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Abstract

Many real world applications need to model a smooth surface from a noisy point sample. In order to eliminate
unnecessary undulations on the output surface, it is necessary to project the points on a nearby smooth surface
and then approximate the smooth surface with a surface reconstruction algorithm. Moving Least Square (MLS)
surfaces in the family of extremal surfaces have been shown to be useful as projection targets. However, it is
unknown if the extremal surface based projection procedure converges and if the target extremal surface is isotopic
to the original sampled surface. We prove these two facts. The success of the entire projection method depends on
the quality of the estimated normals at the sample points. We suggest an algorithm to estimate the normals from
the noisy samples which can be of independent interest for other applications. We also present some experimental
results.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Line and Curve Genera-
tion

1. Introduction

The importance of computing a surface from a set of unor-
ganized points cannot be over emphasized in a number of
applications of computer graphics, vision, geometric model-
ing and others. The point sets, often derived with a scanning
process, are likely to be “noisy". A reconstructed surface in-
terpolating these or a subset of these points may be unneces-
sarily undulated even though computed with a provable al-
gorithm [DG04] or an effective practical algorithm [KSO04]
(Figure 5). A solution to this problem is to define a smooth
surface based on the given point set and then generate points
on that smooth surface for reconstruction. This is a dominant
approach in computer graphics and vision.

1.1. Background and results

Different types of smooth surfaces have been proposed for
reconstruction [ABCO

�
01, JCCCM

�
01, OBA

�
03]. Among

them the Moving Least Squares (MLS) surfaces, originally
proposed by Levin [Lev98] and adopted by Alexa et al. for
reconstruction [ABCO

�
01] have been widely used for mod-

eling and rendering [AA03,MVF03,PKKG03]. This surface

is the basis for the popular open source software PointShop
3D [ZPKG02]. The effectiveness of these MLS surfaces and
their variants on real world scanned data has made them pop-
ular. These surfaces lend to an elegant projection method by
which points can be projected onto the surface.

Recently two significant progresses were made to broaden
the understanding of the MLS surfaces. First, Amenta and
Kil [AK04] pointed out that the MLS surfaces belong to
a special class of surfaces called extremal surfaces. They
showed that the points on these extremal surfaces can also
be computed by an elegant projection method though the
convergence of the method remained unresolved. Second,
Kolluri [Kol05] showed an approach to prove geometric and
topological guarantees for reconstruction with a specific type
of implicit surface. This implicit surface does not belong to
the class of MLS surfaces we are considering. We use the
insights from these two sources to prove that the projection
procedure of Amenta and Kil [AK04] indeed converges to
an extremal surface that is isotopic and geometrically close
to the surface from which the input points are sampled.

The projection procedure requires a normal field which
can be derived from the estimated normals at the input
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points. We derive a method from an earlier work [DG04] to
estimate the normals with certain guarantees and use them
for projecting points onto the extremal surface.

1.2. Extremal surface

Levin [Lev98] pioneered the MLS surface which is defined
as the stationary set of a map f , i.e., the points x with
f
�
x ��� x. For a given point set P ��� 3 , the map f is de-

fined via an energy function e as follows. Given a direction
m �	� 3 and a real t �
� , e

�
m � t � is the sum of the weighted

distances of all points in P from a plane with normal m and
passing through the point y � x � tm. The nearest point to
x where e is minimized over all directions and all reals is
f
�
x � . Amenta and Kil [AK04] observed that the minimiza-

tion procedure can be decomposed into two steps by first
estimating the optimum direction at x and then carrying out
a second optimization along that direction to reach the min-
imum. This interpretation allows the first optimization step
to be replaced by other pre-computed normal vector field n
over � 3 . Then, the MLS surface becomes precisely the set
of points x where the normal vector n

�
x � is orthogonal to

the gradient of the energy function e. These type of surfaces
are called extremal. Below we review this construction in
details.

