
Repairing and Meshing Imperfect Shapes
with Delaunay Refinement

Oleksiy Busaryev
busaryev@cse.ohio-state.edu

Tamal K. Dey
tamaldey@cse.ohio-state.edu

Joshua A. Levine
levinej@cse.ohio-state.edu

Department of Computer Science and Engineering
The Ohio State University
Columbus, OH 43210 USA

ABSTRACT

As a direct consequence of software quirks, designer errors,
and representation flaws, often three-dimensional shapes are
stored in formats that introduce inconsistencies such as small
gaps and overlaps between surface patches. We present
a new algorithm that simultaneously repairs imperfect ge-
ometry and topology while generating Delaunay meshes of
these shapes. At the core of this approach is a meshing
algorithm for input shapes that are piecewise smooth com-
plexes (PSCs), a collection of smooth surface patches meet-
ing at curves non-smoothly or in non-manifold configura-
tions. Guided by a user tolerance parameter, we automat-
ically merge nearby components while building a Delaunay
mesh that has many of these errors fixed. Experimental
evidence is provided to show the results of our algorithm
on common computer-aided design (CAD) formats. Our al-
gorithm may also be used to simplify shapes by removing
small features which would require an excessive number of
elements to preserve them in the output mesh.

Categories and Subject Descriptors

I.3.5 [Computer Graphics]: Computational Geometry and
Object Modeling—Curve, surface, solid, and object repre-
sentations; J.6 [Computer-Aided Engineering]: Computer-
aided design (CAD)

Keywords

Shape repair, Delaunay mesh generation, Topology, Piecewise-
smooth complexes

1. INTRODUCTION
A typical computer-aided design (CAD) system allows a

designer to build a shape by modeling the surface patches
that comprise its boundary. Typically this boundary repre-
sentation (B-Rep) defines a shape as a collection of surface
patches (e.g. NURBS patches). Ideally the CAD software

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GDSPM09 October 2009 San Francisco, California USA
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

Figure 1: Repairing a CAD model. Left: this Stator

model has gaps and overlaps between different faces.
Right: these are merged by our algorithm.

generates a watertight shape which is then stored in a for-
mat that maintains both a geometric description of each
patch as well as topological connectivity between patches.

After the design process, the shape is then passed to an
exterior application; many of which require again converting
the shape to a suitable format. One common case is perform-
ing finite element analysis, but other applications include
visualization or texture mapping [10]. At this stage gener-
ally a mesh is constructed using primitive elements such as
tetrahedra or hexahedra.

Due to numerical problems, imprecise design, software id-
iosyncrasies, or data exchange issues, the surface patches
produced at the CAD step may abut within unpredictable
tolerances, resulting in gaps, overlaps, or intersections [19].
Moreover, shapes may be represented with duplicate geo-
metric information that matches under any level of toler-
ance, but the duplication causes loss of topological infor-
mation. For example, when CAD software produces two
trimmed NURBS patches that meet, the shared trim curve
may be stored independently at each patch. These errors are
often visually imperceptible to the designer, but they usu-
ally impede any automatic mesh generation step as typical
mesh generators require watertight, consistent representa-
tions as an input. Repairing inconsistencies in the object
representation in order to achieve global continuity of the
model boundary is a well-known challenge in the CAD com-
munity [5].

1.1 Contributions
We aim to automatically repair imperfect models while

producing quality Delaunay meshes that approximate the

input shapes. With the exception of a recent work by Chong
et al. [9], all past approaches treat this repair step as a decou-
pled component from the mesh generation step. We generate
a mesh with repaired geometry directly from an imperfect
CAD model without the need for preprocessing the model.

Our approach to the repair problem draws upon an idea
used recently in a Delaunay meshing algorithm [12]. This
algorithm models the input domain as a piecewise smooth
complex (PSC), a collection of smooth surface patches where
two or more meet at curves in non-smooth configurations
provided they still satisfy the usual properties for being a
complex. To ensure these curves are preserved in the output
mesh, they are covered with a set of balls whose centers
sample the curves. These protecting balls are later turned
into weighted points and Delaunay refinement is run using
a weighted version of the Delaunay triangulation.

We use this protection idea with certain modifications.
First we generate a sufficiently small set of protecting balls
to cover all curves in the imperfect input shape. We then
merge pairs of protecting balls which violate criteria con-
trolled by a user-specified distance tolerance γ, replacing
each pair with the smallest ball containing the two. Redun-
dant balls are then removed and the algorithm is repeated
on the remaining set of balls.

Upon termination we have a set of protecting balls cover-
ing each input curve as well as all gaps, overlaps, and inter-
sections with diameter smaller than the parameter γ. The
centers of these balls sample the curves in the repaired PSC,
and each ball’s radius is large enough to cover nearby im-
perfections of the input. At this point, we insert each ball as
a weighted point in a Delaunay triangulation and Delaunay
refinement follows to mesh the repaired PSC input.

Using this approach, we can successfully generate meshes
despite many of the types of inconsistencies commonly pro-
duced with CAD software. When the user provides the tol-
erance γ in a correct range, our algorithm produces a mesh
with desired qualities (e.g. watertight) that can be used
for later applications. In addition, since our meshing al-
gorithm handles boundaries and non-manifold features, the
algorithm always terminates for every γ ≥ 0 when the input
has no intersecting patches.

2. RELATEDWORK

2.1 Shape Repair
Many techniques for repairing models have been produced

by the CAD, meshing, and computer graphics communities.
The solid modeling community offers the notion of a regular
set, or more recently ǫ-regular set [24], to provide a founda-
tion for some of the techniques. Broadly, the approaches to
repair can be categorized into two groups. The first group
repairs the input shape by performing local modifications
that merge and fix incorrect surface patches. The second
uses volumetric techniques to globally compute a new shape
without errors. Both approaches have been used for input
shapes represented in typical B-Rep formats (e.g. STEP and
IGES) as well as polygonal approximations of B-Reps.

The local approaches are similar to our algorithm in that
they often have some scheme to modify elements that are
co-located within a user-specified tolerance. For example,
surface boundary curves may be merged using various rules.
Some approaches score and merge curve segments [1] or first
detect [23] and merge boundary curves [15, 19, 28]. Other

approaches stitch the gaps between boundary curves of sur-
face elements [2, 14]. Some researchers move or merge ver-
tices of polylines approximating the boundary curves [4, 9,
26]. Others suggest combinations of the three approaches [22].
Local volumetric techniques have been used to repair the
imperfect regions near curves without globally recomputing
surface patches [3]. Shape repair by editing a virtual topo-
logical structure for a model has also been investigated [25].

In contrast to the local approaches, volumetric techniques
offer global methods to shape repair. These approaches
build a partition of the volume containing the shape and use
the subdivided volume to build a new B-Rep. Murali and
Funkhouser use the input surface patches to build a BSP-
tree representing the shape [20]. Other approaches usually
build either a uniform or adaptively sized Cartesian grid
containing the volume [16, 17, 18, 21, 29]. After building
the grid, a new shape is extracted by using either isosurfac-
ing techniques or projecting a subset of grid vertices back
to the input. These approaches can handle some types of
inconsistencies that often cause the local approaches to fail,
such as two deeply overlapping surface patches. However,
they can have trouble preserving sharp features in the input
as well as handling inputs with non-manifold features.

2.2 PSC Meshing
Our input shape is a representation of a PSC D, pos-

sibly with errors. A PSC is a collection of k-dimensional
faces called vertices (0-faces), curves (1-faces), and patches
(2-faces). Each k-face in the PSC is defined by its unique ge-
ometry (i.e. for surface patches a plane, quadric, or b-spline
surface; for curves a line or b-spline; and for vertices their
coordinates in Euclidean space). In addition, each k-face has
connectivity information for its boundary—a set of curves
for the boundary of each patch and a set of vertices for the
boundary of a curve.

We use Di to denote the set of i-faces in a PSC and D≤ i

to represent the union D0 ∪ D1 ∪ . . . ∪ Di. If D is a PSC,
it satisfies the usual conditions for being a complex: if any
two (i+1)-faces σ, σ′ ∈ Di+1 intersect, their intersection is a
union of (lower dimensional) faces in D≤ i on the boundary
of both σ and σ′.

Delaunay refinement relies on the idea of Chew’s furthest
point strategy [8] to incrementally build a Delaunay mesh
for an input domain. The basic approach is simple: to con-
struct a Delaunay mesh for some domain, repeatedly insert
points from the domain until the mesh satisfies a set of con-
ditions. For different types of domains, one must prove that
the set of conditions checked by the algorithm ensures the
desired properties in the output mesh. The most significant
burden is to prove that the algorithm terminates. If inserted
points are chosen carefully so that a lower bound on their
pairwise distances is maintained, a packing argument guar-
antees termination since only a finite number of points can
be inserted by the algorithm.

Recently, Cheng, Dey, and Ramos proposed a unique ap-
proach for meshing PSCs [7] based on Delaunay refinement.
One novelty of this technique is that all non-smooth and
non-manifold features (the faces in D≤ 1) are protected through-
out the meshing algorithm by sampling them with balls.
These protecting balls are turned into weighted points and
Delaunay refinement is performed using a weighted Delau-
nay triangulation [13]. This algorithm was the first certi-
fied algorithm that could in theory successfully handle PSC

inputs; however, since it employs some expensive numeric
computations, Dey and Levine [12] devised a more practi-
cal version of the algorithm. Their version reduces the re-
finement triggers to a single “topological disk” test that is
combinatorial in nature.

3. ALGORITHM
We present a Delaunay refinement algorithm that handles

inputs that are almost PSCs. This algorithm is guided by
a user parameter γ ≥ 0 that acts as a tolerance for error in
the input. The output is a Delaunay mesh for some PSC
that is presumably represented by the possibly flawed input
PSC.

3.1 Input and Output
Let D denote the (potentially erroneous) input our algo-

rithm meshes. For our algorithm, D need only be a collection
of surface patches, curves, and vertices, but it is not required
to have the usual properties for a complex. In particular, the
boundary curves of patches may not have geometry which
matches the patch they bound; and “adjacent” patches may
not share the same boundary curve. Specifically, for a given
γ ≥ 0, our algorithm produces a mesh that approximates D
under the following types of errors (some of which are shown
visually in the top row of Figure 2):

• Gaps (not necessarily uniform) of any size between the
boundary curves of nearby patches in D.

• Misaligned boundary curves; endpoints may not match
or pieces may only partially match.

• Patch intersections between nearby patches provided
they intersect close to some boundary curve.

• Duplicated boundary curves between patches that are
geometrically equivalent.

Figure 2: Common CAD model errors. From left
to right: uniform gaps, misaligned patches, non-
uniform gaps from trimmed curves, and intersecting
patches. The bottom row shows how these are fixed.
We merge at small gaps and intersecting regions.
For non-uniform gaps some boundary elements may
not get merged.

Our algorithm assumes that the input provides a usable
geometric representation of each surface patch σ, but it ig-
nores any connectivity information between patches through
the boundary curves of each σ. We use the original geomet-
ric information of each curve in D to devise a new set of

curves and vertices to mesh. These curves are covered by
a set of protecting balls of size γ or greater. Faces from
the input D that intersect the same protecting regions are
merged in our final mesh, effectively fixing small errors from
the input (see the bottom row of Figure 2).

3.2 Structures
In this section we review some of the basic geometric struc-

tures which our algorithm uses. Refer to [11, 13] for addi-
tional details.

Let S be a point set sampled from the underlying space of
D. We associate each point p ∈ S with a real-valued weight
r ≥ 0; alternatively, the weighted point p can be represented
as a ball with radius r centered at p. The weight r skews
the distance metric locally with respect to p. The squared
weighted distance of any point x ∈ R

3 from p is given by
d(x, p) = ‖x − p‖2 − r2. Under this new distance metric,
we define the Voronoi diagram, Vor S, and Delaunay trian-
gulation, Del S. These structures follow a similar rule as
their unweighted counterparts with distance between points
computed using weighted distance [13].

To generate a Delaunay mesh for D we take special sub-
complexes of Vor S and Del S. In particular, we are inter-
ested in elements of Vor S and Del S that provide an ap-
proximation of D. For any space X, the restricted Voronoi
diagram is the collection of intersections of Voronoi elements
with X. Its Delaunay counterpart, the restricted Delaunay
triangulation of S with respect to X, is denoted Del S|X. A
simplex τ ∈ Del S is in Del S|X if its dual Voronoi face Vτ

has a nonempty intersection with X. For any σ ∈ D, Del S|σ
denotes the Delaunay subcomplex restricted to σ. Figure 3
illustrates an example restricted Delaunay triangulation in
two-dimensions.

Figure 3: Restricted Delaunay triangulations. The
left image shows a curve with nine sample points.
Overlaid is the Voronoi diagram in blue and the De-
launay triangulation with dotted lines. On the right
the restricted Delaunay triangulation is highlighted
in red.

During Delaunay refinement, restricted Delaunay triangu-
lations act as a mesh of a working approximation of the in-
put. As a subset of the Delaunay triangulation, they inherit
the Delaunay property. Since in three dimensions Del S con-
tains many simplices spanning the convex hull of S, Del S|D
ultimately filters a set that approximates the input D.

3.3 Algorithm Overview
Our algorithm proceeds in three different phases. First,

we PROTECT all curve elements that are extracted from D.
Guided by a tolerance parameter γ, we then REPAIR the
information extracted to form the set D≤ 1 that we mesh. A

new set of balls is created to cover D≤ 1 which simultaneously
covers up the gaps and intersections that are deemed errors
in the geometry of D. Finally, we REFINE a Delaunay mesh
which approximates D by inserting additional points for each
surface patch in D.

4. PROTECTING CURVES

4.1 Protecting an Error-free Input
Our algorithm first tries to protect the regions around

curves specified by D as best as possible. The algorithm in
[12] requires that the set of curves for a PSC D are sampled
using a set of balls that satisfies certain properties. In the
algorithm, the union of these balls becomes a protected re-
gion; one guarantee is that no point is inserted within this
region during the meshing algorithm.

In general, computing a set of protecting balls satisfying
the desired protection properties would require a number of
expensive numeric computations involving feature sizes and
distances between curves. We use a recursive approach to
ease this computational burden. The set of balls needs to
satisfy three properties [12] to protect the curves of a PSC:

• (Complete coverage) Each curve must be covered com-
pletely with a sequence of balls, the first and last pro-
tecting balls for a curve located at the curve’s end-
points. Two balls are called adjacent if they are con-
secutive in the sequence.

• (Deep coverage) Any two adjacent balls along a curve
must intersect deeply, but not contain each others cen-
ters.

• (Separation) Let s be the piece of a curve contained in
ball b. If any other ball b′ also contains somes point
from s, then b′ must be adjacent to b.

These properties are justified because they will ensure that
all curve features are preserved in the final mesh as sequences
of edges. Instead of computing an exact set of ball radii
which matches the feature sizes of the curves, we pick an
initial set of ball radii which may potentially be too large.
The meshing algorithm then drives the ball sizes to match
the features as needed.

To satisfy these properties, balls at the endpoints of each
curve (the elements of D0) are computed so that no two
endpoint balls intersect. Next a walking procedure is used
to cover up each curve with balls that satisfy the first and
second properties. This procedure steps along the curve
from a source endpoint to its destination, placing balls which
deeply intersect the last placed ball. The radius of each
ball is equal to the minimum radius of the two endpoint
balls. When this walk comes near its destination endpoint,
a terminating ball is placed which intersects both the ball
at the destination as well as the previously placed ball.

After walking to cover the curves, non-adjacent balls may
intersect each other, potentially violating the separation prop-
erty, so recursively they are shrunk and the gap between con-
secutive balls is filled with smaller balls which still deeply
cover the curve. When balls are small enough, they satisfy
the separation property while still covering the curve com-
pletely.

4.2 Protection in the Presence of Errors
Since our input may have errors, the system of curves

that the input specifies may not form a 1-dimensional PSC.
In particular, if curves are duplicated or very close to each,
our separation procedure may recurse indefinitely. To allow
our algorithm to terminate, we make two modifications to
the separation algorithm:

1. Balls centered at curve endpoints are limited to have
radii no smaller than γ.

2. When pairs of balls are selected to be separated, the
centers of the pair must be at least a distance of γ

apart.

