An efficient computation of handle and tunnel loops via Reeb graphs

T. K. Dey, F. Fan, Y. Wang
Department of Computer Science and Engineering
The Ohio State University

July, 2013

Computing Handle-Tunnel Loops

Computing Handle-Tunnel Loops

Computing Handle-Tunnel Loops

Handle and Tunnel Loops

- A loop $\gamma: \mathbb{S}^{1} \rightarrow X$

Handle and Tunnel Loops

- A simple loop $\gamma: \mathbb{S}^{1} \rightarrow X$, injective;

Handle and Tunnel Loops

- A simple loop $\gamma: \mathbb{S}^{1} \rightarrow X$, injective;
- A trivial loop γ bounds surface patches;

Handle and Tunnel Loops

- A simple loop $\gamma: \mathbb{S}^{1} \rightarrow X$, injective;
- A trivial loop γ bounds surface patches;
- $\mathrm{H}_{1}(X)$: the first dimensional homology of X

Handle and Tunnel Loops

- A simple loop $\gamma: \mathbb{S}^{1} \rightarrow X$, injective;
- A trivial loop γ bounds surface patches;
- $\mathrm{H}_{1}(X)$: the first dimensional homology of X
- space of loops in X; vector space under \mathbb{Z}_{2}

Handle and Tunnel Loops

- A simple loop $\gamma: \mathbb{S}^{1} \rightarrow X$, injective;
- A trivial loop γ bounds surface patches;
- $\mathrm{H}_{1}(X)$: the first dimensional homology of X

- space of loops in X; vector space under \mathbb{Z}_{2}
- γ trivial: $[\gamma]=$ zero element in the vector space $\mathrm{H}_{1}(X)$

Handle and Tunnel Loops

- A simple loop $\gamma: \mathbb{S}^{1} \rightarrow X$, injective;
- A trivial loop γ bounds surface patches;
- $\mathrm{H}_{1}(X)$: the first dimensional homology of X
- space of loops in X; vector space under \mathbb{Z}_{2}
- γ trivial: $[\gamma]=$ zero element in the vector space $\mathrm{H}_{1}(X)$
- A connected closed and orientable surface M in \mathbb{R}^{3};

Handle and Tunnel Loops

- A simple loop $\gamma: \mathbb{S}^{1} \rightarrow X$, injective;
- A trivial loop γ bounds surface patches;
- $\mathrm{H}_{1}(X)$: the first dimensional homology of X
- space of loops in X; vector space under \mathbb{Z}_{2}
- γ trivial: $[\gamma]=$ zero element in the vector space $\mathrm{H}_{1}(X)$
- A connected closed and orientable surface M in \mathbb{R}^{3};
- partition \mathbb{R}^{3} into : interior \mathbb{I} and exterior \mathbb{O};
- $\partial \mathbb{I}=\partial \mathbb{O}=M$;

Handle and Tunnel Loops

- A connected closed and orientable surface M in \mathbb{R}^{3};

Handle and Tunnel Loops

- A connected closed and orientable surface M in \mathbb{R}^{3};

- A handlle loop in M ([DLS07]):
- trivial in $\mathrm{H}_{1}(\mathbb{I})$ but non-trivial in $\mathrm{H}_{1}(\mathbb{O})$;

Handle and Tunnel Loops

- A connected closed and orientable surface M in \mathbb{R}^{3};

- A handle loop in M ([DLS07]):
- trivial in $\mathrm{H}_{1}(\mathbb{I})$ but non-trivial in $\mathrm{H}_{1}(\mathbb{O})$;
- A tunnel loop in M ([DLS07]):
- trivial in $\mathrm{H}_{1}(\mathbb{O})$ but non-trivial in $\mathrm{H}_{1}(\mathbb{I})$;

Handle and Tunnel Loops

- A connected closed and orientable surface M in \mathbb{R}^{3};

- A handle loop in M ([DLS07]):
- trivial in $\mathrm{H}_{1}(\mathbb{I})$ but non-trivial in $\mathrm{H}_{1}(\mathbb{O})$;
- A tunnel loop in M ([DLS07]):
- trivial in $\mathrm{H}_{1}(\mathbb{O})$ but non-trivial in $\mathrm{H}_{1}(\mathbb{I})$;

