implementation of
any abstraction can be detected only through the “observer”
operations provided in its interface, in this case Extract and
Size. It is clear that the Size operation as described above
produces the specified result because its precondition limits it
to being called during extraction phase, where the representa-
tion used in a batch-style implementation contains precisely
the same edges as in the conceptual view. Extract as de-
scribed above also works as advertised because, before it can
be called, Change_To_Extraction_Phase has computed an
MSF of the graph that was input during the insertion phase.
The apparent discrepancy between the specification and a
batch-style implementation with respect to when computation
of an MSF occurs (seemingly incrementally during the inser-
tion phase according to the specification, but actually in
Change_To_Extraction_Phase in the implementation) sim-
ply cannot be detected by a client from functional behavior
alone. So a batch-style implementation is as good as any other
from this perspective.

3.2.2 Monotonic Deterministic Batch-Style Implementations
A deterministic batch-style implementation I that can be veri-
fied with an abstraction function exhibits an interesting prop-
erty we term monotonicity, denoted Mono(I). Consider the cli-
ent code labeled Find_MSF which takes, as input, a sequence
of edges En = <e1, e2, ..., en> and produces as output a set of
edges Fn = {f1, f2, ..., fk}. (The output order is irrelevant, so we
view the output edges simply as a set, not a sequence.)

Find_MSF:
   if not  Is_ In_Insertion_ Phase (m) then
      Change_To_Insertion_Phase (m)
   end if
   for  i in  1..n loop

      let (v1, v2, w) = e i
      Insert (m, v1, v2, w)
   end loop

2. The representation also includes a flag indicating the machine’s phase,
which is handled in the obvious way and therefore is not discussed further.

   Change_To_Extraction_Phase (m)
   k = Size (m)
   for  i in  1..k loop
      Extract (m, v1, v2, w)

      let f i = (v1, v2, w)
   end loop

Given any I Œ B as the underlying implementation of
Spanning_Forest_Machine_Template, suppose we
run Find_MSF on En = <e1, e2, ..., en>, producing output Fn;
and we run it on En+1 = <e1, e2, ..., en, en+1>, producing out-
put Fn+1. Then we define:

Mono I E IS_ MSF F F en n n n( ) ( ( , { }))1 1¤ " »+ + +1

That is, a deterministic batch-style implementation I is
monotonic iff the output of Find_MSF using I, on any
extension of any original input sequence En, is an MSF of
the same extension of the original sequence’s MSF Fn .

Using this property, we define the set of monotonic
batch-style implementations:

M B= Œ Ÿ{ ( )}I I IMono

3.2.3 Sample Execution of a Nonmonotonic
Deterministic Batch-Style Implementation

In Section 3.3, we will see that deterministic batch-style
implementations which can be verified using abstraction
functions are monotonic, so the implementations in B –
M interest us. The obvious question is whether there are
any such implementations and, if so, whether they have
practical significance. Fig. 3 helps us answer both ques-
tions affirmatively by showing the behavior of
Find_MSF on an example for an implementation I Œ B –
M. In the figure, heavy lines depict possible minimum
spanning forests of graphs; thin lines depict other edges
inserted so far (“redundant” edges); and program states
are identified by letters on the left.

Fig. 3. Sample execution of Find_MSF for an implementation I Œ B
– M.
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Starting with an empty machine m in insertion phase, we
first insert edges (1, 2, 10) and (1, 3, 10), in either order (i.e., E2
= <(1, 2, 10), (1, 3, 10)> or E2 = <(1, 3, 10), (1, 2, 10)>). At this
point, state A, there is only one possible minimum spanning
forest of the edges inserted so far. Calling
Change_To_Extraction_Phase and then Extract until the
machine is empty produces F2 = {(1, 2, 10), (1, 3, 10)}. That is,
Find_MSF on input E2 outputs F2.