Let vp denote the normal vector assigned to a point in
P. Define a normal vector field as the normalized weighted
average of the normals at the sample points, i.e.,

n
�
x �� ∑p � P wp

�
x � vp�

∑p � P wp
�
x � vp

�
where wp is a Gaussian with width hn � 0, i.e., wp

�
x ���

e � � x � p
� 2

h2
n . The line passing through x in the direction of n

�
x �

is denoted � x � n � x � .
Let πp

�
x � u � be the projection of a vector x � p on the

vector u, i.e., πp
�
x � u ��� �

x � p � T u. In addition, let πp
�
x ���

πp
�
x � n � x ��� .

Define an energy function � : � 3 � � 3 � � where for any
point y �	� 3 and a normal m ��� 3� � y � m � � ∑

p � P
π2

p
�
y � m � θ � p � y �"!

The function θ is a weighting function. Similar to the normal
field construction, the weighting function θ

�
p � y � is taken as

a Gaussian: θ
�
p � y �#� e � � y � p

� 2
h2

e where he � 0. For a point x
let xm be the extremum of � � y � n � x ��� over the set y ��� x � n � x � ,
i.e.,

n
�
x � T $ ∂ � � y � n � x ���

∂y

%%
xm & � 0 ! (1.1)

The point x is a stationary point if x � xm. One can observe
that the set of stationary points is actually the 0-level set of

the implicit function

g
�
x �� n

�
x � T $ ∂ � � y � n � x ���

∂y

%%
x & !

The set g � 1 � 0 � is an extremal surface since the normal vec-
tors of n are orthogonal to the gradient field of the energy
function � precisely at the points of g � 1 � 0 � . Amenta and
Kil [AK04] proposed the following procedure to project a
point x onto the surface g � 1 � 0 � . Starting from x search for
the nearest extremum xm of � over the set y �'� x � n � x � . Once
xm is found, take it as a new x and search for its xm until a
stationary point is reached. The question of the convergence
of this iterative projection remained unresolved. For recon-
struction of Σ, the points of P are projected onto g � 1 � 0 � . So,
it is important to show that the subset of g � 1 � 0 � lying close
to Σ is topologically equivalent to Σ. If the assigned normal
vectors to the sample points approximate the true normals of
Σ closely we can show the following.

(i) The projection procedure indeed converges to a point of
g � 1 � 0 � when the point set P is sufficiently dense and the
initial point x is chosen sufficiently close to Σ.

(ii) The subset W of g � 1 � 0 � onto which points are projected
is indeed homeomorphic to Σ and even a stronger state-
ment holds. The surfaces W and Σ are isotopic, i.e., one
can be continuously deformed to the other always main-
taining a homeomorphism between them.

As indicated above, the success of the entire projection
procedure depends on the quality of the assigned normals.
We use a Delaunay algorithm to estimate the normals at the
sample points.

It is appropriate to mention that the above guarantees are
proved assuming extremely dense sampling. Also, the do-
main of convergence turns out to be extremely small. We
believe that this is only an artifact of our proofs. Perhaps a
more careful and most likely more complicated analysis can
improve these relevant numbers.

2. Preliminaries

2.1. Surface and thickening

Let Σ �(� 3 be a smooth, compact surface without boundary.
For simplicity assume that Σ has a single connected com-
ponent. Let ΩI and ΩO denote the bounded and unbounded
components of � 3 ) Σ respectively. For a point z � Σ, let ñz
denote the oriented normal of Σ at z where ñz points locally
toward the unbounded component ΩO.

For a point x �*� 3 and a set X �+� 3 , let d
�
x � X � denote the

distance of x to X , i.e., d
�
x � X �,� infy � X

�
x � y

�
. The medial

axis M of Σ is the closure of the set Y �-� 3 where for each
y � Y the distance d

�
y � Σ � is realized by two or more points.

In other words, M is the locus of the centers of the maximal
balls whose interiors are empty of any point from Σ.

Let ν : � 3 � Σ be the map where ν
�
x � is the closest point
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of x �*� 3 in Σ. It is known that ν is well defined if its domain
avoids M which will be the case for our use of ν. Denote x̃ �
ν
�
x � . Let φ

�
x � denote the signed distance of a point x to Σ,

i.e., φ
�
x �,� �

x � x̃ � T ñx̃. For a real δ � 0 and an integer k � 0,
define a family of offset surfaces Σ . kδ and Σ � kδ where

Σ . kδ �0/ x �1� 3 2 φ � x �#� kδ 3
Σ � kδ �0/ x �	� 3 2 φ � x �#�4� kδ 35!

