An efficient computation of handle and tunnel loops via Reeb graphs

T. K. Dey, F. Fan, Y. Wang

Department of Computer Science and Engineering The Ohio State University

July, 2013

(□) (@) (E) (E) E

Computing Handle-Tunnel Loops

July 2013 2 / 21

Image: A match a ma

Computing Handle-Tunnel Loops

Image: A matched block of the second seco

T. Dey, F. Fan and Y. Wang ()

July 2013 2 / 21

Computing Handle-Tunnel Loops

July 2013 2 / 21

Image: A math a math

Handle and Tunnel Loops SIGGRAPH2013 • A loop $\gamma : S^1 \to X$ Image: Control of the second second

• A simple loop $\gamma : \mathbb{S}^1 \to X$, injective;

< ロ > < 同 > < 三 > < 三

T. Dey, F. Fan and Y. Wang ()

July 2013 3 / 21

Handle and Tunnel Loops

- A simple loop $\gamma : \mathbb{S}^1 \to X$, injective;
- A *trivial* loop γ bounds surface patches;

- A simple loop $\gamma : \mathbb{S}^1 \to X$, injective;
- A *trivial* loop γ bounds surface patches;
 - $H_1(X)$: the first dimensional homology of X

- A simple loop $\gamma : \mathbb{S}^1 \to X$, injective;
- A *trivial* loop γ bounds surface patches;
 - $H_1(X)$: the first dimensional homology of X
 - space of loops in X; vector space under \mathbb{Z}_2

- A simple loop $\gamma : \mathbb{S}^1 \to X$, injective;
- A *trivial* loop γ bounds surface patches;

- $H_1(X)$: the first dimensional homology of X
 - space of loops in X; vector space under \mathbb{Z}_2
 - γ trivial: $[\gamma] =$ zero element in the vector space H₁(X)

- A simple loop $\gamma : \mathbb{S}^1 \to X$, injective;
- A *trivial* loop γ bounds surface patches;

- $H_1(X)$: the first dimensional homology of X
 - space of loops in X; vector space under \mathbb{Z}_2
 - γ trivial: $[\gamma] =$ zero element in the vector space H₁(X)
- A <u>connected</u> <u>closed</u> and <u>orientable</u> surface M in \mathbb{R}^3 ;

- A simple loop $\gamma : \mathbb{S}^1 \to X$, injective;
- A *trivial* loop γ bounds surface patches;

- $H_1(X)$: the first dimensional homology of X
 - space of loops in X; vector space under \mathbb{Z}_2
 - γ trivial: $[\gamma] =$ zero element in the vector space H₁(X)
- A <u>connected</u> <u>closed</u> and <u>orientable</u> surface M in \mathbb{R}^3 ;
 - partition \mathbb{R}^3 into : interior $\mathbb I$ and exterior $\mathbb O;$
 - $\partial \mathbb{I} = \partial \mathbb{O} = M;$

→ Ξ → ...

• A <u>connected</u> <u>closed</u> and <u>orientable</u> surface *M* in \mathbb{R}^3 ;

< ロ > < 同 > < 三 > < 三

T. Dey, F. Fan and Y. Wang ()

July 2013 4 / 21

A > < > < >

Handle and Tunnel Loops

• A <u>connected</u> <u>closed</u> and <u>orientable</u> surface *M* in \mathbb{R}^3 ;

- A handle loop in *M* ([DLS07]):
 - trivial in $H_1(\mathbb{I})$ but non-trivial in $H_1(\mathbb{O});$

• A <u>connected</u> <u>closed</u> and <u>orientable</u> surface *M* in \mathbb{R}^3 ;

- A handle loop in *M* ([DLS07]):
 - trivial in $H_1(\mathbb{I})$ but non-trivial in $H_1(\mathbb{O})$;
- A tunnel loop in *M* ([DLS07]):
 - trivial in $H_1(\mathbb{O})$ but non-trivial in $H_1(\mathbb{I})$;

• A <u>connected</u> <u>closed</u> and <u>orientable</u> surface *M* in \mathbb{R}^3 ;

- A handle loop in *M* ([DLS07]):
 - trivial in $H_1(\mathbb{I})$ but non-trivial in $H_1(\mathbb{O})$;
- A tunnel loop in *M* ([DLS07]):
 - trivial in $H_1(\mathbb{O})$ but non-trivial in $H_1(\mathbb{I})$;

