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Abstract

Given a continuous functiorfi : X — IR on a topological spack, its level setf~!(a) changes
continuously as the real valuechanges. Consequently, the connected components in takeskets
appear, disappear, split and merge. The Reeb graghsafmmarizes this information into a graph
structure. Previous work on Reeb graph mainly focused oeffiiient computation. In this paper, we
initiate the study of two important aspects of the Reeb grelpich can facilitate its broader applications
in shape and data analysis.

The first one is the approximation of the Reeb graph of a fonatin a smooth compact manifold
M without boundary. The approximation is computed from a $qtaints P sampled fromM. By
leveraging a relation between the Reeb graph and the sedaadttical homology groupas well as
between cycles it and in a Rips complex constructed fraf) we compute thél;-homology of the
Reeb graph fronP. It takesO(n logn) expected time, where is the size of th&-skeleton of the Rips
complex. As a by-product, whéel is an orientabl@-manifold, we also obtain an efficient near-linear
time (expected) algorithm for computing the rankrbf(M) from point data. The best known previous
algorithm for this problem take®(n?) time for point data.

The second aspect concerns the definition and computatitire persistent Reeb graph homology
for a sequence of Reeb graphs defined on a filtered space. kereavise-linear function defined on a
filtration of a simplicial complexs, our algorithm computes all persistédrt-homology for the Reeb
graphs inO(nn?) time, wheren is the size of th@-skeleton and. is the number of edges K.

1 Introduction

Given a topological spack and a continuous scalar functigh: X — R, the set{z € X : f(x) = a}

is alevel setof f for some value: € IR. The level sets off may have multiple connected components.
The Reeb graph of is obtained by continuously collapsing each connected oot in the level set into

a single point. Intuitively, ag changes continuously, the connected components in thedetseappear,
disappear, split and merge; and the Reeb graphtedicks such changes. Hence, the Reeb graph provides
a simple yet meaningful abstraction of the input scalar fitléhas been used in a range of applications in
computer graphics and visualization; see, for examplestingey [3] and references therein on applications
of Reeb graph.

Our results. Most of the previous work on the Reeb graph focused on itsigfticomputation. In this
paper, we initiate the study of two questions related to Rgaphs both of which are important in shape
and data analysis applications.

The first question is concerned with the approximation ofRleeb graph from a set of points sampled
from a hidden manifold. It turns out that the Reeb graph hognpls also related to the so-called vertical
homology groups. These relations enable us to develop areeffalgorithm to approximate the Reeb graph
of the manifold from its point samples.
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As a by-product of our approximation result, we also obtanear-linear time algorithm that computes
the first betti numbeg; (M) of an orientable smooth compasmanifold M without boundary from its point
samples. This result may be of independent interest evemgththe correctness of our algorithm needs a
slightly stronger condition than the previous best-knowpraach for computing); (M) from point data. In
particular, it is shown in[J1] thag; (M) can be computed as the first betti number of certain Rips campl
constructed out of the input d&taA straightforward computation of betti numbers of the Rgosnplex
using Smith normal forn{]23] takes cubic time whereas ouostlgm runs in near-linear expected time.

The second question we study concerns with the definitioncantputation of loops in Reeb graphs
which remain “persistent” as its defining domain “grows”. YWepose a definition of thpersistent Reeb
graph homologyfor a sequence of Reeb graphs. They are computed for a fandébned on a filtered
space in the same spirit as the standard persistent hom@8hyinterestingly, this problem does not seem
to be easier than computing the standard persistent homqlotentially due to the fact that the domains in
guestion (the sequence of Reeb graphs) do not have an oclostween them, as was the case for standard
persistence homology.

Related work. As mentioned already, most previous work on the Reeb grapiséal on its efficient compu-
tation. Shinagawa and KuniL[26] presented the first provablrect algorithm to compute Reeb Graphs for
a triangulation of 2-manifold in©(m?) time wherem is the number of vertices in the triangulation. Cole-
McLaughlin et al.[[TIl] improved the running time &(m log m). Tierny et al. [2¥] proposed an algorithm
that computes the Reeb graph for a 3-manifold with boundenipegided inR? in time O(nlogn + hn),
whereh is number of independent loops in the Reeb graph. For a pisedimear function defined on
an arbitrary simplicial complex, a simple algorithm is poepd in [15] that runs in tim&(nlogn + L),
where L = O(nm) is the total complexity of all level-sets passing throughical points. Doraiswamy
and Natarajan [16] extended the sweeping idea to computBele graph irO(n log n(loglogn)?) time
from an arbitrary simplicial complex, whereis the size of the-skeleton of this simplicial complex. A
streaming algorithm was presented[inl[25] to compute theoReaph for an arbitrary simplicial complex
in an incremental manner i@(nm) time. Recently, Harvey et al_[20] presented an efficienticemized
algorithm to compute the Reeb graph for an arbitrary simgdlicomplex inO(n log m) expected running
time. The Reeb graph for a time-varying function defined 8rdimensional space was studied[ini[18].

Recently a flurry of research has been initiated on estigatpological information from point data,
such as computing ranks of homology groupgs [8], cut lo€u$, [A8d the shortest set of homology loops
[T4]. In [6], Chazal et al. initiated the study of approxiingt topological attributes of scalar functions from
point data, and showed that the standard persistent diagthroed by a function can be approximated from
input points. This result was later used|ih [7] to produceustelring algorithm with theoretical guarantees.
The results from[[6.17] can be used to approximatep-freeReeb graphs (also callemntour tree¥ from
point data, thus providing a partial solution to our first sfimn. However, it is unclear how to approximate
loops in the Reeb graph which correspona ubset of essential loopsthe input domain which represent
a subgroup ofH;-homology.

2 Background and notations

Homology. A homology group of a topological spa&eencodes its topological connectivity. We consider
the simplicial homology group ifX is a simplicial complex, and consider t@gular homology group
otherwise, both denoted witH, (X) for the pth homology group. The definitions of these two homology

In fact, in [1] Attali et al. show a much stronger result: thipRcomplex of a point clouds captures the homotopy type of a
compact topological space in Euclidean space under sonditioms. An earlier result of Hausmanin]22] also shows thigisR
complex captures the topology of an input Riemannian méhifut under much stronger conditions.



groups can be obtained from any standard book on algebnaadotgy. Here we single out the concepts of
p-chains andy-cycles in singular homology whose definitions are not aselyiédnown in computational
geometry as their simplicial counterparts. Jeeé [Z1, 23tfiniled discussions on this topic.

A singular p-simplex for a topological spac¥ is a continuous map from the standarg-simplex
AP C TRP to X. For example, d-simplexo is a continuous map : [0,1] — X. A p-chain is a formal
sum of singulap-simplices. A singulap-cycle inX is ap-chain whose boundary is a zefp — 1)-chain.
Therefore, technically speakingpachain or ap-cycle forX is a formal sum of maps. In this paper we will
only deal with1-chains an@-chains. Let doop refer to a continuous map' — X or a finite union of such
maps. For anyl-cyclea = o1 + - -+ + oy, there is a corresponding loagpwhose image irX coincides
with the disjoint union of images; ([0, 1]), fori € [1, k] (see page 108-109 in121]). We call this loop the
carrier of «, and thatx is carried by loop ¢. All singular 1-cycles carried by the same loop are homologous.
Hence, in the remainder of the paper, we sometimes abusetatgons slightly and talk about a loop as if
it is al-cycle. For example, we will say that two loops are homolagahich means that cycles carried by
these two loops are homologous.

We assume tha( is compact and triangulable. Its simplicial homology ddlibg a triangulation iden-
tifies to its singular homology. We also assume that the hogyogroups are defined ovEr, coefficients.
SinceZ, is a field,H, (X) is a vector space of dimensign It will be clear from the context whether we are
talking about simplicial or singular homology ¥ Unless specified, we assume singular homologyxfor
LetZ,(X) denote the-th cycle group irX. A continuous ma® : X; — X, between two topological spaces
induces a map among its chain groups which we denote,asClearly, . provides a map from the cycle
groupZ,(X,) to the cycle groufZ,(Xz) which in turn induces a homomorphisin. : H,(X;) — H,(X2).

Horizontal and Vertical Homology Following [9], we now extend the standard homology to thealted
horizontalandvertical homology with respect to a functigh: X — IR. Given a continuous functiof, its
level setsandinterval setsare defined asX, := f~!(a) andX; := f~(I) for a € R and for an open or
closed intervall C IR, respectively. From now on we sometimes omit the usg when its choice is clear
from the context.

A homology classv € H,(X) is horizontalif there exists a discrete set of iso-valulgs } such thatv
has a pre-image under the mdp(|J, X,,) — H,(X) induced by inclusion. The set of horizontal homology
classes form a subgrou,(X) of H,(X) since the trivial homology class is horizontal, and the tldiof
any two horizontal homology class is still horizontal. Wél tais subgroupH,,(X) the horizontal homology
group ofX with respect tof. Thevertical homology group oX with respect tof is defined as:

H,(X) := H,(X)/H,(X), the quotient oH, (X) with H,(X).

The coset 4 H, (X) for every classs € H,,(X) provides an equivalence classHp(X). We callw avertical
homology clas# w + H,(X) is not identity inH,,(X). In other wordsw ¢ H,(X). Two homology classes
w1 andwy arevertically homologousf wy + we € Hy(X).

We percolate the definitions from the homology classes ttesy@ cyclea is horizon-
tal if [o], the standard homology class represented pig a horizontal class. Two cycles
a1 anday, arevertically homologou# [a4] and[«s] are vertically homologous. Obviously,
two p-cyclesa; andas are vertically homologous if and only if there i@+ 1)-chain B
such thato B + a1 + ao is a horizontal cycle. See the torus in the right figure for &n €
ample, wherey, is a horizontal cycle as it is homologousdg carried by a loop contained
in a connected component of a level set; whileis a vertical cycle, i.efa;] is a vertical  a
homology class. We say thédv, . .., oy} is a set of base cycles fot, (X) if {[a1],. .., [ox]} form a basis
for H,(X). A set of base cycles fdt,(X) and Flp(X) are defined analogously.
Finally, therangeof a loopy C X, denoted byange(), is the intervallmin,c f(x), maz e~ f()].
The heightof this loop, height (), is simply the length ofange(y). We extend the definitions of range
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and height to cycles by saying thainge(«) = range() andheight(«) = height(y) where the cycle
a € Zy(X) is carried by the loopy. The height of a homology class, denoted byheight(w), is the

minimal height of any cycle in this class. Notice that thegheiof a horizontal class is not necessarily
zero sincev may be the addition of multiple heigbthorizontal classes.

Reeb graph. Given a triangulable topological spakeand a continuous functiofi : X — IR, we say that
two pointsx,y € X areequivalent denoted byr ~ y, if and only if x andy belong to the same connected
component ofX,, for somea € IR. Consider the quotient spa&e. which is the set of equivalence classes
equipped with the quotient topology induced by this eqeimak relationX.. is also called th&eeb graph
of X with respect tof, denoted byRb(X). See Figuréll (a) and (b) for an example.

f
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Figure 1: (a)X is a solid torus and its Reeb graph w.r.t the height funcficmshown in (b). (c) is a levelset-
tame function w.r.t. discrete valugs,, .. ., cs }. There is a continuous map: X. x [0, 1] — X, ,) Whose
restriction to the open sé&f. x (0,1) is a homeomorphism. In the top row, there are three disjatetval-
components iX ., ,) whose closures may intersect in level-séts andX,.

An alternative way to view the Reeb graph is that there is arahtontinuous surjectiof® : X — X
where®(z) = ®(y) if and only if z andy come from the same connected component of a level set of
f. In this senseRb;(X) is obtained by continuously identifying each connected ponent. The magd
induces a scalar functiofi: Rb(X) — IR wheref(p) = f(z) if p = ®(x). Sincef(z) = f(y) whenever
®(z) = B(y), the functionf is well-defined. Sinc¢ is continuous, so ig. The range or height of a loop in
Rb¢(X) is measured with respect to this functifnin this paper, we also usgto refer tof for simplicity.

3 Reeb graphsand vertical homology

In this section, we show th&t; (Rb(X)) and the first vertical homology groui; (X) of X are isomorphic.
This relation is observed f&-manifolds in [9], but to the best of our knowledge, it has been formally
introduced and proved anywhere yet for general topologipates. We include it here for completion.
The surjection® : X — Rby(X) induces a chain mag, from the 1-chains ofX to the 1-chains
of Rby(X) which eventually induces a homomorphisby : H;(X) — H;(Rbs(X)). For the horizontal
subgroupH; (X), we have that, (H; (X)) = {0} C H;(Rb¢(X)). Hence®, induces a well-defined homo-
morphism between the quotient groups
&y (x) = 1%

Rb(X))

H
R ﬁiE = Hy(Rb#(X)).

The right equality above follows from that; (Rbs(X)) = {0}, which holds because every level set of
Rb¢(X) consists only of a set of disjoint points. In what follows, sreow thatd is an isomorphism under
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(b)

Figure 2: (a) Left: the interval-componen{C) contains three through-paths and one turning-path. Middle
the turning-path can be deformed to a path contained in thed $&tX,.,. Right: 7. is modified so that at
most one through-path is left. (b) The image of the singulapkex o; is the through-path in this interval-
component. Its image is a singular simpkex: [0, 1] — |e;| which we draw with the the thin curve slightly
off |e;| for illustration purpose.

some mild conditions. Intuitively, this is not surprising & maps each contour in the level set to a single
point, which in turn also collapses every horizontal cycle.

For technical reasons, we consider functions that behasayni Specifically, we call a continuous
function f : X — IR levelset-tamef there exist finite number of discrete valués,, ..., c;} so that the
following holds: for any two consecutive andc;;1, (i) there is a homeomorphisp; : X, x (0,1) —
X(es,eip) fOr @n arbitrarye € (c;, c;41); and (i) the homeomorphism; can be extended to a continuous
mappu; : Xe x [0,1] — X, ...,1- In this case, we also say thatis levelset-tame w.r.t. the set of discrete
values{cy, ..., cx}; note that the choice af;s andyu;s are not unique. See Figurke 1 (c) for an example. It
can be shown that Morse functions on a compact smooth mdrifa piecewise-linear functions on a finite
simplicial complex are both levelset-tame functions.

First, we prove the following result which implies that thap® : H; (X) — Hi(Rb#(X)) as introduced
above is injective.

Lemma3.1l Let f : X — IR be a levelset-tame function, add ®,. as defined before. Then we have that
ker(®,) = Hy(X) whereker(®.) denotes the kernel df,.

Proof: Since® maps all points in the same connected component in a levef geinto a single point, we
have thatH;(X) C ker(®,). Hence we now focus on proving the opposite directien(®,) C H;(X).
That is, for any homology clags € Hy(X), if ®,(h) = 0, thenh € H{(X). Specifically, take a loopy C X
carrying a cycle from the clags We will show that there exists a logpwhich is contained in the union of
a discrete set of level sets and which is homologous this will then imply thath is horizontal.

Assume without loss of generality thais the image of a map! — X; the case when is a finite union
of such images can be handled by applying the following pto@fach image d$'.

Let {c1,...,c} be a set of discrete values with respect to whijcis levelset-tame. Fix an arbitrary
interval[c,, ¢,+1] and anyc € (¢, ¢,+1). By definition of a levelset-tame function, there exists attmious
mapp : Xe x [0,1] — X, c,.,] whose restriction to the open set x (0,1) is a homeomorphism onto
X(cs,enpr)- The product spack, x [0, 1] has several connected components each of which, catigiihaer,
corresponds to the product between a connected compontt lievel-selX. and[0, 1]. The images of all
such cylinders under can touch each other only X, orinX.,,, wheng is no longer a homeomorphism.
See Figuréll (c) for an illustration, where in this examplex [0, 1] has three cylinders. Let us consider a
single cylinderC = S x [0, 1], whereS is the corresponding connected componerfinDenote byC° the
open cylinderS x (0,1). We call the image:(C°)(C X) of every open cylinde€® aninterval-component
of X. Note that all interval-components &f are disjoint, and so are their images under the dap the
Reeb graptRb ¢(X).



Next, considerc. = v N u(C?) andvye = v N u(C), which are the intersections gfwith the interval-
componeniu(C?) and with the closure ofi(C°), respectively. Each connected componenjdnis a path
of the following two types: ahrough-pathm where the two endpoints of its closure lieXa, and X, ,,
respectively; and &urning-path7 where the endpoints of its closure either lie bottXin or both inX,, . ;.
The closure of a through-path or a turning-path:{i€°) is called a through-path or a turning-pathi(C).
It can be verified that any turning-pathwith endpointsp andq can be continuously deformed to a path
connectingp and ¢ within the same contour of a level set, using an argumentiairte what we invoke
below. Therefore we can transformnto another homologous loop that contains only throughspathy.
See Figur€l2 (a) for an illustration. As such, from now on, w&uae that contains only through-paths.

Our arguments consist of two steps. Step 1, we modify~y into another homologous loog which
contains at most one through-path within any interval-congmt ofX. In Step 2, we show that ifb(v/) is
null-homologous irRb(X), theny’ must have no through-path in any interval-componenX aimplying
that~’ is contained only in the level-setg; X.,. Hencey’ carries a horizontal cycle aridis a horizontal
homology class.

Step 1. Inthis step, we modifyyc so that it contains only portions lying in the two level-s¥ts U X, ,,
together with at most one through-path/ifC). See Figuré]2 (a). Specifically, suppose there are more
than one through-paths . Then, for any pair of through-paths andr,, we show that there exists a
2-chainB such that B + m; + w2 is contained in the two level se¥s, andX,, ,,. Hence, we can convert
ytoy =~ + (0B + m + m2) and the intersection, = +' N 1(C) has two fewer through-paths thap.
Obviously,~ is homologous tey’. By continuing this process, we can cancel out all pairs afuitgh-paths

in ¢ till at most one through-path is left, and the resulting lodis homologous toy.

P2_Qq2

Figure 3: (a) An illustration of the cylinde? = S x [0, 1], where each horizontal slice of this cylinder is
a copy ofS. (b) § is the projection o = s; o s3 o s5 from the product space onto the sli€gl]. (c) The
boundary of the surfacB’ is s + 3.

We now show how to construct a 2-chaihfor a pair of through-pathg; andws from ~¢. Let m;°
andm,° denote the interiors of; andns, respectively. Note that;° andw,° are contained in the image
(€% € Xie, c,,r) Of the open cylindeC® = S x (0,1). Since the restriction gf to the open set” is a
homeomorphismg,© and 2 have unique pre-images® ands-° in C° underu. Let s; (resp.s3) denote
the closure ok (resp.s»°) in C, with p; andp, (resp.q; andgs) being its endpoints. See Figdde 3 (a) for
an illustration. Notice that(s;) = m; andu(s2) = w2 due to the continuity ofi.

Since the cylinde€ is the product spacé x [0, 1], every pointx € C can be represented as= (z, t),
wherex € S is called itshorizontal coordinateandt € [0, 1] is its vertical coordinate(or heigh). We use a
sliceC|t] to refer to one copy of' at heightt.

Since each slicé(t] of the cylinderC is path-connected, there is a path, sgythat connectg; andg; in
C[0]. Let s denote the concatenated curye s3 o so; see Figurél3 (b). Now for every poirt= (z,t,) € s,
consider the “vertical linel,, = {(x,t) | t € [ts, 1]}. Thatis,l/, contains the images of in each slice|[t]
with ¢ > t,. The union ofl,s for allx € s traces out 2-dimensional surfac®’. The boundary of3’ is



JB' = s o § wheres is the image ok in C[1]. See Figur€l3 (b) and (c). Through the continuous mape
obtain a2-chain B whose carrier ig((B’) C X[, ,,,] andou(B’) = 1 o u(s3) o ma o u(8). Furthermore,
w(s3) andp(s) lie in the level-setX., U X Hence by taking’ = v + du(B’), we have reduced a pair
of through-paths.

Now we group through-paths i into pairs, with at most one left unpaired. We construgtchain for
every pair, and leB denote the union of all thesgechains. Obviouslyy’ = v + 98 is homologous tey and
its intersectiom’ N u(C) has at most one through-path. By performing this proceduralf cylinders and
for all intervalsc,,c,+1],z = 1,...,k — 1, we obtain a loopy which is homologous te, and has at most
one through-path within each interval-componenXin

Cz41"

Step 2. We now choose a specific 1-cyale= >""_, 0; + Z§:1 p; carried byy that is of the following
form: there are two types of singular simplicesiina simplexos; whose image iX is a through-path and
a simplexp; whose image is completely contained within a level§gtfor somez € [1, k]. Consider the
image ofa in Z1(Rby(X)), & := ®yu(a) = >, 65 + Z§:1 pj, with 6; = ®4(0;) andp; = Pu(p;).
Since the mag@® collapses each connected component in a level set to a ginglg eachy; is a constant
map, and hencé is homologous t® ;_, ;, which we still denote a& for simplicity.

Now insert a set of vertice§ to Rb(X), which is the set of points with function valug(c;) for
i € [1,k]. The removal of these vertices froRb;(X) leaves a set of connected components. Since the
function f : X — TR is levelset-tame w.r.t{cy, ..., ¢}, each such connected component is necessarily the
image of some continuous bijectign: (0,1) — Rb¢(X), and we call each connected comporamtarc of
Rb¢(X). Indeed, each such connected component is the image of sbeneai-component ok under the
map®. Since an interval-componefitof X is the evolution of a connected component in a level set witho
changing its topologyP(7') is necessarily a piece of curve monotone in the functioneslilso observe
that, by the definition of interval-components, all suchsaare disjoint. Hence we obtain a triangulati&n
of Rb;(X) whose vertices ar& and edges are the closures of those arcs defined above.

By the construction ofy, the image of each singular simplex is contained in a different interval-
component. Hencg; ([0, 1]) is contained within the underlying space of a single edgeXk’. The boundary
of ; coincides with endpoints of which are vertices iV. See Figur&€l2 (b) for an illustration. Given an
edgee € K, let|e| C |K| = Rby(X) denote the underlying space af Lete; € K denote the edge such
thata; is a maps; : [0,1] — |e;|. Observe that each; is mapped to a unique edge

Finally, consider the singular cycte = ¥7_,5;. The carrier for this cycle is homotopic to the carrier
of the cycleh = XI_,(h; : [0,1] — |e;|) whereh; is a homeomorphism. Thus the two cyclesind &
are homologous. Consider the simplicial cygle= >""_, e;, and let[g] € Hi(K) denote the simplicial
homology class it belongs to. The cldgkidentifies to[A] via the standard isomorphism between simplicial
homology group$i; (K) and the singular homology group, (| K|) (see e.g, page 194 4f[23]). Therefore,
this standard isomorphism also identifjesto [a]. On the other hand, in simplicial homology, as there are
no 2-simplices inK, g is null-homologous if and only i = @), which means that the numbewof singular
simplices ina is necessarily zero i is null-homologous. This implies that the lo§p= X does not contain
any through-path, and is completely contained within themof level-setd J, X.,. Hencey (and thusy)
carries a horizontal cycle and its corresponding homoldassé is horizontal. In other words, #.(h) = 0
thenh € Hy(X), implying ker(®,) C Hy(X). Combining this with that;(X) C ker(®.) completes our
proof.

]

Claim 3.2 Let f : X — IR be a levelset-tame function, ardd as defined before. Given any loepC
Rb;(X), there is a loopy C X such that® () = v andrange(7) = range(7).

Proof: We construcg as follows. Suppose thatconsists of a sequencesiobrcs,

’Y[p17p2]7 ’Y[p27p3]7 o 7’7[pk7p1]7

7



where eaclp; is a node of the Reeb graftb ¢(X). For eaclp;, choose an arbitrary pre-imagge X from
®~!(p;). Now for each arey[p;, p;11], connecty; andg; 1 within X(v[p;, pi41]) by V[, gi11] arbitrarily.
The concatenatin of aff[g;, ¢;+1] providesy C X. Itis easy to check thatinge(y) = range(7). [

Theorem 3.3 Given a levelset-tame functioh: X — R, let® : Hy(X) — Hi(Rb(X)) be the homo-
morphism induced by the surjectidn: X — Rb¢(X) as defined before. The madpis an isomorphism.

Furthermore, for any vertical homology classe H; (X), we have thaheight(w) = height(®(w)).

Proof: First, by Claim(3R, the homomorphisi, : H;(X) — H;(Rbs(X)) is surjective. It then follows
that its induced quotient map s also surjective. The injectivity ab follows from Lemmd3JL. Hence is
an isomorphism.

For the second part of the theorem, suppaess a vertical cycle such that] = w andheight(a) =
height(w), i.e., a is a thinnest cyclén the vertical homology class. Let~ be the loop inRb;(X) that
carries a thinnest cycle in the homology cldgs)) € Hi (Rb(X)). We have that

height(a) = height(®4(a)) > height(®(w)) = height(v) 1)

On the other hand, by Clailm3.2, there is a I16op X (which is a pre-image of under®) such thatb(7) =
v andheight () = height(y). Let& be anyl-cycle carried byy. By Lemma31L, we havgi| = w, as the
cyclea + & is mapped to a null-homologous cycleRb ¢(X). Henceheight () = height(7) > height(a).
Combining this with Eqn[{l1) proves thatight (®(w)) = height (w). n

4 Approximating Reeb graphs

Let M be a compact and smooth-manifold without boundary embedded IR?. Thereach p(M) of M
is the minimal distance from any point € M to the so-called medial axis &fl. Given a pointp € M,
let Bm(p, ) denote the open geodesic ball centereg aiith radiusr. Letr, be the maximal radius so
that Bm(p, rp) is convex in the sense that the minimizing geodesics betaagtwo points inBy (p, ) iS
contained inBy (p, ). Theconvexity radius oM is simply p.(M) = inf,em 7p.

A set of pointsP is ane-sampl@ of Mif P C M and for any pointr € M, there is a poinp € P within
¢ geodesic distance from. Given P and a real > 0, the Cech complexX”(P) is a simplicial complex
where a simplexr € C"(P) if and only if the vertices o are the centers of-balls of radiusr/2 with a
non-empty common intersection. Instead of common intémgdf we only require pairwise intersection
among the set of-balls, we obtain the so-callédetoris-Rips complex (Rips complex for shagt)( P).

Overview. Consider arz-sampleP C M and a functionf : M — IR with its value only available at sample
points inP. In what follows, we show that for an appropriatethe Reeb graph of the Rips compl&X(P)
approximateskb (M) both in terms of the rank of the first homology group, and im®of the range and
the height of cycles and homology classes. Our precise tefiraf approximation will be given later. Once
the Rips complex is constructed, computing its Reeb grastanlyO(n log n) expected time[20], where
n is the size of th@-skeleton ofR"(P). Sincef is only available at sample points i, the approximation
quality naturally depends on how well the functign: M — IR behaves. We assume thais Lipschitz
with Lipschitz constantip .

In Section 41l we first introduce some relations betweenesyofM and those of the geometric real-
ization |R"(P)| of the Rips complexR”(P). Using these relations, in Sectibnl4.2, we show that thexe ar
maps betweel; (M) andH;(|R"(P)]|) that are not only isomorphic, but also preserve the heighhde
of a homology class. This, combined with Theoien 3.3, e\adlytleads to our approximation &b (M).

2Heree-sample is not defined relative to reach or feature size asnmny done in reconstruction literatufe]12].



This approximation result can be used to estimate the fitStrhenber of an orientabl2-manifold from its
point samples in near-linear expected time.

4.1 Relation between cyclesin M and |R"(P)|

The simplicial complexR”(P) as defined is not necessarily embeddedRih Consider the embedding
e: R"(P) — APl of R"(P) into the standard simplex il®'"’l. Let |R"(P)| denote the underlying space
of the geometric realizatios(R" (P)). A piecewise-linear functiorf on R"(P) defines naturally a piece-
wise linear function on its geometric realizatigR" (P)| which we also denote a6. The Reeb graph of
a PL-functionf on R"(P) is in fact the Reeb graph of on its geometric realizatiofR" (P)|. Hence
Rbs(R"(P)) := Rbs(|R"(P)]). Analogously, the vertical / horizontal homology groupsdf( P) with re-
spect to a PL-functiorf are also defined usin@” (P)|. In this section, we relate cycles frokh and those
from |R"(P)| via (simplicial) cycles ofR"(P). We will show how to construct the maps as indicated in
Figurel3 below, such that these maps not only induce isonmrshin the corresponding homology groups,
but also preserve height and range of cycles.

p = uod

T

Z,(M) Z,(R"(P)) Z,(|R"(P)[)

‘h#\—/_/g/

§ =hyog

Figure 4: Maps between cycle groups

A general version of the next claim which establishes an @pitism between the homology groups of
M and those ofcech and Rips-complexes is well-known (see, €.al [24Jech-complexes and [22] for
Rips-complexes; a variant for compact spaces was alsowaasby Steve Oudot (personal communications)
and a much stronger result showing that Rips-complexesigagttopology of sampled shapes is given in
[@]). We include a proof of it for completeness. First, we tgua result from[[14], the map of which will be
used later as well.

Proposition 4.1 (Proposition 3.3 of [14]) Let P € M be ans-sample and- a parameter such thate <
r < \/gp(l\/l). There is a homotopy equivalenée C?"(P) — M such that)(p) = p for anyp € P and
9(0) cMnN (UPEVert(U)BM (p,?“)).

Lemma4.2 Let P C M be ans-sample and- a parameter such thatz < r < %\/gp(l\/l). Then,

Hi(C"(P)) ~ H{(R"(P)) ~ Hi(C*(P)) ~ Hy(M).

The first two isomorphisms are induced by the natural inclugiomC” (P) to R"(P) and then taC?"(P).
The last isomorphism is induced by the homotopy equivaléficen Propositior411.

Proof: Consider the following sequence of inclusions:
C"(P) &L RT(P) & ¢ (P).

By Proposition 3.4[[14], we know that the inclusién= is o iy induces an isomorphisH; (C"(P)) ~
H1(C* (P)). On the other hand, note th@t(P) andR"(P) share the same edge set, & P) only has
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more triangles tha@” (P). Hence the inclusior; induces a surjective homomorphism frdt (C" (P))
to Hy(R"(P)). It then follows that both; andi; must induce isomorphisms in the corresponding first
homology groups. [

Mapsd and h. We now define maps as indicated in Figire 4. First, given aeyet Z; (M), we map it to
acycled(«) € Z1(R"(P)) using the same Decomposition methdd [2] as applief th [palrticular, use
an arbitrary, but fixed, way to break the carriernointo pieces where each piece has length at meste.
For each piece with endpoints andz; 1, find the closest sample poinisandp;., from P to x; andz; 1,
respectively, and connegt andp;; (which is necessarily an edge R (P) by triangle inequality). The
resulting simplicial 1-cycle ifR"(P) is d(«). Later in LemmdZl3, we will show that this mapindeed
takes homologous cycles to homologous cycles, and as sdubes a well-defined homomorphisin at
the homology level.

We define the map : R"(P) — M as the inclusion mafR"(P) — C?"(P) composed with the
homotopy equivalencé : C*"(P) — M introduced in Propositiofi4.1. The corresponding chain iap
induces a homomorphista, : H,(R"(P)) — H,(M). We restricth, only to the first homology group
h, : Hi (R"(P)) — Hy(M). By LemmdZRh. is an isomorphism.

The following lemma states that Z;(M) — Z;(R"(P)) is in fact the homology-inverse dfy. The
ranges of mapped cycles are also related. We put the prodfeofollowing lemma in AppendiXdA to
maintain the flow of the presentation. Given two intervals= [a,b] and Iy = [c,d], we say that/; is
onesides-close tols if [a,b] C [c — §,d + d]. andI; and > ared-Hausdorff-closef the two intervals are
onesides-close to each other. In the Lemma below, assume thsi@a (Lip ;)-Lipschitz function onM and
its values for the vertice® C M define a piecewise linear function &1 (P) which we also denote g&

Lemma4.3 (i) h. : Hi(R"(P)) — Hy(M) is an isomorphism. The mapinduces an isomorphism
dy: Hi (M) — Hy(R"(P)) such thath, = (d,)~!.

(i) The range of the cyclé(a) € Zi(R"(P)) is oneside< - Lip)-close to the range ok € Z;(M).
Similarly, the range of the cycley (&) € Z;(M) is oneside« - Lip;)-close toa € Z;(R"(P)).

(iii) The ranges of any homology class € H;(M) (resp. @ € Hi(R"(P))) and its imaged,(w) €
Hi(R"(P)) (resp.h.(w) € Hi(M)), are ¢ - Lip ;)-Hausdorff-close.

Mapsu and g. The mapu is taken as the standard map between the simplicial chaupgrof a simplicial
complex and the singular chain groups of its underlying spaee e.g, the mgp defined on page 194 of
23].

We now define the map : Z;(|R"(P)|) — Zi(R"(P)). Recall we have embedd&d” (P) in the
standard simplex”| ¢ R!”l, and|R" (P)| is the underlying space of this geometric realizatiéR" (P))
of R"(P). In particular, Each vertey; € P is mapped to the point;, = (0,...,0,1,0,...,0) € R!I”! with
the ith position1; and a simplex ifR"(P) with vertices{p;,, ..., p;, } is mapped to the simplex iRl
with vertices{v;,, ..., v; }. Consider a cyclevin |[R"(P)|. The carrier ofx passes through a sequence of
simplicesS of e(R"(P)) if a point in the carrier is contained in multiple simplicéisen keep the one with
the minimum dimension. Let = {o4,...,0,,}. Now choose an arbitrary but fixed vertexfor eacho;,
and letp,, € P denote the unique pre-image @f in R"(P) under the embedding map Notice that for
any two consecutive simplices ando;, that the carrier ofv passes through, it is necessary that either
is face ofo; 1 oro; 1 is aface obr;. Hence eithep,,, = p.,, Of py,py,., iS an edge ik"(P). Therefore,
we mapa simply to the cycleg(«) given by the sequence of vertic@s,,, . . . , pu,, , Pu, ) @nd edges between
them. We have the following result about mapandg.
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Lemmad4.4 (i) Everycyclexin R"(P) is mapped to a cycle(«) with the same range ifR" (P)| under
u:Zi(R"(P)) — Zi(|R"(P)|). The mapu, : Hi(R"(P)) — Hi(|R"(P)]|) is an isomorphism, and
the ranges of any homology classc H;(R"(P)) and its imageu,(w) € Hi(JR"(P)|) are also the
same.

(i) Every cycleain [R"(P)|is mapped to a cyclg(a) in R"(P) whose range is oneside- Lip ;)-close
to that ofa. The mapg : Z,(|R"(P)|) — Z1(R"(P)) induces an isomorphisgy. : H, (|R"(P)|) —
Hi(R"(P)), andg, = (u,)~!. The ranges of any homology clagsc H;(|R"(P)|) and its image
g«(w) € Hi(R"(P)) are (r - Lips)-Hausdorff close.

Proof: For part (i) of the lemma, note that it is well known thainduces an isomorphism between the
respective simplicial and singular homology groups (sge Eheorem 34.3 of[23]). Furthermore, singce
maps each simplex to a map whose range is its underlying sp@ceserves the range of a cycle.

For part (i) of the lemma, first observe that for any cyelom |R"(P)|, we have thafuog(a)] = [a].
Indeed, by the construction gf it is easy to verify that1 o g(a)) anda are homotopic. Since induces an
isomorphism froniR" (P) to |R"(P)], it follows thatg maps homologous cycles jR" (P)| to homologous
cycles inR"(P). Henceg induces a well-defined homomorphism: Hq(|R"|) — Hi(R"). Furthermore,
gou(a’) = o for any cyclea’ € R"(P). It follows thatg, is the inverse ofi, and hence is an isomorphism.

Finally, note that for each simplex € |R"(P)|, the function value difference between any two points
T,y € o is bounded by - Lip. Lety be the carrier of a cycle in [R"(P)|. By the construction of, for
each piecey N o; of v within the simplexs; € S, we have thatf(z) — f(u;)| < r - Lip; for any point
x € yNo;. Sincef(u;) = f(py,), we have:

[ min f(py,)+r-Lipy, max
i€[l,m

in f(pui)—r-Lipf] C range(a) C [ min f(pui)—r-Lipf,ién[lazcl] f(puz.)—l—r-Lipf].

] 1€[1,m]

On the other hand, we have thahge(g(a)) € [minep ) f(Pu,), maXer m f(py,)]- Hencerange(g(a))

is oneside« - Lip,)-close torange(a). By a similar argument as in the proof of Leminal4.3 (iv), the

closeness between the corresponding homology classew$oll [
Combining Lemm&4]3 arld 4.4, we obtain a similar result fopsiaetweer¥, (M) andZ; (|R" (P)|).

Theorem 4.5 Let P C M be ane-sample and- a parameter such thate: < r < %\/gp(l\/l).

(i) Thereisamap := uyodfromZ(M)toZ;(|R"(P)|) that induces an isomorphism : H; (M) —
H1(|R"(P)|). The range of cycle(«) is onesideqr - Lip)-close to the range of.

(i) Thereisamag := hyogfromZ,(|R"(P)|) to Z; (M) thatinduces anisomorphisgn : H, (|R"(P)|) —
H1(M). The range of cyclé() is onesidei2r - Lip;)-close to the range of cycle.

(iii) Furthermore, p, is the inverse of.. The ranges of any homology classe H;(M) (resp. @ €
Hi(|R"(P)[)) and its imagep. (w) € Hi(|R"(P)]) (resp.&«(w) € Hi(M)) are 2r - Lip ;)-Hausdorff-
close.

42 Rby(M)and Rb,(R"(P))

We now show that under mild conditions & the induced isomorphisms andé, as defined above in fact
map horizontal classes to horizontal classes, and vedias$es to vertical classes.

Sets = rank(H;(M)). It turns out that we can find a bagigv], .. ., [as]} for the horizontal subgroup
H;(M) such that each clags;], i € [1,s], has heightd; as well as a set of base cyclés, ..., a,}
corresponding to this basis witkight(c;) = 0 for anyi € [1, s]. Such a)-height basifor H; (M) can be
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constructed by a simple greedy approach, where at eackioterae take a homology class with smallest
height that is independent of all the previous elementsénbtiisis. The details can be found in Appendix
Bl The corresponding set of base cycles, . . ., a,} with height(«;) = 0 is called a set of-height base
cyclesfor Hy(M). For a horizontal homology class with height0, the span ofw is the length of the
maximal interval/ such thatv has a pre-image in the levelsgf for anya € I. Intuitively, this is the
interval in function values in which this homology class\wwes in the level-sets.

Lets*(M) denote the smallest span of ampeight horizontal class of the input manifdidl, andt* (M)
the minimal height of any vertical class bf. We assume that bo#f (M) andt*(M) are positive for our
input level-set tame function dvl.

Theorem 4.6 Given a level-set tame functighion a manifoldM, let» > 0 be such that*(M), t*(M) >
2r - Lip;. Letp. and&. be as defined in Theorem 1.5. Then we have phdt; (M) = Hy(|R"(P)]),

&(HL(R(P)))) = Hi(M) andHi (M) = Hi(|R"(P)]).

Proof: For simplicity, in this proof leR denote|R" (P)|. Below we first show thap.(H;(M)) = Hy(R).
Consider a set di-height base cyclefy, . . ., a,} for Hi (M) with s = rank(H; (M)).

Take an arbitraryy; fori € [1, s], and Iet[a b] denote the maximal interBisuch thafa;] has a preimage
in the levelseM, for anyc € [a,b]. The span ofa;] isb — a and is at leass™(M) > 2r - Lip;. Take a
representative cycle, from M, and~;, from M, of the homology clasgv;]. Setl, := [a —r - Lips,a+7-
Lips] andl, := [b—r-Lipy, b+7-Lipy]. It follows from TheorenfL4l5 that the carrier pfy, ) is contained
in the interval levelseR ;, while the carrier op(+;) is contained iR ,. (Note, [p(ci)] = [p(7a)] = [p(7)]
is a non-trivial homology class iH; (R).) Sinceb—a > 2r-Lip;, we havel, N1, = (). A simple application
of the Mayer-Vietoris sequence provides that the homoldagstp(«;)] has a preimage in the leveldet
foranyc € [a+r - Lipg, b — 7 - Lip ], which in turn implies thatp(a;)] is horizontal. (A similar argument
is used in[[9].) Sincép(c;)] is horizontal for anyi € [1, s], p«(H1(M)) is a subgroup of; (R).

We now show that the opposite directibh (R) C p.(H1(M)) is also true, which would imply that
p«(H1(M)) = Hy(R). Specifically, take a set @kheight base cycle§3, ..., 3;} for Hi(R). By Theorem
B3, theirimage$£(51), - - -, £(6:)} in M is a set of independent cycles such theight (£ (5;)) < 2r-Lip;.
Since the minimal height of any vertical cycleMhis t*(M) > 2r - Lip, each{(3;) has to be a horizontal
homology cycle. As sucl,.(Hi(R)) € Hi(M), which means thal; (R) = p.(&«(Hi(R))) € p«(H1(M)).
It then follows thatp..(H;(M)) = Hi(R). Since the isomorphism, sendsH; (M) to H; (R), the induced
homomorphism at the quotient level is also an isomorphiat;is,H; (M) ~ H; (R).

|

4.3 Putting everything together

We say that a Reeb grafitb;(A) J-approximatesanother Reeb grapRb,(5) if there is an isomorphism
betweerH; (Rbs(A)) andH; (Rb,(B)) such that the ranges of corresponding pairs of homologgetaare
0-Hausdorff-clo Comblnlng Theorerﬂs—_ﬂ B-3.5 andl4.6, we have our first mainlire

Theorem 4.7 Let f : M — IR be a level-set tame function defined hwith Lipschitz constanLip;.

Given ane-sampleP of M, letr be a parameter such that < r < min{p(M), 2p.(M), %, %},

and R"(P) the Rips complex constructed frafusing radiusr/2. ThenRb;(R"(P)) is a (2r - Lipy)-
approximation oRb;(M), andRb;(R"(P)) can be computed i®(n logn) expected time [40], where is
the size of th@-skeleton ofR" (P).

3Such maximal interval can be open. We assume it is closedrfplisity. The case when it is open can be handled similarly.

“In fact, we can also require that there is a map frda(Rbs(A)) — Z:(Rbs(B)) that induces an isomorphism from
Hi(Rbs(A)) — Hi(Rbg(B)) where every cycle fronRb(A) is mapped to a cycle iRby(B) whose range i$-Hausdorff-
close.
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Remark 1. Here we provide a brief discussion of why we focus only onittst homology information of
the Reeb graph, as well as the intuition behind our definibioaj-approximate Reeb graph.

The Reeb graph is an abstract graph and contains only gned 1-dimensional topological information.
Given a Reeb grapRb (M), its 0-th homology simply encodes the connected componentsnigfion of
M, and can be approximated from point data easily by returtisghumber of connected components in an
appropriately constructed Rips complex in linear time.

At the same time, compared to general abstract graphs, thle gtaph has the extra information of the
natural functionf defined on it. Hence one may also ask what @kt persistenthomology ofRb(X)
induced byf is. This turns out to be the same as approximatingthiepersistent homology fox and can
be solved using results froml [g, 7].

Therefore, the only remaining issue is to approximatelts¢ homology of a Reeb graph. Similar to
the case for thé-th homology, there are two aspects: (i) computthgRbs(M)) itself; and (ii) com-
puting thel-st persistenthomology ofRb;(M) induced by the functiorf. For (i), our result shows that
Hi(Rbs(R"(P))) for a certain Rips compleR” (P) constructed from the point samplésis isomorphic
to Hi(Rbs(M)). For (ii), since everyl-cycle in a Reeb graph is essential, the standard persisisnuot
able to describe them, and one has to use the extended @ecsists introduced il[9], which is determined
by the range of essential cycles. Hence our definition of fi@aimation also requires that ranges of
corresponding homology classes (and even cycles) are las®. ¢

Remark 2. One can strengthen Theoréml4.7 slightly to show that if tharpaterr does not satisfy the
conditions that- < % orr < Zfo then all homology classes ¢f; (Rbs(M)) with height at least

2r - Lip are preserved ifl; (Rbs(R"(P))) (and vice versa).

Computing ;(M) for orientable 2-manifolds. It was shown in[[1ll] that for a Morse functiofi :
M — IR defined on a compact orientable surfadewithout boundary, one hasank(H;(M)) = 2 -
rank(H;(Rbs(M))). Hence intuitively, using Theorefn 4.7, we can compgteM) = rank(H;(M)) by
2 - rank(H; (Rbs(R"(P))) from an appropriatef and a Rips CompleR”(P) constructed from a point
sampleP of M. Specifically, choose a functiofi: M — IR so that we can evaluate it at pointsih For
example, pick a base pointc P and define a functiorf, (x) to be the Euclidean distance frame M to
the base point. Observe that the Lipschitz constant of this functjgnis at mostl. Our algorithm simply
computes the Reeb gragib; (R"(P)) and return® - rank(H; (Rby, (R"(P))).

Corollary 4.8 LetM be an orientable smooth compacmanifoldM without boundary and® ane-sample
of M. The above algorithm computgs(M)) in O(nlogn) expected time if*(M) ands*(M) are positive
for the chosen functioif, and the parameters satisty < r < min{p(M), 1p.(M), ﬁ, %}.

Observe that a Morse function on an orientablmanifold provides positive* ands*. We remark that
our algorithm produces a correct answer only under goodceBoof f andr; while previously, the best
algorithm to estimate$; (M) only depends on choosingsmall enough. The advantage of our algorithm is
its efficiency, as the previous algorithm needs to compuaefitbt-betti number of the simplicial complex
R"(P) for certainr, which takesO(n?) time no matter what the intrinsic dimensionNdfis, wheren is the
size of the2-skeleton ofR"(P).

5 Persistent Reeb graph

Imagine that we have a set of pointssampled from a hidden spa&g andf : X — IR a function whose
values at points inP are available. We wish to study this functighthrough its Reeb graph. A natural
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approach to approximate from P is to construct a Rips compleR”(P) from P. Since it is often unclear
what the right value of should be, it is desirable to compute a series of Reeb grapimsRips complexes
constructed with various, and then find out which cycles in the Reeb graph persist. ciiliis for computing
persistent homology grouper the sequence of Reeb graphs.