Let kδΣ be the region between Σ � kδ and Σ . kδ, i.e.,

kδΣ �0/ x �	� 3 2 � kδ 6 φ
�
x ��6 kδ 37!

We use k � 1 � 2 throughout the paper, see Figure 1.

U
δΣ

Σ2δ

Σ−2δ

Σ+2δ
Σ+δ

Σ−δ
Σ

Figure 1: The set δΣ and 2δΣ.

In what follows we denote the 2-norm of a vector v with�
v
�

and the spectral norm of a matrix M with
�
M
�
, which is

the square root of the maximum eigenvalue of MT M. A ball
with the center x and radius r is denoted as B

�
x � r � . Denote

S
�
x � r � to be the boundary of B

�
x � r � .

2.2. Sampling

The local feature size at a point x � Σ is defined as d
�
x � M � .

Sampling density based on the local feature size called
ε-sampling has been used for proving the correctness of
several surface reconstruction algorithms [AB99, ACDL02,
BC00]. For this work we assume uniform sampling density
as was used by Kolluri [Kol05] for smooth surface recon-
struction. Assume that the smallest local feature size of Σ is
1. We say P �8� 3 is a uniform

�
ε � α �9� sample of the surface

Σ if the following sampling conditions hold.

(i) The distance from each point x � Σ to its closest sample
is less than ε.

(ii) The distance from each sample p � P to its closest point
p̃ on Σ is less than ε2.

(iii) The number of the sample points inside any ball of radius
ε is less than a small number α.

(iv) Each point p is equipped with a normal vp where the an-
gle between vp and the normal ñp̃ at its closest point p̃ on
Σ is less than ε.

Let : x
�
w � r � be the region between S

�
x � w � and S

�
x � w � r � .

One can decompose the entire space outside B
�
x � r � using: x

�
wi � r � where wi � ir for i � 1 � 2 !;!;!

If P is an
�
ε � α � -sample, Kolluri [Kol05] proved the fol-

lowing two lemmas.

Lemma 1 For a point z � Σ, let < . and < � be two planes

perpendicular to ñz and at a distance of � r . ε2 � 2
2 � ε2 from

z, then any sample point inside B
�
z � r � should be inside the

region bounded by the planes < . and < � .

Lemma 2 The number of sample points inside : x
�
w � r � is

less than
C1
2ε2

�
w2 � wr � r2 �

where C1 � 288 = 3πα.

2.3. Normal lemmas

We derive several properties of the normal field which be-
come useful for the convergence and isotopy proofs. The re-
sults are important by their own rights. A smooth normal
vector field that interpolates a set of given normal vectors
is often used in graphics literature [GM97]. The guarantees
proved here may also be useful in these contexts.

Our sampling condition implies that two nearby sample
points have similar assigned normal vectors.

Lemma 3 Let pi and p j be any two sample points inside
B
�
x � r � for a point x � 2δΣ. If r � ε2 � 2δ > 1

3 , then,?
vpi � vp j 6 2

� r � ε2 � 2δ
1 � 3

�
r � ε2 � 2δ � � ε �

Proof d
�
x̃ � p̃i ��6 d

�
x̃ � x �7� d

�
x � pi �7� d

�
pi � p̃i ��6 2δ � r � ε2.

So,
?

ñx̃ � ñp̃i 6 r . ε2 . 2δ
1 � 3 � r . ε2 . 2δ � by a result of Amenta and

Bern [AB99]. By the sampling condition (iv),
?

ñx̃ � vpi 6
r . ε2 . 2δ

1 � 3 � r . ε2 . 2δ � � ε. Similarly, we could have a same upper
bound for

?
ñx̃ � vp j .