過 ト イヨト イヨト

• *M*: connected closed orientable surface with genus g in \mathbb{R}^3 ([DLS07])

< ∃ ►

- M: connected closed orientable surface with genus g in ℝ³ ([DLS07])
 - g handle loops

• 3 >

- *M*: connected closed orientable surface with genus g in \mathbb{R}^3 ([DLS07])
 - g handle loops
 - g tunnel loops

• 3 >

- *M*: connected closed orientable surface with genus g in \mathbb{R}^3 ([DLS07])
 - g handle loops
 - g tunnel loops

• 3 >

- Method in [DLS07]:
 - $\bullet~$ curve-skeletons of ${\mathbb I}$ and ${\mathbb O};$

• linking numbers;

Image: A matrix

A B F A B F

- Method in [DLS07]:
 - curve-skeletons of $\mathbb I$ and $\mathbb O;$

- linking numbers;
- Limitations ([DLS07]):

- Method in [DLS07]:
 - curve-skeletons of $\mathbb I$ and $\mathbb O;$

- linking numbers;
- Limitations ([DLS07]):
 - curve-skeletons: difficult

(3)

- Method in [DLS07]:
 - curve-skeletons of $\mathbb I$ and $\mathbb O;$

- linking numbers;
- Limitations ([DLS07]):
 - curve-skeletons: difficult
 - limited to graph retractable surfaces

< 3 > <

- Method in [DLS07]:
 - curve-skeletons of $\mathbb I$ and $\mathbb O;$

- linking numbers;
- Limitations ([DLS07]):
 - curve-skeletons: difficult
 - limited to graph

retractable surfaces

E ▶.

- Method in [DLS07]:
 - curve-skeletons of $\mathbb I$ and $\mathbb O;$

- linking numbers;
- Limitations ([DLS07]):
 - curve-skeletons: difficult
 - limited to graph

retractable surfaces

- Method in [DLSC08]:
 - tessellations of ${\mathbb I}$ and ${\mathbb O};$

• persistent homology;

< ∃ ►

July 2013 6 / 21

- Method in [DLS07]:
 - curve-skeletons of $\mathbb I$ and $\mathbb O;$

- linking numbers;
- Limitations ([DLS07]):
 - curve-skeletons: difficult
 - limited to graph

retractable surfaces

- Method in [DLSC08]:
 - tessellations of ${\mathbb I}$ and ${\mathbb O};$

• persistent homology;

I ∃ ►

• Limitations ([DLSC08]):

- Method in [DLS07]:
 - curve-skeletons of $\mathbb I$ and $\mathbb O;$

- linking numbers;
- Limitations ([DLS07]):
 - curve-skeletons: difficult
 - limited to graph

retractable surfaces

- Method in [DLSC08]:
 - tessellations of ${\mathbb I}$ and ${\mathbb O};$

- persistent homology;
- Limitations ([DLSC08]):
 - tessellations: expensive

- Method in [DLS07]:
 - curve-skeletons of $\mathbb I$ and $\mathbb O;$

- linking numbers;
- Limitations ([DLS07]):
 - curve-skeletons: difficult
 - limited to graph

retractable surfaces

- Method in [DLSC08]:
 - tessellations of ${\mathbb I}$ and ${\mathbb O};$

- persistent homology;
- Limitations ([DLSC08]):
 - tessellations: expensive
 - Remesh the input mesh:

→ Ξ →

- Method in [DLS07]:
 - curve-skeletons of $\mathbb I$ and $\mathbb O;$

- linking numbers;
- Limitations ([DLS07]):
 - curve-skeletons: difficult
 - limited to graph

retractable surfaces

- Method in [DLSC08]:
 - tessellations of ${\mathbb I}$ and ${\mathbb O};$

- persistent homology;
- Limitations ([DLSC08]):
 - tessellations: expensive
 - Remesh the input mesh:

→ Ξ →

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Reeb graph $R_f(M)$

Reeb graph $R_f(M)$

Image: A matched block of the second seco

▷ *M* connected closed orientable 2-manifold with genus *g*

< ∃

Reeb graph $R_f(M)$

- ▷ *M* connected closed orientable 2-manifold with genus *g*
- \triangleright f Morse function over M

.

