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Abstract

Delaunay meshes with bounded circumradius to shortest edge length ratio have been
proposed in the past for quality meshing. The only poor quality tetrahedra called slivers
that can occur in such a mesh can be eliminated by the sliver exudation method. This
method has been shown to work for periodic point sets, but not with boundaries. Recently a
randomized point-placement strategy has been proposed to remove slivers while conforming
to a given boundary. In this paper we present a deterministic algorithm for generating
a weighted Delaunay mesh which respects the input boundary and has no poor quality
tetrahedron including slivers. As in previous work, we assume that no input angle is acute.
This success is achieved by combining the weight pumping method for sliver exudation and
the Delaunay refinement method for boundary conformation.

1 Introduction

In finite element methods a three-dimensional domain is often partitioned with tetrahedra.
The quality of their shapes influences the quality of the finite element solution [23]. This
motivated the decade long research on generating meshes with guaranteed aspect ratio called
quality meshes [1, 3, 5, 7, 8, 20, 21, 22]. A considerable literature has built up on the subject,
see the surveys and books [2, 12, 15, 24]. We review only a few of them in the context of the
work in this paper.

Bern, Eppstein and Gilbert [3] pioneered a quadtree based triangulation approach for pro-
ducing quality meshes with close to optimal size in two dimensions. Mitchell and Vavasis [20]
extended this technique to triangulate polyhedra with guaranteed aspect ratio in higher dimen-
sions. This line of work provided many crucial insights into the problem though the elements
produced by this method have a biased alignment because of the axis parallel boxes used in
quadtree/octtree subdivisions. Delaunay based triangulations do not have this problem and
they are widely used in mesh generation for their uniqueness and many other nice properties,
see [15, 12]. As a result researchers also concentrated on computing meshes as a subcomplex
of a Delaunay mesh with guaranteed quality. Chew proposed a simple circumcenter insertion
method for the problem in two dimensions [5] which produces an uniform mesh of quality trian-
gles. Ruppert [21], in a pioneering work called Delaunay refinement, showed how circumcenter
insertion can be used to produce a quality graded mesh with optimal size.
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Many of the concepts including the analysis of the local feature size introduced by Ruppert
are the basis of the further developments in the area. Shewchuk made an important progress
in extending the Delaunay refinement to three-dimensional domains with boundaries [22]. This
refinement eliminates tetrahedra that have large ratio of their circumradius to the shortest edge
length. Consequently the resulting mesh satisfies the radius-edge ratio property, i.e., all tetra-
hedra have radius-edge ratio below a threshold. Although most of the poor quality tetrahedra
are removed by the radius-edge ratio property, one type of bad tetrahedra called slivers are
not eliminated, see [9]. Slivers are formed by four points placed almost uniformly around the
equator of a sphere. Slivers have bounded radius-edge ratio, but they have negligible volume
which make them poor quality. Cheng et al. [8] proposed the sliver ezudation method to get
rid of the slivers from a Delaunay mesh that already have the radius-edge ratio property. They
introduced the pumping technique that assigns a weight to each vertex which prohibits any
sliver to be incident on them in the weighted Delaunay triangulation. Subsequently, Edels-
brunner et al. [13] developed a method to perturb the points so that the unweighted Delaunay
tetrahedralization has the radius-edge ratio property and is sliver-free.

Unfortunately, the algorithms of [8, 13] could not handle boundaries and were applied to
periodic point sets. In a recent work Edelsbrunner and Guoy [14] experimented with the
sliver exudation method which reveals that the technique is very effective in eliminating slivers.
After sliver exudation, almost all tetrahedra have angles greater than 5° (except that some
tetrahedra with angles less than 5° survive near the boundary). Thus, boundary handling
remains a challenge. Recently, Li and Teng [16] showed that it is possible to construct a sliver-
free Delaunay mesh, in the presence of boundaries, with a randomized point-placement strategy
in line of Chew [7]. A sliver is destroyed by inserting a random point near its circumcenter.
The analysis of this algorithm is a nice example of the confluence of the results developed over
the years by Chew [7], Ruppert [21], Shewchuk [22] and Cheng et al. [8].

In this paper we present the first deterministic algorithm to construct a Delaunay mesh,
with the radius-edge ratio property and without any sliver, of a three-dimensional domain with
boundaries. We combine Delaunay refinement with sliver exudation and obtain what we call
the weighted Delaunay refinement. We show that this technique produces a graded mesh with
asymptotically optimal size. Our work can be viewed as an advance along the line of research
initiated by Chew and Ruppert [5, 21], carried forward by Dey et al. [9], Shewchuk [22], Cheng
et al. [8], Edelsbrunner et al. [13] and Li and Teng [16]. Encouraged by the experimental results
of Edelsbrunner and Guoy [14], we believe that weighted Delaunay refinement is imminently
practical. Their experiments show that after sliver exudation, relatively few slivers near the
domain boundary survive. Thus, we expect that most slivers can be destroyed without adding
extra points.

The rest of the paper is organized as follows. Section 2 describes the basic definitions.
Section 3 presents our algorithm and its behavior is analyzed in Sections 4, 5 and 6. Section 7
proves the guarantees achieved by our algorithm. We conclude in Section 8.

2 Definitions

We need the following definitions most of which have been introduced in earlier works.

Quality of tetrahedra. The volumes of tetrahedra in a normalized sense capture their quality.
Poor quality tetrahedra have small normalized volume. Let R, L and V be the circumradius,
shortest edge length and volume of a tetrahedron 7 respectively. We characterize 7 by two
ratios p(7) = R/L and o(1) = V/L3. If p(7) exceeds a threshold py, then we call it skinny.



If p(1) < po and o(7) does not exceed a threshold oy, then we call 7 a sliver. As in previous
work [8, 16], we will show that there exist pp and ¢ independent of the domain such that our
algorithm does not produce any skinny tetrahedron or sliver with respect to py and oy.

Piecewise linear complex. The domain to be meshed is a bounded volume and its boundary
is presented using a piecewise linear complez (PLC). A collection P of vertices, segments and
facets in R? is called a PLC if (i) all elements on the boundary of an element in P also belong
to P, and (ii) if any two elements intersect, their intersection is a lower dimensional element in

P.

Input. We assume that the domain to be meshed is a convex bounded volume, containing a
collection of vertices, segments, and facets represented as a PLC. An input angle is the angle
between two segments sharing a vertex, a segment and a facet sharing one vertex, or two facets
sharing a vertex or a segment. We assume that no input angle is acute. If the input PLC does
not bound a convex volume, we enclose it in a large box, mesh the inside of the box, and only
keep the tetrahedra covering the original domain. This technique has been used before [12, 21].
We use P to denote the (possibly extended) input PLC.

Incidence. Two elements in P are incident if one is in the boundary of the other.

Adjacent elements. We call two elements of P adjacent if either they are incident or they are
non-incident but their closure intersect. For example, two segments sharing an endpoint are
adjacent and two facets sharing a segment are adjacent. As another example, if a segment does
not lie on the boundary of a facet but they share a vertex, then they are adjacent. A vertex of
‘P is not adjacent to any other element that is not incident to it.

Local feature size. The local feature size for P is a function f : R3 — R where f(z) is the radius
of the smallest ball centered at z intersecting two non-adjacent elements of P.

Weighted Delaunay triangulation. We use Z to denote a weighted point at x with weight X?2.
The weighted point Z can be interpreted as a sphere centered at x with radius X. Notice that
any point can be thought of as a weighted point with weight zero. The weighted distance (T, y)
between two weighted points  and ¥ is given by

n(2,9) =z —yl® - X* - Y.

If 7(%, ) = 0, then for any point 2 € TN, ||z — 2||> + |ly — 2||> = X? + Y2 = ||z — y||*>. That
is, Zzzy = w/2. So we say that T and y are orthogonal. If w(Z,y) is greater (resp. smaller)
than 0, then for any point z € TNy, Lzzy > 7/2 (resp. Zzzy < 7/2) and we say that Z and
y are further (resp. closer) than orthogonal from each other. The bisector plane of T and ¥ is
the locus of points at equal weighted distances from Z and .

Let 7 be a simplex of dimension one or more in R?, i.e., 7 is an edge, a triangle or a
tetrahedron. The smallest orthosphere of T is the smallest sphere, say Z, so that T is orthogonal
to each weighted vertex of 7. The smallest orthosphere is the counterpart of the smallest
circumspheres for simplices with unweighted vertices; see Figure 1. Notice that for a tetrahedron
there is only a single sphere orthogonal to all of its four weighted vertices which is its smallest
orthosphere. The center and radius of the smallest orthosphere of any simplex is called its
orthocenter and orthoradius respectively.

For a weighted point set V), a tetrahedron spanning four points of V is weighted Delaunay if
its orthosphere is further than orthogonal away from any other weighted point in V. A weighted



Figure 1: Smallest orthospheres of an edge and a triangle with orthocenter z.

Delaunay triangulation of V is the collection of all weighted Delaunay tetrahedra along with
their triangles, edges and vertices.

3 Weighted Delaunay refinement

3.1 Overview

The Delaunay refinement algorithm as originally proposed by Ruppert [21] and later extended
to three dimensions by Shewchuk [22] iteratively inserts circumcenters of tetrahedra that have
radius-edge ratio above a threshold. Whenever a circumcenter z lies so close to an element F' in
the input PLC that some of its subsets cannot appear in the current Delaunay triangulation, x
is rejected and F' is subdivided instead. It can be proved that a new vertex x is inserted at least
¢ f(z) distance away from all other vertices and input elements for some constant ¢ > 0. This
lower bound on distances guarantees the termination because only a finite number of points
can be accommodated in a bounded domain with a lower bound on the interpoint distances.

