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Abstract

The detection and reconstruction of feature curves in surfaces from a point cloud data is a challenging problem
because most of the known theories for smooth surfaces break down at these places. The features such as boundaries,
sharp ridges and corners, and curves where multiple surface patches intersect creating non-manifold points are often
considered important geometries for further processing. As a result, they need to be preserved in a reconstruction of
the sampled surface from its point sample. The problem becomes harder in presence of noise. We propose a robust
Voronoi-based pipeline that engages several sub steps consisting of approaches proposed originally for smooth case.
We modify or enhance them to handle features in singular surfaces. The experimental results provide the evidence

that the method is effective.

1. Introduction

The problem of extracting feature curves from point
sets sampled from a two dimensional object in R? that is
not necessarily a smooth manifold arises in various re-
verse engineering applications. These objects termed as
singular surfaces may have surface patches that meet,
cross, or ends along feature curves. A point set that
samples such a surface may not sample these curves ex-
actly, but only their neighborhoods, possibly with noise.
A faithful reconstruction of the surface requires detect-
ing and reconstructing the feature curves and then in-
corporating them in the final reconstruction of the sur-
face. In this paper, we propose a Voronoi-based method
to detect and reconstruct the feature curves from unori-
ented points. These feature curves can be effectively
used with a recently introduced surface reconstruction
algorithm [[1] to reconstruct singular surfaces while pre-
serving their features.

1.1. Previous Works

Detect-and-connect strategy has become a standard
for feature curves extraction from point clouds. The
work of Gumhold et al. [2]] detects feature points
by individually applying principal component analysis
(PCA) on a fixed size neighborhood graph for each
point. Feature curves are extracted by connecting the
detected feature points. Pauly et al. [3]] extend this ap-
proach to a multi-scale one by automatically determin-
ing the size of the neighborhood. Later, this detect-and-
connect strategy is used for feature preserving surface
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reconstruction. Salman et al. [4]] also take the approach
of PCA to find points close to features, in which they an-
alyze the convolved Voronoi covariance matrix. Feature
curves are subsequently recovered by clustering feature
points and connecting a subset of them. They apply
remeshing and protecting balls [S] on the reconstructed
surface to incorporate the feature curves. Due to the use
of implicit surfaces, their approach can not handle non-
manifolds or manifolds with boundaries.

Recently, Weber et al. [6] apply Gauss map clustering
[7] to find feature points and locally fit feature curves
as cubic Beizer splines. Dey et al. [1] use Gaussian-
weighted graph Laplacian to identify singular points
and Reeb graph to connect them into feature curves.
They also introduce WeightCocone, a singular surface
reconstruction algorithm that can respect features.

In the context of feature preserving surface recon-
struction, several strategies have been proposed without
explicitly rebuilding the feature curves.

Kobbelt et al. [8] introduce a volume based recon-
struction which preserves features. However, it expects
the surface to be input as an implicit function, or a
polygonal mesh, or a point cloud with oriented nor-
mal vectors. Wang et al. [9] propose a voxel-based
surface reconstruction algorithm which can handle non-
manifolds and boundaries but not sharp features.

Fleishman et al. [10] introduce robust moving least
squares (MLS) which adapts the MLS technique of
Alexa et al. [11] to non-smooth surfaces. This
method considers the surface as a collection of piece-
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Figure 1: Work-flow of FeatureRecon: (a) Take a point cloud as input, (b) FeatureRecon detects feature points and determines their type: magenta
ones are those located near corners where feature curves intersect; other feature points are colored as cyan. (c) Then FeatureRecon selects a
subset of feature points and uses them to rebuild feature curves, as shown in (d). (e) As an optional step, FeatureRecon uses WeightCocone [1] to

reconstruct the surface.

wise smooth patches. Each patch is approximated as
a bivariate polynomial based on a subset of the sample
whose residual with respect to the polynomial is smaller
than a threshold. This method is robust to outliers, but
may generate jagged features for sharp crease and can-
not handle non-manifolds.

Lipman et al. [12] introduce singularity indicator
field (SIF), which measures the proximity of each point
to feature curves. The continuous SIF allows local ap-
proximation of features in a threshold-free manner. But,
this method cannot handle non-manifold structures, and
requires careful tuning for noisy data. Later, Otireli et
al. [13] combine implicit MLS with a statistical tech-
nique, specifically, local kernel regression, to keep fea-
tures. Their method is robust to outliers and sparse sam-
pling, but requires orientation, which could be unreli-
able for samples derived from non-manifolds. More-
over, the usage of the signed distance field greatly limits
its handling of singularities.

