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Abstract

Low-overhead checkpointing and rollback is a popular
technique for fault recovery. While different approaches are
possible, hardware-supported checkpointing and rollbackat
the cache level is especially interesting. The main reason is
that the microarchitecture required can be easily integrated
and used effectively in modern processor microarchitec-
tures. Unfortunately, proposed cache-level checkpointing
schemes provide little implementation information and do
not support a large rollback window all the time.

In this paper, we outline the design of SWICH, a new
cache-level checkpointing scheme that, while being effi-
ciently implemented in modern processors, supports a large
rollback windowcontinuously. This is accomplished by re-
lying on two live checkpoints at all times to form asliding
rollback window. We build an FPGA-based prototype of
SWICH. The evaluation of the prototype shows that a sim-
ple processor can support the sliding window with little ad-
ditional logic and memory hardware. Moreover, for appli-
cations without frequent I/O or system calls, the technique
sustains large minimum and average rollback windows.

Keywords: transient faults, low-overhead checkpoint-
ing, hardware prototype.

1. Introduction

Backward recovery through checkpointing and rollback
is a popular approach to recover from transient and intermit-
tent faults [12]. This approach is especially attractive when
implemented with very low overhead, typically thanks to
dedicated hardware support.

There are multiple proposals for low-overhead check-
pointing and rollback schemes (e.g., [13, 7, 3, 11, 14, 9]).
These proposals differ in many ways, including what level
of the memory hierarchy is checkpointed and how the
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checkpoint is organized relative to the active data. They
correspond to different trade-offs between tolerable fault
detection latency, execution and space overhead, recovery
latency, type of faults supported, and hardware required.

An especially interesting design point is schemes that
checkpoint at the cache level [3, 7]. In these schemes, the
data in the cache is regularly saved in a checkpoint, which
can later be used for fault recovery. What makes cache-level
schemes interesting is that the hardware required can be in-
tegrated relatively inexpensively in modern processor mi-
croarchitectures and used efficiently. Moreover, technology
trends are allowing more on-chip integration, which in turn
enables larger caches. The result is an increase in the fault
detection latency of cache-level checkpointing schemes.

Unfortunately, proposed cache-level checkpointing
schemes such as CARER [7] and Sequoia [3] do not
support a large rollback window all the time. The rollback
window at a given time is the set of instructions that can be
“undone” if a fault is detected by returning to a previous
checkpoint. Specifically, in these schemes, immediately
after a checkpoint is taken, the window of code that can be
rolled back is typically reduced to nil.

In this paper, we describe the microarchitecture of a new
cache-level checkpointing scheme that, while being effi-
ciently and inexpensively implemented in modern proces-
sors, supports a large rollback windowat all times. This is
accomplished by keeping in the cache data from two con-
secutive checkpoints (or epochs) at all times. When the
older epoch needs to commit to make room for data in the
cache, a new epoch starts. With this approach, the rollback
window typically decreases by half when one epoch com-
mits, rather than to zero, and then slowly increases until the
next commit. We refer to this approach as a sliding rollback
window, and to our scheme asSWICH, for Sliding Window
Cache-Level Checkpointing.

Moreover, we implement a prototype of SWICH using
Field-Programmable Gate Arrays (FPGAs). The evaluation
of the prototype shows that supporting cache-level check-
pointing with sliding window is promising. Specifically,
this technique adds little additional logic and memory hard-
ware to a simple processor. Moreover, for applications
without frequent I/O or system calls, the technique sustains
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a large minimum rollback window.
Overall, this paper makes three contributions. First, we

present a taxonomy and trade-off analysis of low-overhead
checkpointing schemes. Secondly, we present the microar-
chitecture of SWICH. Finally, we implement a SWICH pro-
totype using FPGAs and evaluate it.

The paper is organized as follows: Section 2 presents
a taxonomy and trade-off analysis of low-overhead check-
pointing schemes; Section 3 presents the microarchitecture
of SWICH; Section 4 discusses the prototype; Section 5
evaluates the prototype; and Section 6 concludes.