Let K1 C Ky C --- C K, be a filtration of a simplicial compleX,,. A piecewise linear function
f : |Ky| — IR provides a PL-function for ever¥;, i € [1,n]. LetR; := Rby(kK;) denote the Reeb
graph of f defined on the geometric realizatiol; | of K;. Below we first show that there is a sequence of
homomorphismséi; (R;) — H;(R;+1) induced by the inclusion&; C K;;,. We then present an algorithm
to compute the persistent homologies induced by these hamudrisms.

5.1 Persistent Reeb graph homology

Let ®; denote the associated quotient map frpff)| — R,, for anyi € [1,n]. Since the canonical
inclusion | K;| — | K| respects the the equivalence relation that defines theemicipaceR;, the maps
®;s, along with inclusions betweék;s, induce a well-defined continuous map between the quaipates
¢ :R; — Ry, foranyi < j. Lety; denote the inclusion map fronk’;| to | K;41|, and¢; the induced map
fromR; to R;. . We have the following diagram that commutes.

Lp—

K| “ | K| 2 . —1>|Kn|

o = e
R, & R, £ ot R,

The sequence of continuous mapsnduces the following sequence of homomorphisms:

* * gn— *
Hi(R1) 5—1>H1(R2) e T L (R)

Following [I7], we can now define theersistent homology grougs the images of magé’ = ¢, o
.- -0&, : Hi(R;) — Hi(R;). In other words, the imagen (.7 consists of homology classes frdti(R ;)
that also have pre-imagesfh (R;) (i.e, persist fronH; (R;) to H; (R;)). Thepersistent betti numbers
is defined as the rank of the persistent homology gﬂmm(fi’j). Set

,ui’j — ﬁi—Lj _ ﬁlﬁj + ﬁi,j—l _ ﬁi—l,j—l'

Intuitively, 17 is the number of independent loops created upon entdingnd destroyed upon leaving
R;. A persistence paifi, j) is recorded ifu™/ > 0, and the valug:*’ indicates the multiplicity of this
pairing.

We focus on persisteril;-homology forR;s in this paper. The persisteHt-homology forR;s is the
same as persisteity-homology for K;s, and thus can be easily computed by a union-find data steuctu
in near linear time. We also remark that by Theofenh 3.3, gkensiH, -homology forR; is isomorphic to
persistenwertical homologyH; (| K;|) A

5.2 Computation

We now present an algorithm to compute the persistent bhattiber 3. The numbers:’/ and the persis-
tence pairs can be computed easily once we have these ecsidietti numbers.

5 Apriori, it is not clear how to compute the persistent one efisional vertical homology. By maintaining tlestended
persistence pairingdynamically as we change frof; to K41, we can maintain the rank of eath (K ), but not the persistent
homology between them.
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Given afiltrationk; C --- C K,,, assumds;; \ K; is one simplex. Since the Reeb graph is completely
decided by th@-skeleton of a simplicial complex, we assume thas are2-complexes. Let,, n. andn;
denote the number of vertices, edges and trianglés§,irandn = n, +n.+n;. Observe that the complexity
of each Reeb grapR,, for i € [1,n], is bounded by)(n.). The set of Reeb grapi;s can be computed
in O(nn, ) time using the incremental algorithm from]25]. We use thi@&athm as it can also maintain the
image of each edge froii¥; in R; in O(n,) time at each incremental step, thus providing for i € [1,n].

Recall that a set of base cycles td(-) is a set of cycles whose classes form a basid4f). For the
sake of exposition in this section, we abuse the notatighityi and use a cycle to also refer to its carrier
in the Reeb graph. Specifically, we will see later that ouordlgm in fact maintains the carriers of a set of
base cycles foH; (R, ), which we also call @ycle-basis We say that a set of cycles arelependenif the
set of homology classes these cycles represent are indapend

To compute3’/, one can construct a set of base cydles, . . . , o, } for Hy (R;) with » = rank(H{(Ry)),
and check how many of their imagesiy; remain independent. A straightforward implementationhis t
approach take®(n’n?) time. Indeedr = O(n.) and the complexity of each cycie is bounded by)(n,,)

(by representing them as a sequence of vertices). Comphtrigiages of alty;s takesO (rn?) = O(n.n?)
time using the incremental algorithm from[25], and the jpeledence test for theseycles take®) (rn?) =
O(n3) time. Finally, there arex? pairs ofi andj that we need to test, giving rise @(n?n?) total time
complexity. To improve the time complexity, we follow theesl of the standard persistence algorithni [19]
and perform only one scan of the sequence of Reeb graphs wihintaining a set of base cycles at any
moment during the course.

Notice that the standard persistence algorithm cannotrbettyi applied to the sequence of Reeb graphs
as there are no inclusions among them. In fact, the underigraces of two consecutive Reeb graphs can
change dramatically. See Figlife 5 for such an example. Weafsark that there may not be an inclusion
relation betweemR,; andR,; in either direction, that isR; ¢ R;;; andR,; 2 R, ;: see Case 3 discussed
later. Hence while it is possible to model the persistentiRgaph homology via zigzag persistence theory
[4], the efficient algorithm to compute zigzag persisteneeeveloped in]j5] cannot yet be applied here.

! _ ! ! ' !

(b) (d)

Figure 5: (a) shows a genystorus with the two caps missing; = 3 in this case. Darker color regions
indicate the two holes (missing caps) on this torus. Its Rgabh w.r.t. the height function is shown in
(b). Now if we fill the left triangle, as shown in (c), thén(g) number of independent vertical homological
classes become horizontal, thus killi®dg) number of loops in the Reeb graph, which is shown in (d). In
other words, by adding just one simplex (a triangle), the ffiesti number decreases B g).

Consistent base cycles. From now on, letG(?) denote the cycle-basis &f; (R;) that we maintain at the
i-th step. For each cycte € G(), we associate with it Birth-time t(~), which is the earliest time (index)
k < i such that some pre-image of the homology clagsinder the mag” : H;(R;) — Hi(R;) exists.
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In order to extrac’’, we wish to maintain the followingonsistency conditiohetweenG () andG¥): let
GO = (ol al? oYy andGO) = (o). al’}. Consider the seff of images of cycles{al(’)}
in R;. G and G are consistentf the cardinality of G N G() is exactly 3. Notice that there are
always3*/ number of independent cycles@ However, its intersection witts () may have much smaller
cardinality. A sequence of cycle-basgg (¥ | i € [1,n]} is consistenif the consistency condition holds for
any pairG andGU), 0 < i < j < n. The following claim implies that we can read @i’ easily from a
consistent sequence of cycle-bases.

Lemma5.1 If a sequence of cycle-basé&®) | i € [1,n]} is consistent, then for any< i < j < n, 3%
equals the number of cycles @(/) whose birth-time is smaller than or equalio

Proof: Consider a pair of indices < j and the corresponding cycle-bagis?) for H,(R;) and G") for
H;(R;). Assume that there adecycles inG ) with birth-time smaller than or equal to Since all these
cycles are independent R; (and thus irt*/(R;)), we have that: < #*7. On the other hand, sindgg(®)
andGU) are consistent, we have that> 5%, implying thatk = 3%, n

Algorithm description. In light of Lemmal&lll, our goal is to maintain consistent eyohses at any
moment. We now describe how we update the set of base cyoles meve fromK to Ky, = Ky U{o};

o can be &-, 1-, or 2-simplex. Set; := rank(H; (R;)) for any: € [1,n]. Assume ak-th step we already
have consistenfG () | i € [1,k]}. For each cycle-basi& ("), we also maintain the birth-time of each cycle
in it. Assume cycles irG® = {m,...,7s, } are sorted by their birth-times. At the beginning of th¢h
step, we first use the incremental algorithm froml [25] to catepghe Reeb grapR;..; from Ry. We next
need to updat&® to G+1 for Ry so thatG(k+1) is consistent with eact®) for i € [1,k]. There
are three cases.

Case l: sisavertex. A new connected component is createdip, 1, consisting of onlyr. Similarly,
a new node is created Ry, ;. The set of basé-cycles are not affected, a@®*+t!) = G®).

Case2: 0 = pgisanedge. Letp = P (p) andqg = Pk(q) be the images of endpointsandq of o in
the Reeb grapiRy. Adding o to K creates a new edge= pq in Ry . If p andq are not in the same
connected component Ry, then adding: will only reduce the rank of(Ry) by 1 and does not affect
H;(Ry). In that caseG (&1 = G, Otherwisep andg are already connected Ry.. Adding e results in
rank(H; (Rx4+1)) = rank(H; (Ry))+1. Lety be any cycle iRy, that containg (which can be computed
easily in linear time). All previous base cycles@*) will remain independent iRy 1, and we simply set
G+t = GK U {4}. The birth-time fory isk + 1.

Case 3: o isatriangle. The first two cases are simple and similar to the cases of atdnmkrsistence
algorithm. Case 3 is much more complicated. In particulatike the standard persistence algorithm
wherein adding a triangle may reduge by at mostl, the rank ofH; (Ry) may decrease b§(gy). What
happens is that even though( Ky ) is reduced by at most 1, arbitrary number of vertical hompldgsses
can be converted into horizontal homology classes. An el@mgiven in Figurélb.