Instead of calling Change_To_Extraction_Phase after
state A, suppose we insert edge e3 = (2, 3, 10). If the insertion
phase ends at state B, Find_MSF returns one of three possible
MSFs. Suppose (without loss of generality) it is the leftmost
one in state B, so Find_MSF on input E3 produces F3 = {(1, 2,
10), (1, 3, 10)}. The input sequence so far is not a witness to the
nonmonotonicity of I because F3 is an MSF of F2 » {e3.}.

However, suppose we continue in state B to insert one more
edge e4 = (1, 4, 15). If the insertion phase ends at state C,
Find_MSF again returns one of three possible MSFs. But now
suppose it is the middle one in state C, so Find_MSF on input
E4 produces F4 = {(1, 2, 10), (2, 3, 10), (1, 4, 15)}. This input se-
quence is a witness to the nonmonotonicity of I because F4 is
not an MSF of F3 » {e4}. (In the figure, note that F3 and F4 in-
clude only the heavy edges.)

Are there really valid batch-style implementations of Span-
ning_Forest_Machine_Template that behave as in Fig. 3?
While the answer to this question would be true even if there
were only pathological programs that behave this way, the
notable feature of the present example is that there is a large
and natural class of implementations that serve as exemplars.
For instance, implementations that do not keep the edges in
input order during the insertion phase, and those that use
typical published code for Kruskal’s algorithm [4] and are
based on sorting algorithms which are not necessarily stable
(e.g., quicksort or heapsort), are all examples of actual imple-
mentations in B – M.

3.3 Inadequacy of Abstraction Functions
We wish to prove that if I ŒB (call this proposition p) and I œ
M (proposition q), then I cannot be verified using an abstrac-
tion function (proposition r). Notice that:

( ) ( )

( )
( )

p q r r p q

r p q

p r q

Ÿ fi ∫ ÿ fi ÿ Ÿ
∫ ÿ fi ÿ Ÿ ÿ
∫ Ÿ ÿ fi ÿ

So, we begin by assuming I Œ B (i.e., proposition p) and that I
can be verified using an abstraction function (i.e., ÿr). We
show this implies I Œ M (i.e., ÿq).

Let A be the abstraction function used in the assumed proof
of I. It maps a representation of a Spanning_Forest_
Machine (call it m.rep) to the corresponding conceptual value
m.edges.3 Now observe the detailed operation of Find_MSF by
considering the trajectory of m.rep as Find_MSF executes with
arbitrary input sequence En = <e1, e2, ..., en>, as illustrated in
Fig. 4 (top trajectory). There, m.repi denotes the representation
state immediately after the call that inserts ei into m; m.repi’ the
representation state immediately after the call that extracts fi

3. We ignore the remainder of the correspondence, which trivally maps a flag
indicating the machine’s phase to the other component of the conceptual value,
m.insertion_phase.

from m; and m.rep0 (m.rep0’) the state immediately before
the first Insert (Extract) operation.

Fig. 4. Behavior of Find_MSF for En–1 and En.

After all edges are inserted, there is a call to Change_
To_Extraction_Phase. Because I is a batch-style im-
plementation we expect that m.rep0’ π m.repn. However,
by the assumption that I can be verified we know from
the postcondition of Change_To_Extraction_Phase
that m.edges does not change; thus:

A m A m n( . ) ( . )rep rep¢ =0                            (1a)

By the same assumption, we know that each subse-
quent call to Extract removes one edge from
A(m.rep0’). This means the loop in Find_MSF produces
Fn as its output; so:

F A mn = ¢( . )rep0                               (1b)
The trajectory of m.rep as Find_MSF executes with in-

put sequence En+1 = <e1, e2 , ..., en, en+1> is similar. Because
I is deterministic, the representation state follows pre-
cisely the same trajectory as before through insertion of
edge en. But this time we continue by inserting en+1,
changing the new representation state to m.repn+1
(bottom trajectory). Subsequent representation states
may be different than for the first input sequence, so we
mark them with double primes (“) in place of single
primes (‘). But by the same arguments as above we con-
clude:

A m A m n( . ) ( . )rep rep¢¢ +=0 1                          (2a)

F A mn+ ¢¢=1 0( . )rep                           (2b)

By assumption, the Insert operation also can be
verified, so it works correctly when we insert the edge
en+1 (the diagonal arrow in Fig. 4). From the postcondi-
tion of Insert with appropriate substitutions for that
invocation, we therefore know:

IS MSF A m A m en n n_ ( ( . ), ( . ) { })rep rep+ +»1 1            (3)
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Now substituting in (3) from (1a), (1b) and (2a), (2b), we de-
duce:

IS MSF F F en n n_ ( , { })+ +»1 1                         (4)

But if (4) holds then I Œ M. We conclude, then, that every
valid deterministic batch-style implementation of Span-

ning_Forest_Machine that can be proved using an abstrac-
tion function is monotonic. Yet we know there are valid and
practical deterministic batch-style implementations that are
nonmonotonic. A proof system that relies solely on abstraction
functions, therefore, cannot be used to verify the correctness of
any member of this entire class of correct and practical imple-
mentations of Spanning_Forest_Machine_Template.

3.4 Verification Using Abstraction Relations
The implementations discussed above have a natural and
simple abstraction relation—the abstract value m.edges is any
one of the MSFs of the graph stored in the internal representa-
tion m.rep. This relation, stated below formally using the
predicate IS_MSF, is sufficient to prove the correctness of the
implementations:

IS MSF m edges S m_ ( . , ( . ))rep

where S is a function from the specific representation of ma-
chine m to the mathematical set of edges it contains. Details of
the correctness proof are provided in Appendix B.

The MSF example shows that abstraction relations are es-
sential for proving correctness of some implementations of
nontrivial relational specifications. Such situations should be
expected to arise in industrial-strength software systems. It is
also possible that abstraction relations might be used—even
though with effort they could be avoided in some cases—
where they can simplify verification conditions and can be
easier to understand than abstraction functions.

We note that a relational programming language semantics
ultimately cannot be avoided if specifications are allowed to
be relational—which they must be in order to permit specifi-
cation of behavior such as that desired for Span-

ning_Forest_Machine_Template [7], [17]. Given that a
relational semantics is essential, abstraction relations between
concrete and abstract values do not increase verification com-
plexity. For example, it is much easier to define the relation
IS_MSF than the specific function computed by any given im-
plementation, which depends on intricate algorithmic details
involved in finding a particular MSF and which are inessential
in the proof. Using an abstraction relation considerably simplifies
the verification conditions for each of the Spanning_Forest_
Machine_Template operations because the correspondence
mapping is used separately in the verification of each opera-
tion [6], [7].

4 DISCUSSION

The literature on verifying ADTs includes at least two conjec-
tures that abstraction relations, even if technically required in
some circumstances, are probably unnecessary in practice—at
least where specifications are well-designed. When optimization
problems are specified as procedures (for example, a simple
operation for finding an MSF), this conjecture might be true.
That situation demands relational specification of behavior and
relational semantics, but not necessarily abstraction relations.

The abstraction relation problem arises here because an
optimization problem with possible ties has been captured
not as a single procedure, but by recasting it as an ADT. In
light of the advantages of the recasting approach [24], the
abstraction relation issue assumes additional practical
significance.

Formal systems that handle abstraction relations have
been discussed (e.g., [9]) and some formal methods tool
kits support them (e.g., Cogito [2]). But historically, ab-
straction functions have been so important and they are
so entrenched that the generalization to abstraction rela-
tions tends to be resisted in some quarters. So we now
examine (not necessarily published) attempts we have
seen to avoid abstraction relations, and their ramifica-
tions.

The first approach is to prohibit the specification of
relational behavior of operations. This would be unde-
sirable when, as in this case, the natural intended be-
havior is inherently relational. Refusing to admit this
possibility would leave a class of useful abstractions that
could not be specified or that could not be easily reused
in building other component implementations [7], [11],
[13]. Moreover, specifying functional behavior for the
MSF problem would rule out interesting classes of im-
plementations and would make the specification much
harder to understand—that specification would have to
single out precisely which MSF must be produced, even
in case of ties.

