SimBa: An Efficient Tool for Approximating Rips-filtration Persistence via <u>Sim</u>plicial <u>Ba</u>tch-collapse

Tamal K. Dey

Department of Computer Science and Engineering The Ohio State University

2016

Joint work with Dayu Shi and Yusu Wang

◆□> <@> < E> < E> < E</p>

Rips-filtration persistence

- Problem: P from a metric space, P ∈ ℝ^d, compute Vietoris-Rips (Rips) filtration persistence.
- Rips complex

 $\mathcal{R}^{\alpha}(P) = \{ \langle p_0, \dots, p_s \rangle \mid ||p_i - p_j|| \le \alpha, \forall i, j \in [0, s], p_i, p_j \in P \}.$

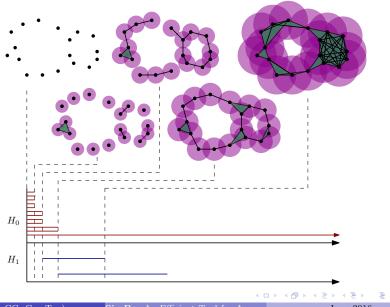
Rips filtration

$$\{\mathcal{R}^{\alpha}(P)\}_{\alpha} := \mathcal{R}^{\alpha_1}(P) \hookrightarrow \mathcal{R}^{\alpha_2}(P) \cdots \hookrightarrow \mathcal{R}^{\alpha_n}(P) \cdots$$

Persistent homology

$$H_p(\mathcal{R}^{\alpha_1}(P)) \to H_p(\mathcal{R}^{\alpha_2}(P)) \to \ldots \to H_p(\mathcal{R}^{\alpha_n}(P)).$$

Persistence barcode



SimBa: An Efficient Tool for Appro

June 2016 3 / 21

Sparsification of Rips filtration

- \bullet Size of Rips complex become prohibitively large as α increases.
- Sparse Rips filtration
 - Inclusion: [Sheehy2012]

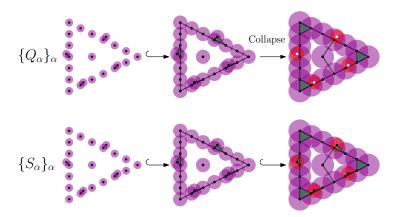
Sparsification of Rips filtration

- \bullet Size of Rips complex become prohibitively large as α increases.
- Sparse Rips filtration
 - Inclusion: [Sheehy2012]
 - Batch-collapsed Rips [D.-Feng-Wang 2014]

Sparsification of Rips filtration

- \bullet Size of Rips complex become prohibitively large as α increases.
- Sparse Rips filtration
 - Inclusion: [Sheehy2012]
 - Batch-collapsed Rips [D.-Feng-Wang 2014]
 - Simple collapse: [Cavanna et al.2015]
- New work: SimBa
 - Use batch-collapse
 - Use set distance

Intuition:



• White points' contribution can be ignored. Stop growing those balls so that they don't contribute to later complexes. Even delete them later.

(SoCG, ComTop)

SimBa: An Efficient Tool for Approx

June 2016 5 / 21

- Greedy permutation $\{p_1, .., p_n\}$:
 - Let $p_1 \in P$ be any point and define p_i recursively as
 - $p_i = \operatorname{argmax}_{p \in P \setminus P_{i-1}} d(p, P_{i-1}), \text{ where } P_{i-1} = \{p_1, ..., p_{i-1}\}.$
 - Insertion radius of p_i : $\lambda_{p_i} = d(p_i, P_{i-1})$.

- Greedy permutation $\{p_1, .., p_n\}$:
 - Let $p_1 \in P$ be any point and define p_i recursively as
 - $p_i = \operatorname{argmax}_{p \in P \setminus P_{i-1}} d(p, P_{i-1}), \text{ where } P_{i-1} = \{p_1, ..., p_{i-1}\}.$
 - Insertion radius of p_i : $\lambda_{p_i} = d(p_i, P_{i-1})$.
- The weight of a point [BCOS15]:

$$w_p(\alpha) = \begin{cases} 0 & \text{if } \alpha \leq \frac{\lambda p}{\varepsilon} \\ \alpha - \frac{\lambda p}{\varepsilon} & \text{if } \frac{\lambda p}{\varepsilon} < \alpha \leq \frac{\lambda p}{\varepsilon(1-\varepsilon)} \\ \varepsilon \alpha & \text{if } \frac{\lambda p}{\varepsilon(1-\varepsilon)} \leq \alpha \end{cases}$$