Reeb graph $R_f(M)$

- \triangleright *M* connected closed orientable 2-manifold with genus *g*
- \triangleright f Morse function over M

 $R_f(M)$ has g loops ([CEHNP03])

 \Rightarrow

Linking Number

• Linking number of two disjoint loops, $Lk(\alpha, \gamma)$

→ Ξ →

-

- ∢ 🗇 እ

Linking Number

• Linking number of two disjoint loops, $Lk(\alpha, \gamma)$

• Computation of linking number via projection;

5 6

Input A closed triangular mesh $M \subset \mathbb{R}^3$ with genus g;

1

Image: A math a math

5 6

Compute g cycles in Rb_M by a maximum spanning tree;

Map g cycles back to M, γ_i and compute dual level set loops $\overline{\gamma}_i$;

Perturb γ_i and $\overline{\gamma}_i$ to obtain α_i and $\overline{\alpha}_i$, split $\{\alpha_i, \overline{\alpha}_i\}$ into bases of $H_1(\mathbb{O})$ and $H_1(\mathbb{I})$;

Obtain initial handle basis h_i and tunnel basis t_i as linear combinations of γ_i and $\overline{\gamma}_i$;

Shorten h_i and t_i to get geometrically relevant loops;

Image: A math a math

Input A closed triangular mesh $M \subset \mathbb{R}^3$ with genus g;

Compute the Reeb graph \mathbf{Rb}_M for a height function *h*; Compute *g* cycles in \mathbf{Rb}_M by a maximum spanning tree;

Map g cycles back to M, γ_i and compute dual level set loops $\overline{\gamma}_i$;

Perturb γ_i and $\overline{\gamma}_i$ to obtain α_i and $\overline{\alpha}_i$, split $\{\alpha_i, \overline{\alpha}_i\}$ into bases of $H_1(\mathbb{O})$ and $H_1(\mathbb{I})$;

Obtain initial handle basis h_i and tunnel basis t_i as linear combinations of γ_i and $\overline{\gamma}_i$;

Shorten h_i and t_i to get geometrically relevant loops;

- ∢ ∃ ▶

6

Shorten h_i and t_i to get geometrically relevant loops:

A closed triangular mesh $M \subset \mathbb{R}^3$ with genus g; Compute the Reeb graph Rb_M for a height function h; Compute g cycles in Rb_M by a maximum spanning tree; Map g cycles back to M, γ_i and compute dual level set loops $\overline{\gamma}_i$; Perturb γ_i and $\overline{\gamma}_i$ to obtain α_i and $\overline{\alpha}_i$, split $\{\alpha_i, \overline{\alpha}_i\}$ into bases of $\operatorname{H}_1(\mathbb{O})$ and $\operatorname{H}_1(\mathbb{I})$; • Computing linking numbers $\operatorname{Lk}(\gamma, \alpha)$'s;

Shorten h_i and t_i to get geometrically relevant loops;

(日)

< □ > < 同 > < 回 > < Ξ > < Ξ

Linking number matrix

• Non-singular;

- 4 同 6 4 日 6 4 日 6

T. Dey, F. Fan and Y. Wang ()

Handle-Tunnel Loops via Reeb Graphs

▲ 重 ト 重 少 Q C July 2013 15 / 21

T. Dey, F. Fan and Y. Wang ()

s July 2013

(人間) トイヨト イヨト

Linking number matrix

 $\bar{\alpha}_1 \ \bar{\alpha}_2 \ \alpha_1 \ \alpha_2$

• Non-singular;

Non-singular;

Linking number matrix

T. Dey, F. Fan and Y. Wang ()

3 July 2013 15 / 21

- 4 同 6 4 日 6 4 日 6

- 4 個 ト - 4 三 ト - 4 三 ト

If a loop β has zero linking number with every loop in the cycle basis of $H_1(\mathbb{I})$, but has a non-zero linking number with at least one loop in the cycle basis of $H_1(\mathbb{O})$,

- 4 同 6 4 日 6 4 日 6

If a loop β has zero linking number with every loop in the cycle basis of H₁(I), but has a non-zero linking number with at least one loop in the cycle basis of H₁(\mathbb{O}), then β is a tunnel loop;

イロト 不得下 イヨト イヨト

the cycle basis of $H_1(\mathbb{O})$, then β is a tunnel loop; Symmetric for a handle loop;

イロト 不得下 イヨト イヨト

6

Shorten h_i and t_i to get geometrically relevant loops;

< ロ > < 同 > < 三 > < 三

T. Dey, F. Fan and Y. Wang ()

Handle-Tunnel Loops via Reeb Graphs

July 2013 17 / 21

• • • • • • • • • • • •

Comparison

Comparison with previous method ([DLSC08]) : tessellate I and O and use persistent homology;