Handle and Tunnel Loops

- M : connected closed orientable surface with genus g in \mathbb{R}^{3} ([DLS07])

Handle and Tunnel Loops

- M : connected closed orientable surface with genus g in \mathbb{R}^{3} ([DLS07])
- g handle loops

Handle and Tunnel Loops

- M : connected closed orientable surface with genus g in \mathbb{R}^{3} ([DLS07])
- g handle loops
- g tunnel loops

Handle and Tunnel Loops

- M : connected closed orientable surface with genus g in \mathbb{R}^{3} ([DLS07])
- g handle loops
- g tunnel loops

Previous methods

- Method in [DLS07]:
- curve-skeletons of \mathbb{I} and \mathbb{O};

- linking numbers;

Previous methods

- Method in [DLS07]:
- curve-skeletons of \mathbb{I} and \mathbb{O};

- linking numbers;
- Limitations ([DLS07]):

Previous methods

- Method in [DLS07]:
- curve-skeletons of \mathbb{I} and \mathbb{O};

- linking numbers;
- Limitations ([DLS07]):
- curve-skeletons: difficult

Previous methods

- Method in [DLS07]:
- curve-skeletons of \mathbb{I} and \mathbb{O};

- linking numbers;
- Limitations ([DLS07]):
- curve-skeletons: difficult
- limited to graph retractable surfaces

Previous methods

- Method in [DLS07]:
- curve-skeletons of \mathbb{I} and \mathbb{O};

- linking numbers;
- Limitations ([DLS07]):
- curve-skeletons: difficult
- limited to graph retractable surfaces

Previous methods

- Method in [DLS07]:
- curve-skeletons of \mathbb{I} and \mathbb{O};

- linking numbers;
- Limitations ([DLS07]):
- curve-skeletons: difficult
- limited to graph retractable surfaces

- Method in [DLSC08]:
- tessellations of \mathbb{I} and \mathbb{O};

- persistent homology;

Previous methods

- Method in [DLS07]:
- curve-skeletons of \mathbb{I} and \mathbb{O};

- linking numbers;
- Limitations ([DLS07]):
- curve-skeletons: difficult
- limited to graph retractable surfaces

- Method in [DLSC08]:
- tessellations of \mathbb{I} and \mathbb{O};

- persistent homology;
- Limitations ([DLSC08]):

Previous methods

- Method in [DLS07]:
- curve-skeletons of \mathbb{I} and \mathbb{O};

- linking numbers;
- Limitations ([DLS07]):
- curve-skeletons: difficult
- limited to graph retractable surfaces

- Method in [DLSC08]:
- tessellations of \mathbb{I} and \mathbb{O};

- persistent homology;
- Limitations ([DLSC08]):
- tessellations: expensive

Previous methods

- Method in [DLS07]:
- curve-skeletons of \mathbb{I} and \mathbb{O};

- linking numbers;
- Limitations ([DLS07]):
- curve-skeletons: difficult
- limited to graph retractable surfaces

- Method in [DLSC08]:
- tessellations of \mathbb{I} and \mathbb{O};

- persistent homology;
- Limitations ([DLSC08]):
- tessellations: expensive
- Remesh the input mesh:

Previous methods

- Method in [DLS07]:
- curve-skeletons of \mathbb{I} and \mathbb{O};

- linking numbers;
- Limitations ([DLS07]):
- curve-skeletons: difficult
- limited to graph retractable surfaces

- Method in [DLSC08]:
- tessellations of \mathbb{I} and \mathbb{O};

- persistent homology;
- Limitations ([DLSC08]):
- tessellations: expensive
- Remesh the input mesh:

Reeb Graph

Reeb Graph

$$
f: M \rightarrow \mathbb{R}
$$

Reeb graph $\mathrm{R}_{f}(M)$

Reeb Graph

$f: M \rightarrow \mathbb{R}$

Reeb graph $\mathrm{R}_{f}(M)$
$\triangleright M$ connected closed orientable 2-manifold with genus g

Reeb Graph

$f: M \rightarrow \mathbb{R}$

Reeb graph $\mathrm{R}_{f}(M)$
$\triangleright M$ connected closed orientable 2-manifold with genus g $\triangleright f$ Morse function over M