Delaunay refinement achieves bounded radius-edge ratio but fails to remove slivers. This
motivated the sliver exudation method of Cheng et al. [8] which eliminates slivers from a
Delaunay mesh that already have bounded radius-edge ratio. The key algorithmic tool in sliver
exudation is the assignment of weights to unweighted vertices. The weight assignment can be
viewed as pumping the unweighted vertex to grow it to a sphere (weighted vertex). When an
unweighted vertex v is pumped, there is a restriction on the weight to be assigned to v. The
weight must be selected from the interval [0,w?N (v)?], where N(v) is the Euclidean distance
to its nearest vertex and w € (0,1/2) is a constant. It is shown that there exists a weight in
the mentioned interval for each vertex v so that if v is assigned that weight, all slivers incident
to v are removed from the weighted Delaunay triangulation of the vertex set [8]. This is stated
precisely in the following sliver theorem.

Theorem 3.1 (Sliver theorem [8]) Given a periodic point set V and a Delaunay triangula-
tion of V with radius-edge ratio < p, there exists pg > 0 and og > 0 and a weight assignment
in [0, w? N (v)?] for each vertex v in V such that p(t) < po and o(7) > ag for each tetrahedron
T in the weighted Delaunay triangulation of V.

The required weights can be assigned in a deterministic manner for periodic point sets as
defined by Cheng et al.[8]. Periodic point sets are infinite points sets without boundaries. So
Theorem 3.1 does not give an algorithm for meshing bounded domains. For a bounded domain,
the weight assignment may challenge the boundary. We solve this problem by combining the



Delaunay refinement with pumping while redefining the encroachment with respect to weighted
points.

Our algorithm refines a Delaunay triangulation till it determines that it is safe to pump
vertices to remove slivers. In the refinement process it attempts to insert circumcenters of
skinny tetrahedra. But, these centers may come close or challenge some boundary elements
which are then subdivided. The subdivision process may trigger further subdivision with new
vertices. This refinement process is exactly the same as that of Ruppert [21] and Shewchuck
[22]. We introduce another stimulus for refinement in preparation for pumping the vertices to
remove slivers in a final stage. If a vertex v has a sliver incident to it, we check if the vertex
with maximum allowed weight challenges any boundary element. If so, a refinement process is
triggered. We will see that even if v does not challenge any boundary element, v, the weighted
vertex may. At these stages, we only maintain the unweighted Delaunay triangulation of the
current vertex set. At the end of the refinement process, when no more boundary element is
challenged by weighted or unweighted vertices, we safely pump the vertices to eliminate slivers.

3.2 Subsegments and subfacets

Our algorithm maintains a set of vertices V which consists of the input vertices initially and it
grows as we refine boundary elements and insert circumcenters of skinny tetrahedra.

The vertices in V on a segment of P subdivide it into subsegments. Let ab be a subsegment.
A point p encroaches upon ab if p lies inside the smallest circumsphere of ab. Suppose that
there is no encroached subsegment. Consider the vertices in V on a facet of P in isolation.
The two-dimensional Delaunay triangulation of these vertices conforms to the boundary of the
facet. Each triangle on the facet is called a subfacet. A point p encroaches upon a subfacet abc
if p lies inside the smallest circumsphere of abc.

Eventually, we will assign weights to vertices in V. This will require us to deal with the
weighted versions of subsegments, subfacets, and encroachment. The weighted-subsegments are
exactly the same as subsegments but possibly with weighted endpoints. A weighted point p
encroaches upon a weighted-subsegment ab if p is closer than orthogonal from the smallest
orthosphere of ab. See Figure 2 for an illustration. Suppose that there is no encroached
weighted-subsegment. Consider the weighted vertices on a facet of P in isolation. The two-
dimensional weighted Delaunay triangulation of these vertices conforms to the boundary of the
facet. Each triangle on the facet is called a weighted-subfacet. A weighted point p encroaches
upon a weighted-subfacet abc if p is closer than orthogonal from the smallest orthosphere of
abc.

We will prove several properties for the weighted Delaunay triangulation (Lemmas 3.1-
3.5) later. As the weighted case is more general than the unweighted case, these results are
applicable for the unweighted Delaunay triangulation as well as when only some of the vertices
are weighted.

3.3 Weight assignment

For a vertex u, there are at most two assigned weights, one to check if & encroaches upon
a boundary element and possibly another if w participates in an actual pumping in the final
stage. Let wy < 1 is a constant chosen in advance. The value of wy will be determined in
Section 5. We use the weight w3 f(u)? for encroachment check and the interval [0,w? f(u)?] to
assign weights during pumping. It is important that there is enough space around u when it
is pumped. Recall that the vertex % with weight U? is equivalent to a sphere centered at u
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Figure 2: A subsegment is encroached by p. Note that the angle shown between p and the small-
est orthosphere of the subsegment is less than 7/2. The subsegment is split by its orthocenter
x.

with radius U. The assigned weights also impose a requirement that no other vertex is allowed
within an Euclidean distance of 2wy f(u) from u. Consequently, after pumping, 4 can reach up
to half of the Euclidean distance to its nearest neighbor. So no two weighted vertices intersect
after pumping. We provide an exact statement of this property below.

VERTEX GAP PROPERTY: For each vertex u in V, the weight of u used for encroach-
ment checking or pumping is at most w3 f(u)? and the Euclidean nearest neighbor
distance of w in V is at least 2wq f(u).

Note that we need to maintain the vertex gap property throughout the algorithm as new
vertices are inserted (added to V). As the weights assigned to the vertices are not large com-
pared with inter-point distances, the resulting weighted Delaunay triangulation satisfies many
properties of the unweighted one, and many results of the Delaunay refinement carry over to
the weighted Delaunay refinement (Lemmas 3.1-3.5). We will prove the vertex gap property in
Section 5.

3.4 Locations of centers

Whenever a subsegment is encroached, we split it by inserting its midpoint. Whenever a
subfacet is encroached, we split it by inserting its circumcenter. This requires the circumcenter
to lie on the facet of P containing that subfacet. Whenever there is a skinny tetrahedron, we
insert its circumcenter. This requires the circumcenter to lie inside the input domain to prevent
perpetual growth of the mesh. Although at this point we need these results for Delaunay
triangulations, we prove them for weighted Delaunay triangulations which we will need in
section 7 for pumping.

Lemma 3.1 Suppose that the vertex gap property holds. If no weighted-subsegment or weighted-
subfacet is encroached, no weighted vertex p intersects a segment or a facet that does not contain

p-

Proof. Assume to the contrary that the lemma does not hold. First of all, p cannot enclose
any vertex other than p because of the vertex gap property. Let F' be a segment intersected by
p if there is any. Otherwise, let F' be a facet intersected by p. Let ¢ be the projection of p on F'.
Observe that any point on F' lies inside the smallest orthosphere of some weighted-subsegment
or weighted-subfacet, or inside some weighted vertex on F' (viewed as a sphere). Suppose that
q lies inside the smallest orthosphere Z of a weighted-subsegment or weighted-subfacet 7. We
have [p—z|? = lg — 2|2+ |lp —q||? < X? + P? as ||¢g — z|| < X and |]p — ¢q|| < P. This



implies that p encroaches upon 7, a contradiction. Suppose that ¢ lies inside a weighted vertex
¥. Similarly, we get ||p — v|2 = |lg — v||?2 + ||]p — ¢||*> < V? + P?. This implies that p and o
intersect, which contradicts the vertex gap property. O

Lemma 3.2 Suppose that the vertex gap property holds.
(i) A weighted-subsegment contains its orthocenter.

(i) If no weighted-subsegment is encroached, a facet contains the orthocenter of any weighted-
subfacet on it.

(#ii) If no weighted-subsegment or weighted-subfacet is encroached, the input domain contains
the orthocenter of any weighted Delaunay tetrahedron inside the input domain.

Proof. Because of the vertex gap property, (i) is obvious. We present a proof that works for
both (ii) and (iii). Let © be a facet or the input domain. Let 7 be a weighted-subfacet on © or
a weighted Delaunay tetrahedron inside Q correspondingly. Let § be the smallest orthosphere
of 7. Assume to the contrary that s lies outside ().

Let p be a vertex of 7 such that ps crosses 9Q2. By Lemma 3.1, p does not cross 952, so s
must cross 92 in order to be orthogonal to p. Let E be the element in 9 closest to s. As §'is
empty of vertices, F is either a segment or facet. Let Lg be the affine hull of E. Let 4 be the
diametral /equatorial sphere of §N Lr. We make four observations. Refer to Figure 3.

Figure 3: Illustration for Lemma 3.2 when (2 is a facet. The shaded disks are the vertices of
the weighted-subfacet whose orthocenter is s. The solid circle is s and the dashed one is .

First, y lies in the interior of F.

Second, the bisector plane of 5 and 7 contains E. Note that p and s lie on opposite sides of
this bisector plane. So 7(p,y) < «(p,s) = 0.

Third, for any vertex v on F, we have w(v,7) > 0 because 7(v,5) = 7(v,y) and 5 is not
closer than orthogonal to v.