2 Low-Overhead Checkpointing Schemes

2.1 A Taxonomy

To help in our presentation of SWICH, we find it use-
ful to classify hardware-based checkpointing and rollback
schemes into a taxonomy with three axes: (i) the scope of
the sphere of Backward Error Recovery (BER), (ii) the rela-
tive location of the checkpoint and active data, and (iii) how
the checkpoint is separated from the active data. Active data
are the most current versions of the data. Figure 1 shows the
taxonomy.
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Figure 1. A taxonomy of hardware-based
checkpointing and rollback schemes.

The sphere of BER is the part of the system that is check-
pointed and, in case of a fault, can be rolled back to a previ-
ous state. Any datum that propagates outside of the sphere
is assumed to be correct, since there is no mechanism to roll
it back. Typically, the sphere of BER encloses up to a given
level of the memory hierarchy. Consequently, we define 3
design points, namely sphere that encloses the registers, the
caches, and the main memory (Figure 2).
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Figure 2. Design points based on the scope
of the sphere of Backward Error Recovery
(BER).

The second axis compares the level of the memory hier-
archy that is checkpointed (M, whereM is register, cache,
or memory), and the level where the checkpoint is stored.
There are two design points [4]. The first one isdual, where
both levels are the same. This includes the case when the
checkpoint is stored in some special hardware structure that
is closely attached toM. The second design isleveled,
where the checkpoint is saved in a lower level thanM (e.g.,
the checkpoint of a cache is saved in memory).

The third axis considers how the checkpoint is separated
from the active data. It has two design points [11]. Infull
separation, the checkpoint is completely separated from the
active data. Inpartial separation, the checkpoint and the ac-
tive data are one and the same, except for the data that have
been modified since the last checkpoint. For these data, we
need to keep both the old value at the time of the last check-
point and the most current value. Partial separation is fur-
ther categorized into buffering, renaming, and logging. In
buffering, any modification to locationL is accumulated in
a special buffer; at the next checkpoint, the modification is
applied toL. In renaming, a modification toL does not
overwrite the old value but is written to a different place,
and the mapping ofL is updated to point to this new place;
at the next checkpoint, the new mapping ofL is committed.
In logging, a modification toL occurs in place, but the old
value is copied elsewhere; at the next checkpoint, the old
value is discarded.

2.2 Examples

Table 1 lists the characteristics of some of the existing
hardware-based checkpointing schemes and where they fit
in our taxonomy. We describe them next.

2.2.1 Register-Level Checkpointing

The IBM’s S/390 G5 processor [13] has a redundant copy of
the register file calledR-unit (dual; full separation), which
enables rolling back by one instruction. In addition, it has
duplicate lock-stepping instruction and execution units,and
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Scheme Design Point Hardware Support Tolerable Fault Recovery Fault-free
in the Taxonomy Detection Latency Latency Execution Overhead

IBM G5 Register/Dual/Full R-unit file, lock-stepping units Pipeline depth ∼ 1000 cycles Negligible

OOO Processor Register/Dual/Renaming RAT copy/restore on branch speculation Pipeline depth 10–100 cycles Negligible

CARER Cache/Dual/Logging Extra cache line state ∼ cache fill time Cache invalidation Not available

Sequoia Cache/Leveled/Full Cache flush ∼ cache fill time Cache invalidation Not available

SWICH Cache/Dual/Logging Extra cache line states ∼ cache fill time Cache invalidation < 1%

ReVive Memory/Dual/Logging Memory logging, flush cache at checkpoint ∼ 100 msec 0.1–1 sec ∼ 5%

SafetyNet Memory/Dual/Logging Cache/memory logging 0.1–1 msec Not available ∼ 1%

COMA Memory/Dual/Renaming Mirroring by cache coherence protocol 2–200 msec Not available 5–35%

Table 1. Characteristics of some of the existing hardware-b ased checkpointing and rollback schemes.

can detect errors by comparing the signals from these units.
Fujitsu’s SPARC64 processor [2] leverages a mechanism

that is present in most out-of-order processors: to handle
branch misspeculation, processors can discard the uncom-
mitted state in the pipeline and resume execution from an
older instruction. Register writes update renamed register
locations (dual; partial separation by renaming). For this
mechanism to provide recovery, faults must be detected be-
fore the affected instruction commits. In SPARC64, about
80% of the latches are protected by parity and the execu-
tion units have a residue check mechanism — for instance,
integer multiplication is checked usingmod3(A × B) =
mod3(mod3(A) × mod3(B)).