Let o = Apgr, and letp = Py (p), ¢ = Pk(q) andr = P (r) be the images of the three endpoints
of o in Ry, respectively. Assume without loss of generality thigh) < f(q) < f(r), and sete; = pq,
ey = qr andeg = pr. First, we compute the image of eaghin Ry, which is necessarily a monotone path
(i.e, monotonic in function values) denoted bBy—= ®y(e;). These images can be computeditn,) time
using the incremental algorithm and the data structure%jf By our assumption of (p) < f(q) < f(r),
71 andmy are disjoint in their interiors, whiler; may share subcurves with andm,. Setry o := 7 o mo
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to be the concatenation afi andm,, which is still a monotone path, and note, andnw3 share the same
two endpoints.

Now if 7 » andms coincide inRy, the addition of triangler does not ensue any change, thaRg,.; =
Ry andG&t) = G® _ In this case, the vertical homology &f, remains the same; eitherdestroys a
horizontal homology class iH; (K), or it creates &-cycle.

Otherwise, thed,-homology of the Reeb graph changes. Assume the two
monotone paths; » andws form s simple loops between them (see the
right figure wheres = 3). Then, with the addition o, each point inr3 is
mapped to the corresponding pointzifn, with the same function value.
Hence this process collapses all thesadependent loops and we have
gk+1 = Bk — S-

We now describe how to compu@&(+1) for this case. First, we need
to compute the imagé€ := &.(G®) of the set of base cycle&® in Ry_1. To do this, we need the map
&x. Observe tha§, maps each edge Ry either to the same edge Ry, 1, or to a monotone path iRy ;.
The latter case can potentially happen only for edges in #tlespr; » and 73 — in particular, for those
edges in subcurves from ; andrs that are merged together. Since boih andw; are monotone, images
of edges fromr; » andrs can be computed i0 (|71 2| + |73|) = O(n,) time by merging the sorted lists of
vertices inm; 2 andws. Hence we can compute the mgpin O(n,) time.

Once¢y is computed, given a simple cyclefrom Ry, we can compute its image Ry in O(n,)
time. This is because (i) there atén, ) number of edges iny; and (ii) the total size of the images of edges
from ~ in Ry.,1 has an upper bourld| + |¢i(m1.2)| + [€x(m3)| = O(n,). The set of cycles := & (G®)
in Ry.;; can then be computed @ (n,gy) time. LetG = {31, ... ,7,, }-

The remaining task is to constru@ &1 that is consistent withG( for any i < k. One needs
g1 = rank(£55T) independent cycles from@ to makeG (:+1) consistent withG®). To this end, we
perform the following two steps.

(S1). We represent each cycIeGA;has a linear combination of cycles in a basis for the gRgh; .

(S2). We check the dependency of cycles?nin order of their birth-times, and remove redundant cyates t
obtainG(k+1),

Step (S1). SinceRy; is a graph, we compute a canonical basis of cydess {a1,...,a, ., }, in the
following standard way. Construct an arbitrary spannieg of Ry ;. Let E' = {ey,...,eg | denote

the set of non-tree edgesRy,, ;. Each edge; = pq € E creates a canonical cycle that concatenates edge
e; with the two unique paths ifi" from p andq to their common ancestor. We set to be this canonical
cycle created by;. Obviously, eacty; appears exactly once among all cycleHinGiven a cycley € G,

we need to find coefficienigs such thaty = Zfﬁll c;a;, Where eachy; is either0 or 1. Sincee; appears
only in a;, we havec; equal the number of times appears iny modulo2. Sincev is a simple curveg; is

1if e; € v and0 otherwise. Hence all;s fori € [1, gx+1] can be computed i®(n,) time for one curvey.
Computing the coefficients of all cyclesd?\takesO(nvgk) time.

Step (S2). Recall that cycles iIG*) = {~, ... . Ve, } @re sorted by increasing order of their birth-times.
Note, the birth-time of the cyclg; G, which is the image of the cycle € GI in Ry, 1, may be smaller
than the birth-time ofy;. Now represent cycles ief with respect to the canonical bagts= {a1,...,ag, , }
in a matrix M, where theith column of M, denoted bycol,[i], contains the coordinates 9f under basis
B; thatis,y; = E?‘:ll colp[i][j]a;. Obviously, the matrix\/ has sizegy x gi1.

Next, we perform a left-to-right reduction of matrix/, which is the same as the reduction of the
adjacency matrix used in the standard persistence algofif,[19]. In particular, the only operation that
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one can use is to add a column to another one on its right. Fduenacol,[i], let itslow-row indexdenote
the largest index such thatcol,/[i][j] = 1. At the end of the reduction, each column is either empty or
has a unigue low-row index; that is, no other column can hagesame low-row index as this one. We set
G&+D) as the subset off whose corresponding columns in the reduced matfixis not all zeros. The
reduction takes timé (g, 1g2). Intuitively, the consistency & (<+1) with eachG () for i € [1,k] follows
from the left-to-right reduction. It guarantees that if &4 skcycles inG are dependent, then only those
created earlier (i.e, with smaller birth-time) will be kept

Lemmab5.2 G&+1) as constructed above provides a basi#lofR, ;). Furthermore, iffG™) ... G®}
is consistent, so i6G™1), ... G&+D},

Proof: Let M’ denote the reduced matrix 8f. Recall thatz = {71, ..., %, } contains the images of cycles
from G® in Ry1. SetG; = {J1,...,%;}, and letG, be the set of cycles fror&/; whose corresponding
column in the reduced matrix/’ is non-empty (i.e, not all zeros). In other word&, = G; N G+1) is the
intersection betwee@- and the seG &+ constructed by our algorithm. By induction epit is easy to
show that for any € [1, gx], cycles inG’, generate the same subgroupHaff Ry 1) asG;. It then follows
that, in the end, cycles i1 = G} are all independent iR, and|G**+1)| equals the rank of the

homology group generated by cycles@mwhich isplktl = g 1. This proves the first part of the claim.
For the second part of the claim, first note tit+Y) is consistent wittG® asG N G+ = g&+1)
and has cardinalityy. ;. Now consider an arbitrargs ) with i < k. Since{G(1), ... G} are consistent,
and cycles{i,..., 7 } in G*) are sorted by their birth-times, it follows from Lemial5. attithe first
s = "% number of cyclesi, = {1,...,7} from G®) are images of cycles fror(). Hence the
image of cycles fromG(® in Ry are exactly the cycles i6';, and classes of cycles ifi, generate the
persistent homology grougi™ ™ (H,(Rb(K;)). On the other hand, as mentioned above, classes of cycles
inG, = @S N G&+1) generate the same subgroupaf Ry.11) as@s. Since cycles 7, are independent,
G', has ranks"*t1 implying thatG(<t1) is consistent withG ("), for anyi € [1,k]. The second part of the
claim then follows. [
Finally, for our algorithm to continue into the next iteti we also need to maintain the birth-times for
each cycle inG&*Y_ This is achieved by the following claim.

Claim 5.3 Let G&tD = {7, .. .ﬁ[gkﬂ}, where I;s are the set of indices of non-zero columns in the
reduced matrix\/’. Then the birth-time of;, equals to the birth-time of;, for anyi € [1, gi+1].

Proof: Recall thatG (**1) contains the set of cycleg, where{I;} is the set of indices of non-zero columns
from the reduced matrid/’. Given a cyclex € G, letbirthtime() denote the birth-time of. Assume
that one of the cycles, say,, € G+, has a birth-time that is different from that ¢f, € G&). Set
t = birthtime(V,,). Sincey, = €5(y,), we havet < birthtime(v,,). Since the two birth-times are
different,t must be strictly smaller than the birth-timegf,.

Furthermore, there exists a cyalec R, such that its image; := ¢5%(a) in Ry is not homologous
to 7,,, While its imageas := £9%*1(a) in Ry, is 7,,. On the other handy; can be uniquely written as
a linear combination of a subset of cycles fr&®), saya; = vy, + --- + 74,. Itis easy to verify that
the birth-time of eachy, is at mostt. Sincet < birthtime(~,,), it follows that all indicesJ;s are strictly
smaller thanmn (as cycles inG*) are sorted by their birth-times). However, this is not poissiince the
resultingm-th column will be all zero at the time when we reduce theh column to construc&®+1) as
m = »_;7J;- Hence the cyclg,, cannot be chosen as a base cycl&ifit!) reaching a contradiction. It
follows thatt = birthtime(vyy,,), or more generallybirthtime(7;,) = birthtime(yy,) for every indexl;
of non-zero column in the reduced matrix’. [

Putting everything together, we conclude with the follogvmain result.
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Theorem 5.4 Given a filtration K; C --- C K, of a simplicial complex/,, with a piecewise linear
function f : K,, — IR, we can compute all persistent first betti numbers for theided sequence of Reeb
graphsRb(K;)sinO(> ", (nygi +g3)) = O(nn?) time, wheren, andn,. are the number of vertices and
edges ink,, respectivelypn is the size o-skeleton of,,, andg; is the first betti number of the Reeb graph
Rb#(K;).

6 Conclusions and discussions

In this paper, we present a simple and efficient algorithnpfra@ximate the Reeb gragtb ;(M) of a map

f M — IR from point data sampled from a smooth and compact manNbldsiven that Reeb graph is
an abstract graph with a function defined on it, we only apipnate its topology together with the range
information for each loop in it. It will be interesting to sednether the Reeb graph we compute from the
point data is also geometrically close to some specific enibgcbf the Reeb grapRb (M) in the hidden
domainM. To this end, our results in Sectibn}4.1 on mappings betwgeles can be useful.