Fourth, we claim that the projection g of p onto Lg lies in the interior of £. Assume to the
contrary that ¢ does not lie in the interior of E. By the first observation, y lies in the interior
of E. So qy intersects an endpoint of F if Lg is a line or qy intersects a weighted-subsegment
in OF if L is a plane. Let v denote the endpoint/weighted-subsegment that gy intersects. Let
Z denote 7 if 7y is a vertex or the smallest orthosphere of v if 7y is a weighted-subsegment. Let
H be the bisector plane of 7 and y. Consider 7(v,7) for each vertex v of . If v is a vertex,



then 7(9,7) = 7(Z,7) = —2X2 < 0; otherwise, v is a weighted-subsegment and 7 (7, Z) = 0. On
the other hand, by the third observation, w(v,7) > 0 for each vertex v of y. We conclude that
for each vertex v of v, w(v,7) > m(v,Z). So v lies in the halfspace H™ bounded by H where
7(a,z) < m(a, ) for each point @ € HT. The ray emitting from z through y must shoot outside
H™ because a point sufficiently far in this direction is closer to  than Z. Coupled with the fact
that gy intersects -y, we conclude that ¢ € H™. Note that pq is parallel to H. So p € H' which
implies that 7(p,z) < m(p,y). By the second observation, 7(p,y) < 0 and so 7(p,z) < 0. If
is a vertex, this contradicts the vertex gap property; otherwise, it contradicts the assumption
that no weighted-subsegment is encroached. This proves the claim.

Let 7 be the weighted-subsegment or weighted-subfacet in the interior of £ that contains
g. Let Z be the smallest orthosphere of 7. Let H; be the bisector plane of 4 and z. By the
third observation, for each vertex v of 7, m(v,7y) > 0 = m(v,2). So 7 lies inside the halfspace
H{ bounded by H; where 7(a,z) < 7(a,¥) for each point a € H;". As g € 7 and pq is parallel
to Hy, we have p € H™. So 7(p,2) < n(p,y) which is negative by the second observation. But
then p encroaches upon 7, a contradiction. ad

3.5 Adjacent elements and encroachment

A key property in ordinary Delaunay refinement (without weight assignment) is that vertices
on one element of P cannot encroach upon subsegments and subfacets on an adjacent element
of P, provided that no input angle is less than w/2. This property is needed for the algorithm
to terminate. We show that this property also holds for the weighted case.

Lemma 3.3 If the vertex gap property holds, then for any weighted-subsegment ab on an edge
e of P, ab cannot be encroached by any vertex that lies on an edge adjacent to e or a facet
adjacent but non-incident to e.

Proof. Let T be the smallest orthosphere of ab. By Lemma 3.2(i), z lies on ab. Let E be an
edge adjacent to e or a facet adjacent but non-incident to e. Let u be a vertex on E. Let v be
the common vertex of E and e. By the vertex gap property, & does not contain v. Clearly,

does not contain v. 7(Z,%) = ||u —z||? = X2 - U? > |lu — z||? — |jv — z||? — ||u — v||%. Because
all input angles are at least 7/2, ||u — z|? > |lv — z||? + ||l — v||2. So =(Z,%) > 0 and @ does
not encroach upon ab. ad

Lemma 3.4 Let abc be a weighted-subfacet on a facet F of P. If there is no encroached
weighted-subsegment, then abc cannot be encroached by any vertex that lies on a facet adjacent
to F or an edge adjacent but non-incident to F'.

Proof. Let H be the plane containing F. Let T denote the two-dimensional weighted De-
launay triangulation of the vertices on F. Let Vi denote the subdivision of H induced by T'.
Let X be the set of the smallest orthospheres of the triangles in 7', the smallest orthospheres
of weighted-subsegments in 9F, and a sphere centered at infinity in H with infinite radius.
By duality, Vr is the intersection of H and the weighted Voronoi diagram of 3. Let u be a
vertex that lies on a facet adjacent to F' or an edge adjacent but non-incident to F. Because
no input angle is less than 7/2, the orthogonal projection of u onto H falls outside F' or on
OF. Consider any weighted-subfacet abc on F'. The directed segment from the projection of u
to a intersects a sequence of cells of Vi, including some weighted-subsegment vw in OF. This



yields a corresponding sequence of spheres in Y owning the cells intersected. The weighted
distances from % to the spheres in the sequence increase along the sequence. It follows that if
u encroaches upon abe, u also encroaches upon vw, a contradiction. O

3.6 Projection

Instead of finding any encroached subfacet, we will focus on one that contains the projection of
its encroaching vertex. Such a result has been proved by Shewchuk [22] for encroachments by
unweighted points in the unweighted Delaunay triangulations. We will need a weighted version
of this result.

Lemma 3.5 If no weighted-subsegment is encroached and p encroaches upon some weighted-
subfacet on a facet F, then there exists a weighted-subfacet h on F which is encroached upon
by p and h contains the orthogonal projection of p on F.

Proof. Let H be the plane containing F. Let T' denote the two-dimensional weighted Delaunay
triangulation of the vertices on F. Let Vr denote the subdivision of H induced by T'. Let ¥
be the set of the smallest orthospheres of the triangles of T, the smallest orthospheres of the
subsegments in 0F, and a sphere centered at infinity in H with infinite radius. V7 is the inter-
section of H and the weighted Voronoi diagram of 3. Let t; be a weighted-subfacet of F' that
is encroached upon by p. Suppose that p projects to a cell o in V. When we walk along the
directed segment from the projection of p (inside ¢2) to an interior point of ¢;, we encountered
a sequence of cells in V. This yields a corresponding sequence of spheres in 3 owning the cells
encountered. The weighted distances from p to the spheres in this sequence increase along the
sequence. If #5 is outside F', then the walk will exit a triangle ¢ outside F' and enter a triangle
t' inside F' at some point, i.e., t N t' is a weighted-subsegment in OF. Because p encroaches
upon t1, we have 7(p,T) < m(p,y) < 0, where T is the smallest orthosphere of t N¢' and 7 is
the smallest orthosphere of ¢1. It follows that p encroaches upon ¢t N¢' which is a contradiction.

O

3.7 Algorithm

The input to our algorithm QUALMESH is a PLC. The PLC bounds a convex domain and the
PLC may contain vertices, segments, and facets within the domain. We also assume that no
input angle is less than 7/2. This includes all angles between two segments sharing a vertex,
a segment and a facet sharing one vertex, or two facets sharing a vertex or a segment. The
assumption of a convex bounded domain is not a serious restriction because any PLC can be
enclosed within a large enough box whose elements are included in the extended PLC. After the
meshing is finished, one can choose to retain the desired tetrahedra. This standard technique
has been used before [12, 21].

In the algorithm below we have a refinement step which is done in the unweighted Delaunay
triangulation though some of the refinements may be triggered by a weighted point. Subsequent
to this refinement, the vertices are pumped to eliminate slivers. Obviously, this is carried out
in the weighted Delaunay triangulation. The results proved so far for the weighted Delaunay
triangulation also remain valid for the unweighted case (where all weights are assumed to be
zero) as well as when only some vertices are weighted.



QUALMESH(P)
1. Compute the Delaunay triangulation of the input vertices of P;

2. Repeatedly apply a rule from the following list until no rule is applicable. Rule 7 is applied
only if it is applicable and no Rule j with 5 < ¢ is applicable. The parameters pg, op and
wo will be determined later.

RULE 1(SUBSEGMENT REFINEMENT). If there is an encroached subsegment, insert its
midpoint.

RULE 2(SUBFACET REFINEMENT). If there is an encroached subfacet, there exists an
encroached subfacet h that contains the projection of its encroaching vertex on the
facet containing h. Insert the circumcenter of h provided that it does not encroach
upon any subsegment. Otherwise, reject the circumcenter and apply rule 1 to split
an encroached subsegment.

RULE 3(TETRAHEDRON REFINEMENT). Assume that there is a tetrahedron with radius-
edge ratio exceeding py and circumcenter z. If z does not encroach upon any sub-
segment or subfacet, insert z. Otherwise, reject z and perform one of the following
actions:

e If z encroaches upon some subsegment(s), use rule 1 to split one.

e Otherwise, z encroaches upon some subfacet(s) and use rule 2 to split one that
contains the projection of z.

RULE 4(WEIGHTED ENCROACHMENT). Let DelV be the Delaunay triangulation of the
current vertex set V. Take a vertex v that is incident on a sliver 7 (i.e., o(7) < 09).
Let ¥ be the weighted vertex v with weight wj f (v)2.

e If ¥ encroaches upon some subsegment in DelV that does not lie on the same
segment as v, use rule 1 to split one.

e If ¥ encroaches upon some subfacet in Del V that does not lie on the same facet
as v, use rule 2 to split one that contains the projection of v.

Notice that we always maintain an unweighted Delaunay triangulation in step 2 and
v is used only for checking encroachments.

3. For each vertex v incident on a sliver 7 (i.e., o(7) < 0¢), pump v with weight in [0, w3 f (v)?]
until no sliver is incident to v. Maintain the weighted Delaunay triangulation during the
pumping. We claim that no pumped vertex encroaches upon any weighted-subsegment
and weighted-subfacet.

3.8 Time analysis

We analyze the time complexity of the algorithm in terms of n, the number of input vertices,
and NN, the number of output vertices. We will prove in Section 7.4 that N is no more than a
constant factor of the minimum number of vertices possible.