The first condition ensures that the endpoint balls do not
become too small. The second prevents separation from
recurring indefinitely. In fact, any pair of balls which are
a distance of γ or less will be selected as candidates for
merging together in the REPAIR stage which follows. Hence,
attempting to separate them further is unnecessary work.

5. MODEL REPAIR
Following the PROTECT stage, geometry repair is per-

formed in two iterative phases. During an individual phase,
pairs of balls are first nominated for merging according to
phase-specific different rules. To find these pairs efficiently,
we sweep the space with a plane that searches the set of balls
which have not been paired. After no pairs remain which
can be nominated, all selected pairs are merged.

Each ball pair is merged by creating a new ball which is
the smallest possible ball containing the two. Thus, the size
of merged balls is dependent on the gaps between curves
in the original input. This larger ball is added to the set of
balls, and the original pair is removed. This new ball is given
topological information which specifies that it covers a new,
unique curve. This new curve is set incident to the 2-faces
which were incident to the curves that the balls in the pair
were protecting. After all nominated pairs are merged, this
updated set of balls is then checked again to see if any balls
in the new set satisfy the conditions for merging. Geometry
repair is illustrated in Figure 4.

Figure 4: The merging process. Left: the Dumb-

bell model has gaps shown in the zoomed regions.
Middle: the initial protecting ball set produced by
our algorithm. Right: the final set produced by ap-
proach.

5.1 Merging Nearby Curves
Intuitively, the final set of protecting balls will act as a

“glue” between patches; the balls should be chosen so that
adjacent patches meet within the balls as they would on a

shared boundary curve. This property is exploited to cover
up gaps and intersections between boundary patches.

For example, when a small gap exists between two curves,
the protection step would have generated two sets of tiny,
separated balls to preserve the gap. The gap is removed
by merging the curves using a single set of larger balls that
cover up both curves and the space between them. Similarly,
for two surface patches with a slight intersection near their
boundary curves, the region of intersection is covered with
a single set of balls that erases the intersection.

To combine nearby curves, the first phase performs ball
merging to combine balls which have centers within distance
γ. To prevent the merge process from eliminating surface
elements, we also require that each ball in the pair lies on
curve elements which have disjoint sets of adjacent 2-faces.

Once there is no ball pair with centers within distance γ,
we begin the second phase. This phase enforces that the
protection conditions are still maintained. Since balls have
been merged, along a single curve they may now be large
enough to contain each others centers (violating the deep
coverage condition). We again proceed iteratively. First,
we nominate pairs of balls such that at least one ball in the
pair contains the center of the other. We then merge all such
identified pairs, discarding old balls, and repeatedly check
for more violating pairs.

5.2 Computing A New Set of Curves
After all violating pairs of balls are merged, the final set

of balls we have produced protects a new set of curves which
we treat as D≤ 1. However, while the centers of these balls
are a sample for D≤ 1, we do not yet explicitly know which
centers are adjacent to each other. To compute a polygonal
approximation for each curve in D1, we use the intersec-
tions between balls to decide connectivity between the ball
centers. We again employ a sweep algorithm to determine
which pairs of balls intersect. Each intersecting pair forms
an edge for some curve. To determine the sequence of edges
that make up a curve, we first search the set of balls and
mark all centers which are incident to more than two edges
as elements of D0. Next, to compute the new elements of
D1 we take sequences of remaining edges which connect two
elements of D0.

On curves that were unaffected by this merging process,
some of the protecting balls may now be quite small com-
pared to those at their endpoints. Recall that our covering
algorithm covers each curve with balls whose radius equals
the minimum radius of the balls at the endpoints of the
curve. Thus, some unaffected curves were initially protected
with balls that were sized relative to gaps which have been
removed. After merging, the balls at the endpoints are not
constrained by these gaps, and we can afford to cover these
curves with larger balls. To generate a sparser set of balls, we
recompute the size of endpoint balls and rerun the routine
from the PROTECT stage on the curves that do not contain
merged balls. An example of the protecting ball sets and
the meshes generated by our algorithm with and without
this additional protection phase is shown in Figure 5.