We also study how to compute the “persistence” of loops in @Rgaph by measuring their life time
as the defining domain grows. An immediate question is to desthwer the time complexity can be further
improved to match that of the standard persistence algoriththe worst case.

Finally, it will be interesting to explore whether one candeage the simple structure and efficient com-
putation of the Reeb graph to retrieve topological infoliorafor various spaces efficiently. For example,
given a3-manifold with a functionf defined on it, its verticaH;-homology is already encoded in the Reeb
graph and can thus be computed in near-linear time. Can weuvethe horizontaH,-homology efficiently
by tracking the levelsets gf, or by defining another function that is somewhat “orthodjbtwa f?
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A Proof for LemmalZ3

Proof of Claim (i). Lemmé&Z.X2 implies thdi, induces an isomorphisin, : H;(R"(P)) — Hi(M). We
now prove the second part of claim (i).

First, we show the following two results: (C-1) given a cyeldrom Z;(M), [o] = [hx(d(«))]; and
(C-2) given a cyclex € Z;(R"(P)), we have thafa] = [d(hx(&))]. Note that cycles it¥, (R"(P)) are
simplicial cycles, while cycles i, (M) are singular cycles.

These two results (C-1) and (C-2) imply thhimaps homologous cycles frody (M) to homologous
cycles inZ;(R"(P)). Hence it indeed induces a homomorphidm H; (M) — H{(R"(P)). Furthermore,
these two results mean thét is the inverse of the mah,. Sinceh, is an isomorphism, so id,. This
proves Claim (i) of the lemma.

Proof of (C-1):

We show that given a cycle from Z; (M), [a] = [hx(d(a))]. Lety C M be the carrier ofv. To
map« to d(«), suppose that its carrieris broken intok pieces as described earlier using the Decompo-
sition method. For the-th piece with endpoints; andx;1, let p; andp,;.1 be their closest point i®,
respectively; recall that(«) is the concatenation of all edge®;1 for i € [1, k.

Now consider the cyclé(d(«)) in M: its carriery’ is the concatenation df(p;p;+1) C M for all
i € [1,k]. By Proposition 3.3 of[[14], each cuni€p;p;.1) has endpoint; andp; 1, and it is contained
in the union of the two Euclidean balls of radingentered ap; and atp;,1. Sincep; andp;,; are within
r Euclidean distancey(p;p;+1) is contained in the Euclidean balls of radizscentered ap; and atp; ;1.
Notice that the geodesic distance and the Euclidean distaetween two pointg,y € M approximate
each other when andy are close enough (see e.g, Proposition 1.2 from [14]). lod that whenr is
smaller thanp(M)/4, h(p;p;+1) is contained in both geodesic balls of radisscentered ap, € M and
pi+1 € M.

Let v[x;, z;+1] denote the subcurve affrom x; to x; ;1. Since the length of/[z;, x; 1] is less than
by construction, the curve|x;, z; 1] is contained in the geodesic balls of radiusentered at:; andz; .
This implies that the curve|x;, z;11] is contained in thgeodesic tubular neighborhood

T‘lbr(ﬂg(xuﬂfiﬂ)) ={yeM| d(y>7rg(xi>33i+1)) <r}

wherery(z,y) denote a minimizing geodesic between two pointg € M. By Proposition 3.7 of([14],
Tub, (74 (x;, xi4+1)) is contractible and hencgz;, z;11] is homotopy equivalent to,(z;, z;11).

On the other hand, due to the sampling condition, the geodksiances between;, andp;, and be-
tweenz; .1 andp;,1, are both bounded by. Combining this with the fact that(p;p;+1) lies within the
geodesic balls of radiudr centered at botlp; and p;;1, we have that any point ih(p;p;+1) is within
geodesic distancér to bothz; and tox; ;. Henceh(p;p;+1) lies within the geodesic tubular neighbor-
hood Tuby, (74 (x;, zi11)). Again by Proposition 3.7 of14], when < p.(M)/4, the curvery(z;,p;) o
h(pipit1)omg(pit1, zit1) is homotopy equivalent to, (z;, z;41) and thus homotopy equivalentif;, z;1].
In fact, one can find a homotopy; that keepg; andp;, on the geodesics,(x;, p;) andny (41, pi+1)
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respectively so that two mapgs andh; 1, fori € [1,k — 1], are consistent in mapping the common end-
pointsz;. 1. Therefore, we can combine all sukfis to obtain a homotopy betweer (which is the carrier
of hy(d(«))) andy (which is the carrier ofy). It follows that[hy o d(a)] = [a].

Proof of (C-2):

We now show that given any (simplicial) cyalee Z;(R"(P)), we have thajd] = [d o hy(&)]. First,
consider the image = h(&) of & in M; v is the carrier of the cycle (&) € Z;(M). By construction;y is
the concatenation df(e)s for every edge = pq in the simplicial cycley. By Proposition 3.3 in[[14], each
curveh(e) is contained insid# N (B, (p) U B,-(q)). Hence, for any point € h(e), its geodesic distance
to p and toq is bounded bysr.

Now consider mapping the cycle, (&) carried byy back toR"(P) using the decomposition method
described earlier. Consider the set of breaking paifitsin the subcurvéx(e) C v — assume for simplicity
that the endpoints df(e), that isp andg, are also break points. Each break painin h(e) will be mapped
to its nearest poinp; € P and the geodesic distance betwegrandp; is at mostr. Hencep; is within
3r + r = 4r geodesic distance to both endpoiptandq of the edge: C &. This means that both;p and
piq are edges in the Rips compl&” (P). Hence the concatenation of ang®; 1 is homotopy equivalent
to the edge: in the simplicial complexR*"(P). Combining this homotopy equivalent map for every edge
e € &, we have thatl(h4(&)) is homotopy equivalent, and thus homologousy o R*"(P). Finally, since
the inclusion map fronR" (P) to R*"(P) induces an isomorphism in the first homology groups whén
small, we have that(h(&)) is homologous t@ in R"(P) as well. Thu§a] = [d(hy(&))].

Proving Claim (ii). Claim (ii) follows easily from the constructions dfandh. In particular, consider a
cyclea € Z;(M) andd(a) € Z{(R"(P)). (The case for: from Z;(R"(P)) andhy (&) from Z; (M) can
be similarly argued.) Lety C M be the carrier otx. The Decomposition method breaksnto k pieces
v(zi,xi41)8, fori € [0,k]. Each piecey(z;, x;+1) IS mapped to the edgep;1 wherep; is the closest
point of z; in P. SinceP is ane-sample ofM, and since the length of(x;, z;11) is at mostr — 2¢, any
pointz in vy(x;, xz;+1) is within  geodesic distanct® the pointp; € M. Hence by the Lipschitz condition
of f, we have|f(x;) — f(pi)| < r - Lipy. It follows that

I i - Lipy, ;) — - Lipg] C =
[min f(ps) +r-Lipy, max f(ps) - Lips] C range(y) = range(c)

C [igfol,li]f(p) r - Lip; félﬂii}f(p ) + 7 - Lipy]
On the other hand, note that undgy coefficient,range(d(«)) C [min;e(o ) f(pi), max;epo f(pi)] (@nd
it can be much smaller than this interval). It then followatthange(d(«)) is oneside< - Lip )-close to
range(a).

Proof of Claim (iii). Consider any homology class € H;(M). By Claim (iii) we have that the range
of d.(w) is oneside« - Lip)-close to the range ab: indeed, choose the thinnest cyeleof w, we have
range(d(a)) is oneside« - Lipy)-close torange(a) = range(w). Sincerange(d.(a)) C range(d(y)),
range(d.(c)) is also onesider(- Lip ;)-close torange(w).

Now mapd.(w) back toH; (M), we have that the range bf (d.(w)) is also onesider(- Lip)-close to
the range ofl.(w) by Claim (iii). Sinceh,(d«(w)) = w, the ranges aob andd.(w) are ¢ - Lip ;)-Hausdorff-
close.

The statement fop andh,. (&) can be argued similarly.
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B Existence of a set of 0-Height Basisfor H;(M)

Recall thats = rank(H;(M)). We now show how to construct a bagis, ..., h,} for the horizontal
subgroupH; (M) C Hy(M) such thateight(h;) = 0 for anyi € [1, s].
Suppose we have already constructed a partial Wdgis := {h,...,hr_1}, each of which ha$-

height. Our goal is to find @-height class:,. that is independent of elementshf)._;. In particular, leth be
any horizontal homology class that is independenf/pf ;. By definition, we can find a representative cycle
v = > i_; 7i of h such that each; is contained in a distinct level set bf. Takey;: if [y;] is independent of
Hy,_1, then simply seb;, = [1]. Otherwise, consider the cyclé = > "7, and obviously+'] is necessarily
independent of classes iif,_;. Now seth to bey’ and repeat the above process. Either we terminate when
some~; which is independent of classes if),_1, in which case we sét;, = [v;] which is of height zero.
Or the process ends wheéncan be represented by a cyelevhich itself is contained in a level set. In this
case, seh;, = h, which is again of height.

Perform the above procedure ferounds. In the endH, gives the desired-height basis foH;(M).
Note that by this construction, we also obtain a correspandet ofo-height base cycles fdt; (M).
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