Consider the lifting map p : R® — R* which maps a point z = (z1,z2,73) € R® to a
point u(z) = (z1,2,73,7? + 22 + z2) € R For a point set V in three dimensions, let
p(V) = {u(v),v € V}. The Delaunay triangulation of V is the projection of the convex hull of
w(V) [11]. So the first step can be done in O(n?) time using Chazelle’s convex hull algorithm [4].
The second step is a loop and a new vertex is added in each iteration. So there are less than
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N iterations. After each vertex insertion in Rule 1, 2, 3 or 4, we have to update the Delaunay
triangulation. An inserted point p is the center of a circumsphere, circumcircle or a segment. In
each case we get a tetrahedron which is destroyed after inserting p. We explore in the Delaunay
data structure in a depth first manner to collect all tetrahedra that are destroyed with the
insertion of p. Once these tetrahedra are identified, p is connected to the boundary of the union
of them to update the Delaunay triangulation. If D, is the number of deleted tetrahedra, the
complexity of this update is O(D,). So, the total time of all updates over the entire algorithm
is upper bounded by the number of deleted tetrahedra. We argue that this number is O(N?).

In the lifted diagram in four dimensions, the insertion of p can be viewed as follows. The
point u(p) is below the convex hull of (V) and let T be the set of tetrahedra on this convex hull
visible to u(p). Insertion of u(p) destroys all tetrahedra in 7" and creates new tetrahedra on the
updated convex hull by connecting u(p) to the boundary of the union of tetrahedra in T'. Let
us call the union of new tetrahedra incident to u(p) as its cap. The space between the cap of
p(p) and T can be triangulated by connecting p(p) to each tetrahedron in 7. Thus, assuming
that the convex hull of the initial point set is triangulated, one can maintain a triangulation in
the lifted diagram after each insertion, which contains the lifted deleted tetrahedra. Therefore,
all tetrahedra deleted by QUALMESH can be mapped to tetrahedra in the triangulation of N
points in four dimensions. Since the size of any triangulation of N points in four dimensions is
only O(N?) (Theorem 1.2 [10]), the same bound applies to the number of deleted tetrahedra.

Each insertion is preceded by a search of an encroached subsegment, subfacet or a skinny
tetrahedron. We argue that this search can also be done in O(N?) total time. We maintain
a stack of all skinny tetrahedra. Whenever an update is performed in the triangulation, we
update the stack and mark any tetrahedron through pointers in the stack which is deleted.
Thus, a skinny tetrahedron can be obtained by popping the stack until the popped tetrahedron
is not marked. The time to create the initial stack is O(n?), the complexity of the initial
Delaunay triangulation. The time to update the stack can be absorbed in the triangulation
update time which is O(N?) in total. Next, we need to account for searching the encroached
subsegments and subfacets. This encroachement may occur by an inserted or rejected point.
Since each rejected point leads to an insertion, the total number of inserted and rejected points
is O(N). For each such point we can scan all subfacets and subsegments to determine the
encroachments. At any time of the algorithm, the total number of subsegments and subfacets
is O(N). This is because the subfacets and subsegments on a planar facet create a plane
graph whose complexity is linear in terms of the number of vertices, and each input edge can
be incident to only constant number of facets due to the input angle constraint. Therefore,
counting over all points, all encroachements can be determined in O(N?) time.

Other than vertex insertion, we also need to compute f(v) for some vertex v in each appli-
cation of Rule 4. This can be done in O(n) time by checking all the input elements. So the
total time spent in computing local feature sizes is O(Nn). Hence, the total time taken by the
second step is O(N? + Nn + n?) = O(N?). The third step pumps at most N vertices. Each
pumping requires updating the mesh connectivity. The complexity of these updates again can
be counted through the lifted diagram to be O(N?). Thus, the third step takes O(N?) time.
In all, we have the following theorem.

Theorem 3.2 The time complezity of QUALMESH is O(N?) where N is the minimum number
of points required to mesh the input domain with tetrahedra that have bounded aspect ratio.
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4 Insertion radii

We define a notion of insertion radius for each vertex inserted or rejected by QUALMESH. The
main result in this section is a relation among insertion radii and local feature sizes which allows
us to prove a lower bound on inter-vertex distances in Section 5. For any vertex x in the input
PLC, the insertion radius r; is the Euclidean distance from the nearest input vertex. For any
vertex = that QUALMESH inserts or rejects, the insertion radius r, is the distance of z from the
nearest vertex in the current V. In Section 5, we will see that a lower bound on the insertion
radii of vertices implies a lower bound on the inter-vertex distances. So a packing argument
shows that QUALMESH must terminate as the domain has bounded volume.

The analysis uses a parent-child relation among all vertices that are input vertices or in-
serted/rejected by QUALMESH. This is similar to the parent-child relation defined by Shewchuk [22]
for the three-dimensional Delaunay refinement, but we need some modifications because of re-
finement triggered by weighted points. Parents of input vertices are undefined. If QUALMESH
inserts or rejects a vertex = using Rule i, 1 < i < 3, then z has type 7. The parent of z is
defined as follows.

1. z has type 3: Among the two endpoints of the shortest edge of the tetrahedron split by
x, the vertex p that appeared in V the latest is the parent of z.

2. x has type 1 or 2: Then z is the circumcenter of a subsegment or subfacet 7. There are
two cases.

(a) If 7 is encroached by a weighted vertex p in rule 4, the parent of z is p.

(b) If 7 is encroached by an unweighted vertex, we choose the parent of z to be the
encroaching vertex p nearest to z. If p was not rejected, then r, = ||p—z||; otherwise,
re =X > |lp—z|.

Our goal is to lower bound r; in terms of f(z) and r,, where p is the parent of z. (This
recurrence will be useful in an inductive proof to lower bound r; in terms of f(z) only.) To
this end, we prove two technical lemmas. Lemma 4.1 lower bounds ||p — z|| in terms of f(z),
f(p), and rp. Lemma 4.2 lower bounds 7, in terms of ||p — z|. Both apply under some special
conditions. Then we employ these two lemmas and analyze the remaining cases to obtain the
lower bound on 7, in terms of f(z) and 7.

Lemma 4.1 Suppose that the vertex gap property holds. Let x be a vertex of type 1 or 2. Let
p be the parent of x. Let T be the smallest circumsphere of the subsegment or subfacet centered
at x.

(i) If p is an input vertex, p has type 1, or p has type 2 and x has type 2, then ||p — z|| >
max{f(z), f(p)}-

(ii) Suppose that p has type 2 and x has type 1, or p has type 3. If p does not lie inside T,
then ||p — z|| > rp/v/2.

Proof. Let F be the segment containing z if z has type 1, otherwise let F' be the facet containing
z. We first claim that p does not lie on F'. If the insertion/rejection of z is induced in rule 4, the
claim is enforced by the algorithm. Otherwise, because the unweighted Delaunay triangulation
of vertices on a segment or facet gives the subsegments and subfacets, an unweighted vertex on
a segment (facet) cannot encroach upon subsegments (subfacets) on the same segment (facet).
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Case

Case

Case

1: p is an input vertex. The two balls centered at p and z with radius ||p — z|| intersect
two non-adjacent input elements (F and p). So ||p — z|| > f(p) and ||p — z| > f(z).

2: p has type 1, or p has type 2 and z has type 2. Let F' be the segment/facet containing
p. We already know that F' # F. We argue that F and F’ are non-adjacent. If z has type
1 and p has type 1, then Lemma 3.3 implies that F” is non-adjacent from F. Suppose that
z has type 2. The insertion/rejection of z could be induced in an application of rule 4 or
it could be induced in a direct application of rule 2. In any case, there is no encroached
subsegment, otherwise rule 1 would have been invoked instead. So Lemma 3.4 implies
that F' and F are non-adjacent. As F and F’' are non-adjacent, ||p — z|| > f(z) and

lp — x| > f(p)-

3: p has type 2 and z has type 1, or p has type 3. (When p has type 2 and z has type
1, p and z may lie on the same facet.) By assumption, p does not lie inside Z. This
implies that the insertion/rejection of z is induced in rule 4. Also, QUALMESH enforces
two conditions. First, p was inserted by QUALMESH. Second, if = has type 1 (resp. type
2) and lies on a segment (resp. facet), p does not lie on the same segment (resp. facet).
It suffices to lower bound the distance from p to F. Go back to the time when p was
inserted by QUALMESH.

Case 3.1: z has type 1. So F' is a segment. Let ab be the subsegment on F' that contains x
at that time. Observe that p lies outside the smallest circumsphere of ab; otherwise,
p would have been rejected for encroaching upon a subsegment because p has type 2
or 3. If the nearest point of ab to p is a or b, then ||p—z|| > min{||p—al|,|[p—b||} > rp
because a and b exist when p is inserted. Otherwise, the nearest point lies in the
interior of ab. Assume that the orthogonal projection of p onto ab lies on ay, where y
is the midpoint of ab. Then sin Zpay > 1/v/2. So ||p—z|| > |la—p||-sin Lpay > r,/V/2.

Case 3.2: z has type 2. So p has type 3 and F' is a facet. Observe that p lies outside the
smallest circumsphere of any subsegment in 0F or any subfacet on F. Otherwise, p
would have been rejected for encroaching upon a subsegment or subfacet because p
has type 3.