Jenke et al. [14] group points into patches and nor-
mals for patches are estimated by PCA. Feature points
along intersections of patches which have different nor-
mals are identified as feature points. Avron et al. [15]
introduce a two step reconstruction algorithm. In the
first step, orientation is corrected as a feature aware L;-
norm minimization. Then, points are moved along their
normal directions so that their positions match corrected
orientation.

Recently, Martin and Watson [16] introduce an in-
cremental algorithm which can handle non-orientable
and self-intersecting surfaces, but it does not preserve
sharp features. Digne et al. [[17] transform reconstruc-
tion problem into optimally transporting input point set
to a subset of Delaunay triangulation such that features
can be preserved. Their vertex relocation mechanism
aims at preserving features.

Also, there are techniques that recover features from
reconstructed surfaces. For example, Attene et al. [18]]

identify smooth areas in a triangular mesh and subdivide
edges and triangles that connect different smooth areas.
Features are recovered by moving those new vertices to
the intersection of neighboring smooth areas.

1.2. Our method

We extend a provable Voronoi based method for di-
mension detection to detect feature points. We filter
these points and then connect the resulting set with a
curve reconstruction algorithm. These curves in con-
junction with WeightCocone, a variation of the well
known Cocone algorithm [19], provide a feature pre-
serving surface reconstruction. Figure[I]shows the out-
line of our algorithm.

Our contributions are two folds: First, we introduce a
novel feature recovery algorithm. It consists of a fea-
ture point detection step that is able to isolate points
near the feature curves from a possibly noisy sample
of a singular surface with no requirement of orientation.
This is followed with a filtering step that connects the
remaining points into piecewise linear curves approxi-
mating the original features. Second, we provide a sin-
gle framework to handle a wide variety of input that
include surfaces with sharp features, boundaries, and
non-manifold points. The effectiveness of our feature
recovery algorithm is demonstrated by the success of a
feature preserving surface reconstruction algorithm that
incorporates the computed feature curves.

2. Overall Algorithm

Given a point cloud P sampled from a collection of
surface patches, we aim at reconstructing the feature
curves, i.e., boundaries, sharp ridges, and patch inter-
sections. To achieve it, we first detect points close to
the feature curves. Then, we reconstruct feature curves
from those feature points. Algorithm(]gives the outline.



Algorithm 1 FeatureRecon(P, pi, p3, r¢, 7, t)

FeatureRecon first finds a subset of points P* close to
features from input point cloud P. Then it estimates
curve direction by PCA and select a subset P’ C P* to
rebuild feature curves F using NNCrust.
Main parameters: r., p; and p3 are used for feature
points detection; r, is the radius used for feature ex-
traction; ¢ is the distance parameter used by Filter.

1: P* := FeatureTest(P, r., p1, p3)

2: FeaturePCA(P", ry)

3: P':=Filter(P*, ry, 1)

4: F := NNCrust(P")

5: return F

FeatureTest finds feature points P* € P which are
close to feature curves. FeaturePCA determines feature
direction information from P* and distinguishes cor-
ner points from other feature points. These two steps
are detailed in Section Bl Next we reconstruct the fea-
ture curves. However, the point set P* might be noisy
for curve reconstruction, so we apply a filtering step to
smooth out P* and obtain a subset P’ C P*. We use a
modified version of the well known algorithm NNCrust
[20] for curve reconstruction in 3D to reconstruct the
feature curves F. The modifications are warranted for
handling singularities as described in Section 4}

For surface reconstruction one may call the Weight-
Cocone algorithm described in [1]] that is designed to
reconstruct surfaces in presence of feature curves. For
this we need to refine the feature curves in F and re-
move points from P that are inside the union of protect-
ing balls centered around feature points. WeightCocone
reconstructs the surface from refined feature points and
the rest of the points using a weighted Delaunay trian-
gulation.

3. Feature Points Detection

As observed in [21]], points P* C P near the feature
curves could be detected by studying the shape of their
Voronoi cells. These cells differ in shape according to
the dimension of the features.