Reeb Graph

$$
f: M \rightarrow \mathbb{R}
$$

Reeb graph $\mathrm{R}_{f}(M)$
$\triangleright M$ connected closed orientable 2-manifold with genus g

$$
\Rightarrow \quad \mathrm{R}_{f}(M) \text { has } g \text { loops ([CEHNP03]) }
$$

$\triangleright f$ Morse function over M

Linking Number

- Linking number of two disjoint loops, $\operatorname{Lk}(\alpha, \gamma)$

Linking Number

- Linking number of two disjoint loops, $\operatorname{Lk}(\alpha, \gamma)$

- Computation of linking number via projection;

Algorithm

Input A closed triangular mesh $M \subset \mathbb{R}^{3}$ with genus g;
Compute the Reeb graph Rb_{M} for a height function h;
Compute g cycles in Rb_{M} by a maximum spanning tree;
(3)

Map g cycles back to M, γ_{i} and compute dual level set loops $\bar{\gamma}_{i}$
4
Perturb γ_{i} and $\bar{\gamma}_{i}$ to obtain α_{i} and $\bar{\alpha}_{i}$, split $\left\{\alpha_{i}, \bar{\alpha}_{i}\right\}$ into bases of $\mathrm{H}_{1}(\mathbb{O})$ and $\mathrm{H}_{1}(\mathbb{I})$;
(5)

Obtain initial handle basis h_{i} and tunnel basis t_{i} as linear combinations of γ_{i} and $\bar{\gamma}_{i}$;
(6)

Shorten h_{i} and t_{i} to get geometrically relevant loops;

Algorithm

Input
(1) Compute the Reeb graph Rb_{M} for a random height function h;

Compute g cycles in Rb_{M} by a maximum spanning tree;
(3)

Map g cycles back to M, γ_{i} and compute dual level set loops $\bar{\gamma}_{i}$
4
Perturb γ_{i} and $\bar{\gamma}_{i}$ to obtain α_{i} and $\bar{\alpha}_{i}$, split $\left\{\alpha_{i}, \bar{\alpha}_{i}\right\}$ into bases of $\mathrm{H}_{1}(\mathbb{O})$ and $\mathrm{H}_{1}(\mathbb{I})$;
(5)

Obtain initial handle basis h_{i} and tunnel basis t_{i} as linear combinations of γ_{i} and $\bar{\gamma}_{i}$
(6)

Shorten h_{i} and t_{i} to get geometrically relevant loops;

Algorithm

Input
A closed triangular mesh $M \subset \mathbb{R}^{3}$ with genus g;
(1)

Compute the Reeb graph Rb_{M} for a height function h;
(2) Compute g cycles in Rb_{M} by a maximum spanning tree;Map g cycles back to M, γ_{i} and compute dual level set loops $\bar{\gamma}_{i}$;
4
Perturb γ_{i} and $\bar{\gamma}_{i}$ to obtain α_{i} and $\bar{\alpha}_{i}$, split $\left\{\alpha_{i}, \bar{\alpha}_{i}\right\}$ into bases of $\mathrm{H}_{1}(\mathbb{O})$ and $\mathrm{H}_{1}(\mathbb{I})$;
(5)

Obtain initial handle basis h_{i} and tunnel basis t_{i} as linear combinations of γ_{i} and $\bar{\gamma}_{i}$
6
Shorten h_{i} and t_{i} to get geometrically relevant loops;

Algorithm

Input
A closed triangular mesh $M \subset \mathbb{R}^{3}$ with genus g;
(1)

Compute the Reeb graph Rb_{M} for a height function h;
(2) Compute g cycles in Rb_{M} by a maximum spanning tree;
(3) Map g cycles back to M, γ_{i} and compute dual level set loops $\bar{\gamma}_{i}$;
(4)

Perturb γ_{i} and $\bar{\gamma}_{i}$ to obtain α_{i} and $\bar{\alpha}_{i}$, split $\left\{\alpha_{i}, \bar{\alpha}_{i}\right\}$ into bases of $\mathrm{H}_{1}(\mathbb{O})$ and $\mathrm{H}_{1}(\mathbb{I})$;
(5)

Obtain initial handle basis h_{i} and tunnel basis t_{i} as linear combinations of γ_{i} and $\bar{\gamma}_{i}$
(6)