If the nearest point of F' to p lies on a segment F’ in OF, by applying the analysis
in Case 3.1 to F’, we conclude that ||p—z|| > r,/+/2. Otherwise, the nearest point g
on F' to p lies inside some subfacet abc on F'. Note that ¢ is the orthogonal projection
of p onto abc. The Voronoi diagram of a, b and ¢ divides abc into three regions, each
containing a vertex of abc. Assume that ¢ lies inside the region containing a. Let
Z be the smallest circumsphere of abc. Let H be the plane that is perpendicular to
F and passes through a and p. H N7 is a circle and p lies outside it. Let y be the
center of H NZ. Observe that ¢ lies on ay and so sin Zpay > 1/4/2. The Euclidean
distance from p to F is ||a — p|| - sin Zpay > r,/+/2.

Lemma 4.2 Suppose that the vertex gap property holds. Let x be a vertex of type 1 or 2. Let
p be the parent of z. Then 5 > ||p — z||/V/2.

Proof. Let T be the circumsphere of which z is the center. If p lies inside Z, p is unweighted and
it follows from the definition of parent that r, > ||[p—z||. Assume that p does not lie inside z. For
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p to be the parent of z, the insertion/rejection of z must be induced in rule 4 by the weighted
vertex p with weight w? f(p)?. This also implies that p € V at that time. By Lemma 4.1,
lp = [l > f(p) or |lp— || > rp/V2 T |p— || > f(p), then [lp — z||/v/2 > wof(p) as wo < 1/2.
If |[p—z|| > rp/V/2, as 7, > 2w f (p) by the vertex gap property, we also get |[p—z||/v/2 > wof(p).
Because p was closer than orthogonal from Z, we have X2 + w3 f(p)? > |lp — ||?>. Substituting

wgf(p)? by ||p — z||?/2 and rearranging terms, we get r, = X > ||p — z||/v/2. O

We are ready to lower bound 7, in terms of f(z) and the insertion radius of the parent of
z. This is the main result of this subsection.

Lemma 4.3 Suppose that the vertex gap property holds. Let x be an input vertexr or a vertex
inserted or rejected. Let p be the parent of x, if it exists.

(i) If = is an input vertez or p is an input vertez, then ry > f(x)/V/2.

(ii) Otherwise, T > f(z)/V2 or r4 > ¢ -1y, where ¢ = 1/2 if z has type 1 or 2 and ¢ = py if
z has type 3.

Proof. 1If x is an input vertex, then r, > f(z) by the definition of local feature size. Suppose
that QUALMESH inserts x or rejects = by rule 1, 2, or 3. Recall that x is the center of the smallest
circumsphere of a subsegment, subfacet, or tetrahedron. Let T denote this circumsphere.

Consider the case where p is an input vertex. If z has type 1 or 2, then ||p — z|| > f(z) by
Lemma 4.1. Note that r, > |[p — z||/v/2 by Lemma 4.2. So we get r, > f(z)/+/2. Suppose
that = has type 3. Let 7 be the skinny tetrahedron split by . One endpoint of the shortest
edge of 7 is p. Let ¢ denote the other endpoint. Because p is an input vertex, ¢ is also an
input vertex. This is because p did not appear in V earlier than ¢ by the definition of parent-
child relation which can only happen if ¢ is also an input vertex. This means the empty ball
centered at x with radius r, has two input vertices, namely p and ¢, on its boundary. Therefore,
re = |lp — zl| = f(z).

Consider the case where p is not an input vertex. If x has type 3, then r;, is at most the
shortest edge length of the tetrahedron split by z. So r;, = X > pyr,. Suppose that = has type
1 or 2. If p has type 1, or p has type 2 and z has type 2, then ||p — z|| > f(z) by Lemma 4.1
and 7, > ||p — z||/v/2 by Lemma 4.2. So r; > f(z)/+/2. The remaining cases are that p has
type 2 and x has type 1, or p has type 3.

Case 1: p lies inside Z. So p was rejected by QUALMESH and r, = X. Let 7 be the subsegment
or subfacet of which Z is the smallest circumsphere.

Case 1.1: 7 is a subsegment ab. Let a be the vertex of 7 nearest to p. So Zpzra < /2.
It follows that ||p — a|| < v2X = v/2r,. The vertex a was in V when p was rejected.
So r, < |lp — al|. Hence, r; > 1,/v/2.

Case 1.2: 7 is a subfacet abc. The Voronoi diagram of a, b and ¢ divides abc into three
regions, each owned by a vertex of abc. Rule 2 enforces that 7 contains the orthogonal
projection of p. So we can assume that the projection of p lies in the region, say
owned by a. Let H be the plane that is perpendicular to abc and passes through a
and p. Let y be the center of the circle H NZ. As the projection of p lies inside the
region owned by a, Zpya < /2. This implies that ||p —a|? < |ly —p||? + |y — a|?® <
lly — pl|? + X2. As p lies inside Z N H, ||y — p|| < radius(H NZ) < X. It follows that
lp—al| < vV2X = +/2r,. The vertex a was in V when p was rejected. So 7, < |[p—al|.
Hence, 7, > rp/\@.
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Case 2: p does not lie inside Z. We have ||p—=z|| > r,/v/2 by Lemma 4.1(ii) and r, > ||p—=z||/v/2
by Lemma 4.2. So ry > rp/2.

5 Vertex-to-vertex distances

In this section, we apply Lemma 4.3 to prove lower bounds on the insertion radii and inter-
vertex distances. In the process, we also prove that the vertex gap property holds throughout
the algorithm. We will use these results in Section 7 to prove several guarantees provided by
weighted Delaunay refinement. We need the following relation involving local feature sizes and
insertion radii.

Lemma 5.1 Let = be a vertez with parent p. If ry > c-rp, then f(z)/rs < f(p)/(c-Tp) + V2.

Proof. Recall that when z is inserted, = is the center of the smallest circumsphere of a
subsegment, subfacet, or tetrahedron. Let Z denote this circumsphere. If z has type 3, then
re = ||p — z||. If z has type 1 or type 2, then r; > ||p — z||/v/2 by Lemma 4.2. Starting with
the Lipschitz condition, we get

f@) < flp)+lp—=l
< f(p) ‘T + \/§T$
which implies that f(z)/rz < f(p)/(c-rp) + V2. O

The following are the constants of proportionality in Lemma 5.2, the main result in this
subsection.

™V2po 3v2p0 +2v/2
= Co="T""2"""2
po—4 po—4 po—4

_\/5/)04-3\@ o — 1
T 2140

Cy

Note that whenever py > 4, we have C; > Cy > C3 > V2.

Lemma 5.2 Let x be a vertex of P or a vertex inserted or rejected by QUALMESH. We have
the following invariants for py > 4.

(i) If = is a vertez of P or the parent of x is a vertex of P, then vy > f(z)/v/2 > f(z)/Cs.
Otherwise, if x has type i, for 1 <i <3, then ry > f(z)/C;.

(i) For any other vertexy that appears inV currently, ||z—y|| > max{f(z)/C1, f(y)/(14+C1)}.

(#ii) If x is inserted by QUALMESH, the vertex gap property holds afterwards.

Proof. We prove by induction. Invariant (i) holds before QUALMESH starts (the basis case).
Clearly, invariant (i) is not affected by pumping a vertex. So it suffices to prove invariant (i)
where z is inserted or rejected by QUALMESH. Let p be the parent of . If p is an input vertex,
Lemma 4.3 implies that r, > f(x)/v/2. Suppose that p is not an input vertex. We assume
inductively that invariant (i) holds for p and we conduct a case analysis. If z has type 3, then
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Tz > po - p by Lemma 4.3. By induction, we get f(p) < Cir, regardless of the type of p. By
Lemma 5.1, we get

C
Ty P0

If 2 has type 2, the proof of Lemma 4.3 reveals that r, > f(z)/v/2 > f(z)/Cs when p has type 1
or 2. When p has type 3, case 1 and case 2 in the proof of Lemma 4.3 reveal that r; > r,/2.
By induction assumption, f(p) < C3rp. Then by Lemma 5.1, we get

Ty

If z has type 1, then the proof of Lemma 4.3 reveals that 7, > f(z)/v/2 > f(x)/C; when p
has type 1. When p has type 2 or 3, case 1 and case 2 in the proof of Lemma 4.3 reveal that
Tz > 7p/2. By induction assumption, f(p) < Corp. Then by Lemma 5.1, we get

@S202+\/§:CI-

Tz

This proves that invariant (i) holds in general.

Consider invariant (ii). For any vertex y that appears in V currently, ||z—y|| > rz > f(x)/Ch.
Because of £(z) > f(y) — || — yll, we also get [l — yl| > /(z)/C1 > £(3)/Cr — |1z — 9]l /Cy. Tt
follows that ||z — y|| > f(y)/(1 + CY).