For a point p € P, let V,, denote its Voronoi cell in
the Voronoi diagram of P. The shape of V), reveals in-
formation about p’s proximity to a feature: if p is close
to sharp edges or boundaries, V,, has a thin plate shape;
if p is around patch intersection, V), is like a rounded
polyhedron; otherwise, if p is on a smooth surface patch
away from these features, V), is long and slim like a pen-
cil; see Figure Eka) for an illustration. However, Voronoi

cells can easily be distorted by noise or the global nature
of the Voronoi diagram. In this paper, we propose to use
the power diagram, a weighed version of the Voronoi di-
agram, to solve these two problems. See Figure [2]for an
illustration.

3.1. FeatureTest

For a sample point p € P, we examine certain subsets
of the Voronoi cell V), which we call Voronoi subpoly-
topes after [21]]. These subpolytopes V!, € V,,i = 1,2,3
are defined as follows in [21] which we reproduce here.

Assume that V;; is already defined. The farthest point
virin Vi, from p is called the positive pole of Vi, and the
vector vif = Vi = p its positive pole vector. In case v
is unbounded, V;:' is taken at infinity, and the direction
of V’;r is taken as the average of all directions given by
unbounded edges.

Let V) = V,. The Voronoi subpolytope Vi is the
minimal polytope containing all points

(x: Z(x=p)vi) = 3
where Z(v, w) denotes the acute angle between the lines
supporting two vectors v and w.

Obviously, V,’;‘l C V, is a polytope orthogonal to
V;f = v’; - p, and le+, 1 < i < 3, form an orthogonal
basis of V,. The length H’p = ||V;,+|| is called the height
of the Voronoi subpolytope V),. Hj, measures elongation

of V;, and fatness of V;,”.

Feature Point Condition. When there is no noise, a
first approach designed after the observation about the
Voronoi subpolytopes can be as follows. For a point
p € P, we use two parameters p; and ps to quantify the
shape of V,,. If H ,1, /H?) > p3, V, is considered short and
fat and it lies close to patch intersections; otherwise if
H; /HIZ, < p1, V, is like a thin plate, p is considered to
be near a boundary or a sharp feature curve. For both
cases, p can be gathered into P*. Otherwise, p is either
lying on a surface patch away from the feature curves
or close to a corner where multiple feature curves meet.
To handle the later case, define the negative pole v;',‘ of
Vi as the farthest point in V/, such that the negative pole
vector vi© = vi~ — p makes an angle more than 5 with
Vi,*. If p is close to a corner, vz‘ will be much shorter
than vi,* and thus can be used to distinguish these two
cases. Figure |3| shows Voronoi subpolytopes of bound-
ary, corner and smooth surface point, respectively.
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Figure 2: (a) Voronoi cells of points on various locations can have different shapes. (b) Voronoi diagram and subpolytope pole vectors for a small
points set. Green and orange segments show vf,* and vé*, respectively. (c) Voronoi diagram is vulnerable to remote part: Notice how Voronoi cell

of the corner point is reduced and its v%* and V;* are exchanged because of the invasion. (d) Voronoi diagram also can be easily distorted by noise.
(e) and (f) Locally built Voronoi diagram can greatly alleviate the influence of noise and remote parts. Only black dots are inserted into the Voronoi

diagram. Dashed circle demonstrates the weight.

Effects of globality and noise. The above approach
faces two difficulties, one due to the global nature of
the Voronoi diagram, and the other due to the presence
of noise. The global geometry can influence the shape
of the Voronoi cells to the extent that the above feature
detection can return false identifications. As Figure[2{c)
illustrates, the Voronoi cells can be invaded by remote
part distorting their shapes and hence the pole vectors.
We solve this problem by locally building the Voronoi
diagram in the neighborhood of the point in question.
Let N(p, P,r.) denote the points in P that lie within a
radius 7, from a point p € P. We only use points in
N(p, P, r.) to compute V.

The noise can also distort the shape of the Voronoi
cells to invalidate the previous feature detection condi-
tions. As Figure |2kd) shows, even a small perturbation
can change the shapes of the Voronoi cells consider-
ably. Here we take a cue from the approach of Alliez

et al. [22]] who observed that, although individual cells
can be unreliable, the union of Voronoi cells remains ro-
bust against the influence of noise. Based on this obser-
vation, we estimate a specific Voronoi cell by enlarging
it, or equivalently increasing the influence of the point
in question. The weighted Voronoi diagram provides a
natural tool to achieve this goal.