Shorten h_{i} and t_{i} to get geometrically relevant loops;

Algorithm

Input
A closed triangular mesh $M \subset \mathbb{R}^{3}$ with genus g;
(1) Compute the Reeb graph Rb_{M} for a height function h;
(2) Compute g cycles in Rb_{M} by a maximum spanning tree;
(3) Map g cycles back to M, γ_{i} and compute dual level set loops
(9) Perturb γ_{i} and $\bar{\gamma}_{i}$ to obtain α_{i} and $\bar{\alpha}_{i}$, split $\left\{\alpha_{i}, \bar{\alpha}_{i}\right\}$ into bases of $\mathrm{H}_{1}(\mathbb{O})$ and $\mathrm{H}_{1}(\mathbb{I})$;
6 Obtain initial handle basis h_{i} and tunnel basis t_{i} as linear combinations of γ_{i} and $\bar{\gamma}_{i}$
Shorten h_{i} and t_{i} to get geometrically relevant loops;

Algorithm

Input A closed triangular mesh $M \subset \mathbb{R}^{3}$ with genus g;
(1) Compute the Reeb graph Rb_{M} for a height function h;

Compute g cycles in Rb_{M} by a maximum spanning tree;
Map g cycles back to M, γ_{i} and compute dual level set loops $\bar{\gamma}_{i}$;
Perturb γ_{i} and $\bar{\gamma}_{i}$ to obtain α_{i} and $\bar{\alpha}_{i}$, split $\left\{\alpha_{i}, \bar{\alpha}_{i}\right\}$ into bases of $H_{1},(\mathbb{O})$ and $\mathrm{H}_{1}(\mathbb{I})$;

- Computing linking numbers $\operatorname{Lk}(\gamma, \alpha)$'s;

6
Shorten h_{i} and t_{i} to get geometrically relevant loops;

Algorithm

Input A closed triangular mesh $M \subset \mathbb{R}^{3}$ with genus g;
Compute the Reeb graph Rb_{M} for a height function h;
Compute g cycles in Rb_{M} by a maximum spanning tree;
Map g cycles back to M, γ_{i} and compute dual level set loops $\bar{\gamma}_{i}$;
Perturb γ_{i} and $\bar{\gamma}_{i}$ to obtain α_{i} and $\bar{\alpha}_{i}$, split $\left\{\alpha_{i}, \bar{\alpha}_{i}\right\}$ into bases of $\left.H_{1}, \mathbb{O}\right)$ and $H_{1}(\mathbb{I})$;

- Computing linking numbers $\operatorname{Lk}(\gamma, \alpha)$'s;

Obtain initial handle loops h_{i} and tunnel loops t_{i} as linear combinations of γ_{i} and $\bar{\gamma}_{i}$;
6
Shorten h_{i} and t_{i} to get geometrically relevant loops;

Linking number matrix

γ_{1}
γ_{2}
$\bar{\gamma}_{1}$
$\bar{\gamma}_{2}$$\quad\left(\begin{array}{cccc}\bar{\alpha}_{1} & \bar{\alpha}_{2} & \alpha_{1} & \alpha_{2} \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$

- Non-singular;

Linking number matrix

γ_{1}
$\gamma_{2}+\bar{\gamma}_{2}\left(\begin{array}{cccc}\bar{\alpha}_{1} & \bar{\alpha}_{2} & \alpha_{1} & \alpha_{2} \\ \bar{\gamma}_{1} \\ \bar{\gamma}_{2}\end{array}\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1+1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)\right.$.

- Non-singular;

Linking number matrix

	$\bar{\alpha}_{1}$	$\bar{\alpha}_{2}$	α_{1}	α_{2}
	1	0	0	0
$\gamma_{2}+\bar{\gamma}_{2}$	0	1	0	0
$\bar{\gamma}_{1}$	0	0	1	0
$\bar{\gamma}_{2}$	0	0	0	$1)$

- Non-singular;

Linking number matrix

γ_{1}
$\gamma_{2}+\bar{\gamma}_{2}\left(\begin{array}{cccc}\bar{\alpha}_{1} & \bar{\alpha}_{2} & \alpha_{1} & \alpha_{2} \\ \bar{\gamma}_{1} \\ \bar{\gamma}_{2}\end{array}\left(\begin{array}{cccc}1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)\right.$.