- Greedy permutation $\{p_1, .., p_n\}$:
 - Let $p_1 \in P$ be any point and define p_i recursively as
 - $p_i = \operatorname{argmax}_{p \in P \setminus P_{i-1}} d(p, P_{i-1}), \text{ where } P_{i-1} = \{p_1, \dots, p_{i-1}\}.$
 - Insertion radius of p_i : $\lambda_{p_i} = d(p_i, P_{i-1})$.
- The weight of a point [BCOS15]:

$$w_p(\alpha) = \begin{cases} 0 & \text{if } \alpha \leq \frac{\lambda_p}{\varepsilon} \\ \alpha - \frac{\lambda_p}{\varepsilon} & \text{if } \frac{\lambda_p}{\varepsilon} < \alpha \leq \frac{\lambda_p}{\varepsilon(1-\varepsilon)} \\ \varepsilon \alpha & \text{if } \frac{\lambda_p}{\varepsilon(1-\varepsilon)} \leq \alpha \end{cases}$$

• Perturbed distance between two points:

$$\hat{d}_{\alpha}(p,q) = d(p,q) + w_p(\alpha) + w_q(\alpha).$$

Sparse Rips filtration

• Sparse Rips complex:

$$\mathcal{Q}^{\alpha} = \{ \sigma \subset N_{\varepsilon(1-\varepsilon)\alpha} \mid \forall p, q \in \sigma, \ \hat{d}_{\alpha}(p,q) \le 2\alpha \}.$$

3.1

A B + A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Sparse Rips filtration

• Sparse Rips complex:

$$\mathcal{Q}^{\alpha} = \{ \sigma \subset N_{\varepsilon(1-\varepsilon)\alpha} \mid \forall p, q \in \sigma, \ \hat{d}_{\alpha}(p,q) \le 2\alpha \}.$$

• Sparse Rips filtration:

$$\{\mathcal{S}^{lpha}\}_{lpha}$$
, where $\mathcal{S}^{lpha} = igcup_{lpha' \leq lpha} \mathcal{Q}^{lpha'}$.

3

Sparse Rips filtration

• Sparse Rips complex:

$$\mathcal{Q}^{\alpha} = \{ \sigma \subset N_{\varepsilon(1-\varepsilon)\alpha} \mid \forall p, q \in \sigma, \ \hat{d}_{\alpha}(p,q) \le 2\alpha \}.$$

• Sparse Rips filtration:

$$\{\mathcal{S}^{lpha}\}_{lpha}$$
, where $\mathcal{S}^{lpha} = igcup_{lpha' \leq lpha} \mathcal{Q}^{lpha'}$.

 Persistence barcode of Sparse Rips filtration approximates that of Rips filtration. Use **GUDHI** to compute its persistence.

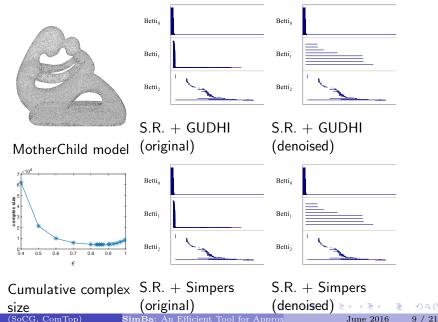
• The size of $\{\mathcal{S}^{\alpha}\}_{\alpha}$ is still large due to union operation.

- The size of $\{\mathcal{S}^{\alpha}\}_{\alpha}$ is still large due to union operation.
- Consider $\{Q^{\alpha}\}_{\alpha}$ connected by simplicial maps $Q^{\alpha} \to Q^{\alpha'}$ for $\alpha < \alpha'$ originated from vertex collapses.

- The size of $\{\mathcal{S}^{\alpha}\}_{\alpha}$ is still large due to union operation.
- Consider $\{Q^{\alpha}\}_{\alpha}$ connected by simplicial maps $Q^{\alpha} \to Q^{\alpha'}$ for $\alpha < \alpha'$ originated from vertex collapses.
- collapse p to its nearest neighbor at its deletion time (scale) $\alpha_p = \frac{\lambda_p}{\varepsilon(1-\varepsilon)}.$

- The size of $\{\mathcal{S}^{\alpha}\}_{\alpha}$ is still large due to union operation.
- Consider $\{Q^{\alpha}\}_{\alpha}$ connected by simplicial maps $Q^{\alpha} \to Q^{\alpha'}$ for $\alpha < \alpha'$ originated from vertex collapses.
- collapse p to its nearest neighbor at its deletion time (scale) $\alpha_p = \frac{\lambda_p}{\varepsilon(1-\varepsilon)}.$
- The persistence of {Q^α}_α is exactly the same as that of {S^α}_α.
 Use Simpers [DFW2014] to compute its persistence.