Let A �A@ vp B p � P be the row vector of the equipped nor-
mals of all sample points in P and w

�
x �,�C@wp

�
x � B Tp � P be the

column vector of weights of all sample points for x. Then we
can write

n
�
x �#� Aw

�
x ��

Aw
�
x � � ! (2.2)

Let J
�
n
�
x ��� be the 3 � 3 Jacobian matrix of the vector field

n at x, i.e., J
�
n
�
x ���D�E/ ∂

∂xi
n j
�
x �F3 , and w G � x � be the n � 3

matrix where w G � x �#�H@ d
dx wp

�
x � B Tp � P. Then

J
�
n
�
x ����� $ 1 � �

Aw
�
x ��� � Aw

�
x ��� T�

Aw
�
x ��� T � Aw

�
x ��� & Aw G � x ��

Aw
�
x � � (2.3)

Lemma 4 For any point x �1� 3 , and any point p � P

(i) nT � x � J � n � x ����� 0,
(ii) nT � x � J � n � x ��� � x � p ��� 0.

Proof Follows from equations 2.2 and 2.3.
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The proofs of the next three lemmas are placed in the ap-
pendix for space limitation. The next lemma says that n

�
x �

and the normal to Σ at the closest point of x are very similar
when x is close to Σ.

Lemma 5 If hn 6 0 ! 01, 10ε 6 hn 6 1000ε and α 6 10, then
for any point x � 2δΣ with δ � 0 ! 08ε,?

n
�
x �"� ñx̃ 6 C2 � 216C1e � 36 h2

n

ε2 !
where C2 � 6hn

. ε2 . 2δ
1 � 3 � 6hn

. ε2 . 2δ � � ε.

Notice the requirement of hn in terms of ε. It cannot be too
big or too small compared to ε.

Lemma 6 If hn 6 0 ! 01, 10ε 6 hn 6 1000ε and α 6 10, then
for any point x � 2δΣ with δ � 0 ! 08ε,�

J
�
n
�
x ��� � 6 24C3

hn

where

C3 � $ 1 � 108C1
h2

n
ε2 e � 36 &$ � 1 � 4C2

2 � 1
4 � 108C1

h2
n

ε2 e � 36 & !
Intuitively,

�
J
�
n
�
x � � measures the rate of variation of n

�
x � .

Because of the Gaussian weights, bigger hn makes the nor-
mal vector field flatter. This is reflected in Lemma 6 which
says that the order of

�
J
�
n
�
x ��� � is h � 1

n .

The following lemma accounts for the variation of the nor-
mal field along � x � n � x � , the line through x along n

�
x � .

Lemma 7 If 0 ! 001 6 hn 6 0 ! 01, 10ε 6 hn 6 100ε and α 6
10, then for any two points x � y � δΣ and y �I� x � n � x � where�

x � y
� 6 2δ and δ � 0 ! 08ε, we have?

n
�
x �9� n � y �J6 75

�
x � y

�= hn
!

Observe that the variation of the normal vector field along
the normal direction of a point inside 2δΣ is of the order of

h � 1
2

n instead of h � 1
n , which means the normal vector field is

flatter along the normal direction.

3. Convergence

We prove the convergence of the projection procedure by
showing that each time we get to a new point x, the absolute
value 2 g � x � 2 is decreased by a constant factor.

3.1. Observations

First, we make some observations whose proofs are given
in the appendix. Figure 2 aids understanding the statements
of the observations. The point x is on Σ . δ; < � and < . are
the planes with normal ñx̃ and

�
r � δ � 2 � ε2 distance away

from x̃. All the sample points inside B
�
x � r � are also inside

B
�
x̃ � r � δ � and between the planes < � and < . from Lemma

1.

Σ+δ

Σ−δ

Σ+2  δ

Σ−2  δ

pi

pj
x~

δ+r

Σ

x

m~
xn~

P+

P−

r

Figure 2: Observation

Observation 1 For any point x � δΣ and any sample points

pi, p j inside B
�
x � r � if

?
m � ñx̃ > π

2 � asin � r . δ � 2 . ε2

r . δ for a unit
vector m, then2mT � p j � pi � 2 6 2

���
r � δ � 2 � ε2 � �

r � δ � ? m � ñx̃ �"!
Observation 2 For any point x � δΣ and any sample point

p � B
�
x � r � , if

?
m � ñx̃ > π

2 � asin δ . � r . δ � 2 . ε2

r . δ for a unit vector
m, then2 πp

�
x � m � 2 6 δ � �

r � δ � 2 � ε2 � d
�
p �K� x̃ � ñx̃ � ? m � ñx̃ !