2.2.2 Cache-Level Checkpointing

CARER [7] checkpoints the cache by writing back dirty
lines to memory (leveled; full separation). An optimized
protocol introduces a new cache line state calledunchange-
able. In this case, at a checkpoint, dirty lines are not written
back; they are simply write-protected and marked as un-
changeable. Execution continues and these lines are writ-
ten back to memory lazily when they need to be updated
or space is needed (dual; partial separation by logging).
Note that, for this optimization, the cache needs some FER
(Forward Error Recovery) protection such as ECC, since the
unchangeable lines in the cache are part of a checkpoint.

Sequoia [3] flushes all dirty cache lines to the memory
when the cache overflows or an I/O operation is initiated.
Thus, the memory contains the checkpointed state (leveled;
full separation).

Our proposed mechanism (SWICH, which is described in
Section 3), is similar to CARER in that it can hold check-
pointed data in the cache (dual; partial separation by log-
ging). Unlike CARER, SWICH holds two checkpoints si-
multaneously in the cache. This allows it to provide alarger
rollback window during execution.

2.2.3 Memory-Level Checkpointing

ReVive [11] flushes dirty lines in the cache to memory at
checkpoints. From then on and until the next checkpoint, it
uses a special directory controller to log memory updates in
the memory (dual; partial separation by logging).

In SafetyNet [14], updates to memory (and caches) are
logged in special checkpoint log buffers. Therefore, mem-
ory checkpointing is categorized asdual; partial separation
by logging.

Morin et al. [9] modified the cache coherence protocol
of COMA (Cache Only Memory Architecture) machines.
The new protocol ensures that at any time, every memory
line has exactly two copies of data from the last checkpoint
in two distinct nodes so that the memory can be recovered
from one node failure (dual; partial separation by renam-
ing).

2.3 Trade-offs

The different design points in our taxonomy of Figure 1
correspond to different trade-offs in fault detection latency,
execution overhead, recovery latency, space overhead, type
of faults supported, and hardware required. Figure 3 illus-
trates the trade-offs.

Consider the maximum tolerable fault detection latency.
As we move from register to cache and to memory-level
checkpointing, the tolerable fault detection latency of the
schemes increases. This is because the size of the corre-
sponding memory hierarchy level increases. Consequently,
a faulty datum takes longer to propagate outside the sphere
of BER.

The fault-free execution overhead has an interesting
shape. In register-level checkpointing, the overhead is neg-
ligible because only a few hundred bytes or less are copied
(e.g., a few registers or the RAT), and they are copied
nearby, very efficiently and in hardware. In all the other
schemes, a checkpoint has significant overhead, since larger
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Figure 3. Trade-offs in the different design points of our ta xonomy.

chunks of data are copied over longer distances. The over-
head of an individual checkpoint tends to increase as we
move from cache to memory-level checkpointing. How-
ever, designers tune the checkpointing frequency of the dif-
ferent designs to keep the overall execution time overhead
tolerable — as an example, the figure shows 5%.

Those designs where individual checkpoints are rela-
tively more expensive take checkpoints less frequently. Asa
result, both their recovery latency and their space overhead
increase (next two triangles). This occurs as we move from
cache to memory-level checkpoint. Note that it also occurs
as we move from dual to leveled systems. This is because
individual checkpoints in leveled systems involve moving
data between levels and, therefore, are more expensive. We
show this effect with the dotted triangle. A similar effect
also occurs as we move from partial- to full-separation de-
signs. In the latter case, there is more data copying.

Finally, as we move from register to cache and to
memory-level checkpointing, the number of recoverable
faults increases. The reason is two-fold. First, more faults
of a given type are supported, thanks to the longer detec-
tion latencies tolerated. Secondly, more types of faults are
supported (e.g., faults that occur in the new level of the hi-
erarchy). However, additional hardware support is required
to support these new faults. Such hardware support is more
expensive because it is more spread in the machine.

3 SWICH: Sliding-Window Cache-Level
Checkpointing

3.1 Motivation

The previous section showed that the set of trade-offs
made by the different schemes is quite different. In this pa-

per, we focus on cache-level checkpointing schemes. These
schemes have several positive and negative features.

On the positive side, the hardware of cache-level check-
pointing schemes can be integrated relatively inexpensively
into modern processor microarchitectures, and can be effi-
ciently used by them. Moreover, technology trends favor
more on-chip integration, which enables larger caches. The
result is an increase in the fault detection latency of cache-
level checkpointing schemes.

Specifically, the main hardware required is new cache
line states (Table 1), to mark lines that are related to
the checkpoint. The cache replacement algorithm may
also need modification to encourage these lines to remain
cached. These schemes also need to change the state of
groups of cache lines at commit and rollback points. This
can be supported by walking the cache tags to change each
concerned tag individually, or by adding hardware signals
that modify all the concerned tags in one shot. Finally, these
schemes also need to save registers efficiently at a check-
point and restore them at a rollback — similarly to the way
processors handle branch speculation.

On the negative side, it is difficult to control the
checkpointing frequency in cache-level checkpointing
schemes [8]. The reason is that the displacement of a dirty
cache line triggers a checkpoint. Such a displacement is
highly application and cache-organization dependent. This
fact makes the performance of a system with a cache-level
checkpointing scheme relatively unpredictable.

Another problem of existing implementations of cache-
level checkpointing [3, 7] is that the length of the code that
they can roll back (theRollback Window) is at times very
small. Specifically, suppose that a fault occurs immediately
before a checkpoint, and is only detected after the check-
point has completed — and overwritten the data before the
checkpoint. At this point, the amount of code that can be
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rolled back is very small, or even zero. The evolution of
the rollback window length in this case is illustrated in Fig-
ure 4-(a). We can see that, right after each checkpoint, the
window is reduced to nil.

3.2 Basic Idea in SWICH

To address the last shortcoming of cache-based check-
pointing in an inexpensive manner, we propose SWICH.
The novelty of SWICH resides in that it provides aSliding
rollback window, increasing the chances that the rollback
window always has a significant minimum length.

The basic idea is to always keep in the cache the state
generated by two uncommitted checkpoint intervals, which
we call Speculative Epochs. Each epoch lasts as long as
it takes to generate a dirty-data footprint of about half the
cache size. When the cache is getting full of speculative
data, the older epoch is committed and a newer one starts.
With this approach, the evolution of the rollback window
length is illustrated in Figure 4-(b).

When rollback is required, the two speculative epochs
are rolled back. In the worst case of rollback window size
(when rollback is required immediately after a checkpoint),
the system can roll back at least one speculative epoch.
Compared to SWICH, previous schemes have a nil rollback
window in the worst case.

In the following, we overview the mechanisms used. In
our discussion, we are implicitly referring to actions taken
in the L2 cache. In Section 3.5, we include the L1 cache in
the design.

3.3 Checkpoint, Commit, and Rollback

We extend each line in the cache with twoEpoch bits
E1E0. If the line contains non-speculative (i.e., committed)
data,E1E0 are 00; if it contains data generated by one of
the two active speculative epochs,E1E0 are 01 or 10. Note
that only dirty lines (those with the Dirty bit set) can have
E1E0 different than 00.

A checkpoint consists of three steps: committing the
older speculative epoch, saving the current register file and
processor state, and starting a new speculative epoch with
the sameE1E0 identifier as the one just committed.

Committing a speculative epoch involves discarding its
saved register file and processor state, and clearing the
Epoch bits of all the cache lines whoseE1E0 bits are equal
to the epoch’s identifier. Clearing such bits is preferably
done in one shot, with a hardware signal connected to all
the tags that takes no more than a handful of cycles to actu-
ate.

On a fault, the two speculative epochs are rolled back.
This involves restoring the older of the two saved regis-
ter files and processor state, invalidating all the cache lines

whoseE1E0 bits are not 00, and clearing all theE1E0 bits.
The operations on theE1E0 bits can be done with a one-
shot hardware signal. However, since rollback is expected
to be infrequent, they can also be done with slower hard-
ware that walks the cache tags and individually sets the bits
of the relevant tags. For a write-through L1 cache (Sec-
tion 3.5), it is simpler to invalidate the whole cache.

3.4 Speculative Line Management

SWICH manages the speculative versions of lines,
namely those belonging to the speculative epochs, follow-
ing two invariants. First, only writes can create speculative
versions of lines. Secondly, the cache can only contain a
single version of a given line. Such a version can be non-
speculative or speculative with a givenE1E0 identifier. In
the latter case, the line is necessarily dirty and cannot be
displaced from the cache.

Following the first invariant, a processor read simply re-
turns the data currently in the cache and does not change the
E1E0 identifier of its line. If the read misses in the cache,
the line is brought from memory andE1E0 are set to 00.

The second invariant determines the actions on a write.
There are four cases. First, if the write misses, the line is
brought from memory, it is updated in the cache, and its
E1E0 bits are set to the epoch identifier. Secondly, if the
write hits on a non-speculative line in the cache, the line
is first written back to memory (if dirty), then it is updated
in the cache, and finally itsE1E0 bits are set to the epoch
identifier. In these two cases, a count of the number of lines
belonging to this epoch (SpecCnt) is incremented. Thirdly,
if the write hits on a speculative line of the same epoch,
the update proceeds normally. Finally, if the write hits on
a speculative line of the other epoch (say, epochi-1), then
epochi-1 is committed, and the write initiates a new epoch
i+1. The line is written back to memory, then updated in
the cache, and finally itsE1E0 bits are set to the new epoch
identifier.

When theSpecCnt count of a given epoch (say, epoch
i) reaches the equivalent of half the cache size, epochi-1 is
committed, and epochi+1 is started.

Recall that speculative lines cannot be displaced from
the cache. Consequently, if space is needed in a cache set,
the algorithm first chooses a non-speculative line as victim.
If all lines in the set are speculative, SWICH commits the
older speculative epoch (say, epochi-1), and starts a new
epoch (epochi+1). Then, one of the just committed lines is
chosen as victim for displacement.

There is a fourth condition that leads to an epoch com-
mit. It occurs when the current epoch (say epochi) is about
to use all the lines of a given cache set. If we allow it to
do it, the sliding window becomes vulnerable: if the epoch
later needs an additional line in the same set, we would have
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to commiti (andi-1), decreasing the sliding window to size
zero. To avoid this, when an epoch is about to use all the
lines in a set, we first commit the previous epoch (i-1), and
then start a new epoch with the access that needs a new line.

Finally, in the current design, when the program per-
forms I/O or issues a system call that has side-effects be-
yond generating cached state, the two speculative epochs
are committed. At that point, the size of the sliding window
is reduced to zero.

3.5 Two-Level Cache Hierarchies

In a two-level cache hierarchy, the algorithm described
is implemented in the L2 cache. It can be shown that the L1
can use a simpler algorithm and does not need theE1E0 bits
per line. For example, consider a write-through no allocate
L1. On a read, the L1 provides the data that it has or that
it obtains from L2. On a write hit, the L1 is updated and
both the update and epoch bits are propagated to L2. On
a commit, no action is taken, while in the rare case of a
rollback, the whole L1 is invalidated.

3.6 Multiprocessor Issues

The SWICH improvement is compatible with exist-
ing techniques to support cache-level checkpointing in a
shared-memory multiprocessor (e.g. [1, 15]). For exam-
ple, assume that we use Wuet al.’s approach [15]. In this
case, when a cache needs to supply a speculative dirty line
to another cache, the source cache must commit the epoch
that owns the line, to ensure that the line’s data is never
rolled back to a previous value. The additional advantage
of SWICH is that the source cache only needs to commit a
single speculative epoch, if the line provided belonged to its
older speculative epoch. In this case, the rollback window
length in the source cache is not reduced to nil. A similar
operation occurs when a cache receives an invalidation for

a speculative dirty line. The epoch is committed, the line is
provided, and the cache is invalidated. Invalidations to all
other types of lines proceed as usual. A similar discussion
can be presented for other existing techniques for shared-
memory multiprocessor checkpointing.

4 SWICH Prototype

We implemented a hardware prototype of SWICH using
Field-Programmable Gate Arrays (FPGAs). As the base for
our implementation, we used Leon2 [6], a 32-bit processor
core compliant with the SPARC V8 architecture. Leon2 is
in synthesizable VHDL format. It has an in-order, single-
issue, five stage pipeline. Most instructions take 5 cycles to
complete if no stalls occur. The processor has a windowed
register file. The instruction cache is 4 Kbytes. The data
cache size, associativity and line size are configurable. In
our experiments, we set the line size to 32 bytes, the asso-
ciativity to 8, and vary the cache size. Since the processor
initially had a write-through data cache, we implemented a
write-back data cache controller.