A snapshot experiment



Limitation of Sparse Rips

• Linear-size guarantee contains a hidden constant factor which depends exponentially on the doubling dimension of the space.

10 / 21

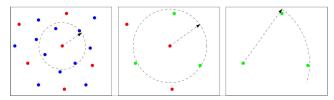
Limitation of Sparse Rips

- Linear-size guarantee contains a hidden constant factor which depends exponentially on the doubling dimension of the space.
- Size is still large and becomes worse as the dimension of data increases.
 - ► E.g., for a gesture phase data of 1747 points in ℝ¹⁸ from UCI machine learning repository, the cumulative complex size is 45.6 million (up to tetrahedra).

10 / 21

• Idea:

- keep doing sub-sampling and collapsing points to their nearest sub-sample points.
- build Rips complex only on the new sub-samples.



• V_{k+1} is αc^{k+1} -net of V_k . Parameter c > 1: input constant (scale increase ratio).

- V_{k+1} is αc^{k+1} -net of V_k . Parameter c > 1: input constant (scale increase ratio).
- Vertex map $\pi_k : V_k \to V_{k+1}$, for $k \in [0, m-1]$, such that for any $v \in V_k$, $\pi_k(v)$ is v's nearest neighbor in V_{k+1} .

- V_{k+1} is αc^{k+1}-net of V_k. Parameter c > 1: input constant (scale increase ratio).
- Vertex map $\pi_k : V_k \to V_{k+1}$, for $k \in [0, m-1]$, such that for any $v \in V_k$, $\pi_k(v)$ is v's nearest neighbor in V_{k+1} .

• The sequence $(V_0 = P)$: $\mathcal{R}^0(V_0) \to \mathcal{R}^{\alpha c \frac{3c-1}{c-1}}(V_1) \dots \to \mathcal{R}^{\alpha c^m \frac{3c-1}{c-1}}(V_m).$

- V_{k+1} is αc^{k+1}-net of V_k. Parameter c > 1: input constant (scale increase ratio).
- Vertex map $\pi_k : V_k \to V_{k+1}$, for $k \in [0, m-1]$, such that for any $v \in V_k$, $\pi_k(v)$ is v's nearest neighbor in V_{k+1} .

• The sequence
$$(V_0 = P)$$
:
 $\mathcal{R}^0(V_0) \to \mathcal{R}^{\alpha c \frac{3c-1}{c-1}}(V_1) \dots \to \mathcal{R}^{\alpha c^m \frac{3c-1}{c-1}}(V_m).$

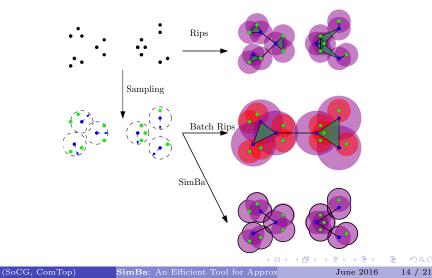
• The persistence barcode of batch-collapsed Rips filtration approximates that of Rips filtration.

12 / 21

Limitation of Batch-collapsed Rips

- Over-connection: $\frac{3c-1}{c-1}$ results from the approximation guarantee, which ensures there is no missing link but causes over-connection.
- Trade-off: large *c* reduces over-connection but results in worse approximation.
- Over-connection becomes worse as data dimension increases.

• Idea: use set distance rather than point distance to resolve the over-connection issue while still ensuring no missing link.



• Vertex map is the same as that of batch-collapsed Rips.

< 🗇 🕨

ъ

- Vertex map is the same as that of batch-collapsed Rips.
- The set (cluster):

$$B_v^k = \{ p \in V_0 \mid \pi_{k-1} \circ \cdots \circ \pi_0(p) = v \}$$

3

15 / 21

- Vertex map is the same as that of batch-collapsed Rips.
- The set (cluster):

$$B_v^k = \{ p \in V_0 \mid \pi_{k-1} \circ \cdots \circ \pi_0(p) = v \}$$

The sequence:

$$\mathcal{B}^0(V_0) \to \mathcal{B}^{\alpha c}(V_1) \to \cdots \mathcal{B}^{\alpha c^m}(V_m)$$

where $\mathcal{B}^{\alpha c^k}(V_k)$ is the clique complex induces by edges $\{(u, v) \in V_k \mid d(B_u^k, B_v^k) \leq \alpha c^k\}$ and α is chosen to be the minimum pairwise distance of input P.