- Non-singular;

Lemma 3.3

If a loop β has zero linking number with every loop in the cycle basis of $\mathrm{H}_{1}(\mathbb{I})$,

Linking number matrix

γ_{1}
$\gamma_{2}+\bar{\gamma}_{2}\left(\begin{array}{cccc}\bar{\alpha}_{1} & \bar{\alpha}_{2} & \alpha_{1} & \alpha_{2} \\ \bar{\gamma}_{1} \\ \bar{\gamma}_{2}\end{array}\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)\right.$.

- Non-singular;

Lemma 3.3
If a loop β has zero linking number with every loop in the cycle basis of $\mathrm{H}_{1}(\mathbb{I})$, but has a non-zero linking number with at least one loop in the cycle basis of $\mathrm{H}_{1}(\mathbb{O})$,

Linking number matrix

γ_{1}
$\gamma_{2}+\bar{\gamma}_{2}\left(\begin{array}{cccc}\bar{\alpha}_{1} & \bar{\alpha}_{2} & \alpha_{1} & \alpha_{2} \\ \bar{\gamma}_{1} \\ \bar{\gamma}_{2}\end{array}\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)\right.$.

- Non-singular;

Lemma 3.3

If a loop β has zero linking number with every loop in the cycle basis of $\mathrm{H}_{1}(\mathbb{I})$, but has a non-zero linking number with at least one loop in the cycle basis of $\mathrm{H}_{1}(\mathbb{O})$, then β is a tunnel loop;

Linking number matrix

γ_{1}
$\gamma_{2}+\bar{\gamma}_{2}\left(\begin{array}{cccc}\bar{\alpha}_{1} & \bar{\alpha}_{2} & \alpha_{1} & \alpha_{2} \\ \bar{\gamma}_{1} \\ \bar{\gamma}_{2}\end{array}\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)\right.$.

- Non-singular;

Lemma 3.3

If a loop β has zero linking number with every loop in the cycle basis of $\mathrm{H}_{1}(\mathbb{I})$, but has a non-zero linking number with at least one loop in the cycle basis of $\mathrm{H}_{1}(\mathbb{O})$, then β is a tunnel loop; Symmetric for a handle loop;

Algorithm

Input
A closed triangular mesh $M \subset \mathbb{R}^{3}$ with genus g;
Compute the Reeb graph Rb_{M} for a height function h;
Compute g cycles in Rb_{M} by a maximum spanning tree;
Map g cycles back to M, γ_{i} and compute dual level set loops $\bar{\gamma}_{i}$;
Perturb γ_{i} and $\bar{\gamma}_{i}$ to obtain α_{i} and $\bar{\alpha}_{i}$, split $\left\{\alpha_{i}, \bar{\alpha}_{i}\right\}$ into bases of $\mathrm{H}_{2},(\mathbb{O})$ and $\mathrm{H}_{1}(\mathbb{I})$;

- Computing linking numbers $\operatorname{Lk}(\gamma, \alpha)$'s;
- Obtain initial handle loops h_{i} and tunnel loops t_{i} as linear combinations of γ_{i} and $\bar{\gamma}_{i}$;
6
Shorten h_{i} and t_{i} to get geometrically relevant loops;

Algorithm

Input A closed triangular mesh $M \subset \mathbb{R}^{3}$ with genus g;

(1) Compute the Reeb graph Rb_{M} for a height function h;
(2) Compute g cycles in Rb_{M} by a maximum spanning tree;
(3) Map g cycles back to M, γ_{i} and compute dual level set loops $\bar{\gamma}_{i}$;
(4) Perturb γ_{i} and $\bar{\gamma}_{i}$ to obtain α_{i} and $\bar{\alpha}_{i}$, split $\left\{\alpha_{i}, \bar{\alpha}_{i}\right\}$ into bases of $H_{1}(\mathbb{O})$ and $H_{1}(\mathbb{I})$;
(5) Obtain initial handle basis h_{i} and tunnel basis t_{i} as linear combinations of γ_{i} and $\bar{\gamma}_{i}$
(6) Shorten h_{i} and t_{i} to get geometrically relevant loops ([BCCDW12]);