A second approach is to augment m.rep with an adjunct
(auxiliary) variable, say m.rep.abs, which simply mirrors
the abstract value. This would give a trivial abstraction
function: m = m.rep.abs, and it would introduce a repre-
sentation convention (invariant) relating m.rep.abs to the
rest of m.rep (i.e., the original concrete representation).
Notice that the availability of this approach does not re-
fute our proof in Section 3 because the adjunct code re-
quired to update m.rep.abs would be nondeterministic,
and any implementation written like this would not be in
B. Nonetheless it might be argued that any implementa-
tion in B could be transformed in this way in order to
avoid abstraction relations.

Even if valid, this suggestion would have little practi-
cal import because following it would just move the ex-
pression of the required relation from the correspon-
dence to the representation convention. Correctness
proofs would not be simplified at all. But the bigger
problem is that a batch implementation of Span-
ning_Forest_Machine_Template that employed this
device would be incorrect. The adjunct code to update
m.rep.abs in Insert would have to select a particular MSF
prematurely (albeit nondeterministically), and subse-
quent Extract operations could not be proved to return
precisely the edges of the selected MSF.

A third approach involves changing the specifica-
tions. This has been considered both in the ADT frame-
work [11] and in related work [5] on concurrent proc-
esses involving I/O automata and sequences of actions.
Lynch documents the practical utility of “multivalued
possibilities mappings” (the I/O automata counterpart
of abstraction relations) [16]. However, Abadi and Lam-
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port show that specifications can be transformed to avoid
multivalued mappings, under certain conditions; “refinement
mappings” (the counterpart of abstraction functions) always
exist [1]. Abadi and Lamport introduce techniques to avoid
abstraction relations which, when adapted to the ADT frame-
work, require changing the specifications of some of the com-
ponents involved in the proof. Changes to these specifications
are ruled out by the modularity requirements we place on
ADT correctness proofs.

The issue of changing specifications of components does
raise the question of whether the Spanning_Forest_ Ma-
chine_Template specification could be designed differently
to avoid the need for abstraction relations. For example, sup-
pose that the specification is changed to be along the lines dis-
cussed in Section 3.4, i.e., conceptually all the edges are kept
during the insertion phase, and an MSF is chosen only in
Change_To_Extraction_Phase. Then for an implementation
that mirrors this specification temporally, i.e., for a batch-style
one that computes an MSF in Change_To_ Extrac-

tion_Phase, an abstraction function is sufficient for a proof of
correctness. However, the amortized-cost implementation in
[24], and implementations that defer computation of an MSF
to the Extract operation such as the one discussed in Section
2.2, still require an abstraction relation. Furthermore, if one
must change specifications for the sake of avoiding abstraction
relations in correctness proofs—without regard for the impact
on understandability to potential component clients [20],
[26]—then some of the most important practical benefits of
formal specification for software engineering may be lost.

Even if a specification of Spanning_Forest_Machine_
Template is devised that avoids the need for abstraction re-
lations for that example [22], the completeness and naturalness
needs raised in this paper remain. The practical requirement
for abstraction relations to handle specifications that are not
fully abstract will also continue to exist, because software de-
velopers are likely to continue to design and use such con-
cepts. Fully embracing abstraction relations is therefore an
essential practical step in broadening the applicability of for-
mal methods beyond simplistic data abstractions.

APPENDIX A – RESOLVE NOTATION

The specifications in this paper are written in RESOLVE, a
detailed description of which is available elsewhere [21]. Here
we give a brief overview of RESOLVE notation that (along
with a general understanding of issues in specification and
implementation of abstract data types) should be sufficient to
enable a reader to understand the examples in this paper.

A.1 Specification Notation
A RESOLVE concept specifies an “abstract template” (generic
abstract module) by listing its context, which explicitly defines
all coupling to the environment and makes all local declara-
tions used in the rest of the specification; and its exported in-
terface. The global context section identifies fixed coupling of
this module to others in a shared component library. The
parametric context section defines the ways in which a client
can provide context, through parameters, when instantiating
the generic module. The local context section typically intro-
duces special-purpose mathematical notation used in the in-

terface specification. For example, in Fig. 2, IS_MSF is a
mathematical operation (function). Its definition should
say formally that IS_MSF(msf, g) is true iff msf is a mini-
mum spanning forest of g. We have elided this to focus
on the more important features of the specification, but
IS_MSF can be formally defined in a few lines.