Consider invariant (iii). It follows from invariant (i) that for any vertices v and v in V,
||lw—wv| > f(u)/(1+ C1). By our choice of values of C; and wq, f(u)/(1+ C1) = 2wy f(u). This
proves that the vertex gap property still holds. a

6 Effect of pumping

Let V denote a set of unweighted points. Let Conv) denote the convex hull of V. Let V be
the weighted points obtained after some weight assignment to points in V. We have already
defined N(z) to be the distance to the nearest neighbor in V for any z € V. We extend the
definition for any = € R® by letting N(z) denote the Euclidean distance from z to its second
nearest neighbor in V for any point z € R3. If z € V, then N(z) still denotes the nearest
neighbor distance of z. We say V has weight property [w] for some w € (0, 1/[2 ) if U<wN (u)
for each 7 € V. Let DelV denote the weighted Delaunay triangulation of V. DelV has ratio
property [p] if the orthoradius-edge ratio of every tetrahedron in DelV is at most p-

The work of Cheng et al. [8] suggests that Del V and Del ¥ behave similarly given the ratio
and weight properties:

Lemma 6.1 (Claim 7 in [8]) Let V be a periodic point set. If DelV has ratio property [p]
and V has weight property [w], then DelV has ratio property [p'] for some p' depending on p
and w.

In this section, we prove a version of the Lemma 6.1 to deal with a finite point set (see
Lemma 6.6). There are two differences in the result. First, V is a finite point set instead of a
periodic point set. Second, we need an extra condition that the orthocenter of each tetrahedron
in DelV lies inside Conv V. Then the rest of Lemma 6.1 carries over.
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We need three results from Talmor’s thesis [18]. We state them below and include the proof
of Lemma 6.3 as we need an inequality in the proof later. For a point p € V, let V,,(V) denote
the Voronoi cell owned by p in the Voronoi diagram of V. Let b, and B), be balls centered at p
such that radius(by) = N(p)/2 and radius(By,) = pL - N(p) where L is a constant used in the
next lemma.

Lemma 6.2 (Lemma 3.4.3 in [18]) If DelV has ratio property [p], the lengths of two adja-
cent edges of DelV differ by at most some constant factor L depending on p.

Lemma 6.3 (Lemma 3.5.1 in [18]) Assume that DelV has ratio property [p]. For each p €
V, Vp(V) contains by, and By, contains all vertices of Vp(V).

Proof. 1t is obvious that b, C V,,(V) as radius(b,) = N(p)/2, Let v € V such that ||[p—v|| = N(p).
So pv is an edge of Del V. Let 7 be some tetrahedron in Del V incident to p. Let pg be an edge
of 7. Using Lemma 6.2, we get

lp—gqll <L-|lp—vl|=L-N(p). (6.1)
Let z be the circumcenter of 7, i.e., z is a vertex of Vj,(V). The ratio property implies that

lp— 2| < p-llp— gl < pL- N(p) = radius(B,).

Thus, B, contains all vertices of V,(V). 0

Lemma 6.4 (Theorem 3.6.2 in [18]) Assume that DelV has ratio property [p|. Let xz be a
line segment lying inside U,y Vp(V) N By. Let % be the sphere centered at z with radius ||z —z||.
Then there is a constant C > 0 such that if Z is empty, then N(z) < C - N(z).

Next, we apply Lemma 6.3 to show that B, is so large that V,,(V) N B, contains V,(V) N
Conv V. The implication is that |J ¢y, Vp(V) N By contains the Voronoi diagram of V clipped
within Conv V.

Lemma 6.5 Assume that DelV has ratio property [p|. For each p € V, V,(V) N ConvV C
Vp(V) N By.

Proof. We first prove that V,(V) N ConvV C B,. If V,(V) is bounded, then V,(V) C B, by
Lemma 6.3. It follows that V,,(V) N Conv VY C B,. Suppose that V,(V) is unbounded. Then p is
an extreme vertex of Conv V. Let T be the set of boundary triangles of ConvV incident to p.
For each triangle t € T, let H; denote the supporting plane of ¢ and let Ht'" denote the halfspace
bounded by H; that contains Conv V. By convexity, V,(V) N ConvV C V,(V) N (e Hy . We
show that B, contains the vertices of V,(V) N (,er H; - A vertex z of V,(V) N (e H; has
one of three types:

1. z is a vertex of V,(V). By Lemma 6.3, z € B,,.

2. z is the intersection of some edge pg in Del V with a facet of V, (V). By (6.1), ||[p —¢|| <
L - N(p) < radius(B,), so z € B,.
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Figure 4: The shaded convex quadrilateral is Q.

3. z is the intersection of H; for some t € T and some edge of V,(V). Let ¢ and r be the
other two vertices of . Let Q be the convex quadrilateral on H; bounded by the bisector
plane of p and ¢, the bisector plane of p and r, pg, and pr. See Figure 4. Let u be the
vertex of Q diagonally opposite p. Observe that z lies inside Q. So we are done if we
can show that @ C B,. By (6.1), ||p — ¢|| < radius(Bp) and |[p — r|| < radius(B,). It
follows that p, g, and r lie inside B,,. Let 6 = Zpqr and 8 = Zprq. The angle of Q at u
is 8 + B. After splitting this angle into two with the diagonal pu, let 7y denote the one on
the same side as pq. Without loss of generality, assume that v > (6 + 8)/2 which is at
least min{#, 5}. By the ratio property, p > min{1/(2sin@),1/(2sinf)}. It follows that
p > 1/(2siny). We have

||p_u|| — Hp_qH
2-sinvy
< pelp—dll
(6.1)
< pL-N(p)
= radius(Bp)

Therefore, Q C B, and hence z lies inside B,,.

Note that V,(V) N (\,ep H; is bounded. So we conclude that V,(V) N ConvV C V,(V) N
Mier Hi C Bp. Finally, V, (V) NConvV =V,(V)NV,(V)NConvV C V,(V) N B,. a

Finally, we apply Lemmas 6.4 and 6.5 to prove the main result of this subsection.

Lemma 6.6 LetV be a finite point set. Assume that DelV has ratio property (o], V has weight
property [w], and the orthocenter of each tetrahedron in DelV lies inside ConvV. Then DelV
has ratio property [p'] for some constant p' depending on p and w.

Proof. Let z be the orthosphere of a tetrahedron 7 in DelV. That is, z is the orthocenter of
7. Let gr be the shortest edge of 7. Let z be the intersection point gz N Z.

By assumption, z lies inside Conv V. So we have zz C Conv V by convexity. Using the fact
that U,y Vp(V) = R3, we get zz C Conv)V N Upey Vo (V) = Upey Vp(V) N Conv V. Lemma 6.5
further implies that zz C |J ., V;(V) N By. As 2 is empty, we can apply Lemma 6.4 to zz and
V. We get

peY
7Z < N(z) < C- N(z). (6.2)

By the Lipschitz property, N(z) < N(q)+||g—z||. Because 7 and 7 intersect and z = ¢gzNZ,
z lies inside g. By the weight property, the radius of ¢ is at most wN (¢) and so ||¢—z|| < wN(q).
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Thus, we have N(z) < (1 +w)N(q). As q and r are vertices in V, N(q) < |l¢ — r||. It follows
that

N@) < (1+0)- g ]| (63)
Substituting (6.3) into (6.2), we get Z < C' - (14 w) - ||g — r||. Recall that gr is the shortest
edge of 7. Hence, p’ can be set to be C - (1 + w). O

7 (Guarantees

We establish four guarantees for QUALMESH. The first two guarantees, termination and grad-
edness, follow from Lemma 5.2. The absence of sliver and the size optimality are guaranteed
using Lemma 5.2, Lemma, 6.6, and some other results to be proved.

7.1 Termination and gradedness

Theorem 7.1 QUALMESH terminates with a graded mesh.

Proof. 1t follows from Lemma 5.2(ii) that any two vertices u and v at any stage of the algorithm
must satisfy ||u —v|| > f(u)/(1+ C1) > fmin/(1+ C1) where frip is the minimum local feature
size in the domain. If we center disjoint balls of radii fy,;in/(2+ 2C1) at the mesh vertices, then
we can pack at most 24(1 + C;)3volume(D) /(4w f3 . ) such balls inside a bounded domain D.
So the algorithm must terminate. Gradedness follows from the vertex gap property. O

7.2 Conformity

After pumping in step 3, is Del V conforming? The vertices in % partition the input segments
into weighted-subsegments. For any input facet F', the two-dimensional weighted Delaunay
triangulation of vertices on F' partition F' into weighted-subfacets. We show that DelV is
conforming by showing that no weighted-subsegment or weighted-subfacet is encroached.

Theorem 7.2 No weighted-subsegment or weighted-subfacet is encroached upon the completion
of QUALMESH.

Proof. Assume to the contrary that a vertex v in Del V encroaches upon a weighted-subsegment
or weighted-subfacet 7.

Consider the case where 7 is a weighted-subsegment. Observe that the smallest circumsphere
C of 7 encloses the smallest orthosphere O of 7. Thus, the bisector H of C and O avoids C' and
so H avoids 7 too. 7 lies in the halfspace HT bounded by H such that «(p,C) < w(p, O) for
all point p € H*. Observe that in order that ¥ encroaches up on 7, 7 contains the orthogonal
projection of v onto the segment containing 7. Thus, v € HT and so 7(v,C) < 7(v,0) < 0.
The weight of ¥ is at most the weight used for v in rule 4. However, this contradicts the fact
that, v with that weight, did not encroach upon 7.