We extended the processor in two major ways, namely
with (i) cache support for buffering speculative data and roll
back, and (ii) register support for checkpointing and roll-
back. We now describe both extensions in some detail.

4.1 Data Cache Extensions

While the prototype implements most of the design of
Section 3, there are a few differences. First, the prototype
has a single level of data cache. Secondly, for simplicity,
we only allow a speculative epoch to own at most half of
the lines in any cache set.

Thirdly, epoch commit and roll back is not performed
using a one-shot hardware signal. Instead, we designed a
hardware state machine that walks the cache tags perform-
ing the operations on the relevant cache lines. The reason
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for this design is that we implement the cache with the syn-
chronous RAM blocks present in the Xilinx Virtex II family
of FPGAs. Such memory structures only have the ordinary
address and data inputs. They cannot be easily modified to
incorporate additional control signals, such as those needed
to support one-shot commit and rollback signals.

More specifically, we extended the cache controller with
a Cache Walk State Machine (CWSM) that traverses the
cache tags and clears the corresponding epoch bits (in a
commit) and valid bits (in a rollback). The CWSM is ac-
tivated when a commit or rollback signal is received. At
that point, the pipeline is stalled and the CWSM walks the
cache tags. The CWSM has three states (Figure 5-(a)): Idle,
Walk and Restore. In Idle, the CWSM is inactive. Walk is
its main working state. In this state, the CWSM can oper-
ate on one or both of the speculative epochs. The traversal
takes one cycle for each line in the cache. The Restore state
restores the cache controller state and releases the pipeline.

When operating system code is executed, we conserva-
tively assume that it cannot be rolled back and, therefore,
we commit both speculative epochs and execute the sys-
tem code non-speculatively. A more careful implementa-
tion would identify the sections of system code that have no
side effects beyond memory updates, and allow their execu-
tion to remain speculative.

4.2 Register Extensions

Register checkpointing and restoration is performed us-
ing two Shadow Register Files (SRF0 and SRF1). These are
two memory structures identical to the main register file.
When a checkpoint is to be taken, the pipeline stalls and
passes control to the Register Checkpointing State Machine
(RCSM). The RCSM has four states (Figure 5-(b)).

The RCSM is in the Idle state while the pipeline executes
normally. When a register checkpoint needs to be taken, it
transitions to the Checkpoint state. In this state, the valid
registers in the main register file are copied to one of the
SRFs. The register files are implemented in SRAM and
have two read ports and one write port. This means that
we can only copy one register per cycle. Thus the check-
point stage takes about as many cycles as there are valid
registers in the register file. The Rollback state is activated
when the pipeline receives a rollback signal. In this state,
the contents of the register file are restored from the check-
point. Similarly, this takes about as many cycles as there are
valid registers. The Restore state re-initializes the pipeline.

I D L EW A L K R E S T O R EI D L EC H E C K P O I N T R O L L B A C KR E S T O R E

( a )
( b )

Figure 5. Cache Walk State Machine (a) and
Register Checkpointing State Machine (b).

5 Evaluation of the Prototype

5.1 Experimental Infrastructure

5.1.1 Development Board

The processor is part of a system-on-a-chip infrastructure
that includes a synthesizable SDRAM controller and PCI
and Ethernet interfaces. The system is synthesized using
Xilinx ISE v6.1.03. The target FPGA chip is a Xilinx Virtex
II XC2V3000 running on a GR-PCI-XC2V development
board [10]. The processor runs at 40 MHz. The board has
64 Mbytes of SDRAM for main memory. Communication
with the board and loading of programs in memory are done
through the PCI interface from a host computer. Console
output is sent on the serial interface.

5.1.2 Operating System

On this hardware, we run a special version of the SnapGear
Embedded Linux distribution [5]. SnapGear Linux is a full
source package, containing kernel, libraries and application
code for rapid development of embedded Linux systems. A
cross-compilation tool-chain for the SPARC architecture is
used for the compilation of the kernel and applications.

5.1.3 Applications

We run experiments using a set of applications that includes
open-source Linux applications and microbenchmarks. We
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Application Description
hennessy A collection of small, compute-intensive applications.

Little or no system code.
polymorph Converts Windows style file names to UNIX.

