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Copying and Swapping: Influences on the Design
of Reusable Software Components

Douglas E. Harms, Member, IEEE, and Bruce W. Weide, Member, IEEE

Abstract—The only built-in mechanism for data movement in
most modern programming languages is the assignment state-
ment for copying the value of one variable to another. In the
context of reusable software components, this reliance on copying
leads to two classes of difficulties: components whose implementa-
tions are inherently inefficient, and client programs that are hard
to reason about. A powerful substitute for copying as the primary
data movement primitive is a swapping mechanism that exchanges
the values of two variables. Reusable components and client
programs designed with a “swapping style” of programming have
many advantages over designs based on the traditional “copying
. style,” including improved execution efficiency, higher reliability,
and enhanced reusability.

Index Terms-Abstract data type, assignment statement, formal
specification, object-oriented programming, parameter passing,
pointer, reusable software component.

1. INTRODUCTION

NE of the foundations of most modern programming

languages is the ability to make copies of data. Examples
of the implicit use of copying are the ordinary assignment
statement and call-by-value and call-by-value-result parameter
passing. In fact, the “copying style” is so ingrained in our
languages and normal programming style that it is sometimes
difficult even to see it, let alone to avoid it. Consider, for
example, that assignment statements pervade the examples in
computer science textbooks. Each such statement describes

copying.

A. Copying Versus Swapping

What is the copying style? It is designing and programming
under the assumption that copying, especially in the form
of the assignment statement, is a reasonable data movement
primitive for any type of data—not just for built-in types such
as integers, but also for complex user-defined types.

This paper is specifically concerned with the impact of
the copying style of programming on the design of generic
reusable software components. Not surprisingly, published
designs and commercial implementations for such components
(as in [1],[2], [14]) generally are based on the copying style. A
typical example of a reusable component is a generic module
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that provides a type together with operations to manipulate
variables of that type; e.g., a list module. Clients using
this component may want to copy lists (e.g., by assigning
one list variable to another). Moreover, implementers of the
component may want to copy list elements (e.g., by assigning
one variable of the list element type to another). In fact,
because of the way the functional behavior of such a module
is usually designed, such copying may be unavoidable if the
module is to be used effectively and/or implemented correctly.

Here we argue that a simple alternative to copying as a
data movement primitive—swapping (exchanging) the values
of two variables—has potentially significant advantages in the
context of the design of generic reusable software components.
Specifically, we claim that generic module designs based on
a “swapping style” are superior to designs based on copying,
both in terms of execution-time efficiency and with respect to
the likelihood of correctness of client programs and module
implementations. Furthermore, designs based on swapping are
more reusable, in an important sense, than traditional designs.

B. The Case for S'wapping

The case that the swapping style leads to improved reusable
component designs rests on two fundamental arguments. One
is based on a simple analysis of program efficiency. The other
relies on an understanding of the purpose of abstraction in
program design. Specifically:

1) It is important that operations exported by a generic
module should execute efficiently, regardless of what pa-
rameter type is substituted when the reusable component
is instantiated. For example, inserting an integer into
list of integers should be efficient. So should inserting
a stack of integers into a list of stacks of integers.
Traditional designs based on the copying style permit the
former but not the latter. Designs based on the swapping
style are efficient in every case.

2) It is important to be able to reason both formally
and informally—rigorously in either case—about the
behavior of implementations of reusable components
and about the client programs that use them. Consider-
ing variables to stand for abstract values, independent
of their underlying representations, is crucial to this
reasoning ability. Attempts to address the efficiency
issue 1) in the copying style of programming lead to
copying of pointers to representation data structures,
to replace copying the abstract values those structures
represent. This shortcut compromises abstract reasoning.
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The swapping style solves the efficiency problem in
a way that preserves the reasoning power afforded by
abstraction.

The main body of the paper contains specific arguments and
examples to support these positions. Section. Il sketches the
framework for our arguments about abstraction and reasoning,
and defines several key terms. Section III discusses the prob-
lems inherent with the copying style of programming. Section
IV proposes swapping as an alternative to copying as a data
movement primitive and uses it to explain a swap statement
and a function assignment statement, as well as parameter
passing. Section V follows with a simple but illustrative
example of generic reusable component design in the swapping
style and investigates comparative advantages vis a vis the
copying style. Section VI relates the ideas to work of other
researchers, and Section VII summarizes our conclusions and
recommendations.

C. Design Guidelines and Programming Language Issues

The suggestions developed here for how generic reusable
software components should be designed may be considered
guidelines that could be followed in nearly any programming
language. However, because the influence of programming
language features on reusable component design seems so
strong, we also discuss how minor changes to existing al-
gorithmic languages could discourage the copying style and
encourage the swapping style with relatively little impact on
the way most people program. This argument is not the main
theme of the paper, but it suggests that copying is inappropriate
as a built-in and usually implicit operation in programming
languages that otherwise encourage software reuse. A swap
primitive would be a better choice.

II. FRAMEWORK AND TERMINOLOGY

The primary objective of this work is to encourage more
effective design and implementation of reusable software
components. We therefore assume a language that supports
modules which encapsulate and export hidden types along with
procedures and functions to manipulate variables declared to
be of those types. A hidden type is a type whose concrete
representation is hidden from the client program that uses it.
Modules are typically generic in that they have one or more
module parameters that specialize their provided types; these
parameters are usually other hidden types. A client program
that uses a module instantiates it, statically, by providing
actual values for module parameters. As an example, the
StackTemplate module to be discussed in Section III provides
a hidden type called “stack.” It has a type parameter “item”
which is the type of items in a stack. When this module is
instantiated the actual type of the items must be supplied. All
types are known at compile time and type checking is static.
A prototypical language having these properties is Ada [4].

The purpose of the remainder of this section is to lay the
groundwork for treating abstraction in conjunction with types
in this kind of language. The connection between types .and
abstraction is important in order to understand the significance
of swapping.

_
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Fig. 1. Program and mathematical types.