Equip every point p; € P with a weight w; € R. The
power distance between the two weighted points (p;, w;)
and (p;,w;) is defined as ||p; — p,|I> — wi — w;, where
llp; — pjll is the Euclidian distance between p; and p;.
The power diagram associated with the weighted point
set P is a partition of R® such that the power diagram
cell for (p;, w;) consists of points with no greater power
distance to any other points in P than p;. Clearly, the
power diagram is a generalization of the Voronoi dia-
gram by changing its distance metric to the power dis-
tance. The definitions of Voronoi subpolytopes and their
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Figure 3: Voronoi subpolytopes and pole vectors of (a) boundary, (b) corner and (c) smooth surface point. Voronoi cell of p is V,3,. Shaded polygon

12 2 ie pl
is V}, and the segment in V, is V,.

heights can be directly adapted to the power diagram. In
the rest of this paper, we do not distinguish between the
Voronoi diagram and the power diagram.

If we give a positive weight to p and set the weight
of other points to 0, the Voronoi cell of p will enlarge
because the power distance from any point in the space
to p decreases while to other points remains unchanged.
Imagine a weighted point (p, w) as a ball centered at p
with radius y/w. The points in the ball must have a non-
positive distance to p while its distance to other points
still remains non-negative. So the ball must be in the
Voronoi cell of p. If the weight of p is larger than the
scale of noise, this enlargement can expel nearby noisy
points and locally eliminate the effect of noise while the
shape of V,, still preserves feature information.

Leveraging the local testing and the power diagram
together, our feature detection algorithm works as de-
scribed in Algorithm 2]

Algorithm 2 FeatureTest(P, r., p1, 03)
1. PP:=0
2: forall p e Pdo
33 P,:=N(p,Prc)\ N(p, P, Vw)
4:  Build Voronoi diagram of P, with p weighted w
and other points weighted 0
5: Compute V},
6:  if shapes of V]’; meet the Feature Point Condition

then
7: P = P*U{p}
8:  endif
9: end for

10: return P*

In implementation, we set w as r./4 and points with
non-positive power distance, i.e., the points inside the
ball, are not inserted into the Voronoi diagram which

we limit to have at most 80 points to speed up the com-
putation.

3.2. FeaturePCA

To build feature curves from detected feature points
P*, we need to estimate the direction of the feature
curves. In particular, these directions help to identify
the points near corners where multiple feature curves
meet. Ideally, if p is on a sharp crease, V},* should indi-
cate the local direction of the curve. However, V}; can
be easily distorted by slight anomalies in the neighbor-
ing points. So, we turn to a PCA based dimension test
to obtain the direction information and recognize corner
points, i.e., where feature curves meet.

We compute the covariance matrix M, of N(p, P*,ry)
with an input parameter r;. It is well known that
the eigenvectors of M, capture the spanning axes
of N(p,P",rs), and eigenvalues of M, capture the
anisotropy of N(p, P*,rs). Let 41(p) < A2(p) < A3(p)
be the eigenvalues of M, and v, be the eigenvector
corresponding to A3(p). If p is just a feature point,
N(p, P*,ry) distributes in the direction of the curve.
Then, A3(p) is significantly larger than A;(p) and A>(p)
and v, indicates the direction of the feature curve near
p. In our implementation, if 13(p)/A2(p) < 5, p is con-
sidered a non-corner feature point, otherwise, p is con-
sidered a corner point. Figure f] shows detected feature
points of Carved Object and Sharp Sphere.

4. Feature Curves Reconstruction

Once P* is computed, we need to reconstruct the fea-
ture curves from P*. Usually P* is a noisy sample of the
curves to be reconstructed. So, we filter it before con-
necting remaining points with the approach of a curve
reconstruction algorithm called NNCrust [20].



Figure 4: Detected feature points of Carved Object and Sharp Sphere
overlaid with their input point clouds. Corner points are colored as
magenta. Other feature points are marked as cyan.

4.1. Filter

Algorithm 3 Filter(P*, ry, t)

P =0

Find groups of corner points using union-find

for all groups of corner point do
Find the point p in the group which is closest to
the barycenter of the group

5 P’ := P U{p}

6: end for

7: for all p € P* where p is a feature point do

8

9

B2

d, :=t X ||[p — barycenter(N(p, P*, ry)))l|
: end for
10: Sort P* by d,, in ascending order
11: for all p € P* and p is a non-corner point do

12:  if mingep |lp —qll > d,, then

13: P’ =P U{p}

14:  end if

15: end for

16: for all p € P* \ P’ and p is a non-corner point do
17 if ﬂq € P's.tllp—qll < r¢/2 then

18: P =P U{p}

19:  end if

20: end for

21: return P’

Usually, points in P* are distributed around feature
curves, while NNCrust just needs a few of them for re-
construction. The set P’ of filtered points is grown itera-
tively. First, we filter the corner points, and then the rest
of the feature points. Figure [5]and Algorithm [3] show
how filtering is performed.

For an intersection among feature curves, multiple
points around it might be marked as corner points, see
Figure ] The NNCrust algorithm needs only a single
point per corner, so we group neighboring corner points
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Figure 5: Illustration of how points are filtered by Filter: (a) input
feature points, (b), (c), and (d) show the successive steps of filtering;
in each step two points, one red and one blue, are selected. Because
of the red point, the yellow points cannot be selected by the condi-
tion in step 12. Similarly, the light blue points cannot be selected
because of the blue point. The orange points in each of (c) and (d) are
the points selected in previous step. Dotted circles depict d), of the
selected points. (e) Output of Filter.

following a union-find strategy. Each point is initial-
ized as a group, and the distance between two groups
is measured as the distance between the closest pair of
points from each group. We iteratively merge groups if
the distance between two groups is less than an input pa-
rameter 7. For each merged group only the point which
is closest to the barycenter of the group is inserted into
P’ (steps 3-6, Algorithm (3)).

For filtering the feature points other than corners, we
adopt the following strategy. We keep the points that are
relatively closer to the feature curves, but at the same
time are mutually far enough so that a small deviation
in their position is not accentuated as large relative noise
during curve reconstruction. We balance these two con-
tradicting goals as follows. We compute the distance d,
of every point p to the barycenter of a group of points
around it (steps 7-9, Algorithm [3). Specifically, we
compute

d, =t X ||p — barycenter(N(p, P*, rp))ll.

The barycenter should be relatively close to the feature
curves. We want to keep those points whose distance
to the respective barycenters are small, but no two of
them should be mutually close (steps 11-15). This is
achieved by sorting the points in ascending order of d,,
and then selecting only those points that are at least d,



distance away from the rest of the selected points so far.
By processing the points in ascending order of d,, we
favor the points that are closer to the feature curves, and
by putting a lower bound on their distances to the rest
of the selected points, we prevent them to be mutually
close. To prevent sparse distribution of points on non-
salient features, we salvage some of the points that are
not selected in the previous step by visiting P* in as-
cending order of d,, for another round. If the distance
between an unsaved point p and its closest point g € P’
is less than 0.5r, p is salvaged (steps 16-20, Algorithm

B).

4.2. NNCrust

Now we can build feature curves from the well dis-
tributed points in P’. Following the NNCrust algorithm,
each feature point p € P’ is connected to its closest point
q € N(p, P', 5ry) if

|cos(p — g, v,,)| > cos(a) and | cos(p — g, v,)| > cos(a).

The angle condition with respect to the parameter a pro-
vides a control over the smoothness of the reconstructed
curves. « is set to 0.8 by default. Note that g can be a
corner point. In that case, v, is not an accurate estima-
tion of the curve direction and we take | cos(p—g, vp)| =
1.0 to ensure that corner points are properly connected.
The above operation may connect p to a point on only
one side. To connect it to a point on the other side, we
find another point ¢’ € N(p, P’, 5ry) satisfying the same
conditions as g while requiring cos(q — p,q’ — p) < 0.

Corner Recovery. Recall that the corner points are cho-
sen as those closest to the barycenter of their group.
However, the actual corner may not be the average.
Such inaccurate selection can bring visible artifacts at
curve junctions, as shown in Figure @a). To find a bet-
ter choice from the group, we find all non-corner points
connected with the current corner point and their con-
nections with other non-corner points. Then, we choose
the corner point as the one in the corner group which
minimizes the sum of its distance to lines supporting
those connections, as shown in Figure @b).

Now we have the set of feature curves F. Figure [f]c)
shows extracted feature curves of Carved Object and
Sharp Sphere.

5. Application to Surface Reconstruction

Our algorithm for computing feature curves can be
used in conjunction with a surface reconstruction al-
gorithm to recover surfaces from point samples while

(a)

Figure 6: (a) Filter chooses corner points closest to the barycenter
of their group and brings a visible artifact for Carved Object. (b)
After corner recovery, the artifact is barely noticeable. (c) Recognized
feature curves of Carved Object and Sharp Sphere overlaid with their
reconstructed surfaces.

preserving singular features. We use the surface re-
construction algorithm recently proposed in [1]. This
algorithm, named WeightCocone, modifies the origi-
nal Cocone algorithm [19] to incorporate the feature
curves into reconstruction. For this, it protects the fea-
ture points with protecting balls and then reconstructs
using the weighted Delaunay triangulation which is the
dual of the power diagram.

The output of NNCrust is actually a set of segments
connected to form the feature curves. We resample
these segments to get evenly placed weighted points ex-
cept corners where larger protecting balls are needed to
properly cover that area. Those weighted points and un-
weighted input points are fed to WeightCocone to get
the final surface.

6. Experimental Results

FeatureRecon has been implemented as a single
threaded program. We use CGAL library [23]], version
3.7, to facilitate the computation of power diagrams.
Feature detection and feature reconstruction stages re-
quire neighborhood computation; we use ANN library
[24] to implement those queries. All experiments were
performed on a laptop with 6GB RAM and a 2.27GHz
processor.

We tested FeatureRecon on various clean samples
with different sizes. Figure [/| shows the extracted fea-
ture point and feature curves of Wavy Saturn, Fandisk,



Block and Beetle. It also highlights reconstructed sur-
faces with features preserved.

We compared FeatureRecon with the work of Dey et
al. [[1]. For Sphere Cube model in Figure[8] the method
in [1]] could not correctly preserve topology of feature
curves. The curves generated by this method may not
properly intersect, thus requiring WeightCocone to use
larger protecting balls at the corner points resulting into
small artifacts. FeatureRecon successfully located cor-
ners and preserved them. Figure [§] shows the recon-
structed feature curves and surfaces generated by Fea-
tureRecon and [[1]].

(a) b)

Figure 8: For Sphere Cube, FeatureRecon successfully located cor-
ners and preserved them. (a) Top: feature curves extracted by Featur-
eRecon. Bottom: feature curves generated by [1]; (b) Zoom in to the
place where FeatureRecon correctly preserved feature curve structure.
Magenta balls are recognized corner points. Actual corner points are
marked as cyan to demonstrate the error. If a recognized corner points
is away from its actual location, large protecting balls are needed to
preserve the feature, as shown in the right column.

For sparsely sampled models like Octaflower with
39K vertices, FeatureRecon recognized most feature
lines while [T] missed those near the poles. Figure [9]
compares results of both methods.

In order to test the robustness of FeatureRecon to
noise, we perturbed point sets of Sphere Cube and
Carved Object with noise. Specifically, each point is
moved towards a random direction for a maximum dis-
tance of 1% of the diagonal of the dataset bounding
box. We used Mean Shift [25]] to smooth the noisy point
cloud and called WeightCocone to reconstruct the sur-
face. Positive poles are provided to Mean Shift as esti-
mated normals. As shown in Figure [I0]and [TT] Featur-
eRecon successfully preserved features for both models.

We also evaluated how FeatureRecon behaves on dif-
ferent level of noise. We perturbed a 42K points Smooth

Figure 10: Left: detected feature points of Carved Object overlaid
with noisy input point cloud. Right: extracted feature curves overlaid
with reconstructed surface.

Figure 11: Extracted feature points and feature curves of noisy Sphere
Cube.

Feature model in the same way and run FeatureRecon.
Bounding box of this model is 2 x 2 x 2.5. We fixed
p1 =p3 =075 1t=8and r; = 0.28 for all cases and
only changed r.. Figure[I2]shows the results. From the
0.5% noise case, we can see increasing r. improves the
robustness of FeatureRecon at the cost of running time.
Feature point detection took 91.90, 68.71, 127.27 and
179.29 seconds for these four cases.

FeatureRecon was also tested on a range scan dataset.
We downsampled Church of Lans le Villard model to
180K points and tested it. Note that this model contains
noise, outliers, missing parts and its point cloud is not
evenly distributed. Figure [I3]shows the result.