Consider the case where 7 is a weighted-subfacet on a facet F. By Lemma 3.5, we can
assume that 7 contains the projection of v. Let O be the smallest orthosphere of 7. The
two-dimensional unweighted Delaunay triangulation of vertices in V on F' partitions F' into
subfacets. Let 7’ be the subfacet that contains the projection of v on 7. Let C be the smallest
circumsphere of 7/. We claim that the bisector plane H of C' and O avoids 7/. Otherwise,
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H intersects C which implies that C and O intersect (H passes through their intersection).
Because 7' has vertices on both sides of H, a vertex of 7/ must lie inside O, a contradiction.
Observe that 7/ lies in the halfspace H™ bounded by H such that 7(p, C') < m(p, O) for all point
p € H. Thus, n(v,C) < 7(0,0) < 0. The weight of ¥ is at most the weight used for v in rule
4. However, this contradicts the fact that, v with that weight, did not encroach upon 7’. O

7.3 No sliver

Slivers incident to an unweighted vertex p are eliminated by pumping p. In sliver exudation,
p is pumped within the weight interval [0, w3 N(p)?]. During the pumping, tetrahedra incident
to p change at discrete instances. For pumping to work, two conditions (Lemmas 7.1 and 7.2)
must hold over the entire interval of pumping. First, the lengths of edges incident to p are
within a constant factor. Second, only a constant number of tetrahedra can be incident to p.
These two conditions are proved by Cheng et al. [8] for periodic point set using Lemma 6.1.
Lemma 6.6 is the analog of Lemma 6.1 for finite point set. By Theorem 7.2 and Lemma 3.2(iii),
the conditions of Lemma 6.6 are satisfied. So we can prove the two conditions for finite point
set using exactly the same proofs in [8]. For completeness, we sketch the proofs below. Let
K (V) be the graph consisting of edges in DelV for all V with weight property [wo]-

Lemma 7.1 (Claim 10 in [8]) Assume that DelV has ratio property [po]. The lengths of any
two adjacent edges in K (V) is within a constant factor vy > 1 depending on py and wy.

Proof. (Sketch) Let p be a vertex in V. First, consider a triangle pqu € DelV for some V with
weight property [wp]. Let Z be the radius of the smallest orthosphere of pgu. By Lemma 6.6,
Z <pllp—q| and Z < p’-||p—ul|. On other hand, by the weight property, a constant fraction
of pq lies outside p and g. This fraction of pq lies inside the smallest orthosphere of pgu and so
Z = Q(|lp — ql|). Similarly, Z = Q(||p — u|). It follows that ||p — ¢|| and ||p — u|| differ by at
most some constant factor k.

Second, consider the case where pg and pu are two edges in K(V) such that Zgpu is less
than some constant angle bound 7. Assume that Vl and Vg denote the two weighted versions
of V such that pg € Del V1 and pu € Del Vg Let H be the plane passing through pqu. We pick
the orthosphere z of a tetrahedron 7 in Del V1 that is incident on pq. We intersect z with H
to obtain a circle y centered at y with radius Y. Note that 7 is orthogonal to the circles pN H
and gN H. By Lemma 6.6, the radius of 2z is at most p’ - ||p — ¢||. Clearly, Y is at most the
radius of z. So Y < p' - ||p — ¢||- This implies that pq cuts deeply into §. As u lies outside
9, for sufficiently small 7 (dependent on p’ and wyp), pu cannot be much shorter than pg. By
symmetry, pq cannot be much shorter than pu. Thus, ||p — ¢|| and ||p — u|| differ by at most
some constant factor ks.

Next, we deal with all incident edges of p. Let S be a unit sphere centered at p. We
take a maximal packing of disjoint spherical caps with angular radii n/4 on S. The number
of such caps is a constant m dependent on 7. Then we expand the angular radius of each cap
to /2. The expanded caps cover S. Each 1n(:1dent edge pq projects radially to a vertex ¢’
on S. Each triangle pgr in DelV for some V with weight property [wg] projects radially to
an arc ¢'r’ on S. This yields a connected graph embedded on S. Suppose that we walk from
q' to an arbitrary vertex u’ within the graph. If the walk stays within a cap, by our second
observation, the edge length increases by at most a factor of ko. If the walk enters a new cap,
by our first observation, the edge length increases by at most a factor of k. If the walk returns
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to a cap visited before, the whole detour increases the edge length by at most a factor of ko. As
there are m caps, we conclude that |[p—g|| and ||p—u]| differ by at most a factor of k', 1. O

Lemma 7.2 (Claim 11 in [8]) Assume that DelV has ratio property [po]. The degree of every
vertex in K (V) is bounded by some constant dy depending on py and wy.

Proof. (Sketch) Let p be a vertex in V. Let L be the length of the longest incident edge of p in
K (V). Let r be a neighbor of p in K(V). By Lemma 7.1, ||p— || > L/vy. The nearest neighbor
of r is a Delaunay neighbor of r. So by Lemma, 7.1 again, the nearest neighbor distance of r
is at least L/12. It follows that at the neighbors of p, we can center disjoint balls of radius
L/(208). Observe that all these balls lie inside the ball centered at p with radius L + L/(213).
Thus, a packing argument shows that p has O(1) neighbors. O

Cheng et al.[8] proved that a sliver incident to p can remain weighted Delaunay only within
a subinterval of width O(ooN(p)?) during pumping. As the number of tetrahedra in K (V)
incident to p is bounded by a constant, if we choose o properly, the intervals over which slivers
remain incident to a vertex p can be made small enough so that there is a subinterval over which
no sliver is incident to p. This is the key idea in [8] in the proof that pumping can eliminate
slivers for periodic point sets. The freedom in choosing oy reveals that it is unnecessary to use
exactly the weight interval [0,w3 N (p)?]. It is equally good that the weight interval contains
[0,wZN (p)?] for some constant Wy < wy.

We would like to employ Lemmas 7.1 and 7.2 with V being a finite point set. To this end,
we first need to guarantee that the pumping in step 3 of QUALMESH uses a weight interval
[0,@%N (p)?] and that the resulting weighted point set V has weight property [wo] for some
constants wy < wg. The weight property [wp] follows from the vertex gap property. Lemma 7.3
tells us how to set wy.

Lemma 7.3 Let M be the mesh obtained at the end of step 2 of QUALMESH. For any vertex
v in M, its nearest neighbor distance is at most 2v/2f (v).

Proof. Let B, denote the ball centered at v of radius N(v)/2. Assume to the contrary that
2v/2f(v) < N(v). Then B, intersects two disjoint elements of P. B, cannot contain any vertex
in V. So B, intersects the interior of subsegments or subfacets. Let E be the nearest subsegment
or subfacet to v that B, intersects. Let ¥ be the orthogonal projection of v onto the affine hull
of E. Note that v lies on E. The Voronoi diagram of the vertices of £ partition F into regions,
each owned by one vertex of E. Assume that o lies in the region owned by the vertex w of E.
Because ||v — w|| > radius(B,) > v2f(v) and ||Jv — 3|| < f(v), we have

lo = 3]l < llv = wll/V2. (7.4)

Let 7 be the smallest circumsphere of E. We have ||v — z|2 = ||5 — z||> + ||v — 9||>. Because ¥
lies in the region owned by w, Zzw > 7/2 which implies that ||o — z||? < |Jw — z||? — |7 — w]|?.
Therefore,

lo =2l < fw—al® 5 - wl® + v - 3
= w—al® = v —wl|? +2|lv - 5|

(7.4)
< lw —af?
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But then v lies inside Z and so v encroaches upon E, a contradiction. ad

In step 3 of QUALMESH, we pump p using the weight interval [0,w? f(p)?]. This interval
contains [0, w3 N (p)?/8] by Lemma 7.3. Using Lemmas 7.1 and 7.2, the same proof in [8] shows
that pumping eliminates slivers for the finite point set V. For completeness, we sketch the proof
below. Algorithmically, we can use flips to generate new tetrahedra as pumping progresses and
stop when no sliver is incident to p.

Theorem 7.3 There is a constant oy > 0 such that o(T) > oo for every tetrahedron T in the
output mesh of QUALMESH.

Proof. (Sketch) Let pgrs be a sliver in some Y with weight property [wg]. We are to analyze
what happens to pgrs when p is pumped with weight from the interval [0, w3 f (p)?]. Let Wy,
be the subinterval such that pgrs may remain weighted Delaunay when P? € W,.

We claim that |W,,s| = O(coN(p)?). Let L be the shortest edge length of pgrs. Let z be
the orthosphere of pgrs. Let H(P) be the signed distance of z from the plane passing through
grs when p has weight P2. H(P) is positive if p and z lie on the same side and H (P) is negative
otherwise. Observe that Z? = H(P)? + Y2, where Y is the radius of smallest orthosphere of
grs. By Lemma 6.6, Z < p'L. The circumradius of grs is at least L/2. Also, by Claim 4 in [8],
the circumradius of grs is at most Y/4/1 — 4w?. It follows that H(P)? = Z% - Y? = O(L?) or
H(P) € [-kL, kL] for some constant k. By Claim 13 in [8], H(P) = H(0) — P?/(2D), where D
is the distance of p from the plane passing through grs. Substituting into H(P) € [—-kL, kL] and
rearranging terms, we get 2D - H(0) —2kDL < P2 < 2D-H(0) +2kDL. Thus, |W,,s| < 4kDL.
Note that volume(pgrs) = ©(L?D) and volume(pgrs)/L® < aq as pqrs is a sliver. This implies
that D = O(ooL) and so |Wys| = O(69L?). The nearest neighbor of p is Delaunay neighbor
of p. So by applying Lemma 7.1 to p and then to ¢, r and s, we conclude that L = ©(N(p)).
Hence, |Wys| = O(aoN(p)?).