A. Types and Domains

There is hardly a consensus in the computer science lit-
erature about the meaning of the word “type” [3]. We take
a simple but effective approach that distinguishes between
program types and mathematical types, and consequently
between program variables and mathematical variables. The
explanation that follows is left at an intuitive level, because
the technical details [7] are not necessary for understanding
the rest of this paper. But the ideas here are crucial. Later
arguments may seem either cryptic or wrong to a reader who
clings to other definitions, such as the notions of type that are
often used in the object-oriented programming community.

A (program or mathematical) type identifier, or simply type,
is a character string. Each type names a collection of values
called a domain. Domains and the values they contain are
purely abstract and can be considered to exist independently
of the programs that name them with types. On the other hand,
a type is a local name in a separately compilable program unit.

Fig. 1, for example, applies in the context of some par-
ticular program unit. In it, “integer” is a (mathematical) type
that names the domain defined by axioms of integer theory,
while “string of integers” is a (mathematical) type whose
associated domain is defined by axioms of mathematical
string theory—which is a generic theory in the sense that
it is parametrized by another (mathematical) type. Similarly,
the (program) types “int” and “stack of ints” and “queue
of ints” name domains defined by some external program
specifications. The solid thin arrows from type names to
domains in Fig. 1 denote the type-to-domain mappings that
are set up as the result of type declarations in the program
unit being considered.!

A (program or mathematical) variable identifier, or simply
variable, is a character string that stands for some value.
Every variable has a corresponding type, and a variable’s
value is always from the domain of the variable’s type. By
these definitions, types are to domains as variables are to
values. For instance, if “x” is a (mathematical) variable of the
(mathematical) type “integer,” then “x” stands for some value
in the domain defined by integer theory. Conventionally, we
write this as “x : integer.”

n principle, the type “integer” could be associated with a domain other
than what we usually consider to be the mathematical integers. But doing
so would needlessly complicate the discussion and repudiate long-standing
mathematical tradition. Here, we are not concerned with the language used to
define domains nor with how the type-domain association is established.
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Of course, type is a useful concept even without programs.
Program specifiers [23] often say things about variables of
mathematical types by writing assertions in a formal language,
such as the first-order predicate calculus with equality, aug-
mented with function and predicate symbols appropriate for
the theory that defines the type’s domain. For instance:

V x :

says that the result of adding one to any integer is larger
than that integer. (The O-ary function symbol “1” and the
common infix notations for the binary function “+” and the
binary predicate “>” are used for readability.)

What role do types play here? They simply provide a
method for determining whether an assertion is meaningful.
The + is defined to be of the syntactic form “integer x integer
— integer.” Similarly, < is defined as a predicate on a pair of
integers. If the arguments to + and < are of the wrong types,
we do not have to worry about the meaning of the assertion
or whether it is true or false; it is simply nonsense because
it is structurally incorrect. In this view, the whole reason for
having types and not simply domains (sets of values) is to
permit type-checking. If an argument of type T is expected
somewhere that an argument of type T, is used, type-checking
succeeds if T; and T, name the same mathematical domain.

As with their mathematical counterparts, program types are
used so the structure of program statements can be checked
against expected usage. If a procedure expects arguments
of particular types, then it is easy for a compiler to check
statically that it is called appropriately. Once again, type-
checking is by a simple rule: two program types are equivalent
if they name the same program domain.

Without distinguishing types from domains we would be
left with two choices: do without types altogether and try
to define the meanings of structurally erroneous assertions
and programs, or try to define equivalence between domains.
The former approach needlessly complicates the logic in
mathematics and leads to an easily avoidable class of run-
time errors in programs. The latter approach has serious
problems dealing with isomorphic domains. Separating types
from domains simplifies the situation considerably.

integer, x + 1 > x

B. Mathematical Modeling and Abstraction

The above view of types is indeed simple compared to some
treatments [3]. But it is valuable because it sheds considerable
light on a problem that is critical to the remainder of this
paper. We argue that the main source of confusion about
types in programming arises not from programming itself,
but from attempts to reason about programs, either formally
or informally. The natural tendency is to mix up program
and mathematical types or even to suppose they are the
same thing. The use of algebraic specification techniques to
define program types or their domains has contributed to
this confusion by implicitly treating program variables as
mathematical variables, and by treating “axioms” involving
program functions as though they defined a mathematical
theory. Some programming language and reusable component
designers have recognized this problem [12],[14],[16], but
many others have not.

Reasoning about the behavior of programs is simplified
by establishing a mathematical domain as an explicit math-
ematical model of each program domain. This modeling is
expressed as a mapping (shown in the middle of Fig. 1)
that defines a precise correspondence between any program
value and the abstract mathematical value of its model. For
instance, a program variable of type “int” may be modeled
as a mathematical variable of type “integer” and, as noted in
Section III, a program variable of type “stack of ints” may
be modeled as a mathematical variable of type “string of
integers.”

Note that it is essential for different program domains to
be able to have the same mathematical model. Fig. 1 shows
both queues and stacks modeled as mathematical strings.
Because the program types “queue of ints” and “stack of
ints” do not name the same program domain, a compiler
can flag a type mismatch if a programmer attempts to, say,
push an “int” onto a “queue of ints.” But that programmer is
still free to reason about the mathematical models of stacks
and queues as though they were strings, without fear of a
mathematical type mismatch. For example, a correct program
with no type mismatches might have a loop invariant stating
that the concatenation of a variable of type “stack of ints”
and another of type “queue of ints” is equal to a third of type
“stack of ints.” There is no mathematical type mismatch if this
assertion is treated as a relationship among the models of the
program variables, which are all of mathematical type “string
of integers.”

To summarize, we may—indeed we must—reason about the
values of program variables as though they were mathematical
variables. Only a mathematical model can ever be of interest
to a client programmer because a program variable’s concrete
representation is hidden. For example, a variable of type “int”
in a client program must be treated as a symbol that stands
for a mathematical value of type “integer.” It must never be
thought of as a sequence of 32 bits or whatever the concrete
representation of an “i nor as a memory location that

int,”
contains the concrete representation. Such low-level views
would flagrantly violate information hiding and abstraction.