6. MESHING SURFACE PATCHES USING

REFINEMENT
After the PROTECT and REPAIR stages, we take the set

of protecting balls and insert them as the initial set S of

Figure 5: Reprotection helps reduce the final num-
ber of samples used to cover the curves. Top: our
initial set of repaired balls produces a dense sam-
pling along the vertical edge Dumbbell. Bottom:
after reprotection the number of samples better
matches the density at other curves.

weighted points in a weighted Delaunay triangulation. We
generate a Delaunay mesh for D using Delaunay refinement
with insertions to the set S triggered by conditions similar to
the algorithm in [12]. This algorithm computes Del S|D and
then performs various checks on the triangulations. Each
check that fails either splits a ball or inserts a new point
to correct the topology and geometry of the mesh. These
points are computed as the intersection of Voronoi edges
with the input surface patches.

To discover the correct topology, the refinement algorithm
iteratively checks a disk condition which requires that the
neighborhood of each vertex p in Del S|D is a topological
disk in each patch. Vertices which lie on boundary curves
are allowed a disk for each adjacent patch. When a ver-
tex fails to satisfy the disk condition, a point is inserted
which invalidates the Delaunay property of at least one of
its neighbor triangles. Since feature size is never computed,
some protecting balls may cause the disk test to fail because
they are too large. If the point to insert is of distance less
than the radius of the largest protecting ball, the protecting
ball is split instead.

The algorithm is also parameterized by a user variable λ

which controls the size of the triangles in the mesh. The al-
gorithm iteratively inserts a point to split the largest triangle
with circumradius greater than λ. It is guaranteed that for
any λ, the algorithm terminates and outputs a mesh home-
omorphic to some PSC. When λ is chosen small enough, the
output mesh will be homeomorphic to the desired PSC.

When all vertices satisfy the disk test and all triangles are
of size λ or less, the algorithm terminates. It then outputs
the restricted Delaunay triangulation as the output mesh.

7. REPAIR RESULTS
We implemented our repair and meshing algorithm in

C++ using the CGAL library [6]. The input to our software
is a model in STEP format. Some additional experimental
results are shown in Figures 7 and 8. Timings to generate
these meshes are shown in Table 1.

Dataset Protect Merge Meshing # of faces
Body 2.969 41.764 7155.22 45092
Bracket 0.25 5.842 1779.47 15658
Cap 0.672 12.5 8709.92 37742
Corner 0.203 5.281 1376.13 19246
Dumbbell 0.094 2.844 1557.09 14334
Rear Cover 0.219 1.25 3040.16 30590
Snape Ring 0.219 6.988 1672.45 14452
Stator 0.141 0.563 897.309 17606

Table 1: Timings for protection, ball merging, and
and mesh generation. All times are in seconds.

All eight of the models in the experiments contained var-
ious types of errors. In particular two of the models (Rear

Cover and Stator) have non-uniform gaps that have been
merged. Four of the models (Body, Corner, Rear Cover,
and Stator) have intersecting curves that have been merged
with balls large enough to overlap the intersection. The re-
maining models (Bracket, Cap, Dumbbell, and Snape

Ring) have uniformly sized gaps which have been also been
merged.

In regards to the time to mesh, our algorithm requires
a primitive to compute intersections between dual Voronoi
edges of Delaunay triangles and the input shape. This com-
putation is commonly used for smooth surface meshing, and
is known to be one of the more expensive computations used
(in addition to the expense of computing the Delaunay tri-
angulation). We use a library of our own design for in-
tersections, but are exploring the possibility of using other
libraries such as SISL [27].

For general B-Rep objects we found the intersection com-
putation to be one of the major bottlenecks in the mesh gen-
eration step. Our computation first computes the intersec-
tion points between each Voronoi edge and each (untrimmed)
patch. For toroidal and cylindrical patches, this computa-
tion requires solving quartic and quadratic equations respec-
tively. The main expense is then to determine whether these
intersection points lie within the sampled set of boundary
curves for the trimmed surface patch, hence it is dependent
on the sampling density of the curve features.

8. MODEL SIMPLIFICATION
Our repair and meshing algorithm can also be used to

simplify inputs with certain types of small features. The
performance of downstream applications which use meshes
is often dependent on the size of the mesh. For some ap-
plications, a mesh which sacrifices geometry by using fewer
elements is desirable. For example, a mesh which approxi-
mates a coarse version of an input shape with less elements
can first be used for rapid prototyping needs, and then if
necessary a second, finer mesh can be generated to improve
accuracy of the computation.

Since our algorithm already merges curve features to re-
pair gaps and intersections, we can use the same approach
to merge curves, and consequently remove features, that a

user does not want to keep in the final mesh. Many common
shapes have grooves which are modeled as skinny toroidal
or cylindrical patches. Similarly, chamfered or beveled cor-
ners have a skinny planar piece with two boundary curves
very near to each other. Preserving these small geometric
features requires an excess number of mesh elements, often
only needed for an aesthetic purpose.

If the merging parameter γ is set high enough, the balls
which cover the boundary curves of a single patch are merged
to create a set of balls which cover the patch completely.
During the merging step we track patches on which this
occurs and remove any such patch from the final mesh. The
result is a mesh which approximates the input shape with
fewer total elements. An example where we remove grooves
on a cylinder to simplify the shape is shown in Figure 6.

Figure 6: Removing small features from a cylindri-
cal model. Left: the original shape has two small
grooves (four curves each) which would require a
large number of samples to preserve. Right: our al-
gorithm merges the curves and meshes a simplified
shape instead.

9. CONCLUSIONS
We propose a novel approach for repairing and simulta-

neously generating a Delaunay mesh of CAD models with
inconsistencies due to design mistakes, software problems, or
processing issues. Experimental evidence shows that our al-
gorithm effectively handles sufficiently small gaps, overlaps,
and intersections having a tolerance which is small compared
to the other features in the model. Generating Delaunay
meshes for these types of models, and in general the repair
process, has been a significant challenge in the past.

In addition, while most CAD applications require water-
tight output, our algorithm does not require that the in-
put shape be a manifold since our meshing strategy han-
dles PSCs. We preserve non-manifold features when they
are larger than γ. Even a simple shape like the Dumbbell

model would cause most traditional repair algorithms to fail
because of the two boundary curves at the top and bottom
of the cylinder.

However, some CAD models may still have problems which
are not fixed by our approach. In the case of large gaps our
algorithm either produces large protecting balls, which may
result in hiding input features, or may leave some gaps only
partially mended. As a consequence, the mesh we generate
may fail to capture the input shape. Moreover, if two dimen-
sional elements intersect deeply, our algorithm may fail to
terminate because we do not explicitly compute intersections
between surface patches. Extending the repair framework to
handle these types of inconsistencies is an important avenue

of future work.

10. ACKNOWLEDGMENTS
This work is supported by the NSF grant CCF-0635008.

11. REFERENCES

[1] G. Barequet, C. A. Duncan, and S. Kumar. RSVP: A
geometric toolkit for controlled repair of solid models.
IEEE Transactions on Visualization and Computer
Graphics, 4(2):162–177, 1998.

[2] G. Barequet and M. Sharir. Filling gaps in the
boundary of a polyhedron. Computer Aided Geometric
Design, 12(2):207–229, 1995.

[3] S. Bischoff and L. Kobbelt. Structure preserving CAD
model repair. Computer Graphics Forum,
24(3):527–536, 2005.

[4] P. Borodin, M. Novotni, and R. Klein. Progressive gap
closing for mesh repairing. In J. Vince and
R. Earnshaw, editors, Advances in Modelling,
Animation and Rendering, pages 201–213. Springer
Verlag, July 2002.

[5] G. Butlin and C. Stops. CAD data repair. In
Proceedings of the 5th International Meshing
Roundtable, pages 7–12, 1996.

[6] Cgal. Computational Geometry Algorithms Library.
http://www.cgal.org.

[7] S.-W. Cheng, T. K. Dey, and E. A. Ramos. Delaunay
refinement for piecewise smooth complexes. In
N. Bansal, K. Pruhs, and C. Stein, editors, SODA,
pages 1096–1105. SIAM, 2007.

[8] L. P. Chew. Guaranteed-quality mesh generation for
curved surfaces. In Symposium on Computational
Geometry, pages 274–280, 1993.