The interface section explains the concept’s exported
types and operations. Each program type (family) is ex-
plained by referring to its mathematical model. For ex-
ample, the type Spanning_Forest_Machine in Fig. 2 is
modeled as an ordered pair consisting of a set of EDGEs
and a boolean value. The constraint clause for a mathe-
matical model (e.g., EDGE or the model for Span-
ning_Forest_Machine) says that, of all possible values
of the underlying mathematical space, only those satis-
fying that clause are part of the model space.

Every program type has three implicit operations:

1) The initialize operation is invoked only at the be-
ginning of the scope where its argument is de-
clared. It gives the variable an initial value, which
is specified in the initialization ensures clause of
the type specification.

2) The finalize operation is invoked only at the end of
the scope where its argument is declared, so usually
there is no need to specify its abstract effect—
because there is none. This operation is generally a
hook for the type’s implementer to release resources
(e.g., memory) used by the representation.

3) The swap operation (invoked using the infix :=:
operator) exchanges the values of its two argu-
ments [8].

RESOLVE specifications never include preconditions like
“x has been initialized” because client programs always
initialize and finalize variables at the beginning and end of
scope, respectively. In RESOLVE initialize and finalize
work like C++ constructor and destructor operations, with
appropriate calls generated by the compiler.

The effect of each operation is specified using a re-
quires clause (precondition) and an ensures clause
(postcondition). Each of these is an assertion about the
values of the mathematical models of the operation’s
parameters. A missing clause means the assertion is the
constant true. Mathematically, an operation defines a
partial relation on the space of input and output values
of the parameters: The requires clause tells where the
relation is defined, and the ensures clause defines it
there. Operationally, the contract between operation cli-
ent and implementer is as follows: If a client calls an op-
eration in a state in which the requires clause holds for
the actual parameters, then the implementer guarantees
that the operation will return in a state in which the en-
sures clause holds; but if the requires clause does not
hold when the call occurs, then the implementer makes
no guarantees whatsoever.

In a requires clause a variable stands for its value at
the beginning of a call. In an ensures clause a variable
stands for its value at the end of the call, while a variable
with a prefixed # (pronounced “old”) stands for the
value of that variable at the beginning of the call. Other
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mathematical notations depend on the mathematical theories
involved in the explanation of behavior. The specification of
Spanning_Forest_Machine_Template uses finite sets, tu-
ples, integers, and booleans.

Operation specifications are considerably simplified by us-
ing abstract parameter modes alters, produces, consumes, and
preserves. An alters-mode parameter potentially is changed
by executing the operation; the ensures clause says how. A
produces-mode parameter gets a new value that is defined by
the ensures clause, which may not involve the parameter’s old
value because it is irrelevant to the operation’s effect. A con-
sumes-mode parameter gets a new value that is an initial
value for its type, but its old value is relevant to the opera-
tion’s effect. A preserves-mode parameter suffers no net
change in value between the beginning of the operation and its
return, although its value might be changed temporarily while
the operation is executing.

A.2 Realization Notation
A RESOLVE realization describes a “concrete template”
(generic implementation module). A facility is an instance of a
concept with an associated instance of a realization which im-
plements it, so its declaration involves choosing and fixing the
parameters of both a concept and one of that concept’s reali-
zations. In operation bodies, the representation of a variable
(e.g., m) of an exported type is designated as m.rep so it is clear
that this is the representation model’s value and not the con-
ceptual model’s value.

RESOLVE realization code contains three kinds of asser-
tions. For every loop there is a loop invariant or loop specifi-
cation; and for every type there is a convention assertion that
characterizes the subspace of representation configurations
that might arise (the representation invariant), and a corre-
spondence assertion that explains how to associate such rep-
resentation configurations with conceptual model values (the
abstraction relation).