Model detail			Our Algorithm Timing (sec)				DLSC (sec)	
Name	Size (#Ver, #Tri),	Genus	Reeb Graph	Step 2-5	Tightening	Total	Pre-process	Loop compl
KNOTTY-CUP	(5.4K, 10.8K)	2	0.03	0.03	1.11	1.17	12.1	3.01
Casting	(20K, 40.8K)	9	0.23	0.08	1.7	2.01	99.8	13.7
Botijo	(33.7K, 67.4K)	5	0.52	0.2	2.08	2.8	166.1	40.1
Buddha	(54K, 108K)	9	0.78	0.12	4.96	5.86	697.3	Fail
Fusee	(121K, 243K)	18	2.9	0.37	40.19	43.46	1713.5	559.7
Gearbox	(238K, 477K)	78	4.64	53.95	340.64	399.23	N/A	
Heptoroid	(287K, 573K)	22	4.04	3.06	118.27	125.37	8797.1	2980.0
Colon	(427K, 854K)	160	6.38	39.47	2790.41	2836.26	N/A	
Filigree	(514K, 1.03M)	65	79.97	25.17	559.12	664.26	N/A	

< ロ > < 同 > < 三 > < 三

Comparison

Comparison with previous method ([DLSC08]) : tessellate I and O and use persistent homology;

Model detail			Our Algorithm Timing (sec)				DLSC (sec)	
Name	Size (#Ver, #Tri),	Genus	Reeb Graph	Step 2–5	Tightening	Total	Pre-process	Loop compl
KNOTTY-CUP	(5.4K, 10.8K)	2	0.03	0.03	1.11	1.17	12.1	3.01
Casting	(20K, 40.8K)	9	0.23	0.08	1.7	2.01	99.8	13.7
Botijo	(33.7K, 67.4K)	5	0.52	0.2	2.08	2.8	166.1	40.1
Buddha	(54K, 108K)	9	0.78	0.12	4.96	5.86	697.3	Fail
Fusee	(121K, 243K)	18	2.9	0.37	40.19	43.46	1713.5	559.7
Gearbox	(238K, 477K)	78	4.64	53.95	340.64	399.23	N/A	
Heptoroid	(287K, 573K)	22	4.04	3.06	118.27	125.37	8797.1	2980.0
Colon	(427K, 854K)	160	6.38	39.47	2790.41	2836.26	N/A	
Filigree	(514K, 1.03M)	65	79.97	25.17	559.12	664.26	N/A	

• Mesh refinement problem:

Comparison

Comparison with previous method ([DLSC08]) : tessellate I and O and use persistent homology;

Model detail			Our Algorithm Timing (sec)				DLSC (sec)	
Name	Size (#Ver, #Tri),	Genus	Reeb Graph	Step 2-5	Tightening	Total	Pre-process	Loop compl
KNOTTY-CUP	(5.4K, 10.8K)	2	0.03	0.03	1.11	1.17	12.1	3.01
Casting	(20K, 40.8K)	9	0.23	0.08	1.7	2.01	99.8	13.7
Botijo	(33.7K, 67.4K)	5	0.52	0.2	2.08	2.8	166.1	40.1
Buddha	(54K, 108K)	9	0.78	0.12	4.96	5.86	697.3	Fail
Fusee	(121K, 243K)	18	2.9	0.37	40.19	43.46	1713.5	559.7
Gearbox	(238K, 477K)	78	4.64	53.95	340.64	399.23	N/A	
Heptoroid	(287K, 573K)	22	4.04	3.06	118.27	125.37	8797.1	2980.0
Colon	(427K, 854K)	160	6.38	39.47	2790.41	2836.26	N/A	
Filigree	(514K, 1.03M)	65	79.97	25.17	559.12	664.26	N/A	

• Mesh refinement problem:

Results

• Software available

http://www.cse.ohio-state.edu/~tamaldey/handle/hantun.html

Handle-Tunnel Loops via Reeb Graphs

Imperfect input

Mesh with boundaries \square

T. Dey, F. Fan and Y. Wang ()

Handle-Tunnel Loops via Reeb Graphs

July 2013 20 / 21

THANK YOU !

T. Dey, F. Fan and Y. Wang ()

Handle-Tunnel Loops via Reeb Graphs

▲ ■ ▶ ■ つへの July 2013 21 / 21

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト