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Abstract

Given a continuous functionf : X → IR on a topological spaceX, its level setf−1(a) changes
continuously as the real valuea changes. Consequently, the connected components in the level sets
appear, disappear, split and merge. The Reeb graph off summarizes this information into a graph
structure. Previous work on Reeb graph mainly focused on itsefficient computation. In this paper, we
initiate the study of two important aspects of the Reeb graphwhich can facilitate its broader applications
in shape and data analysis.

The first one is the approximation of the Reeb graph of a function on a smooth compact manifold
M without boundary. The approximation is computed from a set of points P sampled fromM. By
leveraging a relation between the Reeb graph and the so-called vertical homology group, as well as
between cycles inM and in a Rips complex constructed fromP , we compute theH1-homology of the
Reeb graph fromP . It takesO(n log n) expected time, wheren is the size of the2-skeleton of the Rips
complex. As a by-product, whenM is an orientable2-manifold, we also obtain an efficient near-linear
time (expected) algorithm for computing the rank ofH1(M) from point data. The best known previous
algorithm for this problem takesO(n3) time for point data.

The second aspect concerns the definition and computation ofthepersistent Reeb graph homology
for a sequence of Reeb graphs defined on a filtered space. For a piecewise-linear function defined on a
filtration of a simplicial complexK, our algorithm computes all persistentH1-homology for the Reeb
graphs inO(nn3

e
) time, wheren is the size of the2-skeleton andne is the number of edges inK.

1 Introduction

Given a topological spaceX and a continuous scalar functionf : X → IR, the set{x ∈ X : f(x) = a}
is a level setof f for some valuea ∈ IR. The level sets off may have multiple connected components.
The Reeb graph off is obtained by continuously collapsing each connected component in the level set into
a single point. Intuitively, asa changes continuously, the connected components in the level sets appear,
disappear, split and merge; and the Reeb graph off tracks such changes. Hence, the Reeb graph provides
a simple yet meaningful abstraction of the input scalar field. It has been used in a range of applications in
computer graphics and visualization; see, for example, thesurvey [3] and references therein on applications
of Reeb graph.

Our results. Most of the previous work on the Reeb graph focused on its efficient computation. In this
paper, we initiate the study of two questions related to Reebgraphs both of which are important in shape
and data analysis applications.

The first question is concerned with the approximation of theReeb graph from a set of points sampled
from a hidden manifold. It turns out that the Reeb graph homology is also related to the so-called vertical
homology groups. These relations enable us to develop an efficient algorithm to approximate the Reeb graph
of the manifold from its point samples.
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As a by-product of our approximation result, we also obtain anear-linear time algorithm that computes
the first betti numberβ1(M) of an orientable smooth compact2-manifoldM without boundary from its point
samples. This result may be of independent interest even though the correctness of our algorithm needs a
slightly stronger condition than the previous best-known approach for computingβ1(M) from point data. In
particular, it is shown in [1] thatβ1(M) can be computed as the first betti number of certain Rips complex
constructed out of the input data1. A straightforward computation of betti numbers of the Ripscomplex
using Smith normal form [23] takes cubic time whereas our algorithm runs in near-linear expected time.

The second question we study concerns with the definition andcomputation of loops in Reeb graphs
which remain “persistent” as its defining domain “grows”. Wepropose a definition of thepersistent Reeb
graph homologyfor a sequence of Reeb graphs. They are computed for a function defined on a filtered
space in the same spirit as the standard persistent homology[19]. Interestingly, this problem does not seem
to be easier than computing the standard persistent homology, potentially due to the fact that the domains in
question (the sequence of Reeb graphs) do not have an inclusion between them, as was the case for standard
persistence homology.

Related work. As mentioned already, most previous work on the Reeb graph focused on its efficient compu-
tation. Shinagawa and Kunii [26] presented the first provably correct algorithm to compute Reeb Graphs for
a triangulation of a2-manifold inΘ(m2) time wherem is the number of vertices in the triangulation. Cole-
McLaughlin et al. [11] improved the running time toO(m log m). Tierny et al. [27] proposed an algorithm
that computes the Reeb graph for a 3-manifold with boundary embedded inIR3 in time O(n log n + hn),
whereh is number of independent loops in the Reeb graph. For a piecewise-linear function defined on
an arbitrary simplicial complex, a simple algorithm is proposed in [15] that runs in timeO(n log n + L),
whereL = Θ(nm) is the total complexity of all level-sets passing through critical points. Doraiswamy
and Natarajan [16] extended the sweeping idea to compute theReeb graph inO(n log n(log log n)3) time
from an arbitrary simplicial complex, wheren is the size of the2-skeleton of this simplicial complex. A
streaming algorithm was presented in [25] to compute the Reeb graph for an arbitrary simplicial complex
in an incremental manner inΘ(nm) time. Recently, Harvey et al. [20] presented an efficient randomized
algorithm to compute the Reeb graph for an arbitrary simplicial complex inO(n log m) expected running
time. The Reeb graph for a time-varying function defined on a3-dimensional space was studied in [18].

Recently a flurry of research has been initiated on estimating topological information from point data,
such as computing ranks of homology groups [8], cut locus [13], and the shortest set of homology loops
[14]. In [6], Chazal et al. initiated the study of approximating topological attributes of scalar functions from
point data, and showed that the standard persistent diagraminduced by a function can be approximated from
input points. This result was later used in [7] to produce a clustering algorithm with theoretical guarantees.
The results from [6, 7] can be used to approximateloop-freeReeb graphs (also calledcontour trees) from
point data, thus providing a partial solution to our first question. However, it is unclear how to approximate
loops in the Reeb graph which correspond toa subset of essential loopsin the input domain which represent
a subgroup ofH1-homology.

2 Background and notations

Homology. A homology group of a topological spaceX encodes its topological connectivity. We consider
the simplicial homology group ifX is a simplicial complex, and consider thesingular homology group
otherwise, both denoted withHp(X) for the pth homology group. The definitions of these two homology

1In fact, in [1] Attali et al. show a much stronger result: the Rips complex of a point clouds captures the homotopy type of a
compact topological space in Euclidean space under some conditions. An earlier result of Hausmann [22] also shows that Rips
complex captures the topology of an input Riemannian manifold, but under much stronger conditions.
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groups can be obtained from any standard book on algebraic topology. Here we single out the concepts of
p-chains andp-cycles in singular homology whose definitions are not as widely known in computational
geometry as their simplicial counterparts. See [21, 23] fordetailed discussions on this topic.

A singular p-simplex for a topological spaceX is a continuous mapσ from the standardp-simplex
∆p ⊂ IRp to X. For example, a1-simplexσ is a continuous mapσ : [0, 1] → X. A p-chain is a formal
sum of singularp-simplices. A singularp-cycle inX is ap-chain whose boundary is a zero(p − 1)-chain.
Therefore, technically speaking, ap-chain or ap-cycle forX is a formal sum of maps. In this paper we will
only deal with1-chains and2-chains. Let aloop refer to a continuous mapS1 → X or a finite union of such
maps. For any1-cycle α = σ1 + · · · + σk, there is a corresponding loopφ whose image inX coincides
with the disjoint union of imagesσi([0, 1]), for i ∈ [1, k] (see page 108–109 in [21]). We call this loop the
carrier of α, and thatα is carried by loopφ. All singular1-cycles carried by the same loop are homologous.
Hence, in the remainder of the paper, we sometimes abuse the notations slightly and talk about a loop as if
it is a1-cycle. For example, we will say that two loops are homologous which means that cycles carried by
these two loops are homologous.

We assume thatX is compact and triangulable. Its simplicial homology defined by a triangulation iden-
tifies to its singular homology. We also assume that the homology groups are defined overZ2 coefficients.
SinceZ2 is a field,Hp(X) is a vector space of dimensionp. It will be clear from the context whether we are
talking about simplicial or singular homology ofX. Unless specified, we assume singular homology forX.
LetZp(X) denote thep-th cycle group inX. A continuous mapΦ : X1 → X2 between two topological spaces
induces a map among its chain groups which we denote asΦ#. Clearly,Φ# provides a map from the cycle
groupZp(X1) to the cycle groupZp(X2) which in turn induces a homomorphismΦ∗ : Hp(X1) → Hp(X2).

Horizontal and Vertical Homology Following [9], we now extend the standard homology to the so-called
horizontalandvertical homology with respect to a functionf : X → IR. Given a continuous functionf , its
level setsand interval setsare defined as:Xa := f−1(a) andXI := f−1(I) for a ∈ IR and for an open or
closed intervalI ⊆ IR, respectively. From now on we sometimes omit the use off when its choice is clear
from the context.

A homology classω ∈ Hp(X) is horizontal if there exists a discrete set of iso-values{ai} such thatω
has a pre-image under the mapHp(

⋃
i Xai

) → Hp(X) induced by inclusion. The set of horizontal homology
classes form a subgroupHp(X) of Hp(X) since the trivial homology class is horizontal, and the addition of
any two horizontal homology class is still horizontal. We call this subgroupHp(X) thehorizontal homology
group ofX with respect tof . Thevertical homology group ofX with respect tof is defined as:

H̆p(X) := Hp(X)/Hp(X), the quotient ofHp(X) with Hp(X).

The cosetω+Hp(X) for every classω ∈ Hp(X) provides an equivalence class inH̆p(X). We callω avertical
homology classif ω + Hp(X) is not identity inH̆p(X). In other words,ω 6∈ Hp(X). Two homology classes
ω1 andω2 arevertically homologousif ω1 + ω2 ∈ Hp(X).

α1

α3

α2

We percolate the definitions from the homology classes to cycles. A cycleα is horizon-
tal if [α], the standard homology class represented byα, is a horizontal class. Two cycles
α1 andα2 arevertically homologousif [α1] and[α2] are vertically homologous. Obviously,
two p-cyclesα1 andα2 are vertically homologous if and only if there is a(p + 1)-chainB
such that∂B + α1 + α2 is a horizontal cycle. See the torus in the right figure for an ex-
ample, whereα2 is a horizontal cycle as it is homologous toα3 carried by a loop contained
in a connected component of a level set; whileα1 is a vertical cycle, i.e,[α1] is a vertical
homology class. We say that{α1, . . . , αk} is a set of base cycles forHp(X) if {[α1], . . . , [αk]} form a basis
for Hp(X). A set of base cycles forHp(X) andH̆p(X) are defined analogously.

Finally, therangeof a loopγ ⊆ X, denoted byrange(γ), is the interval[minx∈γ f(x),maxx∈γf(x)].
The height of this loop,height(γ), is simply the length ofrange(γ). We extend the definitions of range
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and height to cycles by saying thatrange(α) = range(γ) andheight(α) = height(γ) where the cycle
α ∈ Z1(X) is carried by the loopγ. The height of a homology classω, denoted byheight(ω), is the
minimal height of any cycle in this class. Notice that the height of a horizontal classω is not necessarily
zero sinceω may be the addition of multiple height-0 horizontal classes.

Reeb graph. Given a triangulable topological spaceX and a continuous functionf : X → IR, we say that
two pointsx, y ∈ X areequivalent, denoted byx ∼ y, if and only if x andy belong to the same connected
component ofXa for somea ∈ IR. Consider the quotient spaceX∼ which is the set of equivalence classes
equipped with the quotient topology induced by this equivalence relation;X∼ is also called theReeb graph
of X with respect tof , denoted byRbf (X). See Figure 1 (a) and (b) for an example.

f

c6

c5

c4

c3

c2

c1

µ

Xc3

Xc4

Xc × [0, 1]

X[c3,c4]
Xc

(a) (b) (c)

Figure 1: (a)X is a solid torus and its Reeb graph w.r.t the height functionf is shown in (b). (c)f is a levelset-
tame function w.r.t. discrete values{c1, . . . , c6}. There is a continuous mapµ : Xc× [0, 1] → X[c3,c4] whose
restriction to the open setXc × (0, 1) is a homeomorphism. In the top row, there are three disjoint interval-
components inX(c3,c4) whose closures may intersect in level-setsXc3 andXc4 .

An alternative way to view the Reeb graph is that there is a natural continuous surjectionΦ : X → X∼

whereΦ(x) = Φ(y) if and only if x andy come from the same connected component of a level set of
f . In this sense,Rbf (X) is obtained by continuously identifying each connected component. The mapΦ
induces a scalar functioñf : Rbf (X) → IR wheref̃(p) = f(x) if p = Φ(x). Sincef(x) = f(y) whenever
Φ(x) = Φ(y), the functionf̃ is well-defined. Sincef is continuous, so is̃f . The range or height of a loop in
Rbf (X) is measured with respect to this functioñf . In this paper, we also usef to refer tof̃ for simplicity.

3 Reeb graphs and vertical homology

In this section, we show thatH1(Rbf (X)) and the first vertical homology group̆H1(X) of X are isomorphic.
This relation is observed for2-manifolds in [9], but to the best of our knowledge, it has notbeen formally
introduced and proved anywhere yet for general topologicalspaces. We include it here for completion.

The surjectionΦ : X → Rbf (X) induces a chain mapΦ# from the 1-chains ofX to the 1-chains
of Rbf (X) which eventually induces a homomorphismΦ∗ : H1(X) → H1(Rbf (X)). For the horizontal
subgroupH1(X), we have thatΦ∗(H1(X)) = {0} ⊆ H1(Rbf (X)). HenceΦ∗ induces a well-defined homo-
morphism between the quotient groups

Φ̌ : H̆1(X) =
H1(X)

H1(X)
→

H1(Rbf (X))

H1(Rbf (X))
= H1(Rbf (X)).

The right equality above follows from thatH1(Rbf (X)) = {0}, which holds because every level set of
Rbf (X) consists only of a set of disjoint points. In what follows, weshow thatΦ̌ is an isomorphism under
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Φ#
σi

ei

σ̃i

(a) (b)

Figure 2: (a) Left: the interval-componentµ(C) contains three through-paths and one turning-path. Middle:
the turning-path can be deformed to a path contained in the level setXcz . Right: γC is modified so that at
most one through-path is left. (b) The image of the singular simplex σi is the through-path in this interval-
component. Its image is a singular simplexσ̃i : [0, 1] → |ei| which we draw with the the thin curve slightly
off |ei| for illustration purpose.

some mild conditions. Intuitively, this is not surprising as Φ maps each contour in the level set to a single
point, which in turn also collapses every horizontal cycle.

For technical reasons, we consider functions that behave nicely. Specifically, we call a continuous
function f : X → IR levelset-tameif there exist finite number of discrete values{c1, . . . , ck} so that the
following holds: for any two consecutiveci andci+1, (i) there is a homeomorphismµi : Xc × (0, 1) →
X(ci,ci+1) for an arbitraryc ∈ (ci, ci+1); and (ii) the homeomorphismµi can be extended to a continuous
mapµi : Xc × [0, 1] → X[ci,ci+1]. In this case, we also say thatf is levelset-tame w.r.t. the set of discrete
values{c1, . . . , ck}; note that the choice ofcis andµis are not unique. See Figure 1 (c) for an example. It
can be shown that Morse functions on a compact smooth manifold and piecewise-linear functions on a finite
simplicial complex are both levelset-tame functions.

First, we prove the following result which implies that the mapΦ̌ : H̆1(X) → H1(Rbf (X)) as introduced
above is injective.

Lemma 3.1 Let f : X → IR be a levelset-tame function, andΦ,Φ∗ as defined before. Then we have that
ker(Φ∗) = H1(X) whereker(Φ∗) denotes the kernel ofΦ∗.

Proof: SinceΦ maps all points in the same connected component in a level setof f into a single point, we
have thatH1(X) ⊆ ker(Φ∗). Hence we now focus on proving the opposite directionker(Φ∗) ⊆ H1(X).
That is, for any homology classh ∈ H1(X), if Φ∗(h) = 0, thenh ∈ H1(X). Specifically, take a loopγ ⊆ X

carrying a cycle from the classh. We will show that there exists a loop̂γ which is contained in the union of
a discrete set of level sets and which is homologous toγ. This will then imply thath is horizontal.

Assume without loss of generality thatγ is the image of a mapS1 → X; the case whenγ is a finite union
of such images can be handled by applying the following proofto each image ofS1.

Let {c1, . . . , ck} be a set of discrete values with respect to whichf is levelset-tame. Fix an arbitrary
interval [cz, cz+1] and anyc ∈ (cz, cz+1). By definition of a levelset-tame function, there exists a continuous
mapµ : Xc × [0, 1] → X[cz,cz+1] whose restriction to the open setXc × (0, 1) is a homeomorphism onto
X(cz,cz+1). The product spaceXc× [0, 1] has several connected components each of which, called acylinder,
corresponds to the product between a connected component inthe level-setXc and[0, 1]. The images of all
such cylinders underµ can touch each other only inXcz or in Xcz+1 whenµ is no longer a homeomorphism.
See Figure 1 (c) for an illustration, where in this example,Xc × [0, 1] has three cylinders. Let us consider a
single cylinderC = S × [0, 1], whereS is the corresponding connected component inXc. Denote byCo the
open cylinderS × (0, 1). We call the imageµ(Co)(⊆ X) of every open cylinderCo an interval-component
of X. Note that all interval-components ofX are disjoint, and so are their images under the mapΦ in the
Reeb graphRbf (X).
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Next, considerγCo = γ ∩ µ(Co) andγC = γ ∩ µ(C), which are the intersections ofγ with the interval-
componentµ(Co) and with the closure ofµ(Co), respectively. Each connected component inγCo is a path
of the following two types: athrough-pathπ where the two endpoints of its closure lie inXcz andXcz+1 ,
respectively; and aturning-pathπ where the endpoints of its closure either lie both inXcz or both inXcz+1 .
The closure of a through-path or a turning-path inµ(Co) is called a through-path or a turning-path inµ(C).
It can be verified that any turning-pathπ with endpointsp andq can be continuously deformed to a path
connectingp andq within the same contour of a level set, using an argument similar to what we invoke
below. Therefore we can transformγ to another homologous loop that contains only through-paths in γC .
See Figure 2 (a) for an illustration. As such, from now on, we assume thatγC contains only through-paths.

Our arguments consist of two steps. InStep 1, we modifyγ into another homologous loopγ′ which
contains at most one through-path within any interval-component ofX. In Step 2, we show that ifΦ(γ′) is
null-homologous inRbf (X), thenγ′ must have no through-path in any interval-component ofX, implying
thatγ′ is contained only in the level-sets

⋃
i Xci

. Henceγ′ carries a horizontal cycle andh is a horizontal
homology class.

Step 1. In this step, we modifyγC so that it contains only portions lying in the two level-setsXcz ∪ Xcz+1 ,
together with at most one through-path inµ(C). See Figure 2 (a). Specifically, suppose there are more
than one through-paths inγC . Then, for any pair of through-pathsπ1 andπ2, we show that there exists a
2-chainB such that∂B + π1 + π2 is contained in the two level setsXcz andXcz+1 . Hence, we can convert
γ to γ′ = γ + (∂B + π1 + π2) and the intersectionγ′

C = γ′ ∩ µ(C) has two fewer through-paths thanγC .
Obviously,γ is homologous toγ′. By continuing this process, we can cancel out all pairs of through-paths
in γC till at most one through-path is left, and the resulting loopγ′ is homologous toγ.

s1 s2

p1 q1

q2p2

s3

ŝ

s1 s2

p1 q1

q2p2

s3

ŝ

(b) (c)

s1 s2

(a)

p2 q2

p1 q1

Figure 3: (a) An illustration of the cylinderC = S × [0, 1], where each horizontal slice of this cylinder is
a copy ofS. (b) ŝ is the projection ofs = s1 ◦ s3 ◦ s2 from the product space onto the sliceC[1]. (c) The
boundary of the surfaceB′ is s + ŝ.

We now show how to construct a 2-chainB for a pair of through-pathsπ1 andπ2 from γC . Let π1
o

andπ2
o denote the interiors ofπ1 andπ2, respectively. Note thatπ1

o andπ2
o are contained in the image

µ(Co) ⊆ X(cz,cz+1) of the open cylinderCo = S × (0, 1). Since the restriction ofµ to the open setCo is a
homeomorphism,π1

o andπ2
o have unique pre-imagess1

o ands2
o in Co underµ. Let s1 (resp.s2) denote

the closure ofs1
o (resp.s2

o) in C, with p1 andp2 (resp.q1 andq2) being its endpoints. See Figure 3 (a) for
an illustration. Notice thatµ(s1) = π1 andµ(s2) = π2 due to the continuity ofµ.

Since the cylinderC is the product spaceS × [0, 1], every pointx ∈ C can be represented asx = (x, t),
wherex ∈ S is called itshorizontal coordinateandt ∈ [0, 1] is its vertical coordinate(or height). We use a
sliceC[t] to refer to one copy ofS at heightt.

Since each sliceC[t] of the cylinderC is path-connected, there is a path, says3, that connectsp1 andq1 in
C[0]. Let s denote the concatenated curves1 ◦s3 ◦s2; see Figure 3 (b). Now for every pointx = (x, tx) ∈ s,
consider the “vertical line”lx = {(x, t) | t ∈ [tx, 1]}. That is,lx contains the images ofx in each sliceC[t]
with t ≥ tx. The union oflxs for all x ∈ s traces out a2-dimensional surfaceB′. The boundary ofB′ is
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∂B′ = s ◦ ŝ whereŝ is the image ofs in C[1]. See Figure 3 (b) and (c). Through the continuous mapµ, we
obtain a2-chainB whose carrier isµ(B′) ⊆ X[cz,cz+1] and∂µ(B′) = π1 ◦ µ(s3) ◦ π2 ◦ µ(ŝ). Furthermore,
µ(s3) andµ(ŝ) lie in the level-setsXcz ∪ Xcz+1 . Hence by takingγ′ = γ + ∂µ(B′), we have reduced a pair
of through-paths.

Now we group through-paths inγC into pairs, with at most one left unpaired. We construct a2-chain for
every pair, and letB denote the union of all these2-chains. Obviously,γ′ = γ + ∂B is homologous toγ and
its intersectionγ′ ∩ µ(C) has at most one through-path. By performing this procedure for all cylinders and
for all intervals[cz, cz+1], z = 1, . . . , k − 1, we obtain a loop̂γ which is homologous toγ, and has at most
one through-path within each interval-component inX.

Step 2. We now choose a specific 1-cycleα =
∑r

i=1 σi +
∑t

j=1 ρj carried byγ̂ that is of the following
form: there are two types of singular simplices inα: a simplexσi whose image inX is a through-path and
a simplexρj whose image is completely contained within a level setXcz for somez ∈ [1, k]. Consider the
image ofα in Z1(Rbf (X)), α̃ := Φ#(α) =

∑r
i=1 σ̃i +

∑t
j=1 ρ̃j , with σ̃i = Φ#(σi) and ρ̃j = Φ#(ρj).

Since the mapΦ collapses each connected component in a level set to a singlepoint, each̃ρj is a constant
map, and hencẽα is homologous to

∑r
i=1 σ̃i, which we still denote as̃α for simplicity.

Now insert a set of verticesV to Rbf (X), which is the set of points with function valuef(ci) for
i ∈ [1, k]. The removal of these vertices fromRbf (X) leaves a set of connected components. Since the
functionf : X → IR is levelset-tame w.r.t.{c1, . . . , ck}, each such connected component is necessarily the
image of some continuous bijectiong : (0, 1) → Rbf (X), and we call each connected componentan arc of
Rbf (X). Indeed, each such connected component is the image of some interval-component ofX under the
mapΦ. Since an interval-componentT of X is the evolution of a connected component in a level set without
changing its topology,Φ(T ) is necessarily a piece of curve monotone in the function values. Also observe
that, by the definition of interval-components, all such arcs are disjoint. Hence we obtain a triangulationK
of Rbf (X) whose vertices areV and edges are the closures of those arcs defined above.

By the construction of̂γ, the image of each singular simplexσi is contained in a different interval-
component. Hencẽσi([0, 1]) is contained within the underlying space of a single edgee in K. The boundary
of σ̃i coincides with endpoints ofe which are vertices inV . See Figure 2 (b) for an illustration. Given an
edgee ∈ K, let |e| ⊆ |K| = Rbf (X) denote the underlying space ofe. Let ei ∈ K denote the edge such
that σ̃i is a mapσ̃i : [0, 1] → |ei|. Observe that each̃σi is mapped to a unique edgeei.

Finally, consider the singular cyclẽα = Σr
i=1σ̃i. The carrier for this cycle is homotopic to the carrier

of the cycleh = Σr
i=1(hi : [0, 1] → |ei|) wherehi is a homeomorphism. Thus the two cyclesh and α̃

are homologous. Consider the simplicial cycleg =
∑r

i=1 ei, and let[g] ∈ H1(K) denote the simplicial
homology class it belongs to. The class[g] identifies to[h] via the standard isomorphism between simplicial
homology groupsH1(K) and the singular homology groupH1(|K|) (see e.g, page 194 of [23]). Therefore,
this standard isomorphism also identifies[g] to [α̃]. On the other hand, in simplicial homology, as there are
no 2-simplices inK, g is null-homologous if and only ifg = ∅, which means that the numberr of singular
simplices inα̃ is necessarily zero if̃α is null-homologous. This implies that the loopγ̂ ⊂ X does not contain
any through-path, and is completely contained within the union of level-sets

⋃
z Xcz . Henceγ̂ (and thusγ)

carries a horizontal cycle and its corresponding homology classh is horizontal. In other words, ifΦ∗(h) = 0
thenh ∈ H1(X), implying ker(Φ∗) ⊆ H1(X). Combining this with thatH1(X) ⊆ ker(Φ∗) completes our
proof.

Claim 3.2 Let f : X → IR be a levelset-tame function, andΦ as defined before. Given any loopγ ⊆
Rbf (X), there is a loop̂γ ⊆ X such thatΦ(γ̂) = γ andrange(γ̂) = range(γ).

Proof: We construct̂γ as follows. Suppose thatγ consists of a sequences ofk arcs,

γ[p1, p2], γ[p2, p3], . . . , γ[pk, p1],
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where eachpi is a node of the Reeb graphRbf (X). For eachpi, choose an arbitrary pre-imageqi ∈ X from
Φ−1(pi). Now for each arcγ[pi, pi+1], connectqi andqi+1 within X(γ[pi, pi+1]) by γ̂[qi, qi+1] arbitrarily.
The concatenatin of all̂γ[qi, qi+1] providesγ̂ ⊂ X. It is easy to check thatrange(γ) = range(γ̂).

Theorem 3.3 Given a levelset-tame functionf : X → IR, let Φ̌ : H̆1(X) → H1(Rbf (X)) be the homo-
morphism induced by the surjectionΦ : X → Rbf (X) as defined before. The map̌Φ is an isomorphism.
Furthermore, for any vertical homology classω ∈ H̆1(X), we have thatheight(ω) = height(Φ̌(ω)).

Proof: First, by Claim 3.2, the homomorphismΦ∗ : H1(X) → H1(Rbf (X)) is surjective. It then follows
that its induced quotient map̌Φ is also surjective. The injectivity of̌Φ follows from Lemma 3.1. HencěΦ is
an isomorphism.

For the second part of the theorem, supposeα is a vertical cycle such that[α] = ω andheight(α) =
height(ω), i.e., α is a thinnest cyclein the vertical homology classω. Let γ be the loop inRbf (X) that
carries a thinnest cycle in the homology classΦ̌(ω) ∈ H1(Rbf (X)). We have that

height(α) = height(Φ#(α)) ≥ height(Φ̌(ω)) = height(γ) (1)

On the other hand, by Claim 3.2, there is a loopγ̂ in X (which is a pre-image ofγ underΦ) such thatΦ(γ̂) =
γ andheight(γ̂) = height(γ). Let α̂ be any1-cycle carried bŷγ. By Lemma 3.1, we have[α̂] = ω, as the
cycleα+ α̂ is mapped to a null-homologous cycle inRbf (X). Henceheight(γ) = height(γ̂) ≥ height(α).
Combining this with Eqn (1) proves thatheight(Φ̌(ω)) = height(ω).

4 Approximating Reeb graphs

Let M be a compact and smoothm-manifold without boundary embedded inIRd. The reachρ(M) of M

is the minimal distance from any pointx ∈ M to the so-called medial axis ofM. Given a pointp ∈ M,
let BM(p, r) denote the open geodesic ball centered atp with radiusr. Let rp be the maximal radius so
thatBM(p, rp) is convex in the sense that the minimizing geodesics betweenany two points inBM(p, rp) is
contained inBM(p, rp). Theconvexity radius ofM is simplyρc(M) = infp∈M rp.

A set of pointsP is anε-sample2 of M if P ⊂ M and for any pointx ∈ M, there is a pointp ∈ P within
ε geodesic distance fromx. GivenP and a realr > 0, the Čech complexCr(P ) is a simplicial complex
where a simplexσ ∈ Cr(P ) if and only if the vertices ofσ are the centers ofd-balls of radiusr/2 with a
non-empty common intersection. Instead of common intersection, if we only require pairwise intersection
among the set ofd-balls, we obtain the so-calledVietoris-Rips complex (Rips complex for short)Rr(P ).

Overview. Consider anε-sampleP ⊂ M and a functionf : M → IR with its value only available at sample
points inP . In what follows, we show that for an appropriater, the Reeb graph of the Rips complexRr(P )
approximatesRbf (M) both in terms of the rank of the first homology group, and in terms of the range and
the height of cycles and homology classes. Our precise definition of approximation will be given later. Once
the Rips complex is constructed, computing its Reeb graph takes onlyO(n log n) expected time [20], where
n is the size of the2-skeleton ofRr(P ). Sincef is only available at sample points inP , the approximation
quality naturally depends on how well the functionf : M → IR behaves. We assume thatf is Lipschitz
with Lipschitz constantLipf .

In Section 4.1 we first introduce some relations between cycles ofM and those of the geometric real-
ization |Rr(P )| of the Rips complexRr(P ). Using these relations, in Section 4.2, we show that there are
maps betweenH1(M) andH1(|R

r(P )|) that are not only isomorphic, but also preserve the height / range
of a homology class. This, combined with Theorem 3.3, eventually leads to our approximation ofRbf (M).

2Hereε-sample is not defined relative to reach or feature size as commonly done in reconstruction literature [12].
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This approximation result can be used to estimate the first betti number of an orientable2-manifold from its
point samples in near-linear expected time.

4.1 Relation between cycles in M and |Rr(P )|

The simplicial complexRr(P ) as defined is not necessarily embedded inIRd. Consider the embedding
e: Rr(P ) → ∆|P | of Rr(P ) into the standard simplex inIR|P |. Let |Rr(P )| denote the underlying space
of the geometric realizatione(Rr(P )). A piecewise-linear functionf onRr(P ) defines naturally a piece-
wise linear function on its geometric realization|Rr(P )| which we also denote asf . The Reeb graph of
a PL-functionf on Rr(P ) is in fact the Reeb graph off on its geometric realization|Rr(P )|. Hence
Rbf (Rr(P )) := Rbf (|Rr(P )|). Analogously, the vertical / horizontal homology groups ofRr(P ) with re-
spect to a PL-functionf are also defined using|Rr(P )|. In this section, we relate cycles fromM and those
from |Rr(P )| via (simplicial) cycles ofRr(P ). We will show how to construct the maps as indicated in
Figure 4 below, such that these maps not only induce isomorphisms in the corresponding homology groups,
but also preserve height and range of cycles.

Z1(M)
d //

ρ = u◦d

++

Z1(R
r(P ))

h#

oo
u //

Z1(|R
r(P )|)

g
oo

ξ = h#◦g

kk

Figure 4: Maps between cycle groups

A general version of the next claim which establishes an isomorphism between the homology groups of
M and those of̌Cech and Rips-complexes is well-known (see, e.g. [24] forČech-complexes and [22] for
Rips-complexes; a variant for compact spaces was also observed by Steve Oudot (personal communications)
and a much stronger result showing that Rips-complexes capturing topology of sampled shapes is given in
[1]). We include a proof of it for completeness. First, we quote a result from [14], the map of which will be
used later as well.

Proposition 4.1 (Proposition 3.3 of [14]) Let P ⊂ M be anε-sample andr a parameter such that2ε ≤

r ≤
√

3
5ρ(M). There is a homotopy equivalenceθ : C2r(P ) → M such thatθ(p) = p for anyp ∈ P and

θ(σ) ⊂ M ∩ (∪p∈V ert(σ)BM(p, r)).

Lemma 4.2 LetP ⊂ M be anε-sample andr a parameter such that4ε ≤ r ≤ 1
2

√
3
5ρ(M). Then,

H1(C
r(P )) ≃ H1(R

r(P )) ≃ H1(C
2r(P )) ≃ H1(M).

The first two isomorphisms are induced by the natural inclusion fromCr(P ) to Rr(P ) and then toC2r(P ).
The last isomorphism is induced by the homotopy equivalenceθ from Proposition 4.1.

Proof: Consider the following sequence of inclusions:

Cr(P )
i1
→֒ Rr(P )

i2
→֒ C2r(P ).

By Proposition 3.4 [14], we know that the inclusioni = i2 ◦ i1 induces an isomorphismH1(C
r(P )) ≃

H1(C
2r(P )). On the other hand, note thatCr(P ) andRr(P ) share the same edge set, andRr(P ) only has
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more triangles thanCr(P ). Hence the inclusioni1 induces a surjective homomorphism fromH1(C
r(P ))

to H1(R
r(P )). It then follows that bothi1 and i2 must induce isomorphisms in the corresponding first

homology groups.

Maps d and h#. We now define maps as indicated in Figure 4. First, given a cycleα ∈ Z1(M), we map it to
a cycled(α) ∈ Z1(R

r(P )) using the same Decomposition method [2] as applied in [14]. In particular, use
an arbitrary, but fixed, way to break the carrier ofα into pieces where each piece has length at mostr − 2ε.
For each piece with endpointsxi andxi+1, find the closest sample pointspi andpi+1 from P to xi andxi+1,
respectively, and connectpi andpi+1 (which is necessarily an edge inRr(P ) by triangle inequality). The
resulting simplicial 1-cycle inRr(P ) is d(α). Later in Lemma 4.3, we will show that this mapd indeed
takes homologous cycles to homologous cycles, and as such induces a well-defined homomorphismd∗ at
the homology level.

We define the maph : Rr(P ) → M as the inclusion mapRr(P ) →֒ C2r(P ) composed with the
homotopy equivalenceθ : C2r(P ) → M introduced in Proposition 4.1. The corresponding chain maph#

induces a homomorphismh∗ : Hp(R
r(P )) → Hp(M). We restricth∗ only to the first homology group

h∗ : H1(R
r(P )) → H1(M). By Lemma 4.2,h∗ is an isomorphism.

The following lemma states thatd: Z1(M) → Z1(R
r(P )) is in fact the homology-inverse ofh#. The

ranges of mapped cycles are also related. We put the proof of the following lemma in Appendix A to
maintain the flow of the presentation. Given two intervalsI1 = [a, b] andI2 = [c, d], we say thatI1 is
oneside-δ-close toI2 if [a, b] ⊆ [c − δ, d + δ]. andI1 andI2 areδ-Hausdorff-closeif the two intervals are
oneside-δ-close to each other. In the Lemma below, assume thatf is a (Lipf )-Lipschitz function onM and
its values for the verticesP ⊂ M define a piecewise linear function onRr(P ) which we also denote asf .

Lemma 4.3 (i) h∗ : H1(R
r(P )) → H1(M) is an isomorphism. The mapd induces an isomorphism

d∗ : H1(M) → H1(R
r(P )) such thath∗ = (d∗)

−1.

(ii) The range of the cycled(α) ∈ Z1(R
r(P )) is oneside-(r · Lipf )-close to the range ofα ∈ Z1(M).

Similarly, the range of the cycleh#(α̂) ∈ Z1(M) is oneside-(r · Lipf )-close toα̂ ∈ Z1(R
r(P )).

(iii) The ranges of any homology classω ∈ H1(M) (resp. ω̂ ∈ H1(R
r(P ))) and its imaged∗(ω) ∈

H1(R
r(P )) (resp.h∗(ω̂) ∈ H1(M)), are (r · Lipf )-Hausdorff-close.

Maps u and g. The mapu is taken as the standard map between the simplicial chain groups of a simplicial
complex and the singular chain groups of its underlying space; see e.g, the mapµ defined on page 194 of
[23].

We now define the mapg : Z1(|R
r(P )|) → Z1(R

r(P )). Recall we have embeddedRr(P ) in the
standard simplex∆|P | ⊂ IR|P |, and|Rr(P )| is the underlying space of this geometric realizatione(Rr(P ))
of Rr(P ). In particular, Each vertexpi ∈ P is mapped to the pointvi = (0, . . . , 0, 1, 0, . . . , 0) ∈ IR|P | with
the ith position1; and a simplex inRr(P ) with vertices{pi0 , . . . , pil} is mapped to the simplex inIR|P |

with vertices{vi0 , . . . , vil}. Consider a cycleα in |Rr(P )|. The carrier ofα passes through a sequence of
simplicesS of e(Rr(P )) if a point in the carrier is contained in multiple simplices,then keep the one with
the minimum dimension. LetS = {σ1, . . . , σm}. Now choose an arbitrary but fixed vertexui for eachσi,
and letpui

∈ P denote the unique pre-image ofui in Rr(P ) under the embedding mapu. Notice that for
any two consecutive simplicesσi andσi+1 that the carrier ofα passes through, it is necessary that eitherσi

is face ofσi+1 or σi+1 is a face ofσi. Hence eitherpui
= pui+1 or pui

pui+1 is an edge inRr(P ). Therefore,
we mapα simply to the cycleg(α) given by the sequence of vertices(pu1, . . . , pum , pu1) and edges between
them. We have the following result about mapsu andg.
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Lemma 4.4 (i) Every cycleα in Rr(P ) is mapped to a cycleu(α) with the same range in|Rr(P )| under
u : Z1(R

r(P )) → Z1(|R
r(P )|). The mapu∗ : H1(R

r(P )) → H1(|R
r(P )|) is an isomorphism, and

the ranges of any homology classω ∈ H1(R
r(P )) and its imageu∗(ω) ∈ H1(|R

r(P )|) are also the
same.

(ii) Every cycleα in |Rr(P )| is mapped to a cycleg(α) in Rr(P ) whose range is oneside-(r ·Lipf )-close
to that ofα. The mapg : Z1(|R

r(P )|) → Z1(R
r(P )) induces an isomorphismg∗ : H1(|R

r(P )|) →
H1(R

r(P )), andg∗ = (u∗)
−1. The ranges of any homology classω̂ ∈ H1(|R

r(P )|) and its image
g∗(ω̂) ∈ H1(R

r(P )) are (r · Lipf )-Hausdorff close.

Proof: For part (i) of the lemma, note that it is well known thatu induces an isomorphism between the
respective simplicial and singular homology groups (see e.g, Theorem 34.3 of [23]). Furthermore, sinceu
maps each simplex to a map whose range is its underlying space, u preserves the range of a cycle.

For part (ii) of the lemma, first observe that for any cycleα from |Rr(P )|, we have that[u◦g(α)] = [α].
Indeed, by the construction ofg, it is easy to verify thatu ◦ g(α) andα are homotopic. Sinceu induces an
isomorphism fromRr(P ) to |Rr(P )|, it follows thatg maps homologous cycles in|Rr(P )| to homologous
cycles inRr(P ). Henceg induces a well-defined homomorphismg∗ : H1(|R

r|) → H1(R
r). Furthermore,

g◦u(α′) = α′ for any cycleα′ ∈ Rr(P ). It follows thatg∗ is the inverse ofu∗ and hence is an isomorphism.
Finally, note that for each simplexσ ∈ |Rr(P )|, the function value difference between any two points

x, y ∈ σ is bounded byr · Lipf . Let γ be the carrier of a cycleα in |Rr(P )|. By the construction ofg, for
each pieceγ ∩ σi of γ within the simplexσi ∈ S, we have that|f(x) − f(ui)| ≤ r · Lipf for any point
x ∈ γ ∩ σi. Sincef(ui) = f(pui

), we have:

[ min
i∈[1,m]

f(pui
)+r·Lipf , max

i∈[1,m]
f(pui

)−r·Lipf ] ⊆ range(α) ⊆ [ min
i∈[1,m]

f(pui
)−r·Lipf , max

i∈[1,m]
f(pui

)+r·Lipf ].

On the other hand, we have thatrange(g(α)) ⊆ [mini∈[1,m] f(pui
),maxi∈[1,m] f(pui

)]. Hencerange(g(α))
is oneside-(r · Lipf )-close torange(α). By a similar argument as in the proof of Lemma 4.3 (iv), the
closeness between the corresponding homology classes follows.

Combining Lemma 4.3 and 4.4, we obtain a similar result for maps betweenZ1(M) andZ1(|R
r(P )|).

Theorem 4.5 LetP ⊂ M be anε-sample andr a parameter such that4ε ≤ r ≤ 1
2

√
3
5ρ(M).

(i) There is a mapρ := u# ◦ d fromZ1(M) to Z1(|R
r(P )|) that induces an isomorphismρ∗ : H1(M) →

H1(|R
r(P )|). The range of cycleρ(α) is oneside-(r · Lipf )-close to the range ofα.

(ii) There is a mapξ := h#◦g fromZ1(|R
r(P )|) toZ1(M) that induces an isomorphismξ∗ : H1(|R

r(P )|) →
H1(M). The range of cycleξ(α̂) is oneside-(2r · Lipf )-close to the range of cyclêα.

(iii) Furthermore, ρ∗ is the inverse ofξ∗. The ranges of any homology classω ∈ H1(M) (resp. ω̂ ∈
H1(|R

r(P )|)) and its imageρ∗(ω) ∈ H1(|R
r(P )|) (resp.ξ∗(ω̂) ∈ H1(M)) are (2r ·Lipf )-Hausdorff-

close.

4.2 Rbf(M) and Rbf(R
r(P ))

We now show that under mild conditions onM, the induced isomorphismsρ∗ andξ∗ as defined above in fact
map horizontal classes to horizontal classes, and verticalclasses to vertical classes.

Sets = rank(H1(M)). It turns out that we can find a basis{[α1], . . . , [αs]} for the horizontal subgroup
H1(M) such that each class[αi], i ∈ [1, s], has height0; as well as a set of base cycles{α1, . . . , αs}
corresponding to this basis withheight(αi) = 0 for anyi ∈ [1, s]. Such a0-height basisfor H1(M) can be
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constructed by a simple greedy approach, where at each iteration we take a homology class with smallest
height that is independent of all the previous elements in the basis. The details can be found in Appendix
B. The corresponding set of base cycles{α1, . . . , αs} with height(αi) = 0 is called a set of0-height base
cyclesfor H1(M). For a horizontal homology classω with height 0, the span ofω is the length of the
maximal intervalI such thatω has a pre-image in the levelsetXa for any a ∈ I. Intuitively, this is the
interval in function values in which this homology class survives in the level-sets.