The convention clause of Fig. 5 uses the built-in RESOLVE
mathematical function elements, which denotes the set of
entries in the string of items which is its argument. So, if str =
<a, b, c, b>, then elements (str) = {a, b, c}.

APPENDIX B – VERIFICATION OF A BATCH-STYLE
IMPLEMENTATION

In this appendix we prove the correctness of the batch-style im-
plementation of Spanning_Forest_Machine_Template shown
in Fig. 5. Its global context section refers to Queue_Template,
which is shown in Fig. 6 for completeness.

A proof of correctness [7] of the realization of Fig. 5 starts
by factoring out two lemmas that arise during the verification
of each individual operation:

C1. For every representation state for which the convention
clause holds, there is a conceptual state to which the corre-
spondence clause relates it.

C2. For every representation state for which the convention
clause holds, and for every conceptual state related to it by
the correspondence clause, the constraint clause (see Fig.
2) holds for the conceptual state.

In this case, to prove C1 we must prove that there is at
least one conceptual Spanning_Forest_Machine value
for every Machine_Rep value that can arise. This follows
from the definition of MSF in graph theory (which we
assume is encoded formally in the predicate IS_MSF);
i.e., every graph has an MSF. To prove C2 we must
prove that any MSF of any graph is its own MSF; and
again this is a simple lemma in graph theory.

The verification is completed by showing that for
each operation body, the code implements the associated
abstract operation specification. For each operation and
for each fixed assignment of values to all the other ar-
guments, we consider four sets of values for each Span-
ning_Forest_Machine argument: initial and final con-
ceptual states, Ci and Cf, respectively; and initial and
final representation states, Ri and Rf, respectively. Ri
contains those representation states for which: 1) the
convention clause holds, 2) there exists a conceptual
state satisfying the correspondence clause and this par-
ticular operation’s abstract precondition, and 3) every
such corresponding conceptual state satisfies this opera-
tion’s precondition. Rf contains the representation states
that can be reached from some representation state in Ri
by correct execution of the operation’s body. Ci and Cf
contain the conceptual states for which the correspon-
dence clause holds for some representation state in Ri
and Rf, respectively.

Informally stated, we have three kinds of proof obli-
gations; i.e., the verification conditions are of these three
forms:

V1. For every r Œ Ri and for every trajectory leading
from r through the operation body, all internal as-
sertions (e.g., loop invariants) hold at the appropri-
ate times, and the preconditions of all called opera-
tions hold at the points they are called. (This obliga-
tion arises from the need to define Rf, since only if a
called operation’s precondition holds may we as-
sume that its effect is what we expect from its speci-
fied postcondition.)

V2. For every r Œ Rf the convention clause holds. (This
obligation arises from the need to define Cf, since
only in this case is it certain that there is some con-
ceptual state to which the correspondence clause
relates every r Œ Rf.)

V3. For every #r Œ Ri, r Œ Rf, and c Œ Cf for which r is
reachable from #r by some correct execution of the
operation body and where the correspondence
clause relates c and r, there exists some #c Œ Ci for
which the correspondence clause relates #c and #r
and where the operation’s abstract postcondition
holds for #c and c. (This obligation arises from the
need to complete the “commutativity diagram”
[7, pp. 303-305].)

There also is a specialized version of such a proof for the
initialize operation, where we may neither assume that
the convention clause holds for the initial representation
state nor, consequently, that there is any initial concep-
tual state corresponding to it.

In this case, it is easy to discharge the obligations of
the forms V1 and V2 for each operation. There is only
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realization body  Batch for  Spanning _Forest _Machine _Template

   context

      global context
         concept  Record3 _Template
         concept  Queue _Template
         concept  Record2 _Template
         facility  Standard _Boolean _Facility

      local context

         type  Edge is record
            v1: Integer
            v2: Integer
            e: Integer
         end record

         facility  Edge _Queue_Facility is  Queue _Template(Edge)
                     realized by  Queue _Realization _1

         operation  Produce _MSF (
                 alters  q: Edge _Queue_Facility.Queue
              )
            ensures
              IS _MSF ( elements  (q), elements  (#q)) and
              |q| = | elements  (q)|
         begin
            -- code that batch computes an arbitrary MSF of q
         end  Produce _MSF

   interface
      type  Spanning _Forest _Machine is represented by record
         graph _edges: Edge _Queue_Facility.Queue
         insertion _flag: Boolean
      end record
         convention
            if not  m. rep .insertion _flag
            then  IS _MSF ( elements  (m. rep .graph _edges),
                          elements  (m. rep .graph _edges))
         correspondence
            IS _MSF (m.edges, elements  (m. rep .graph _edges)) and
            m.insertion _phase = m. rep .insertion _flag

      operation  initialize
         begin
            m. rep .insertion _flag := true
         end initialize

      operation  Change _To_Insertion _Phase (
              alters      m: Spanning _Forest _Machine
            )
         local context
            variables
              new _rep: Spanning _Forest _Machine
         begin
           m. rep  :=: new _rep
           m. rep .insertion _flag := true
         end  Change _To_Insertion _Phase

      operation  Insert (
              alters      m: Spanning _Forest _Machine
              consumes     v1: Integer
              consumes     v2: Integer
              consumes     w: Integer
           )
         begin
            Enqueue (m. rep .graph _edges, (v1, v2, w))
         end  Insert
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      operation  Change _To_Extraction _Phase (
              alters        m: Spanning _Forest _Machine
           )
         begin
           Produce _MSF (m. rep .graph _edges)
           m. rep .insertion _flag := false
         end  Change _To_Extraction _Phase

      operation  Extract (
              alters        m: Spanning _Forest _Machine
              produces       v1: Integer
              produces       v2: Integer
              produces       w: Integer
           )
         begin
           Dequeue (m. rep .graph _edges, (v1, v2, w))
         end  Extract

      operation  Size (
              preserves      m: Spanning _Forest _Machine
           ): Integer
         begin
            return  Length (m. rep .graph _edges)
         end  Size

      operation  Is _In_Insertion_ Phase (
              preserves  m: Spanning_ Forest_ Machine
           ): Boolean
         begin
           return  m. rep .insertion_ flag
         end  Is_ In_Insertion_ Phase

end  Batch

Fig. 5. Realization body for a batch-style implementation.

concept  Queue _Template

   context

      global context
         facility  Standard _Integer _Facility

      parametric context
         type  Item

   interface

      type  Queue is modeled by string of math [Item]
         exemplar  q
         initialization  ensures
            q = empty _s_string

      operation  Enqueue (
              alters      q: Queue
              consumes     x: Item
           )
         ensures
            q = #q * <#x>

      operation  Dequeue (
              alters      q: Queue
              produces     x: Item
           )
         ensures
           #q = <x> * q

      operation  Length (
              preserves    q: Queue
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          ): Integer
        ensures
          Length = |q|

end  Queue _Template

Fig. 6. Specification of Queue_Template.

one called operation (Dequeue in the body of Extract)
that has a nontrivial precondition, and in this case the
precondition of Extract implies that Ri contains only
representation states where m.rep.graph_edges is not
empty. Showing that the convention clause holds at the
end of each operation body is more tedious because it in-
volves m.rep.insertion_flag as well as m.rep.graph_edges,
but the details are straightforward.

All the proof obligations of the form V3 are similarly
trivial, except for the Insert operation. Here, the proof of
the only troublesome part of the applicable verification
condition follows directly from the graph theory lemma
stated in Section 3.

We observe that the verification of this batch imple-
mentation answers the question posed in Section 3.1.1: Can
the edges obtained from a series of Extract operations be
any MSF of the edges that were inserted into a Span-
ning_Forest_Machine? The body of procedure Pro-
duce_MSF in Fig. 5 may produce any MSF of the edges it is
given. The realization in Fig. 5 is correct with no further
assumptions about which MSF that must be. So the specifi-
cation of Spanning_Forest_Machine_Template truly
places no restriction on which MSF of the inserted edges
might be produced.
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