Moderate system code.
memtest Microbenchmark that simulates large array traversals.

No system code.
sort Linux utility that sorts lines in files.

System-code intensive.
ncompress Compression and decompression utility.

Moderate system code.
ps Linux Process Status command.

Very system code intensive.

Table 2. Applications evaluated.
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different designs and components.

choose codes that exhibit a variety of memory and system
code access patterns to give us a sense of how SWICH is
affected by workload characteristics. Table 2 shows the ap-
plications we use and provides a short description. We run
the applications on top of SnapGear Linux. We are in the
process of bringing up more standard applications, includ-
ing SPEC codes.

5.2 Results

We cannot accurately measure the execution overhead or
the recovery latency of SWICH. The reason is the imple-
mentation limitations explained in Section 4, namely that
(i) epoch commit and rollback are implemented with inef-
ficient cache tag walking rather than with an efficient one-
shot hardware signal, and (ii) register saving and restoring
are implemented in a very inefficient, time consuming man-
ner. These are handicaps that slow down the SWICH im-
plementation and would not be present in a realistic CMOS
implementation. Moreover, our FPGA implementation runs
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Figure 7. Amount of RAM consumed by the
different designs and components.

at only 40 MHz.
Consequently, we focus the evaluation on measuring the

hardware overhead of SWICH (Section 5.2.1) and the size
of the rollback window (Section 5.2.2), and on roughly es-
timating the performance overhead and recovery latency of
SWICH using a very simple model (Section 5.2.3).

5.2.1 Hardware Overhead

We measure the hardware overhead induced by each of
the two components of SWICH, namely the register check-
pointing mechanism, and the data cache support for spec-
ulative data. We measure the overhead in both logic and
memory structures. In our measurements, we only consider
the processor core and caches – not the other on-chip mod-
ules such as the PCI and memory controllers. As a refer-
ence, we also measure the overheads of a cache checkpoint-
ing scheme with a single speculative epoch at a time. This
system is similar to Sequoia [3].

Figure 6 shows the logic consumed, measured in number
of Configurable Logic Block (CLB) slices. CLBs are the
FPGA blocks used to build combinational and synchronous
logic components. A CLB comprises 4 similar slices; each
slice includes two 4-input function generators, carry logic,
arithmetic logic gates, wide-function multiplexers and two
storage elements.

In the figure, the leftmost bars correspond to the
Sequoia-like system and the rightmost ones to the SWICH
system. Each system has several bars, each one for a
design with a different data cache size (4 Kbytes to 64
Kbytes). Each bar is broken down into the logic used by the
cache support for speculative data (spec cache), the register
checkpointing (reg ckpt), and the original processor (base).

Focusing on SWICH, we see that the logic overhead of
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Figure 8. Minimum rollback window size in
SWICH (per application averages).

the combined extensions is only 6.5% on average and rel-
atively constant across the range of caches that we evalu-
ate. Consequently, the support that we propose does not use
much logic. In addition, we see that the number of SWICH
CLBs is only about 2% higher than the Sequoia CLBs. Con-
sequently, the difference in logic between a simple window
and a sliding window is small.

Figure 7 shows the memory consumed, measured in
number of SelectRAM memory blocks. These blocks are
18 Kbit, dual-port RAMs with two independently-clocked
and independently-controlled synchronous ports that access
a common storage area. They are used to implement the
caches, register files, and other structures.

The figure is organized as Figure 6. It shows that the
overhead in memory blocks of the combined SWICH exten-
sions is again small for all the caches that we evaluate. Con-
sequently, the support that we propose consumes few hard-
ware resources. In addition, the overhead in memory blocks
of SWICH is again very similar to that of the Sequoia-like
system. It largely adds additional register checkpoint stor-
age and additional state bits in the cache tags.

5.2.2 Size of the Rollback Window

We would like to determine the size of the rollback window
in SWICH in number of dynamic instructions. Such a num-
ber determines how far back can the system roll back at a
given time, if a fault is detected. In particular, given Fig-
ure 4-(b), we are interested in thepoints of minima, since
they represent the cases when only the shortest rollback
windows are available. In practice, the points of minima do
not all have the same value — Figure 4-(b) shows an ideal
case. The actual value of the points of minima depend of
the code being executed: the actual memory footprint of the

code and the presence of system code. Recall that, in our
simple implementation, execution of system code causes
the commit of the two speculative epochs (Section 4.1) and,
therefore, induces a minimum in the rollback window.