Let s∗(M) denote the smallest span of any0-height horizontal class of the input manifoldM, andt
∗(M)

the minimal height of any vertical class ofM. We assume that boths∗(M) andt
∗(M) are positive for our

input level-set tame function onM.

Theorem 4.6 Given a level-set tame functionf on a manifoldM, let r > 0 be such thats∗(M), t∗(M) >
2r · Lipf . Let ρ∗ and ξ∗ be as defined in Theorem 4.5. Then we have thatρ∗(H1(M)) = H1(|R

r(P )|),

ξ∗(H1(|R
r(P )|)) = H1(M) andH̆1(M) ≃ H̆1(|R

r(P )|).

Proof: For simplicity, in this proof letR denote|Rr(P )|. Below we first show thatρ∗(H1(M)) = H1(R).
Consider a set of0-height base cycles{α1, . . . , αs} for H1(M) with s = rank(H1(M)).

Take an arbitraryαi for i ∈ [1, s], and let[a, b] denote the maximal interval3 such that[αi] has a preimage
in the levelsetMc for any c ∈ [a, b]. The span of[αi] is b − a and is at leasts∗(M) > 2r · Lipf . Take a
representative cycleγa from Ma andγb from Mb of the homology class[αi]. SetIa := [a− r · Lipf , a + r ·
Lipf ] andIb := [b−r ·Lipf , b+r ·Lipf ]. It follows from Theorem 4.5 that the carrier ofρ(γa) is contained
in the interval levelsetRIa while the carrier ofρ(γb) is contained inRIb

. (Note,[ρ(αi)] = [ρ(γa)] = [ρ(γb)]
is a non-trivial homology class inH1(R).) Sinceb−a > 2r ·Lipf , we haveIa∩Ib = ∅. A simple application
of the Mayer-Vietoris sequence provides that the homology class[ρ(αi)] has a preimage in the levelsetRc

for anyc ∈ [a + r · Lipf , b − r · Lipf ], which in turn implies that[ρ(αi)] is horizontal. (A similar argument
is used in [9].) Since[ρ(αi)] is horizontal for anyi ∈ [1, s], ρ∗(H1(M)) is a subgroup ofH1(R).

We now show that the opposite directionH1(R) ⊆ ρ∗(H1(M)) is also true, which would imply that
ρ∗(H1(M)) = H1(R). Specifically, take a set of0-height base cycles{β1, . . . , βt} for H1(R). By Theorem
4.5, their images{ξ(β1), . . . , ξ(βt)} in M is a set of independent cycles such thatheight(ξ(βi)) ≤ 2r ·Lipf .
Since the minimal height of any vertical cycle inM is t

∗(M) > 2r · Lipf , eachξ(βi) has to be a horizontal
homology cycle. As such,ξ∗(H1(R)) ⊆ H1(M), which means thatH1(R) = ρ∗(ξ∗(H1(R))) ⊆ ρ∗(H1(M)).
It then follows thatρ∗(H1(M)) = H1(R). Since the isomorphismρ∗ sendsH1(M) to H1(R), the induced
homomorphism at the quotient level is also an isomorphism; that is,H̆1(M) ≃ H̆1(R).

4.3 Putting everything together

We say that a Reeb graphRbf (A) δ-approximatesanother Reeb graphRbg(B) if there is an isomorphism
betweenH1(Rbf (A)) andH1(Rbg(B)) such that the ranges of corresponding pairs of homology classes are
δ-Hausdorff-close4. Combining Theorems 3.3, 4.5 and 4.6, we have our first main result.

Theorem 4.7 Let f : M → IR be a level-set tame function defined onM with Lipschitz constantLipf .

Given anε-sampleP of M, let r be a parameter such that4ε ≤ r < min{1
4ρ(M), 1

4ρc(M), t
∗

2Lipf
, s

∗

2Lipf
},

andRr(P ) the Rips complex constructed fromP using radiusr/2. ThenRbf (Rr(P )) is a (2r · Lipf )-
approximation ofRbf (M), andRbf (Rr(P )) can be computed inO(n log n) expected time [20], wheren is
the size of the2-skeleton ofRr(P ).

3Such maximal interval can be open. We assume it is closed for simplicity. The case when it is open can be handled similarly.
4In fact, we can also require that there is a map fromZ1(Rbf (A)) → Z1(Rbf (B)) that induces an isomorphism from

H1(Rbf (A)) → H1(Rbg(B)) where every cycle fromRbf (A) is mapped to a cycle inRbg(B) whose range isδ-Hausdorff-
close.
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Remark 1. Here we provide a brief discussion of why we focus only on the1-st homology information of
the Reeb graph, as well as the intuition behind our definitionof a δ-approximate Reeb graph.

The Reeb graph is an abstract graph and contains only the0- and1-dimensional topological information.
Given a Reeb graphRbf (M), its 0-th homology simply encodes the connected components information of
M, and can be approximated from point data easily by returningthe number of connected components in an
appropriately constructed Rips complex in linear time.

At the same time, compared to general abstract graphs, the Reeb graph has the extra information of the
natural functionf defined on it. Hence one may also ask what the0-th persistenthomology ofRbf (X)
induced byf is. This turns out to be the same as approximating the0-th persistent homology forX and can
be solved using results from [6, 7].

Therefore, the only remaining issue is to approximate the1-st homology of a Reeb graph. Similar to
the case for the0-th homology, there are two aspects: (i) computingH1(Rbf (M)) itself; and (ii) com-
puting the1-st persistenthomology ofRbf (M) induced by the functionf . For (i), our result shows that
H1(Rbf (Rr(P ))) for a certain Rips complexRr(P ) constructed from the point samplesP is isomorphic
to H1(Rbf (M)). For (ii), since every1-cycle in a Reeb graph is essential, the standard persistence is not
able to describe them, and one has to use the extended persistence as introduced in [9], which is determined
by the range of essential cycles. Hence our definition of the approximation also requires that ranges of
corresponding homology classes (and even cycles) are also close.

Remark 2. One can strengthen Theorem 4.7 slightly to show that if the parameterr does not satisfy the
conditions thatr < t

∗

2Lipf
or r < s

∗

2Lipf
, then all homology classes ofH1(Rbf (M)) with height at least

2r · Lipf are preserved inH1(Rbf (Rr(P ))) (and vice versa).

Computing β1(M) for orientable 2-manifolds. It was shown in [11] that for a Morse functionf :
M → IR defined on a compact orientable surfaceM without boundary, one hasrank(H1(M)) = 2 ·
rank(H1(Rbf (M))). Hence intuitively, using Theorem 4.7, we can computeβ1(M) = rank(H1(M)) by
2 · rank(H1(Rbf (Rr(P ))) from an appropriatef and a Rips ComplexRr(P ) constructed from a point
sampleP of M. Specifically, choose a functionf : M → IR so that we can evaluate it at points inP . For
example, pick a base pointv ∈ P and define a functionfv(x) to be the Euclidean distance fromx ∈ M to
the base pointv. Observe that the Lipschitz constant of this functionfv is at most1. Our algorithm simply
computes the Reeb graphRbfv(Rr(P )) and returns2 · rank(H1(Rbfv(Rr(P ))).

Corollary 4.8 LetM be an orientable smooth compact2-manifoldM without boundary andP anε-sample
of M. The above algorithm computesβ1(M)) in O(n log n) expected time ift∗(M) ands

∗(M) are positive
for the chosen functionf , and the parameters satisfy4ε ≤ r < min{1

4ρ(M), 1
4ρc(M), t

∗

2Lipf
, s

∗

2Lipf
}.

Observe that a Morse function on an orientable2-manifold provides positivet∗ ands
∗. We remark that

our algorithm produces a correct answer only under good choices off andr; while previously, the best
algorithm to estimateβ1(M) only depends on choosingr small enough. The advantage of our algorithm is
its efficiency, as the previous algorithm needs to compute the first-betti number of the simplicial complex
Rr(P ) for certainr, which takesO(n3) time no matter what the intrinsic dimension ofM is, wheren is the
size of the2-skeleton ofRr(P ).

5 Persistent Reeb graph

Imagine that we have a set of pointsP sampled from a hidden spaceX, andf : X → IR a function whose
values at points inP are available. We wish to study this functionf through its Reeb graph. A natural
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approach to approximateX from P is to construct a Rips complexRr(P ) from P . Since it is often unclear
what the right value ofr should be, it is desirable to compute a series of Reeb graphs from Rips complexes
constructed with variousr, and then find out which cycles in the Reeb graph persist. Thiscalls for computing
persistent homology groupsfor the sequence of Reeb graphs.

Let K1 ⊆ K2 ⊆ · · · ⊆ Kn be a filtration of a simplicial complexKn. A piecewise linear function
f : |Kn| → IR provides a PL-function for everyKi, i ∈ [1, n]. Let Ri := Rbf (Ki) denote the Reeb
graph off defined on the geometric realization|Ki| of Ki. Below we first show that there is a sequence of
homomorphismsH1(Ri) → H1(Ri+1) induced by the inclusionsKi ⊂ Ki+1. We then present an algorithm
to compute the persistent homologies induced by these homomorphisms.

5.1 Persistent Reeb graph homology

Let Φi denote the associated quotient map from|Ki| → Ri, for any i ∈ [1, n]. Since the canonical
inclusion |Ki| →֒ |Kj | respects the the equivalence relation that defines the quotient spaceRi, the maps
Φis, along with inclusions betweenKjs, induce a well-defined continuous map between the quotientspaces
ξ : Ri → Rj , for anyi < j. Let ιi denote the inclusion map from|Ki| to |Ki+1|, andξi the induced map
from Ri to Ri+1. We have the following diagram that commutes.

|K1|
ι1 //

Φ1��

|K2|
ι2 //

Φ2��

· · · · · ·
ιn−1 // |Kn|

Φn��

R1
ξ1 // R2

ξ2 // · · · · · ·
ξn−1 // Rn

The sequence of continuous mapsξi induces the following sequence of homomorphisms:

H1(R1)
ξ1∗ // H1(R2)

ξ2∗ // · · · · · ·
ξ(n−1)∗

// H1(Rn)

Following [17], we can now define thepersistent homology groupsas the images of mapsξi,j
∗ = ξj∗ ◦

· · ·◦ξi∗ : H1(Ri) → H1(Rj). In other words, the imageIm(ξi,j
∗ ) consists of homology classes fromH1(Rj)

that also have pre-images inH1(Ri) (i.e, persist fromH1(Ri) to H1(Rj)). Thepersistent betti numbersβi,j

is defined as the rank of the persistent homology groupIm(ξi,j
∗ ). Set

µi,j := βi−1,j − βi,j + βi,j−1 − βi−1,j−1.

Intuitively, µi,j is the number of independent loops created upon enteringRi and destroyed upon leaving
Rj . A persistence pair(i, j) is recorded ifµi,j > 0, and the valueµi,j indicates the multiplicity of this
pairing.

We focus on persistentH1-homology forRis in this paper. The persistentH0-homology forRis is the
same as persistentH0-homology forKis, and thus can be easily computed by a union-find data structure
in near linear time. We also remark that by Theorem 3.3, persistentH1-homology forRi is isomorphic to
persistentvertical homologyH̆1(|Ki|)

5.

5.2 Computation

We now present an algorithm to compute the persistent betti numberβi,j. The numbersµi,j and the persis-
tence pairs can be computed easily once we have these persistence betti numbers.

5 Apriori, it is not clear how to compute the persistent one dimensional vertical homology. By maintaining theextended
persistence pairingsdynamically as we change fromKi to Ki+1, we can maintain the rank of each̆H1(Ki), but not the persistent
homology between them.
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Given a filtrationK1 ⊆ · · · ⊆ Kn, assumeKi+1\Ki is one simplex. Since the Reeb graph is completely
decided by the2-skeleton of a simplicial complex, we assume thatKis are2-complexes. Letnv, ne andnt

denote the number of vertices, edges and triangles inKn, andn = nv+ne+nt. Observe that the complexity
of each Reeb graphRi, for i ∈ [1, n], is bounded byO(ne). The set of Reeb graphsRis can be computed
in O(nnv) time using the incremental algorithm from [25]. We use this algorithm as it can also maintain the
image of each edge fromKi in Ri in O(nv) time at each incremental step, thus providingΦi, for i ∈ [1, n].

Recall that a set of base cycles forHp(·) is a set of cycles whose classes form a basis ofHp(·). For the
sake of exposition in this section, we abuse the notation slightly and use a cycle to also refer to its carrier
in the Reeb graph. Specifically, we will see later that our algorithm in fact maintains the carriers of a set of
base cycles forH1(Ri), which we also call acycle-basis. We say that a set of cycles areindependentif the
set of homology classes these cycles represent are independent.

To computeβi,j , one can construct a set of base cycles{α1, . . . , αr} for H1(Ri) with r = rank(H1(Ri)),
and check how many of their images inRj remain independent. A straightforward implementation of this
approach takesO(n2n3

e) time. Indeed,r = O(ne) and the complexity of each cycleαi is bounded byO(nv)
(by representing them as a sequence of vertices). Computingthe images of allαis takesO(rn2

v) = O(nen
2
v)

time using the incremental algorithm from [25], and the independence test for theser cycles takesO(rn2
e) =

O(n3
e) time. Finally, there aren2 pairs ofi andj that we need to test, giving rise toO(n2n3

e) total time
complexity. To improve the time complexity, we follow the idea of the standard persistence algorithm [19]
and perform only one scan of the sequence of Reeb graphs, while maintaining a set of base cycles at any
moment during the course.

Notice that the standard persistence algorithm cannot be directly applied to the sequence of Reeb graphs
as there are no inclusions among them. In fact, the underlying spaces of two consecutive Reeb graphs can
change dramatically. See Figure 5 for such an example. We also remark that there may not be an inclusion
relation betweenRi andRi+1 in either direction, that is,Ri * Ri+1 andRi + Ri+1: see Case 3 discussed
later. Hence while it is possible to model the persistent Reeb graph homology via zigzag persistence theory
[4], the efficient algorithm to compute zigzag persistence as developed in [5] cannot yet be applied here.

f f f f

(a) (b) (c) (d)

Figure 5: (a) shows a genus-g torus with the two caps missing;g = 3 in this case. Darker color regions
indicate the two holes (missing caps) on this torus. Its Reebgraph w.r.t. the height function is shown in
(b). Now if we fill the left triangle, as shown in (c), thenΘ(g) number of independent vertical homological
classes become horizontal, thus killingΘ(g) number of loops in the Reeb graph, which is shown in (d). In
other words, by adding just one simplex (a triangle), the first betti number decreases byΘ(g).

Consistent base cycles. From now on, letG(i) denote the cycle-basis ofH1(Ri) that we maintain at the
i-th step. For each cycleγ ∈ G

(i), we associate with it abirth-timet(γ), which is the earliest time (index)
k ≤ i such that some pre-image of the homology class[γ] under the mapξk,i

∗ : H1(Rk) → H1(Ri) exists.
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In order to extractβi,j , we wish to maintain the followingconsistency conditionbetweenG(i) andG
(j): let

G
(i) = {α

(i)
1 , α

(i)
2 , . . . , α

(i)
r } andG

(j) = {α
(j)
1 , . . . , α

(j)
s }. Consider the set̂G of images of cycles{α(i)

l }

in Rj . G
(i) andG

(j) areconsistentif the cardinality ofĜ ∩ G
(j) is exactlyβi,j. Notice that there are

alwaysβi,j number of independent cycles in̂G. However, its intersection withG(j) may have much smaller
cardinality. A sequence of cycle-bases{G(i) | i ∈ [1, n]} is consistentif the consistency condition holds for
any pairG(i) andG

(j), 0 ≤ i < j ≤ n. The following claim implies that we can read offβi,j easily from a
consistent sequence of cycle-bases.

Lemma 5.1 If a sequence of cycle-bases{G(i) | i ∈ [1, n]} is consistent, then for any1 ≤ i < j ≤ n, βi,j

equals the number of cycles inG(j) whose birth-time is smaller than or equal toi.

Proof: Consider a pair of indicesi < j and the corresponding cycle-basisG
(i) for H1(Ri) andG

(j) for
H1(Rj). Assume that there arek cycles inG

(j) with birth-time smaller than or equal toi. Since all these
cycles are independent inRj (and thus inξi,j(Ri)), we have thatk ≤ βi,j. On the other hand, sinceG(i)

andG
(j) are consistent, we have thatk ≥ βi,j, implying thatk = βi,j.

Algorithm description. In light of Lemma 5.1, our goal is to maintain consistent cycle-bases at any
moment. We now describe how we update the set of base cycles aswe move fromKk to Kk+1 = Kk∪{σ};
σ can be a0-, 1-, or 2-simplex. Setgi := rank(H1(Ri)) for anyi ∈ [1, n]. Assume atk-th step we already
have consistent{G(i) | i ∈ [1, k]}. For each cycle-basisG(i), we also maintain the birth-time of each cycle
in it. Assume cycles inG(k) = {γ1, . . . , γgk

} are sorted by their birth-times. At the beginning of thek-th
step, we first use the incremental algorithm from [25] to compute the Reeb graphRk+1 from Rk. We next
need to updateG(k) to G

(k+1) for Rk+1 so thatG(k+1) is consistent with eachG(i) for i ∈ [1, k]. There
are three cases.

Case 1: σ is a vertex. A new connected component is created inKk+1, consisting of onlyσ. Similarly,
a new node is created inRk+1. The set of base1-cycles are not affected, andG(k+1) = G

(k).

Case 2: σ = pq is an edge. Let p̂ = Φk(p) and q̂ = Φk(q) be the images of endpointsp andq of σ in
the Reeb graphRk. Adding σ to Kk creates a new edgee = p̂q̂ in Rk+1. If p̂ and q̂ are not in the same
connected component inRk, then addinge will only reduce the rank ofH0(Rk) by 1 and does not affect
H1(Rk). In that caseG(k+1) = G

(k). Otherwise,̂p andq̂ are already connected inRk. Addinge results in
rank(H1(Rk+1)) = rank(H1(Rk))+1. Letγ be any cycle inRk+1 that containse (which can be computed
easily in linear time). All previous base cycles inG

(k) will remain independent inRk+1, and we simply set
G

(k+1) = G
(k) ∪ {γ}. The birth-time forγ is k + 1.

Case 3: σ is a triangle. The first two cases are simple and similar to the cases of standard persistence
algorithm. Case 3 is much more complicated. In particular, unlike the standard persistence algorithm
wherein adding a triangle may reduceβ1 by at most1, the rank ofH1(Rk) may decrease byΘ(gk). What
happens is that even thoughβ1(Kk) is reduced by at most 1, arbitrary number of vertical homology classes
can be converted into horizontal homology classes. An example is given in Figure 5.

Let σ = △pqr, and letp̂ = Φk(p), q̂ = Φk(q) and r̂ = Φk(r) be the images of the three endpoints
of σ in Rk, respectively. Assume without loss of generality thatf(p) ≤ f(q) ≤ f(r), and sete1 = pq,
e2 = qr ande3 = pr. First, we compute the image of eachei in Rk, which is necessarily a monotone path
(i.e, monotonic in function values) denoted byπi = Φk(ei). These images can be computed inO(nv) time
using the incremental algorithm and the data structure of [25]. By our assumption off(p) ≤ f(q) ≤ f(r),
π1 andπ2 are disjoint in their interiors, whileπ3 may share subcurves withπ1 andπ2. Setπ1,2 := π1 ◦ π2
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to be the concatenation ofπ1 andπ2, which is still a monotone path, and noteπ1,2 andπ3 share the same
two endpoints.

Now if π1,2 andπ3 coincide inRk, the addition of triangleσ does not ensue any change, that is,Rk+1 =
Rk andG

(k+1) = G
(k). In this case, the vertical homology ofKk remains the same; eitherσ destroys a

horizontal homology class inH1(Kk), or it creates a2-cycle.

π1,2

π3

π1,2 = π3

Otherwise, theH1-homology of the Reeb graph changes. Assume the two
monotone pathsπ1,2 andπ3 form s simple loops between them (see the
right figure wheres = 3). Then, with the addition ofσ, each point inπ3 is
mapped to the corresponding point inπ1,2 with the same function value.
Hence this process collapses all theses independent loops and we have
gk+1 = gk − s.

We now describe how to computeG(k+1) for this case. First, we need
to compute the imagêG := ξk(G

(k)) of the set of base cyclesG(k) in Rk+1. To do this, we need the map
ξk. Observe thatξk maps each edge inRk either to the same edge inRk+1, or to a monotone path inRk+1.
The latter case can potentially happen only for edges in the pathsπ1,2 andπ3 — in particular, for those
edges in subcurves fromπ1,2 andπ3 that are merged together. Since bothπ1,2 andπ3 are monotone, images
of edges fromπ1,2 andπ3 can be computed inO(|π1,2|+ |π3|) = O(nv) time by merging the sorted lists of
vertices inπ1,2 andπ3. Hence we can compute the mapξk in O(nv) time.

Onceξk is computed, given a simple cycleγ from Rk, we can compute its image inRk+1 in O(nv)
time. This is because (i) there areO(nv) number of edges inγ; and (ii) the total size of the images of edges
from γ in Rk+1 has an upper bound|γ| + |ξk(π1,2)| + |ξk(π3)| = O(nv). The set of cycleŝG := ξk(G

(k))

in Rk+1 can then be computed inO(nvgk) time. LetĜ = {γ̂1, . . . , γ̂gk
}.

The remaining task is to constructG(k+1) that is consistent withG(i) for any i ≤ k. One needs
gk+1 = rank(ξk,k+1

∗ ) independent cycles from̂G to makeG(k+1) consistent withG(k). To this end, we
perform the following two steps.

(S1). We represent each cycle in̂G as a linear combination of cycles in a basis for the graphRk+1.

(S2). We check the dependency of cycles inĜ in order of their birth-times, and remove redundant cycles to
obtainG

(k+1).

Step (S1). SinceRk+1 is a graph, we compute a canonical basis of cycles,B = {α1, . . . , αgk+1
}, in the

following standard way. Construct an arbitrary spanning treeT of Rk+1. Let E = {e1, . . . , egk+1
} denote

the set of non-tree edges inRk+1. Each edgeei = pq ∈ E creates a canonical cycle that concatenates edge
ei with the two unique paths inT from p andq to their common ancestor. We setαi to be this canonical
cycle created byei. Obviously, eachei appears exactly once among all cycles inB. Given a cycleγ ∈ Ĝ,
we need to find coefficientscis such thatγ =

∑gk+1

i=1 ciαi, where eachci is either0 or 1. Sinceei appears
only in αi, we haveci equal the number of timesei appears inγ modulo2. Sinceγ is a simple curve,ci is
1 if ei ∈ γ and0 otherwise. Hence allcis for i ∈ [1, gk+1] can be computed inO(nv) time for one curveγ.
Computing the coefficients of all cycles in̂G takesO(nvgk) time.

Step (S2). Recall that cycles inG(k) = {γ1, . . . , γgk
} are sorted by increasing order of their birth-times.

Note, the birth-time of the cyclêγi ∈ Ĝ, which is the image of the cycleγi ∈ G
(k) in Rk+1, may be smaller

than the birth-time ofγi. Now represent cycles in̂G with respect to the canonical basisB = {α1, . . . , αgk+1
}

in a matrixM , where theith column ofM , denoted bycolM [i], contains the coordinates ofγ̂i under basis
B; that is,γ̂i =

∑gk+1

j=1 colM [i][j]αj . Obviously, the matrixM has sizegk × gk+1.
Next, we perform a left-to-right reduction of matrixM , which is the same as the reduction of the

adjacency matrix used in the standard persistence algorithm [10, 19]. In particular, the only operation that

17



one can use is to add a column to another one on its right. For a columncolM [i], let its low-row indexdenote
the largest indexj such thatcolM [i][j] = 1. At the end of the reduction, each column is either empty or
has a unique low-row index; that is, no other column can have the same low-row index as this one. We set
G

(k+1) as the subset of̂G whose corresponding columns in the reduced matrixM ′ is not all zeros. The
reduction takes timeO(gk+1g

2
k). Intuitively, the consistency ofG(k+1) with eachG(i) for i ∈ [1, k] follows

from the left-to-right reduction. It guarantees that if a set of cycles inĜ are dependent, then only those
created earlier (i.e, with smaller birth-time) will be kept.

Lemma 5.2 G
(k+1) as constructed above provides a basis ofH1(Rk+1). Furthermore, if{G(1), . . . ,G(k)}

is consistent, so is{G(1), . . . ,G(k+1)}.

Proof: LetM ′ denote the reduced matrix ofM . Recall thatĜ = {γ̂1, . . . , γ̂gk
} contains the images of cycles

from G
(k) in Rk+1. SetĜi = {γ̂1, . . . , γ̂i}, and letG′

i be the set of cycles from̂Gi whose corresponding
column in the reduced matrixM ′ is non-empty (i.e, not all zeros). In other words,G′

i = Ĝi ∩G
(k+1) is the

intersection between̂Gi and the setG(k+1) constructed by our algorithm. By induction oni, it is easy to
show that for anyi ∈ [1, gk], cycles inG′

i generate the same subgroup ofH1(Rk+1) asĜi. It then follows
that, in the end, cycles inG(k+1) = G′

gk
are all independent inRk+1 and|G(k+1)| equals the rank of the

homology group generated by cycles in̂G, which isβk,k+1 = gk+1. This proves the first part of the claim.
For the second part of the claim, first note thatG

(k+1) is consistent withG(k) asĜ∩G
(k+1) = G

(k+1)

and has cardinalitygk+1. Now consider an arbitraryG(i) with i < k. Since{G(1), . . . ,G(k)} are consistent,
and cycles{γ1, . . . , γgk

} in G
(k) are sorted by their birth-times, it follows from Lemma 5.1 that the first

s = βi,k number of cyclesGs = {γ1, . . . , γs} from G
(k) are images of cycles fromG(i). Hence the

image of cycles fromG(i) in Rk+1 are exactly the cycles in̂Gs, and classes of cycles in̂Gs generate the
persistent homology groupξi,k+1

∗ (H1(Rbf (Ki)). On the other hand, as mentioned above, classes of cycles
in G′

s = Ĝs ∩G
(k+1) generate the same subgroup ofH1(Rk+1) asĜs. Since cycles inG′

s are independent,
G′

s has rankβi,k+1, implying thatG(k+1) is consistent withG(i), for anyi ∈ [1, k]. The second part of the
claim then follows.

Finally, for our algorithm to continue into the next iteration, we also need to maintain the birth-times for
each cycle inG(k+1). This is achieved by the following claim.

Claim 5.3 Let G(k+1) = {γ̂I1 , . . . γ̂Igk+1
}, whereIis are the set of indices of non-zero columns in the

reduced matrixM ′. Then the birth-time of̂γIi
equals to the birth-time ofγIi

for anyi ∈ [1, gk+1].

Proof: Recall thatG(k+1) contains the set of cycleŝγIi
where{Ii} is the set of indices of non-zero columns

from the reduced matrixM ′. Given a cycleα ∈ G
(i), let birthtime(α) denote the birth-time ofα. Assume

that one of the cycles, saŷγm ∈ G
(k+1), has a birth-time that is different from that ofγm ∈ G

(k). Set
t := birthtime(γ̂m). Sinceγ̂m = ξk(γm), we havet ≤ birthtime(γm). Since the two birth-times are
different,t must be strictly smaller than the birth-time ofγm.

Furthermore, there exists a cycleα ∈ Rt such that its imageα1 := ξt,k(α) in Rk is not homologous
to γm, while its imageα2 := ξt,k+1(α) in Rk+1 is γ̂m. On the other hand,α1 can be uniquely written as
a linear combination of a subset of cycles fromG(k), sayα1 = γJ1 + · · · + γJt . It is easy to verify that
the birth-time of eachγJi

is at mostt. Sincet < birthtime(γm), it follows that all indicesJis are strictly
smaller thanm (as cycles inG(k) are sorted by their birth-times). However, this is not possible since the
resultingm-th column will be all zero at the time when we reduce them-th column to constructG(k+1) as
γ̂m =

∑
i γ̂Ji

. Hence the cyclêγm cannot be chosen as a base cycle inG
(k+1) reaching a contradiction. It

follows thatt = birthtime(γm), or more generally,birthtime(γ̂Ii
) = birthtime(γIi

) for every indexIi

of non-zero column in the reduced matrixM ′.
Putting everything together, we conclude with the following main result.
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Theorem 5.4 Given a filtrationK1 ⊂ · · · ⊂ Kn of a simplicial complexKn with a piecewise linear
functionf : Kn → IR, we can compute all persistent first betti numbers for the induced sequence of Reeb
graphsRbf (Ki)s inO(

∑n
i=1(nvgi + g3

i )) = O(nn3
e) time, wherenv andne are the number of vertices and

edges inKn, respectively,n is the size of2-skeleton ofKn, andgi is the first betti number of the Reeb graph
Rbf (Ki).

6 Conclusions and discussions

In this paper, we present a simple and efficient algorithm to approximate the Reeb graphRbf (M) of a map
f : M → IR from point data sampled from a smooth and compact manifoldM. Given that Reeb graph is
an abstract graph with a function defined on it, we only approximate its topology together with the range
information for each loop in it. It will be interesting to seewhether the Reeb graph we compute from the
point data is also geometrically close to some specific embedding of the Reeb graphRbf (M) in the hidden
domainM. To this end, our results in Section 4.1 on mappings between cycles can be useful.

We also study how to compute the “persistence” of loops in a Reeb graph by measuring their life time
as the defining domain grows. An immediate question is to see whether the time complexity can be further
improved to match that of the standard persistence algorithm in the worst case.

Finally, it will be interesting to explore whether one can leverage the simple structure and efficient com-
putation of the Reeb graph to retrieve topological information for various spaces efficiently. For example,
given a3-manifold with a functionf defined on it, its verticalH1-homology is already encoded in the Reeb
graph and can thus be computed in near-linear time. Can we retrieve the horizontalH1-homology efficiently
by tracking the levelsets off , or by defining another function that is somewhat “orthogonal” to f?
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duality. Foundations of Computational Mathematics, 9(1):79–103, 2009.

[10] D. Cohen-Steiner, H. Edelsbrunner, and D. Morozov. Vines and vineyards by updating persistence in
linear time. InProc. 22nd Annu. Sympos. Comput. Geom., pages 119–126, 2006.

[11] K. Cole-McLaughlin, H. Edelsbrunner, J. Harer, V. Natarajan, and V. Pascucci. Loops in Reeb graphs
of 2-manifolds.Discrete Comput. Geom., 32(2):231–244, 2004.

[12] T. K. Dey. Curve and Surface Reconstruction: Algorithms with Mathematical Analysis. Cambridge U.
Press, New York, NY, USA, 2007.

[13] T. K. Dey and K. Li. Cut locus and topology from surface point data. InProc. 25th Annu. Sympos.
Comput. Geom., pages 125–134, 2009.

[14] T. K. Dey, J. Sun, and Y. Wang. Approximating cycles in a shortest basis of the first homology group
from point data.Inverse Problems, 2012. To appear.

[15] H. Doraiswamy and V. Natarajan. Efficient output-sensitive construction of Reeb graphs. InProc. 19th
Internat. Sym. Alg. and Comput., pages 556–567, 2008.

[16] H. Doraiswamy and V. Natarajan. Efficient algorithms for computing Reeb graphs.Computational
Geometry: Theory and Applications, 42:606–616, 2009.

[17] H. Edelsbrunner and J. Harer. Persistent homology — a survey. In J. E. Goodman, J. Pach, and
R. Pollack, editors,Surveys on Discrete and Computational Geometry. Twenty Years Later, pages
257–282. Amer. Math. Soc., Providence, Rhode Island, 2008.Contemporary Mathematics 453.

[18] H. Edelsbrunner, J. Harer, A. Mascarenhas, V. Pascucci, and J. Snoeyink. Time-varying Reeb graphs
for continuous space-time data.Comput. Geom., 41(3):149–166, 2008.

[19] H. Edelsbrunner, D. Letscher, and A. Zomorodian. Topological persistence and simplification.Discrete
Comput. Geom., 28:511–533, 2002.

[20] W. Harvey, R. Wenger, and Y. Wang. A randomizedO(m log m) time algorithm for computing Reeb
graph of arbitrary simplicial complexes. InProc. 26th Annu. Sympos. Compu. Geom., pages 267–276,
2010.