Comparison

- Comparison with previous method ([DLSC08]) : tessellate \mathbb{I} and \mathbb{O} and use persistent homology;

Model detail			Our Algorithm Timing (sec)				DLSC (sec)	
Name	Size (\#Ver, \#Tri),	Genus	Reeb Graph	Step 2-5	Tightening	Total	Pre-process	Loop compl
KNOTTY-CUP	(5.4K, 10.8K)	2	0.03	0.03	1.11	1.17	12.1	3.01
Casting	(20K, 40.8K)	9	0.23	0.08	1.7	2.01	99.8	13.7
Botijo	(33.7K, 67.4K)	5	0.52	0.2	2.08	2.8	166.1	40.1
Buddha	(54K, 108K)	9	0.78	0.12	4.96	5.86	697.3	Fail
Fusee	(121K, 243K)	18	2.9	0.37	40.19	43.46	1713.5	559.7
Gearbox	(238K, 477K)	78	4.64	53.95	340.64	399.23		
Heptoroid	(287K, 573K)	22	4.04	3.06	118.27	125.37	8797.1	2980.0
Colon	(427K, 854K)	160	6.38	39.47	2790.41	2836.26		
Filigree	(514K, 1.03M)	65	79.97	25.17	559.12	664.26		

Comparison

- Comparison with previous method ([DLSC08]) : tessellate \mathbb{I} and \mathbb{O} and use persistent homology;

Model detail			Our Algorithm Timing (sec)				DLSC (sec)	
Name	Size (\#Ver, \#Tri),	Genus	Reeb Graph	Step 2-5	Tightening	Total	Pre-process	Loop compl
KnOTTY-CUP	(5.4K, 10.8K)	2	0.03	0.03	1.11	1.17	12.1	3.01
Casting	(20K, 40.8K)	9	0.23	0.08	1.7	2.01	99.8	13.7
Botijo	(33.7K, 67.4K)	5	0.52	0.2	2.08	2.8	166.1	40.1
Buddha	(54K, 108K)	9	0.78	0.12	4.96	5.86	697.3	Fail
Fusee	(121K, 243K)	18	2.9	0.37	40.19	43.46	1713.5	559.7
Gearbox	(238K, 477K)	78	4.64	53.95	340.64	399.23		
Heptoroid	(287K, 573K)	22	4.04	3.06	118.27	125.37	8797.1	2980.0
Colon	(427K, 854K)	160	6.38	39.47	2790.41	2836.26		
Filigree	(514K, 1.03M)	65	79.97	25.17	559.12	664.26		

- Mesh refinement problem:

Comparison

- Comparison with previous method ([DLSC08]) : tessellate \mathbb{I} and \mathbb{O} and use persistent homology;

Model detail			Our Algorithm Timing (sec)				DLSC (sec)	
Name	Size (\#Ver, \#Tri),	Genus	Reeb Graph	Step 2-5	Tightening	Total	Pre-process	Loop compl
KNOTTY-CUP	(5.4K, 10.8K)	2	0.03	0.03	1.11	1.17	12.1	3.01
Casting	(20K, 40.8K)	9	0.23	0.08	1.7	2.01	99.8	13.7
Botijo	(33.7K, 67.4K)	5	0.52	0.2	2.08	2.8	166.1	40.1
Buddha	(54K, 108K)	9	0.78	0.12	4.96	5.86	697.3	Fail
Fusee	(121K, 243K)	18	2.9	0.37	40.19	43.46	1713.5	559.7
Gearbox	(238K, 477K)	78	4.64	53.95	340.64	399.23		
Heptoroid	(287K, 573K)	22	4.04	3.06	118.27	125.37	8797.1	2980.0
Colon	(427K, 854K)	160	6.38	39.47	2790.41	2836.26		
Filigree	(514K, 1.03M)	65	79.97	25.17	559.12	664.26		

- Mesh refinement problem:

T. Dey, F. Fan and Y. Wang ()

Handle-Tunnel Loops via Reeb Graphs
July 2013

Results

- Software available
http://www.cse.ohio-state.edu/~tamaldey/handle/hantun.html

(b)

(b)

Imperfect input

Non-uniform mesh

Noisy mesh

Mesh with boundaries

THANK YOU!