Parameter choices and timing are reported in Table[T]
The user can interactively set p; and p; in a what-you-
see-is-what-you-get way to get good feature points. For
clean input, r,. could be set as 4 to 8 times of the aver-
age distance between a point and its nearest neighbor.
If the input is noisy, r, should be greater than the scale
of noise. The parameter r; can be estimated based on
the sampling density and the scale of the feature curves.
For most cases, 7y is set between 1.4% and 4.4% of the
diagonal of the bounding box to get a good neighbor-
hood, except Beetle, Fandisk and Church, which require



(c) Block

(d) Beetle

Figure 7: Detected feature points, reconstructed feature curves and shapes of various models.

Figure 9: A sparse Octaflower model with 39K points. The method introduced in [T]] failed to recognize feature curves near the poles, while
FeatureRecon extracted more feature curves. (a) Feature curves and mesh generated by FeatureRecon. (b) Feature curves and mesh generated by

(0.

a smaller ry to preserve small parallel features. The pa-
rameter ¢ depends on 7y to ensure that the filtered fea-
ture points have a good distribution. The default value
a = 0.8 works for most models except Beetle, in which
case we set it to 0.6.

7. Limitations and Conclusions

We propose a feature extraction algorithm from a pos-
sibly noisy point cloud data sampled from a shape with
singular features. They include surfaces with bound-
aries, sharp ridges, and corners, and also a collection
of such intersecting surface patches. The reconstruction



Parameters Timing(sec)

Model D1 03 Te rs t (a) (b)
Wavy Saturn(13K) 030 040 0.16/2.7% 0.2/3.3% 8 12.56  0.05
Sphere Cube(65K) 040 0.32 0.02/1.6% 0.036/2.9% 25 136.63 0.16

Noisy Sphere Cube(65K)  0.69 0.68 0.023/1.8% 0.053/42% 6 111.66 0.22
Carved Object(78K) 0.50 0.55 0.03/1.9%  0.07/4.5% 15 10590 0.45
Noisy Carved Object(78K) 0.78 0.83 0.07/44%  0.12/7.5% 15 236.63 0.81
Sharp Sphere(65K) 0.70 1.00 0.5/1.4% 0.9/25% 35 45.55 048

Block(50K) 0.35 0.60 0.9/1.9% 2.0/42% 20 4095 0.21
Fandisk(202K) 0.70 0.60 0.02/0.69% 0.04/1.4% 25 263.34 1.50
Octaflower(39K) 0.80 1.00 0.9/1.6% 1.3/2.3% 16 41.28 045
Beetle(198K) 0.50 045 0.8/047%  0.9/0.53% 20 3522 2.00
Church(180K) 035 1.00 04/0.73% 0.5/091% 8 981 2.19

Table 1: Statistics of models tested by FeatureRecon. r. and r are listed as the percentage of the diagonal of the bounding box for comparison. (a)
and (b) are feature points detection and feature curves reconstruction, respectively.

preserves the features in all cases.

Our method is made more robust against noise by
availing local Voronoi diagram computations for each
point and also using the weighted version of the Voronoi
diagram. The increased computational cost for these

\> \% . modifications is justified by the gain in accuracy.
\\ >¢Q o T4 Dy The use of multiple parameters is perhaps the most
< il > serious drawback of our method. We have described

: ,f? how one can set these parameters. It would be nice to

f,%; o i improve our method further so that a less number of pa-
) ‘; \"‘m § rameters is needed. For most models, a good set of pa-
: ; ,~~  rameters can be fixed fairly quickly, so parameter tun-
i ing should not be a burden. However, we admit that
i

for poorly sampled model like Church which contains
noise, outliers, and small features close to each other, it
can be difficult to find a right set of parameters that aid
capturing all the features.

Although the feature detection and curve reconstruc-
tion steps are derived from provable methods, a guaran-
tee of the entire pipeline is missing. We think it may
be possible to provide theoretical guarantees for Featur-
eRecon, or at least for the feature detection step.

The weights used for feature detections should be at
the scale of the noise. Too small a weight may not detect
the feature point. Too large a weight may compromise
the locality of the feature detection step and increase
Figure 12: Extracted feature points and feature curves of Smooth Fea- the computation cost. It would be interesting to come
ture with 42K points and 2 x 2 X 2.5 bounding box. All parameters up with a method that can estimate the weights more

are fixed except r.. Comparing (b) and (c), we see increasing r, could naturally_
improve robustness of FeatureRecon.

(a) no noise, r. = 0.09
/'\’i\\\ .
<

U

(¢) 0.5% noise, r. = 0.12 (d) 1% noise, r. = 0.14
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