- Vertex map is the same as that of batch-collapsed Rips.
- The set (cluster):

$$B_v^k = \{ p \in V_0 \mid \pi_{k-1} \circ \cdots \circ \pi_0(p) = v \}$$

The sequence:

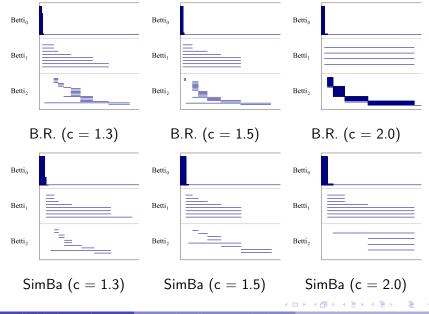
$$\mathcal{B}^0(V_0) \to \mathcal{B}^{\alpha c}(V_1) \to \cdots \mathcal{B}^{\alpha c^m}(V_m)$$

where $\mathcal{B}^{\alpha c^k}(V_k)$ is the clique complex induces by edges $\{(u, v) \in V_k \mid d(B_u^k, B_v^k) \leq \alpha c^k\}$ and α is chosen to be the minimum pairwise distance of input P.

• Approximation of PD: $3\log(\frac{2}{c-1}+3)$ -approximates that of Rips filtration.

15 / 21

SimBa v.s. batch-collapsed Rips

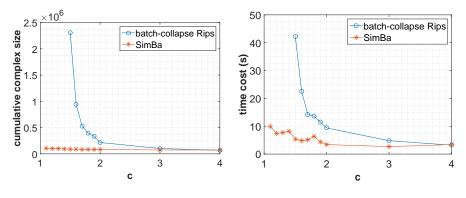


(SoCG, ComTop)

SimBa: An Efficient Tool for Approx

June 2016 16 / 21

SimBa v.s. batch-collapsed Rips

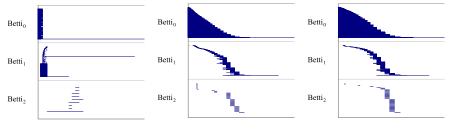


cumulative complex size

time cost

17 / 21

High dimensional data with ground truth

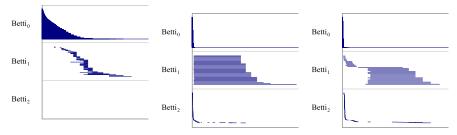


Klein Bottle in \mathbb{R}^4

Primary Circle in \mathbb{R}^{25}

Primary Circle in \mathbb{R}^{49}

High dimensional data without ground truth



Gesture Phase data in \mathbb{R}^{18}

Survivin data in \mathbb{R}^3

Survivin data in \mathbb{R}^{150}

June 2016

19 / 21

Performance results

				S.R.+0	UDHI	S.R.+Simpers		B.R.+Simpers		\mathbf{SimBa}	
Data	n	D	d	size	time(s)	size	time(s)	size	time(s)	size	time(s)
Mother	23075	3	2	$43.5\cdot 10^6$	350	$43.5\cdot 10^6$	463.7	$2.3\cdot 10^6$	42.3	104701	8.8
KlBt	22500	4	2	$20.9\cdot 10^6$	205.3	$20.9\cdot 10^6$	303.5	440049	8	78064	6.6
PrCi25	15000	25	?	∞	-	∞	-		∞	$4.8\cdot 10^6$	216
PrCi49	15000	49	?	∞	—	∞	—	-	∞	$10.2\cdot 10^6$	585
\mathbf{GePh}	1747	18	?	$45.6\cdot 10^6$	282.5	$45.6\cdot 10^6$	432.8	$1.4\cdot 10^6$	29	7145	0.83
Sur3	252996	3	?	∞	_	∞	-	$15.7\cdot 10^6$	1056.4	915110	1079.6
Sur150	252996	150	?	∞	_	∞	_	_	∞	$3.1 \cdot 10^6$	5089.7

June 2016

イロン イヨン イヨン

20 / 21

ъ

- SimBa paper by T.K. Dey, D. Shi, Y. Wang. To appear in ESA 2016.
- SimPers and SimBa software: tamaldey/SimPers/SimPers.html

Thank you ! Questions ?