Note also how the use of explicit mathematical modeling
helps illuminate the subtle distinction between information
hiding and abstraction. Information hiding is a technique
whereby concrete representations used within a module' are
kept secret from a client. Most modern languages have con-
structs to support information hiding. Abstraction is a tech-
nique used to explain to a client what must be revealed so
he/she knows how to use a module; i.e., the mathematical
model needed to reason about client programs. Most modern
languages have no constructs to support this sense of abstrac-
tion because they lack the machinery to set up mathematical
models as the basis for explaining program behavior. Section
III postulates a language with formal specification constructs
in order to better explain the benefits of swapping.

C. Programming Language Issues

Many modern languages generally support the framework
outlined above. Invariably, they also carry extra baggage yet
lack certain important features. Therefore, while continuing to
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relate the ideas that follow to existing languages, we hereby
imagine ourselves to be designing for and programming in a
simple hypothetical language with the following features:
* There are no built-in program types. Even such primitive
types as “int” and “char” must be provided by module

instances. In most languages these types are built-in. The -

hypothetical language is similar to Alphard [16] in this
respect.

* There is a program unit in which behavioral specification
of a module is provided separately from the code for
its realizations (implementations). Something like the
notation in [12] or [16] would be suitable for this pur-
pose. Here we present examples in a simple dialect of
RESOLVE, a language we have developed for defining,
building, and incorporating generic reusable software
components [7], [8],[15], [17], [22].

* A single client program may create more than one in-
stance of the same generic module. It may also use
multiple instances of the same abstract module that have
different implementations; e.g., for performance reasons.

The proposed language features and. design decisions dis-

cussed here have been strongly influenced by the overall
goal of creating efficient and verifiable generic modules, the
achievement of which would be an important technical con-
tribution leading to more widespread acceptance of reusable
software components in existing languages. But there is no
reason the ideas cannot be applied to virtually any language
in which reusable software components can be built and used,
including object-oriented languages.

III. ProBLEMS witH COPYING

Consider an assignment statement “x := y,” where x and y
are variables of the same type.? The meaning of this statement
is that, after it it executed, the variables x and y (treated now as
mathematical variables) have the same abstract mathematical
value, and furthermore that the value of y has not changed.
In implementation, this usually means making a copy of the
concrete representation of y and placing it in x. Parameter
passing by value and by value-result also imply copying in
the same sense.

Although the ability to make a copy of a variable’s value is
occasionally necessary, reliance on it to the point that copying
is implicit—and in some languages even essential in order
to program at all—is unwarranted. There are three major
problems with copying:

* Physically copying a large representation data structure is

expensive in execution time.

* Copying a pointer is not tantamount to copying the data
structure it points to; it compromises abstraction and
therefore complicates reasoning about program behavior
and often results in programs that are incorrect and
difficult to debug.

* The copying style leads to designs for generic modules
that inherently have no efficient implementations.

2From now on, we usually do not distinguish explicitly between mathe-
matical and program types and variables when we use the words “type” and
“variable,” as the meanihg is usually clear from the context. We also do not
enclose type identifiers in quotation marks, for the same reason.
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These points are explained in the following subsections.
A. Physically Copying a Large Data Structure Is Expensive

Inefficiency in copying large data structures is especially
important in the kind of programming considered here. Lan-
guages that support generic reusable components providing
hidden types encourage the development of modules that
encapsulate just such complex data structures as the concrete
representations of variables’ values. The time required to make
a physical copy of a data structure is generally linear in the size
of the structure. This means copying simple values, such as
ints or chars, is fast, whereas copying records, arrays, or linked
structures is potentially quite expensive in terms of execution
time.

If a client programmer knows code is copying large data
structures—even though reusable components are not sup-
posed to reveal anything about the representations of hidden
types, including their size—and if there is no alternative, then
the client may be willing to pay the price. But as suggested
above for the cases of assignment statements and some kinds
of parameter passing, copying is often implicit.

B. Copying a Pointer Does Not Replace Copying
the Data Structure

One might be content with this inefficiency in principle,
but the designs of modern programming languages suggest
it is impossible to ignore it in practice. Most languages and
most programmers attempt to sidestep the inefficiency of
copying large data structures by copying pointers to them.
These pointers may appear explicitly through pointer types
or implicitly through call-by-reference parameter passing to
augment or replace call-by-value and/or call-by-value-result.
This approach still relies on copying. The apparent advantage
is that small data items (i.e., pointers) are being copied in place
of the large data structures they point to.

Although copying pointers may reduce the amount of work
that must be done, it also introduces a serious problem: it
compromises abstraction, which complicates reasoning about
the behavior of the client program. Copying a pointer to a
variable’s concrete representation does not produce the same
effect in the abstract mathematical model view as copying
the data structure it points to. The immediate effect of an
assignment is the same as before. Specifically, the assertion
“x = y” is true just after the assignment statement “x := y,”
because the concrete representations of x and y are identical, so
their abstract values must be equal. But the aliasing introduced
by copying the pointer means that a subsequent change to
either x or y will affect the abstract value of the other.

This effect significantly complicates reasoning about the
program’s behavior. Ordinary abstract mathematical variables
are independent. Writing an assertion that does not mention
a variable gives no information about that variable. But the
mathematics of programs with aliasing is quite different. Now,
in reasoning about the effect of any statement, we must account
for the possibility that other variables—ones not mentioned
in the current statement or even the current procedure—may
have their abstract values changed as a side-effect of executing
the statement. Everyday practical difficulties arising from
this include obscure program bugs and wildly unexpected

——
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behavior that most programmers have experienced, much to
their dismay. It has been noted [10] that “the fundamental sin
in the use of pointers is to make them assignable.”

Despite this general condemnation, aliasing itself is not
necessarily all bad. The problem stems from visible aliasing,
where the effects of the alias are observable in the future
behavior of the client program. If aliasing can be carefully
controlled so a client program cannot tell there is aliasing,
the objection does not apply. This point is also made in
[13],[21], among other places. But visible aliasing has long
been viewed as a source of serious difficulties for program-
mers. For instance, Hoare [9] discusses several problems
associated with assignment of pointers and notes that “their
[pointers] introduction into high-level languages has been a
step backward from which we may never recover.” We hope
this conclusion was too pessimistic, but there is little doubt
that careless copying of pointers is a dangerous practice.

There is a further difficulty with assignment statements in
some languages: It is not always clear just what they will do.
For example, consider an Ada package that defines a private
(not limited private) type T. Suppose a client declares two
variables x and y of type T. What is the effect of “x := y”?
Because the representations of x and y are hidden, the client
programmer does not know whether the assignment will copy
the data structure representing y or just a pointer to that data
structure. The former occurs if T is declared as a record,
say, and the latter if T is a pointer to that record. Either
kind of copying causes problems—the first is expensive in
execution time, and the second complicates reasoning about
program correctness. But the client programmer cannot tell
which problem will occur, because the declaration of the
representation is in the private part of the package specification
and is not (supposed to be) seen by the client.

If copying is going to be done at all, then, it must have
a consistent meaning. For the remainder of this paper we
assume the overriding consideration is the ability to reason
about program behavior, especially correctness. What good
is a program that gets the wrong answer quickly? Program
variables must be treated as mathematical variables from the
standpoint of reasoning about programs. This generally rules
out simply copying a pointer to the representation data struc-
ture as a correct implementation of copying a variable’s value.
If a variable’s value is to be copied, the implementation must
respect the rule that the copying cannot introduce aliasing that
would later result in two variables’ abstract values becoming
implicitly linked.

C. Reusable Component Designs Based on Copying
are Inherently Inefficient

There is at least one more problem with copying. Because
copying is second nature, most existing reusable software
components have been designed in such a way that they cannot
possibly be implemented as efficiently as they could have been
with a slightly different design. As an illustration, consider
the following specification for a generic module that provides
a hidden type “stack.” The mathematical model for a stack
is a mathematical string of elements of (the mathematical
model of) the parameter type “item.” The notation is from

mathematical string theory. The symbol “A” denotes the empty
string; “s o x” is the string obtained by extending string s with
item x. The precondition for an operation, if any, is written in a
requires clause, where each variable in the assertion stands for
the abstract mathematical model of the corresponding program
variable at the time the operation is invoked. The postcondition
is written in an ensures clause. In the postcondition a variable
name with a prefixed “#” stands for the abstract mathematical
model of that variable at the time the operation is called, while
the variable name by itself signifies the value of the variable’s
model when the operation completes.

In the specification that follows, the top of the stack is
viewed as the last (rightmost) item in the string that models
it. The specification includes no a priori limit on how large a
stack can get, because this “ideal” stack module illustrates the
points of the paper without the need for the complication of a
size limit. Close inspection of the design reveals that procedure
“push (s, x)” does not change x, and that functions “top (s)”
and “isempty (s)” do not change s.

module StackTemplate (type item)
provides
type stack is modeled by
string (item) = A -- initially
procedure push (s : stack, x : item)
ensures s = #s o x and x = #x
procedure pop (s : stack)
requires s # A

ensures J x : item, #s = s o x
function top (s : stack)
returns x : item

requires s # A
ensures s = #s and
(3 r : string (item),
S =r o X)
function isempty (s :
returns empty :
ensures s = #s and
(empty iff s = A)
end StackTemplate

stack)
bool

Essentially, this module design, without a formal specifi-
cation, appears in many modern data structures texts (e.g.,
[5], [13]), presumably as an example of a good module design.
It is no doubt used in hundreds of programs and has been for
years, and we certainly cannot credit the above authors with
inventing it. The question at hand is simply, what is wrong
with the design?

For one thing, there is no reason there should be any
restrictions on type item and in fact none is specified. It can
be replaced by any type, including int, char, array of chars, or
even stack of ints. But without knowing anything about this
type in the realization of this module, how can “top(s)” be
implemented efficiently? Its specification demands that s not
be changed and that the top value of stack s be returned as the
function’s result. This means the realization code must make
a copy of the top value of s. Because an item may be a type



HARMS AND WEIDE: COPYING AND SWAPPING

whose concrete representation is large and inefficient to copy,
though, the top function may execute very slowly. Consider
as an example the time taken when s is of type stack of lists
of ints.

Another problem with the design stems from the semantics
of “push (s, x).” It effectively places a copy of x onto stack
s, leaving the argument associated with formal parameter x
unchanged. Again, because item may be any type, the copy
operation for type item may be very expensive. This situation
is tolerable if item is restricted to simple types such as int
and char, as it is in virtually all textbooks. But if there are
no restrictions on type item, then the inherent inefficiency de-
signed into the push procedure is problematical—especially if
a more efficient design is possible. The next section introduces
a simple alternative design for the StackTemplate that does
permit efficient implementation of all the stack operations.

To summarize, there are major problems with applying the
copying style to design of generic reusable components. If
copying is necessary at all, copying abstract mathematical
values of hidden types is desirable because this permits easy
reasoning about the behavior of client programs. But if copying
an abstract mathematical value is implemented by copying
the concrete representation of that value, copying can be
costly in execution time (generally linear in the size of the
representation data structure). This performance penalty is
especially insidious if the copying is implicit, as with some
assignment statements or call-by-value parameter passing.
Copying pointers to variables’ concrete representations is
generally the only efficient means of trying to copy abstract
values, but copying pointers usually has the nasty side-effect
of thwarting the reasoning process by subverting abstraction
and by introducing visible aliasing in the client program.

IV. SWAPPING AS AN ALTERNATIVE TO COPYING

This section proposes a mechanism and minor language
changes that would promote a style of programming in which
it is common to swap the values of two variables rather
than copy one to the other. This proposal has two important
characteristics:

e The only primitive for data movement, ie., the only
primitive way to change the value of a variable, is to
swap the values of two variables. There is no primitive
to copy the value of a variable and assign it to another
variable.

¢ The language does not provide the client programmer
with pointers. Implementations of modules providing
hidden types may involve pointers, and the language
implementation itself certainly may use them, but a client
program can be written and understood without knowing
about pointers at all.

Swapping is interesting for many reasons, as discussed
below. The importance of hiding all pointers is that, by
building module implementations as clients of lower-level
modules, entire hierarchies of modules can be constructed,
none of which explicitly mentions pointers. All variables
of all types can be treated in the abstract way outlined
earlier. Of course at some very low level some modules
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will need to be built in another language (or in the “system
programming dialect” of the hypothetical language), because
some types—those primitive to most languages—will have to
be implemented directly on top of the hardware. This low-
level code may of course involve explicit use of pointers and
even copying of pointers. But if client programs are developed
without pointers and without the possibility of visible aliasing,
it is much easier to reason about their correctness [10], [11].
The following subsections discuss these language character-
istics and justify the claim that reusable component design and
programming with the swapping style is a desirable alternative
to design and programming using the traditional copying style.

A. The Swap Primitive

All data movement in the hypothetical language is explained
in terms of a single primitive called swap (illustrated in
Fig. 2), which exchanges the values of two variables of
matching types. If the swap primitive were considered a
generic procedure, it would be specified as:

procedure swap (x : item, y : item)
ensures x = #y and y = #x

Considering swap asa procedure, however, causes a prob-
lem. All data movement should be explained in terms of
swapping, and a procedure call itself causes data movement:
the values of the arguments must be communicated to the
formal parameters at the time of the call, and back again when
the procedure returns. Section IV-C explains parameter passing
in terms of swapping. Swap is therefore considered to be a
built-in operation available for every type, not a procedure.

B. The Swap Statement and the Function Assignment Statement

One way to change a variable’s value in the hypothetical
language is with a swap statement. A swap statement is of the
form “x :=: y” where x and y are variables of matching types.
It simply interchanges the values of x and y. This is a direct
use of the swap primitive.

Although ' the hypothetical language does not permit

variable-to-variable assignment, it does have a function
assignment statement. This statement takes the form “y :=
(- - -),” where y is a variable and f is a function whose return
value is of a matching type. An example from the module in
Section III is “y := top (r)” for y of type item and r of type
stack of item.
" The abstract behavior of a function assignment statement
can be explained to a client as follows, using the above
example. First, the code for top is started. During its execution
there is a local variable x of type item whose value will
be the return value of the function; see the first line of the
specification. The code for top (it does not matter how) makes
x equal to the top item in r. Return from the function causes
x to be swapped with y, the target of the function assignment.
At this point the original value of y—now in local variable
x within function top—is no longer accessible to the client
program. Finally, the code for top terminates and execution
resumes in the client program.
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One use of a function assignment statement achieves the
effect of the usual assignment statement “x := y” in other
languages. A programmer may simply write “x := replica (y)”
where replica has the following specification:

function replica (y: item) returns z : item
ensures y = #y and z = y

There are two differences between this way of copying
a variable’s value and the ordinary assignment statement.
One is that copying using the replica function is explicit;
the client programmer knows there is some execution-time
cost for copying. The other is that copies may be made only
for variables for which there is a replica operation. It is not
necessary to assume that copying is permitted for every type.

C. Parameter Passing

A third and final way to achieve data movement in the hy-
pothetical language is by passing parameters to procedures and
functions. This may cause implicit copying in languages that
use call-by-value or call-by-value-result. Call-by-reference,
while an efficient implementation of parameter passing, must
be explained in terms of pointers or memory addresses. Such
an explanation violates the abstraction needed to hide the
representations of program variables from clients. This section
shows how the effect of the call-by-reference mechanism can
be explained in terms of the swap primitive, thereby preserving
abstraction throughout the language definition.

For the moment, suppose a language that has only pro-
cedures, no functions. All arguments to procedures must be
simple variables because there are no built-in types such as
arrays, for example. Now consider the following operational
description of the effect of a procedure call. First, all the formal
parameters are initialized. Then each argument is swapped
with the corresponding formal parameter. Then the body of
the procedure is executed until it is ready to return. Finally,
each argument is again swapped with the corresponding formal
parameter, and execution continues in the calling program.

We term this behavior call-by-swapping. Obviously, it dif-
fers from call-by-value because it permits arguments to be
changed by the call. It differs from call-by-value-result because
every parameter is passed in constant time regardless of its
type; there is no copying. It differs from call-by-reference
because its explanation does not violate abstraction by talking
about pointers or memory addresses.

Most importantly, call-by-swapping differs from these other
parameter passing mechanisms because it purports to describe
only what parameter passing acts like, not how it is imple-

mented. Indeed, it is not important whether swapping actually
occurs at the time of the call and the return. All that matters
is that the language should implement parameter passing by
some method that behaves as the above description suggests.
For example, under the following conditions the effect of
call-by-swapping is obtained by using call-by-reference as its
implementation:

* No variable may be passed as an argument to any
procedure if that variable is visible inside the procedure
body.

* No two arguments to a procedure call may be the same
variable.

Call-by-reference achieves the desired result under these
conditions, because the formal parameters do not really need
to be initialized and swapped with the arguments at calling
time. The argument values are inaccessible to the called
procedure except through the formal parameters (and the
formals are of course inaccessible to the caller, which is
suspended during the call). Similarly, no swapping is really
necessary upon return. The temporary aliasing introduced with
call-by-reference can cause no difficulty because it is not
detectable by the client. Note that, in order to prevent well-
known kinds of anomalous behavior due to aliasing that can
otherwise result from procedure calls, a language might do
well to enforce the above compile-time restrictions in any case.

It is easy to generalize call-by-swapping to handle functions
and to deal with calls where the arguments are themselves
function invocations [7]. The approach is to use the same
ideas as in the definition of the function assignment statement
described in Section IV-B. The following again assumes this
more general setting.

D. Advantages of the Swap Primitive

The swap primitive has three valuable properties. First,
unlike copying, it is implementable uniformly and executable
in constant time for any type. To a programmer, each variable
has an abstract mathematical value, as depicted in Fig. 2.
But it is possible for a language implementation to represent
each variable with a pointer to a data structure that represents
its abstract value and to keep this pointer invisible to the
programmer. Swapping the abstract mathematical values of
two variables can be implemented simply by exchanging these
two pointers, as shown in Fig. 3. The time required for this
is constant—three MOVE instructions in a typical machine
language. Neither the code to swap nor the time to execute it
is related to the sizes of the data structures that represent the
abstract values. Swapping two stacks requires the same code
and the same amount of time as swapping two ints.

Of course, a compiler need not represent all types using
pointers. The important characteristic of the representation is
that all variables occupy just the amount of storage required
for a pointer. For instance, if pointers are 32 bits in a particular
architecture, then all variables must be represented in 32 bits.
Any program type whose concrete representation uses no more
storage than that required for a pointer can be represented
directly. Others are represented indirectly. The implementation
of swapping is simply to exchange the 32-bit words that
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represent the values, whether those words are pointers to data
structures or whether they can be interpreted directly as the
abstract value representations.

A second advantage of swapping is that it never introduces
aliasing, even though the representations of variables may
involve pointers. Recognizing the potentially harmful effects
of visible aliasing makes this property particularly attractive.

Third, with swapping and the proposed variable represen-
tation it becomes possible to reuse object code for generic
modules; i.e., realizations of generic modules need not be
recompiled for each module instance. For example, consider a
generic module (such as the StackTemplate module discussed
in Section III) where type item is a parameter to the module.
The object code produced by a compiler for a swap involving
two variables of type item within a realization of this module
is independent of the actual type used to instantiate it. This
is because the object code to swap two variables consists
of exchanging two words, and this works regardless of the
type involved. With care, the object code for a module can be
shared among all instances of it that are instantiated even with
different types. The technique is explained more fully in [8].

E. Keeping Pointers Hidden

The hypothetical language does not provide the programmer
with pointers. It is important to realize that the use of pointers
in the discussion of the swap primitive was to describe a
possible language implementation, not a language definition.
This use of pointers is completely hidden from a client
programmer. In fact, the only reason pointers were even
mentioned was to justify the performance claims. The language
can be completely defined without them.

In the absence of pointers, many traditionally difficult
programming bugs are eliminated. But it might also seem
that traditional linked structures, such as linked lists, cannot
be implemented without explicit use of pointers. Fortunately,
this is not the case [10]. For example, [8], [15], [21] provide a
description and formal specification of a module that permits
implementation of a large class of traditional linked structures
without explicit mention of pointers; [11] provides other
examples. Experience has shown that pointers per se are
not necessary for a language to be useful, even when one
of the major uses of the language is to implement and use
complex data structures. With careful use of encapsulation
and modularity, all pointers can be hidden in the language
implementation and in a few low-level reusable modules that
form the basis for all higher-level representations, never to be
seen by a client programmer.

V. IMPrROVED ReusaBLE COMPONENT DESIGN

We now return to the question of generic reusable compo-
nent design. This section uses the StackTemplate example and
a related QueueTemplate to illustrate the swapping style of
design and programming.

A. Stacks Revisited

One problem noted in Section III is that the designs of the
current generation of generic reusable software components
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rely heavily on copying. For example, a stack module is often
designed with separate top and pop operations, which forces
the implementer of the former to make a copy of a value of
type item. This type may be expensive to copy.

Possibly recognizing this, some authors (e.g., [19]) replace
these two operations with a single operation, called “pop (s,x),”
having the following specification:

procedure pop (s : stack, x :
requires s # A
ensures #s = S 0 X

item)

The advantage of this definition from the standpoint of
reusability is that the implementation of pop need not copy
a value of type item. It can simply remove the top value from
s and return it in x. If a client program does not need a copy,
then it does not pay for making one.

While this design is an improvement over the original ver-
sion, it still leaves a problem with the “push (s,x)” operation,
whose specification demands that the implementer place a
copy of x on top of s. This, too, needs to be respecified. We
propose the following:

procedure push (s : stack, x : item)
ensures s = #s o #x and item.init (x)

The meaning of the assertion “item.init (x)” is that x is an
initial value for type item. Notice that in the StackTemplate we
specified that a variable of type stack would initially equal the
empty string. We assume each type has such an initial value
specification. Elsewhere (e.g., [7], [16], [22]) it has been argued
that every type should have an associated initial value and that
a compiler should generate a call to a type-specific initializa-
tion procedure for each variable at the beginning of the block
in which it is declared. Similarly, it should generate a call to
a type-specific finalization procedure at the end of the block
where the variable is active. In the case of the hypothetical
language, the initialization procedure should allocate storage
for the variable’s representation (if it cannot be squeezed into
the single pointer space which is allocated automatically), and
it should initialize that storage to represent an initial value for
the variable’s type. The finalization procedure should reclaim
any dynamically allocated storage. C++ [18] supports such
automatic initialization and finalization, but most languages
do not.
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With the new specification, push can be efficient for any
type item, assuming item initialization is fast. The realization
code moves—it does not copy—the concrete representation
of x onto the top of s (at the concrete level by moving the
pointer to x’s possibly complex data structure). It also sets x
to an initial value for type item and then returns. This process
takes place using only a couple of swap statements. Pointers
to data structures remain hidden even within the realization of
the StackTemplate.
It is important that in many client programs which use
stacks, these new definitions of pop and push will do precisely
what is needed. No copying is normally needed. The whole
point of using a stack is to save some values temporarily so
they can be used later in LIFO order. When a value is placed
on a stack for safe keeping, a copy of it is not needed in the
client program, so there is no point in wasting the time to
make a copy.
But what if some client program does need to get a copy of
the top value of a stack without removing it from the stack? Or
what if it needs to push a value onto a stack, while retaining
a copy of that value for other purposes? This is no problem.
The client simply builds upon (reuses) the new StackTemplate
module along with a replica function for type item, which
would have been needed to implement the original version of
the module in any case:
function top (s : stack) returns x : item
variable top_value : item
pop (s, top_value)
x := item_replica (top_value)
push (s, top_value)

end top

procedure push_a copy (s : stack, x :
variable top value : item
top_value := item_replica (x)
push (s, top_value)

end push_a_copy

item)

There are several advantages to this design from the stand-
point of reusability. First, a client program pays for copying
only if it needs copying. Most clients will not. Second, by
implementing operations having the original specifications as
secondary operations on top of the primary operations pro-
vided by the new basic-functionality StackTemplate module,
no efficiency is lost (up to a small constant for call overhead)
compared to the implementation of the original specification.
Reversing the choices of the primary and secondary operations
would remove this advantage. Third, the implementation of
each secondary operation can be proved correct from its formal
specification and the formal specification of the StackTemplate
operations. This means these operations will work regardless
of the representation of type stack. A different realization
of the StackTemplate can be substituted in"a completely
plug-compatible fashion and the secondary operations will
continue to work correctly. In principle, they need not even
be recompiled, as noted earlier.

‘We conclude that the revised module design, which eschews

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 17, NO. 5, MAY 1991

copying entirely, is “more reusable” than the original design
found throughout the computing literature and in all texts we
know of. This illustrates that, surprisingly, even the simplest
generic components still offer a challenging design task to
the reusable software community. We have used the swapping
style to design dozens of generic reusable components. In
every case our modules exhibit the same advantages over their
classical counterparts as we have demonstrated here for stacks.
The approach that substitutes swapping style for copying style
in operation design is both general and straightforward.

B. Programming in the Swapping Style

The two short pieces of code above for top and push_a_copy
look like what someone might write in the copying style. The
only apparent difference is, for example, “x := top_value” is
replaced by “x := item_replica (top_value).” We have found
such similarity between client programs written in the two
styles to be the general rule.

A couple of new programming idioms are frequently en-
countered though. They are illustrated by the example of
implementing a replica function for a FIFO queue. Suppose
we have a specification for the QueueTemplate, shown below,
which is virtually identical to that of the (revised) StackTem-
plate. The only difference between the LIFO stack and the
FIFO queue is whether items are removed from the same end
of the string to which they were added, or from the other end.

module QueueTemplate (type item)
provides
type queue is modeled by
string (item) = A -- initially
procedure enqueue
(g : queue, X : item)
ensures q = #q o #x
and item.init (x)
procedure dequeue (g :
requires q # A
ensures #q = X o q
function isempty (g :
returns empty :
ensures g = #q
and (empty iff g = A)
end QueueTemplate

queue)

queue)
bool

We recommend as a reusable component design guideline
that if a module providing a type does not provide a replica
function, then it should be possible to copy a variable of that
type by invoking operations the module does provide (i.c., the
primary operations). This guideline may be considered a weak
test of the functional completeness of the primary operations.
For example, to copy the value of queue q1 to queue q2, begin
by swapping q1 with a temporary queue that is initially empty.
Then loop through the temporary queue, doing the following
to each item: dequeue it; copy it; enqueue the original item
in q1 and enqueue its copy in q2. The loop terminates when
the temporary queue is empty, at which time the two copies
of the original q1 are in q1 and q2. The following code uses
this method:



HARMS AND WEIDE: COPYING AND SWAPPING

procedure queue_replica (gl : queue)
returns g2 : queue
variable c : queue, x1 : item, x2 : item
ql :=: ¢
-- let gl’ = gl and let ¢’ =
-- point, before the loop
-- loop invariant: gl = g2 and gl o ¢
--=4qgl’ oc’
while not isempty (c) do
dequeue (c, x1)
X2 :=item replica (xl)
enqueue (gl, x1)
enqueue (g2, x2)
end while
end queue_replica

c at this

There are a few interesting things to note about this code.
First, a local variable always starts out with an initial value
for its type, so initially q2 and c are both empty queues. The
way to force any variable (in this case q1) to an initial value
for its type is to swap it with an unmodified local variable.

Second, at the end of the procedure every local variable
is finalized and the space occupied by its representation is re-
claimed. Recall that upon return from this routine, the value of
g2 will be swapped with the target of the function assignment
statement in which queue_replica is invoked. Therefore q2 will
equal the old value of the target variable at the time q2 is final-
ized. That old value is not “overwritten,” as it is with ordinary
assignment. This means there is no need for garbage collection,
although garbage collection techniques might be applied to
storage reclamation at variable finalization time if desired.

Two new programming idioms are apparent in this code.
One is the use of a temporary variable to hold the values in
the original q1. It starts out as an empty queue, is swapped with
ql, and is again empty at the end of the loop. This property
leads us to call such a variable a catalyst rather than simply a
temporary variable, because it is necessary to make the code
work, but there is no net change in the variable’s value from
the beginning of the code to the end. The analogy to a catalyst
in a chemical reaction is clear.

It is striking how often the “no net change” property of local
variables arises in programs written with software components
designed in the swapping style. (The local variable top_value
also has this property in top and push_a_copy, as do x1 and x2
in queue_replica.) This is important because finalizing catalyst
variables is generally easier and faster than finalizing arbitrary
local variables. An initial value for a type is generally chosen
by the designer to be something whose representation is easy
to construct and therefore, presumably, easy to reclaim.

The other idiom seen here is also typical of processing
structured data values using designs based on swapping.
It consists of swapping the original input structure with a
catalyst variable, dismantling the catalyst item-by-item, doing
something with each item as it is removed (in this case copying
it and inserting the replica into a duplicate structure), and
incrementally rebuilding the original input structure. Both the
original input structure and the catalyst experience no net
change during this process.
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- Except for the heavy use of catalyst variables as temporary
holding tanks for the reasons noted above, and limited but
explicit copying, code written in the swapping style tends to be
virtually identical to code written in the copying style for the
same task. For example, we have implemented Kruskal’s algo-
rithm to find the minimum spanning tree of a graph. The code
is about 20 lines long because it is built on generic reusable
components we call a Serializer Template (which captures the
concept of sorting and selection), an Equivalence Relation
Template (which permits dynamic processing of equivalence
relations), and a Graph Template. Considerable additional
experience—with several hundred undergraduate students and
over a hundred practicing programmers in industry to whom
we have taught the swapping style—suggests that learning to
write code based on swapping is easy. Programmers who are
used to copying variable values with assignment statements
quickly adjust to the new style.

VI. RELATED WORK

Of course, we are not the first to realize the problems inher-
ent to copying as a means of data movement. For example, the
designers of Fortran realized that passing copies of arguments
to subroutines would be inefficient. Their solution was to pass
all parameters by reference, introducing implicit pointers into
the language definition and making reasoning about program
behavior more difficult. Many others (e.g., [6], [9],[10]) have
also noted the problems with aliased pointers.> Yet over the
years programming languages have generally continued to
provide pointers and to make it easy for programmers to alias
them.

Alphard [16] and Ada [4] are noteworthy with respect to
copying. In Alphard, the assignment (i.e., copy) operator is
not a language primitive, but instead must be defined as
a procedure within a form (essentially a generic module).
Pointers are not explicitly provided by the language, and it
is possible to create truly generic modules. However, Alphard
does not offer alternatives to the copying style of design or
coding. For instance, although copying is not a primitive in
Alphard, it is still the only mechanism suggested for data
movement. There is no recommendation for an alternative such
as swapping. Similarly, parameters are passed by value or by
reference. These characteristics suggest that Alphard does not
encourage anything other than traditional component designs
and that the potential inefficiency of copying was not a major
issue to its designers.

Ada addresses some of the problems inherent to copying by
allowing the declaration of limited private types. Variables
declared to be of a type that is limited private cannot be
copied using the built-in assignment primitive. Instead, the
package implementing the type must provide a copy routine if
variables of that type are allowed to be copied. Although this
feature solves some of the most glaring problems associated
with copying, it does not suggest any efficient alternatives.
Published designs of generic packages that provide hidden
types (such as those in [2]) often rely on the built-in assign-

3Hoare’s criticism was the earliest of these. The cited paper is a recent
version of a less accessible 1973 paper.
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ment operator for parameter types and preclude the possibility
of a type parameter that is limited private. For example, it
is not possible to create a stack of stacks of integers using
the design guidelines of [2], because the type provided by the
stack package is limited private, and the item type in a stack
is not allowed to be limited private. It is even suggested that
if a client program needs stacks of stacks, it should declare a
new intermediate type that is a pointer to a stack in order to
achieve this effect.

Language and component designers have realized some
of the problems inherent to copying and to pointers. To
our knowledge, though, none has addressed the problems of
the copying style by completely avoiding implicit copying,
or by providing general-purpose alternatives to copying and
suggesting how they might be used to advantage.

We also are not the first to discover advantages of swapping.
For example, [10] discusses an “exchange assignment” that
is implemented by swapping pointers that are hidden from
the client program. “Pointer rotation” [20] is generalized
swapping. However, previous discussions of swapping (or
rotating) pointers have dealt only with their application to
linked structures such as lists and trees. We know of no
prior discussion of the advantages of swapping to nonlinked
structures, nor has swapping been proposed as a general
alternative to copying. Finally, we are not aware of any other
attempts to use swapping to give a uniform explanation of
all data movement from function assignment to parameter
passing.

VII. CoNcLusIONS

The following suggestions have been found to be valuable
in guiding the design of generic reusable software components:

* Do not assume types that are parameters to generic
modules are primitive and therefore inexpensive to copy.
Allow for the possibility that they may have large data
structures as their concrete representations.

In a reusable component that provides a new type, include
as primary operations those procedures and functions
that are necessary to be able to perform any “interesting
manipulations” with variables of that type. Among the
manipulations a client clearly might wish to perform are
checking the requires clause of every primary operation
and copying a value of the provided type (assuming the
ability to copy the item type).

Subject to the previous guideline, include as primary
operations only those procedures and functions whose
efficient implementation depends on having direct access
to the representation of the provided type. All other
operations can and should be implemented as secondary
operations using calls to the primary operations.

Some specific corollaries of these general suggestions in-
clude:

* When designing a primary operation to insert an item into
a composite structure (e.g., push for a stack, enqueue for
a queue, insert for a list, store for an array, etc.), define
its behavior to permit an implementation that can swap
it in. Do not force the component implementer to insert

a copy of the item, because that should be a secondary
operation for a well-designed reusable component.

* When designing a primary operation to inspect or remove
an element from a composite structure (e.g., top or pop
for a stack, dequeue for a queue, remove or get_value
for a list, fetch for an array, etc.), define its behavior to
permit an implementation that can swap it out. Do not
force the component implementer to return a copy of the
element, because that operation should be secondary.

It is interesting to note what happens when these guidelines
are applied to design of an array abstraction. Both corol-
laries above suggest the same primary operation for storing
a value into an array and fetching a value from it. This
single procedure—given an array, an index into it, and a
value of the item type—swaps that value with the value
currently stored in the specified position of the array. The
usual store and fetch operations are secondary operations that
are implemented using this “swap_indexed_item” procedure
and a copy operation for the item type.

Generic reusable software components developed using
the swapping style have many potential advantages over
components developed using the traditional copying style.
Algorithms are potentially more efficient when copying (which
is often costly) is avoided. With swapping it is easy to design
unconstrained generic components in which no restrictions
are placed upon the type of items in a complex structure. It
becomes easy to reuse the generic module object code among
all instances of a module, thereby reducing both the amount
of object code for a complete system and the time necessary
for recompilation. Finally, keeping pointers hidden from a
client programmer means programs become potentially more
reliable, because reasoning about their behavior is easier and
because programs can no longer contain bugs resulting from
visible aliasing and dangling references.
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