[9] C. S. Chong, A. S. Kumar, and H. P. Lee. Automatic
mesh-healing technique for model repair and finite
element model generation. Finite Elements in Analysis
and Design, 43(15):1109–1119, 2007.

[10] P. Degener and R. Klein. Texture atlas generation for
inconsistent meshes and point sets. In Shape Modeling
International, pages 156–168. IEEE Computer Society,
2007.

[11] T. K. Dey. Curve and surface reconstruction:
algorithms with mathematical analysis. Cambridge
University Press, New York, 2007.

[12] T. K. Dey and J. A. Levine. Delaunay meshing of
piecewise smooth complexes without expensive
predicates. Technical Report OSU-CISRC-7108-TR40,
Department of CSE, The Ohio State University, July
2008.

[13] H. Edelsbrunner. Geometry and Topology for Mesh
Generation. Cambridge University Press, England,
2001.

[14] A. Guéziec, G. Taubin, F. Lazarus, and W. Horn.
Cutting and stitching: Converting sets of polygons to
manifold surfaces. IEEE Transactions on Visualization
and Computer Graphics, 7(2):136–151, 2001.

[15] W. D. Henshaw. An algorithm for projecting points
onto a patched CAD model. In Proceedings of the 10th
International Meshing Roundtable, pages 353–362,
2001.

[16] J. Hu, Y. K. Lee, T. Blacker, and J. Zhu. Overlay grid
based geometry cleanup. In Proceedings of the 11th
International Meshing Roundtable, pages 313–324,
2002.

[17] T. Ju. Robust repair of polygonal models. ACM
Transactions on Graphics, 23(3):888–895, 2004.

[18] Y. K. Lee, C. K. Lim, H. Ghazialam, H. Vardhan, and
E. Eklund. Surface mesh generation for dirty
geometries by shrink wrapping using cartesian grid
approach. In Proceedings of the 15th International
Meshing Roundtable, pages 393–410, 2006.

[19] A. A. Mezentsev and T. Woehler. Methods and
algorithms of automated CAD repair for incremental
surface meshing. In Proceedings of the 8th
International Meshing Roundtable, pages 299–309,
1999.

[20] T. M. Murali and T. A. Funkhouser. Consistent solid
and boundary representations from arbitrary
polygonal data. In ACM Symposium on Interactive 3D
Graphics, pages 155–162, 196, 1997.

[21] F. S. Nooruddin and G. Turk. Simplification and
repair of polygonal models using volumetric
techniques. IEEE Transactions on Visualization and
Computer Graphics, 9(2):191–205, 2003.

[22] P. S. Patel, D. L. Marcum, and M. G. Remotigue.
Automatic CAD model topology generation.
International Journal for Numerical Methods in
Fluids, 52(8):823–841, 2006.

[23] N. A. Petersson and K. K. Chand. Detecting
translation errors in CAD surfaces and preparing
geometries for mesh generation. In Proceedings of the
10th International Meshing Roundtable, pages
363–371, 2001.

[24] J. Qi and V. Shapiro. Epsilon-regular sets and
intervals. In International Conference on Shape
Modeling and Applications (SMI 2005), pages
310–319, 2005.

[25] A. Sheffer, M. Bercovier, T. D. Blacker, and
J. Clements. Virtual topology operators for meshing.
Int. J. Comput. Geometry Appl., 10(3):309–331, 2000.

[26] X. Sheng and I. R. Meier. Generating topological
structures for surface models. IEEE Computer
Graphics and Applications, 15(6):35–41, 1995.

[27] SISL. The SINTEF Spline Library.
http://www.sintef.no/math software.

[28] J. P. Steinbrenner, N. J. Wyman, and J. R. Chawner.
Fast surface meshing on imperfect CAD models. In
IMR, pages 33–41, 2000.

[29] Z. J. Wang and K. Srinivasan. An adaptive cartesian
grid generation method for ‘dirty’ geometry.
International Journal for Numerical Methods in
Fluids, 39(8):703–717, 2002.

Figure 7: Original models (left) and repaired output meshes (right) for the Body, Cap, and Rear Cover

models.

Figure 8: Original models (left) and repaired output meshes (right) for the Corner, Bracket, and Snape Ring

models.