In our experiments, we measure the window size at each
of the minima points, and take per-application averages.
The results are shown in Figure 8. The figure shows the
average window size at minima points for the different ap-
plications and cache sizes. The cache sizes examined range
from 8 Kbytes to 64 Kbytes. The same information for the
Sequoia/CARER systems would show rollback windows of
size zero.

From the figure, we see that thehennessy microbench-
mark has the largest minimum rollback window. The appli-
cation is compute intensive, has little system code, and has
a relatively small memory footprint. As the cache increases,
the window size increases. For 8-64 Kbyte caches, the min-
imum rollback window ranges from 120,000 to 180,000 in-
structions.polymorph andmemtest have more system code
or a larger memory footprint, respectively. Their windows
are smaller, although they increase substantially with the
cache size, to reach 120,000 and 80,000 instructions, re-
spectively, for 64 Kbyte caches.sort, ncompress andps are
system code intensive applications with short rollback win-
dows, irrespective of the cache size. One way to increase
their minimum rollback windows is to identify the sections
of system code that have no side effects beyond memory
updates, and allow their execution to remain speculative.

For completeness, we also measure the average roll-
back window size of SWICH and compare it to the
Sequoia/CARER-like implementation. Again, we look at
four different data cache sizes and six applications. The
results are shown in Figure 9. We can see that, except
for the system-intensive applications, the average rollback
window for SWICH is significantly larger than that of Se-
quoia/CARER. This is because, as we can see from Figure
8, for SWICH, the rollback window has a non-zero average
minimum value. In the case ofps and the other two system-
intensive applications, there is little difference between the
two schemes.

Overall, we conclude that, at least for applications with-
out frequent system code, SWICH can support a large min-
imum rollback window. This is in contrast to systems like
Sequoia and CARER, where the minimum rollback window
is zero.

5.2.3 Estimating Performance Overhead and Recov-
ery Latency

A very rough way of estimating the performance overhead
of SWICH is to compute the ratio between the time needed
to generate a checkpoint and the duration of the execution
between checkpoints. This approach, of course, neglects
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Figure 9. Average rollback window size for Se-
quoia/CARER and SWICH. The numbers un-
der the bars are cache sizes in Kbytes.

any overheads that the scheme may induce between check-
points.

To model worst case conditions, we use the average size
of the rollback window at minima points (Figure 8) as the
number of instructions between checkpoints. Across all ap-
plications, this is about 60,000 instructions for 64 Kbyte
caches. If we assume an average CPI of 1, this corresponds
to 60,000 cycles. On the other hand, a checkpoint can very
conservatively take about 256 cycles, as it involves saving
registers and asserting a one-shot hardware signal that mod-
ifies cache tag bits. Overall, the ratio results in a 0.4% over-
head. We stress that this is only a rough estimate.

The recovery latency can be estimated by assuming 256
cycles to both restore the registers and assert a one-shot
hardware signal that modifies cache tag bits. In addition,
as the processor re-executes, it has to reload into the cache
all the dirty speculative lines that were invalidated during
rollback. Overall, the combined overhead of both effects
is likely to be in the milliseconds at most. Given the low
frequency of rollbacks, we believe this is tolerable.

6 Conclusions

This paper made three contributions. First, it presented a
taxonomy and trade-off analysis of different low-overhead
checkpointing schemes. Secondly, it described the microar-
chitecture of a novel cache-level checkpointing scheme
called SWICH. The idea behind SWICH is to maintain two
speculative epochs at all times, to form asliding rollback
window. This enables SWICH to support a large minimum
rollback window — compared to the zero-sized minimum
rollback window in related previous schemes. Similarly, it
enables SWICH to support a larger average rollback win-

dow than other schemes.
The third contribution was to implement and evaluate

an FPGA-based prototype of SWICH. The evaluation sug-
gested that supporting cache-level checkpointing with slid-
ing window is promising. Specifically, this scheme adds
little additional logic and memory hardware to a simple pro-
cessor. Moreover, for at least the applications without fre-
quent system activity, the scheme sustains a large minimum
(and average) rollback window. Finally, execution overhead
and recovery latency are expected to be small.
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