Finally, by Lemma, 7.2, there are at most 68 slivers incident to p throughout the entire pump-
ing. So there are at most §3 forbidden subintervals. Their total length is at most k'cod3 N (p)?
for some constant k’. By Lemma 7.3, the weight interval [0,w? f(p)?] contains [0,w? N (p)?/8].
It follows that if op < w3/(8k'd3), p can be assigned a weight within [0,w3 f(p)?] such that p is
not incident to any sliver. O

7.4 Size optimality

We prove that the size of our Delaunay mesh is within a constant factor of the size of any mesh
that has bounded aspect ratio. Our proof is a combination of ideas in Ruppert’s proof for the
two-dimensional case [21] and ideas in Mitchell and Vavasis’s proof for their octtree algorithm
in higher dimensions [20].

Let T be a triangulation of the input domain that conforms to P and has bounded aspect
ratio. Let 7 be a tetrahedron in 7. Denote the minimum height of 7 from a vertex by h(7).
Let vy, v1, vo, and v be the vertices of 7. Each v; is to be viewed as a column vector consisting
of the coordinates of the vertex. Define M, to be the 3 x 3 matrix (vi — vg,v2 — vo,v3 — V).
Although M, depends on the numbering of the vertices of 7, the numbering does not affect the
properties of M, that will be used. For a vector z, we use ||z|| to denote its Lo-norm. For a
square matrix A, we use ||A|| to denote its spectral norm, i.e., the square root of the maximum
eigenvalue of A'A.
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Lemma 7.4 (Lemma 2 in [20]) For any tetrahedron 7 in T, |[(M1)!|| = |M || < k1/h(7)
for some constant k1 > 1.

Proof. Tt is proved in [20] that | M| < ki/h(7) for some constant k. ||A| = ||A?|| for any
square matrix A. O

Between two points on two disjoint elements of T" (vertices, edges, triangles, or tetrahedra),
we show in the following lemma that one can always find a tetrahedron that is relatively small
compared with the distance between the two points. The result is analogous to Theorem 2
in [20].

Lemma 7.5 Letp and g be two points in the interior of T. Let 7, and 74 be the tetrahedra of T
containing p and q respectively. If T, and 74 do not share any vertez, then there is a tetrahedron
7 in T intersecting pq such that

(i) h(7) < kallp — ¢q|| for some constant ko > 1.

(it) T shares a vertez with 7,. (T can also be forced to share a vertexr with T, instead, but T
cannot be guaranteed to share vertices with both 7, and 7,.)

Proof. Define a simplicial map v : T — R by setting 1(v) = 1 for each vertex v of 7, and
(w) = 0 for all other vertices w. It follows that 9 (z) = 1 for all point z € 7, and ¢(z) = 0
for all point € 7,. As ) is continuous, there exists a point u on pg such that the directional
derivative of ¢ at u has magnitude at least 1/||p — ¢||. By convexity, there is a tetrahedron 7
in T containing u. By linearity of ¢ on 7, \7¢ is constant on 7. Therefore,

1
| vl > =4l (7.5)

on 7. This implies that 7 shares a vertex with 7,, otherwise 4 and 77 would be identically
zero on 7 which is a contradiction. This proves (ii). We express % on 7 using M, as follows.
Let vg,v1,v2,v3 be the vertices of 7. Define r; = 1 (v;) — ¥ (vg) for i = 1,2,3. Observe that
0<|r| <1

Claim 7.1 For any point z in 7, ¥(z) — ¥ (vo) = (r1,72,73) M1 (2 — vg).

Proof. The point z can be written as a convex combination of the vertices of 7:
z= Z?:o Aiv;. This implies that

3
Z— Uy = Z/\Z('UZ - ’U()).
i=1

We view M, ! as three row vectors a1, as, a3 ordered from top to bottom. Recall
that M, = (v1 — vo,v2 — vo,v3 — vg). As MM, = I, ay - (v — vp) = 1 and
ay - (vj —wvo) =0 for all j # k. It follows that

M7 (z —wp) = (A1, Az, A3)".

Hence, (r1,72,73) M7 (z—v0) = 35—y Mi(9h(v:) —(v0)) = (Xi_o Mith(v:)) —1h(vo) =
P(z) — P(vo)- 0
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The claim implies that 79 = (M- 1)(ry,79,73)" on 7 and so

[Rv&%l < (MY - (1,2, m3)'
< V3 (M D, as 0< |y <1

Lemma 7.4

< V3ky /h(T).
Combining the above with (7.5), we obtain h(7) < v/3ky||p — ¢||. This proves (i). O

As T has bounded aspect ratio, it enjoys properties similar to that stated in Lemma 6.2. In
particular, two tetrahedra sharing a vertex have similar minimum heights.

Lemma 7.6 ([19, 20]) If two tetrahedra 71 and 1o in T share a vertez, then h(m) < ksh(72)
for some constant ks > 1.

Next, we prove that the minimum heights of tetrahedra in T' change fairly smoothly. The
result is analogous to Lemma 11 in [20].

Lemma 7.7 Let p and q be two points and let 7, and 7, be the two tetrahedra in T that contain
them respectively. Then h(ty) < ks max{h(p), ||p — q||} for some constant ks > 1.

Proof. If 7, shares a vertex with 7,, then h(7y) < k3h(7,) by Lemma 7.6. Consider the case
where 7, does not share a vertex with 7,. By Lemma 7.5, there is a tetrahedron 7 in T' inter-
secting pg such that h(7) < ka||p —¢|| and 7 shares a vertex with 7,. Starting with Lemma 7.6,
we get h(1y) < k3h(7) < koks|lp — q||- a

The following lemma shows that the minimum heights of tetrahedra in 7' are also related
to the local feature sizes. The result is analogous to Lemma 5 in [21].

Lemma 7.8 Let z be a point and let T be a tetrahedron in T containing x. Then h(7) < ks f(z)
for some constant ks > 1.

Proof. Let B be the ball centered at z of radius f(z). B contains two points p and ¢ on two
disjoint elements of P. By Lemma 7.5, there is a tetrahedron 7/ in T intersecting pq such that
h(7") < ko|lp — q||. Let u be a point in the intersection of 7/ and pg. By applying Lemma 7.7
to u and z, we have

h(T) kg max{h(7"),||lu — z||}
ks max{ka|lp — ql|, [lu — =}
kymax{ky - 2f(x), f(z)}

2koksf(z)

IA N IN DA

We are now ready to prove the main theorem of this section.

Theorem 7.4 The output size of QUALMESH is within a constant factor of the size of any
mesh of bounded aspect ratio for the same domain.
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Proof. Let D denote the domain to be meshed. Let n be the number of vertices in the Delaunay
mesh output by QUALMESH. First, we show that n is at most some constant times fD %.
As N(v) > f(v)/(1+ C1), we can center a ball B, of radius d, = f(v)/(2+ 2C}) at each vertex
v so that all balls are disjoint. Observe that f(z) < f(v) + d, for all € B,,. Therefore,

dzx dx
Lias = 2/, 76
4rd3

2 25w+ 4

47
> _— .
= 21,: 3(3+2C)3

Therefore, we have

B 3(3+201)° [ dz
nmL1sTg fy 7

By Lemma, 7.2, the number of tetrahedra in the Delaunay mesh is within a constant factor of
n. More formally, let m be the number of tetrahedra, we have

dx
m S kG/ /N3
p f(z)?
for some constant kg.

Next, consider a mesh T' of D of bounded aspect ratio. For each point z in D, define #(x)
to be the minimum height of the tetrahedra in T' containing z. By Lemma 7.8, £(z) < k5 f(z)

and so
dr dr
- k[ =
Liep < %) iy

4Y [

TeT T

volume(T)
= K Z i S

3
T€T h(T)

K3k ) 1,

T€T

IN

IN

as volume(7) < k7h(7)? for some constant k7. Combining the above with the upper bound on
m, we conclude that m is within a constant factor of the size of T. ad

8 Conclusions

A series of developments starting with Chew [5] and Ruppert [21], and continuing with Shewchuk [22]
and Cheng et al. [8] brought the difficult problem of quality three-dimensional Delaunay mesh-
ing of bounded domains close to the solution. Li and Teng [16] recently developed a random-
ized point-placement strategy to generate a provably good three-dimensional Delaunay mesh
of bounded domains. This paper introduces a new paradigm, weighted Delaunay refinement,
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which gives the first deterministic algorithm for the problem. We believe that we will add fewer
points in practice because weighted Delaunay refinement uses pumping to eliminate slivers
instead of point-placement.

Of course, as with previous algorithms the constants derived for the theory are miserably
unsatisfactory for all practical purposes. For example, the constant pg > 4 is large for any
practical purpose and the constant o( is extremely small. Experiments show that these con-
stants need not be that bad in practice when sliver exudation and Delaunay refinement are
used separately [14]. Will the same remain true when we combine the two into our weighted
Delaunay refinement algorithm?

In QUALMESH we need to compute the local feature size f(v) while assigning weight to a
vertex v. Although the computation of f(v) is feasible, it is better if we can avoid computing
it in practice. Towards this end, one can gradually increase the weight to v and check the
quality of tetrahedra incident to v as they change at discrete moments. Experiments should
be performed to see what bound on angles do we get in practice with this strategy. We plan
future experiments to answer these questions.
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