[21] A. Hatcher.Algebraic Topology. Cambridge U. Press, New York, 2002.

[22] J.-C. Hausmann. On the Vietoris-Rips complexes and a cohomology theory for metric spaces. In
Prospects in Topology: Proc. Conf. in Honour of William Browder, Ann. Math. Stud., 138, pages
175–188. Princeton Univ. Press, 1995.

[23] J. R. Munkres.Elements of Algebraic Topology. Westview Press, 1996.

[24] P. Niyogi, S. Smale, and S. Weinberger. Finding the homology of submanifolds with high confidence
from random samples.Discrete Comput. Geom., 39:419–441, 2008.

20



[25] V. Pascucci, G. Scorzelli, P.-T. Bremer, and A. Mascarenhas. Robust on-line computation of Reeb
graphs: simplicity and speed.ACM Trans. Graph., 26(3):58, 2007.

[26] Y. Shinagawa and T. L. Kunii. Constructing a Reeb graph automatically from cross sections.IEEE
Comput. Graph. Appl., 11(6):44–51, 1991.

[27] J. Tierny, A. Gyulassy, E. Simon, and V. Pascucci. Loop surgery for volumetric meshes: Reeb graphs
reduced to contour trees.IEEE Trans. Vis. Comput. Graph., 15(6):1177–1184, 2009.

A Proof for Lemma 4.3

Proof of Claim (i). Lemma 4.2 implies thath# induces an isomorphismh∗ : H1(R
r(P )) → H1(M). We

now prove the second part of claim (i).
First, we show the following two results: (C-1) given a cycleα from Z1(M), [α] = [h#(d(α))]; and

(C-2) given a cyclêα ∈ Z1(R
r(P )), we have that[α̂] = [d(h#(α̂))]. Note that cycles inZ1(R

r(P )) are
simplicial cycles, while cycles inZ1(M) are singular cycles.

These two results (C-1) and (C-2) imply thatd maps homologous cycles fromZ1(M) to homologous
cycles inZ1(R

r(P )). Hence it indeed induces a homomorphismd∗ : H1(M) → H1(R
r(P )). Furthermore,

these two results mean thatd∗ is the inverse of the maph∗. Sinceh∗ is an isomorphism, so isd∗. This
proves Claim (i) of the lemma.

Proof of(C-1):
We show that given a cycleα from Z1(M), [α] = [h#(d(α))]. Let γ ⊆ M be the carrier ofα. To

mapα to d(α), suppose that its carrierγ is broken intok pieces as described earlier using the Decompo-
sition method. For thei-th piece with endpointsxi andxi+1, let pi andpi+1 be their closest point inP ,
respectively; recall thatd(α) is the concatenation of all edgespipi+1 for i ∈ [1, k].

Now consider the cycleh#(d(α)) in M: its carrierγ′ is the concatenation ofh(pipi+1) ⊂ M for all
i ∈ [1, k]. By Proposition 3.3 of [14], each curveh(pipi+1) has endpointspi andpi+1, and it is contained
in the union of the two Euclidean balls of radiusr centered atpi and atpi+1. Sincepi andpi+1 are within
r Euclidean distance,h(pipi+1) is contained in the Euclidean balls of radius2r centered atpi and atpi+1.
Notice that the geodesic distance and the Euclidean distance between two pointsx, y ∈ M approximate
each other whenx andy are close enough (see e.g, Proposition 1.2 from [14]). It follows that whenr is
smaller thanρ(M)/4, h(pipi+1) is contained in both geodesic balls of radius3r centered atpi ∈ M and
pi+1 ∈ M.

Let γ[xi, xi+1] denote the subcurve ofγ from xi to xi+1. Since the length ofγ[xi, xi+1] is less thanr
by construction, the curveγ[xi, xi+1] is contained in the geodesic balls of radiusr centered atxi andxi+1.
This implies that the curveγ[xi, xi+1] is contained in thegeodesic tubular neighborhood

Tubr(πg(xi, xi+1)) := {y ∈ M | d(y, πg(xi, xi+1)) ≤ r}

whereπg(x, y) denote a minimizing geodesic between two pointsx, y ∈ M. By Proposition 3.7 of [14],
Tubr(πg(xi, xi+1)) is contractible and henceγ[xi, xi+1] is homotopy equivalent toπg(xi, xi+1).

On the other hand, due to the sampling condition, the geodesic distances betweenxi andpi, and be-
tweenxi+1 andpi+1, are both bounded byr. Combining this with the fact thath(pipi+1) lies within the
geodesic balls of radius3r centered at bothpi and pi+1, we have that any point inh(pipi+1) is within
geodesic distance4r to bothxi and toxi+1. Henceh(pipi+1) lies within the geodesic tubular neighbor-
hoodTub4r(πg(xi, xi+1)). Again by Proposition 3.7 of [14], whenr ≤ ρc(M)/4, the curveπg(xi, pi) ◦
h(pipi+1)◦πg(pi+1, xi+1) is homotopy equivalent toπg(xi, xi+1) and thus homotopy equivalent toγ[xi, xi+1].
In fact, one can find a homotopyhi that keepspi andpi+1 on the geodesicsπg(xi, pi) andπg(xi+1, pi+1)
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respectively so that two mapshi andhi+1, for i ∈ [1, k − 1], are consistent in mapping the common end-
pointsxi+1. Therefore, we can combine all suchhi’s to obtain a homotopy betweenγ′ (which is the carrier
of h#(d(α))) andγ (which is the carrier ofα). It follows that[h# ◦ d(α)] = [α].

Proof of(C-2):
We now show that given any (simplicial) cyclêα ∈ Z1(R

r(P )), we have that[α̂] = [d ◦ h#(α̂)]. First,
consider the imageγ = h(α̂) of α̂ in M; γ is the carrier of the cycleh#(α̂) ∈ Z1(M). By construction,γ is
the concatenation ofh(e)s for every edgee = pq in the simplicial cyclêα. By Proposition 3.3 in [14], each
curveh(e) is contained insideM ∩ (Br(p) ∪ Br(q)). Hence, for any pointx ∈ h(e), its geodesic distance
to p and toq is bounded by3r.

Now consider mapping the cycleh#(α̂) carried byγ back toRr(P ) using the decomposition method
described earlier. Consider the set of breaking pointsxi’s in the subcurveh(e) ⊂ γ — assume for simplicity
that the endpoints ofh(e), that isp andq, are also break points. Each break pointxi in h(e) will be mapped
to its nearest pointpi ∈ P and the geodesic distance betweenxi andpi is at mostr. Hencepi is within
3r + r = 4r geodesic distance to both endpointsp andq of the edgee ⊂ α̂. This means that bothpip and
piq are edges in the Rips complexR4r(P ). Hence the concatenation of arcspipi+1 is homotopy equivalent
to the edgee in the simplicial complexR4r(P ). Combining this homotopy equivalent map for every edge
e ∈ α̂, we have thatd(h#(α̂)) is homotopy equivalent, and thus homologous, toα̂ in R4r(P ). Finally, since
the inclusion map fromRr(P ) to R4r(P ) induces an isomorphism in the first homology groups whenr is
small, we have thatd(h#(α̂)) is homologous tôα in Rr(P ) as well. Thus[α̂] = [d(h#(α̂))].

Proving Claim (ii). Claim (ii) follows easily from the constructions ofd andh. In particular, consider a
cycleα ∈ Z1(M) andd(α) ∈ Z1(R

r(P )). (The case for̂α from Z1(R
r(P )) andh#(α̂) from Z1(M) can

be similarly argued.) Letγ ⊂ M be the carrier ofα. The Decomposition method breaksγ into k pieces
γ(xi, xi+1)s, for i ∈ [0, k]. Each pieceγ(xi, xi+1) is mapped to the edgepipi+1 wherepi is the closest
point of xi in P . SinceP is anε-sample ofM, and since the length ofγ(xi, xi+1) is at mostr − 2ε, any
point x in γ(xi, xi+1) is within r geodesic distanceto the pointpi ∈ M. Hence by the Lipschitz condition
of f , we have|f(xi) − f(pi)| ≤ r · Lipf . It follows that

[ min
i∈[0,k]

f(pi) + r · Lipf , max
i∈[0,k]

f(pi) − r · Lipf ] ⊆ range(γ) = range(α)

⊆ [ min
i∈[0,k]

f(pi) − r · Lipf , max
i∈[0,k]

f(pi) + r · Lipf ].

On the other hand, note that underZ2 coefficient,range(d(α)) ⊆ [mini∈[0,k] f(pi),maxi∈[0,k] f(pi)] (and
it can be much smaller than this interval). It then follows that range(d(α)) is oneside-(r · Lipf )-close to
range(α).

Proof of Claim (iii). Consider any homology classω ∈ H1(M). By Claim (iii) we have that the range
of d∗(ω) is oneside-(r · Lipf )-close to the range ofω: indeed, choose the thinnest cycleα of ω, we have
range(d(α)) is oneside-(r · Lipf )-close torange(α) = range(ω). Sincerange(d∗(α)) ⊆ range(d(γ)),
range(d∗(α)) is also oneside-(r · Lipf )-close torange(ω).

Now mapd∗(ω) back toH1(M), we have that the range ofh∗(d∗(ω)) is also oneside-(r · Lipf )-close to
the range ofd∗(ω) by Claim (iii). Sinceh∗(d∗(ω)) = ω, the ranges ofω andd∗(ω) are (r ·Lipf )-Hausdorff-
close.

The statement for̂ω andh∗(ω̂) can be argued similarly.
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B Existence of a set of 0-Height Basis for H1(M)

Recall thats = rank(H1(M)). We now show how to construct a basis{h1, . . . , hs} for the horizontal
subgroupH1(M) ⊂ H1(M) such thatheight(hi) = 0 for anyi ∈ [1, s].

Suppose we have already constructed a partial basisHk−1 := {h1, . . . , hk−1}, each of which has0-
height. Our goal is to find a0-height classhk that is independent of elements inHk−1. In particular, leth be
any horizontal homology class that is independent ofHk−1. By definition, we can find a representative cycle
γ =

∑r
i=1 γi of h such that eachγi is contained in a distinct level set ofM. Takeγ1: if [γ1] is independent of

Hk−1, then simply sethk = [γ1]. Otherwise, consider the cycleγ′ =
∑r

i=2 and obviously[γ′] is necessarily
independent of classes inHk−1. Now seth to beγ′ and repeat the above process. Either we terminate when
someγi which is independent of classes inHk−1, in which case we sethk = [γi] which is of height zero.
Or the process ends whenh can be represented by a cycleγ which itself is contained in a level set. In this
case, sethk = h, which is again of height0.

Perform the above procedure fors rounds. In the end,Hs gives the desired0-height basis forH1(M).
Note that by this construction, we also obtain a corresponding set of0-height base cycles forH1(M).
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