A similar upper bound for 2 πp
�
x � m � 2 when x � 2δΣ can be

obtained by simply replacing δ with 2δ.

Observation 3 For any p � P inside B
�
x � r � if

?
m � ñx̃ >

atan δ � � r . δ � 2 � ε2

r . δ for a unit vector m, then

πp
�
x � m �ML E when x � �

2δΣ � δΣ �7N ΩO6 E when x � �
2δΣ � δΣ �7N ΩI

where

E � �
δ � �

r � δ � 2 � ε2 � � 1 � ?
m � ñx̃ �O� d

�
p �K� x̃ � ñx̃ � ? m � ñx̃ !

The proof for convergence as well as the proof for the
isotopy in the next section use the following setting: α � 5
and ε � 10 � 5, hn � 100ε, he � 1 ! 6ε and δ � 0 ! 08ε. Notice
that these values satisfy the conditions of the normal lemmas
in the previous section. The proofs can also accommodate
other values as long as the conditions for the normal lemmas
are satisfied with sufficiently small ε.

With the chosen values, we have
?

n
�
x �"� ñx̃ > 6 ! 5 � 10 � 3

for x � 2δΣ from Lemma 5. Hence Observation 2 and Ob-
servation 3 give the following results:

(i) 2 πp
�
x � 2 > 0 ! 135he for any point x � 2δΣ and any sample

point p � B
�
x � 5he � .

(ii) 2 πp
�
x � 2 > 0 ! 085he for any point x � δΣ and any sample

point p � B
�
x � 5he � .

(iii) πp
�
x � � 0 for any point x � �

2δΣ � δΣ �PN ΩO and any
sample point p � B

�
x � 5he � .

(iv) πp
�
x � � 0 ! 045he for any point x � �

2δΣ � δΣ �7N ΩO and
any sample point p � B

�
x̃ � ε � .
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3.2. Function Q
To prove the convergence of the projection procedure, we
define a function Q whereQ � y � m �#� mT $ ∂ � � y � m �

∂y &
for any point y �'� 3 and a vector m �'� 3 . If xm is a local
extremum of � � y � n � x ��� over the set y �I� x � n � x � , from equa-
tion 1.1 we have Q � xm � n � x ���#� 0 ! (3.4)

In addition, Q � x � n � x ���� g
�
x �"! (3.5)

We write Q � y � m �#� ∑p � P Q p
�
y � m � whereQ p

�
y � m �,� e � � y � p

� 2
h2

e πp
�
y � m � $ 1 � π2

p
�
y � m �

h2
e & ! (3.6)

Here we drop a factor of 2 since it does not affect the sign
of Q � y � m � and the direction of its partial derivatives. LetR

y Q p
�
y � m � and R

m Q p
�
y � m � be the partial derivatives ofQ p

�
y � m � with respect to y and m respectively. One can verify

R
y Q p

�
y � m �,� e � � y � p

� 2
h2

e S $ 1 � 3π2
p
�
y � m �

h2
e & m� 2 $ π3

p
�
y � m �

h4
e

� πp
�
y � m �

h2
e & � y � p �UT (3.7)

andR
m Q p

�
y � m �,� e � � y � p

� 2
h2

e
$ 1 � 3π2

p
�
y � m �

h2
e & � y � p �"! (3.8)

The proof for convergence uses the observation that the
sample points outside B

�
y � 5he � have little effect on Q � y � m �

since the weight of a sample point outside B
�
y � 5he � is less

than e � 25 V 1 ! 38 � 10 � 11, a very small value. This observa-
tion leads us to decompose Q � y � m � asQ � y � m �,� ∑

p � B � y � 5he � Q p
�
y � m �7� ∑

p W� B � y � 5he � Q p
�
y � m �

We use this decomposition in the proofs to follow.

3.3. Monotonicity of Q
Let x be any point in δΣ. Let a and b be the closest points to x̃
where � x̃ � ñx̃ intersects Σ . δ and Σ � δ respectively. Let < . and< � be the planes with the normal n

�
x � and passing through

a and b respectively, see Figure 3. Further, let � x � n � x � intersect< . and < � at x . and x � respectively. One can verify that�
y � x̃

� 6 δ for any point y on the segment from x � to x . ,
which means y � δΣ, and

�
x . � x � � 6 2δ.

The implication of the next two lemmas is that the func-
tion Q is monotonic and crosses zero only once along � x � n � x �
within a small neighborhood of Σ. The proofs of these lem-
mas appear in the appendix.

x~

x+

x−

Σ+2δ

Σ−2δ

Σ+δ

Σ−δ

P+

P−

a

b

x Σ

Figure 3: The planes < . and < � and the points x . and x � .

Lemma 8 For any point y on the segment from x � � 2δn
�
x �

to x . � 2δn
�
x � ,

n
�
x � T R

y Q � y � n � x ��� � 0

Lemma 9 Q � x . � n � x �X� � 0 and Q � x � � n � x �X�J> 0.

Lemma 8 and 9 give the following result which says that
the point xm generated (iteratively) in the projection proce-
dure remain within a small thickening of Σ.

Lemma 10 For a point x � δΣ, if xm is its nearest local ex-
tremum of � � y � n � x ��� over the set y �I� x � n � x � , then xm � δΣ
and

�
x � xm

� 6 2δ.

Proof We know from Lemma 8 that Q � y � n � x ��� is monotonic
along the segment from x � � 2δn

�
x � to x . � 2δn

�
x � . By

Lemma 9, there is a unique 0-crossing point on the segment
from x � to x . , which actually is a local minimum point
of � � y � n � x ��� over the set y �(� x � n � x � , see Figure 3. The 0-
crossing point is the nearest local extremum of � � y � n � x �X�
over the set y �
� x � n � x � to x since

�
x . � x � � > 2δ. We know

any point on the segment from x � to x . is inside δΣ, so is
xm. We have

�
x � xm

� 6 2δ since x is also on the segment
from x � to x . .

Now we have all ingredients to prove the convergence of
the projection procedure.

3.4. Convergence theorem

Theorem 1 For a point x � δΣ and g
�
x �*Y� 0, if xm is its

nearest local extremum of � � y � n � x ��� over the set y �
� x � n � x � ,
then 2 g � xm � 22 g � x � 2 > 1

2
!

Proof Due to equations 3.4 and 3.5 it is sufficient to prove2 Q � xm � n � xm ���O�ZQ � xm � n � x ��� 22 Q � x � n � x ���O�ZQ � xm � n � x ��� 2 > 1
2
!

Let u � xm � x[
xm � x

[ , which is either n
�
x � or � n

�
x � since xm is

on � x � n � x � . Let t � �
0 � � xm � x

� � and v
�
θ � be a unit vector be-

tween n
�
x � and n

�
xm � forming an angle θ with n

�
x � . we have
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dv
�
θ ��� v \ � θ � dθ, where v \ � θ � is a unit vector perpendicu-

lar to v
�
θ � . Based on the above notations, equation 3.7 gives

Q p
�
xm � n � x �X�O�+Q p

�
x � n � x ���#�] [

xm � x
[

0

� R
y Q p

�
x � tu � n � x ����� T udt �^ ] [

xm � x
[

0
e � � x _ tu � p

� 2
h2

e
$ 1 � 5

π2
p
�
x � tu � n � x ���

h2
e� 2

π4
p
�
x � tu � n � x �X�

h4
e & dt !

(3.9)

If u � n
�
x � , we have the positive sign. Otherwise, we have

the negative sign. In addition, equation 3.8 givesQ p
�
xm � n � xm ���O�ZQ p

�
xm � n � x ���#�]+` n � x �a� n � xm �

0

� R
m Q p

�
xm � v � θ ���X� T v \ � θ � dθ �] ` n � x �a� n � xm �

0
e � � xm � p

� 2
h2

e
$ 1 � 3π3

p
�
xm � v � θ ���
h2

e &�
xm � p � T v \ � θ � dθ !

(3.10)

Also,
�
xm � x

� 6 2δ and the segment from x to xm is inside
δΣ from Lemma 10. Hence

?
n
�
x �"� n � x � tu �b> 75 tc

hn
from

Lemma 7. In particular,?
n
�
x �9� n � xm ��> 75

�
xm � x

�= hn
(3.11)

which is less than 3 ! 80 � 10 � 3.
First consider any sample points p outside B

�
xm � 5he � . Since�

xm � p
� � 2δ � 4he, the absolute value of the integral in

equation 3.9 reaches maximum when
�
x � tu � p

�
reaches

its minimum
�
xm � p

� � 2δ and 2 πp
�
x � tu � n � x ��� 2 reaches

its maximum
�
xm � p

� � 2δ. Hence

2 Q p
�
xm � n � x ���O�ZQ p

�
x � n � x �X� 2 6 e �ed � xm � p

� � 2δ f 2
h2

e$ 1 � 5
�F�

xm � p
� � 2δ � 2

h2
e

� 2
�F�

xm � p
� � 2δ � 4

h4
e

� � xm � x
�

which is a decreasing function of
�
xm � p

�
when

�
xm �

p
� � 5he. Decompose the space outside B

�
xm � 5he � using� : xm

�
wi � 5he �X��gi h 1 with wi � 5ihe. If p ��: xm

�
wi � 5he � , then2 Q p

�
xm � n � x ���O�ZQ p

�
x � n � x �X� 26 e � d wi � 2δ f 2

h2
e

$ 1 � 5
�
wi � 2δ � 2

h2
e

� 2
�
wi � 2δ � 4

h4
e

� � xm � x
�

>From Lemma 2, the number of the sample points is

bounded in each : xm

�
wi � 5he � . Hence we have2 ∑

p W� B � xm � 5he � � Q p
�
xm � n � x ���O�ZQ p

�
x � n � x ���X� 2

6 C1
2ε2

g∑
i h 1

�
w2

i � 5wihe � 25h2
e � e � d wi � 2δ f 2

h2
ei

1 � 5
�
wi � 2δ � 2

h2
e

� 2
�
wi � 2δ � 4

h4
e j �

xm � x
�

6 C1
ε2
�
w2

1 � 5w1he � 25h2
e � e � d w1 � 2δ f 2

h2
ei

1 � 5
�
w1 � 2δ � 2

h2
e

� 2
�
w1 � 2δ � 4

h4
e j �

xm � x
�

6 75C1
h2

e

ε2 e � d 5he � 2δ f 2
h2

e
$ 1 � 5

�
5he � 2δ � 2

h2
e� 2

�
5he � 2δ � 4

h4
e & � xm � x

�

(3.12)

which is less than 0 ! 07
�
xm � x

�
.

Similarly, the absolute value of the integral in equation 3.10
reaches maximum when 2 πp

�
xm � v � θ ��� 2 � �

xm � p
�

since2 πp
�
xm � v � θ ��� 2 6 �

xm � p
�

and
�
xm � p

� L 5he. We have2 Q p
�
xm � n � xm �X�O�+Q p

�
xm � n � x �X� 2 6 e � � xm � p

� 2
h2

e$ 3 �F� xm � p
� � 2

h2
e

� 1 & � xm � p
� ?

n
�
x �"� n � xm �

which is also a decreasing function of
�
xm � p

�
when

�
xm �

p
� � 5he. Hence2 ∑

p W� B � xm � 5he � � Q p
�
xm � n � xm �X�O�+Q p

�
xm � n � x �X��� 2

6 C1

2ε2
g∑

i h 1

�
w2

i � 5wihe � 25h2
e � e � w2

i
h2

e
$ 3 w3

i
h2

e
� wi & ? n

�
x �"� n � xm �

6 27750C1e � 25 h3
e

ε2
75
�
xm � x

�= hn
(3.13)

which is less than 3 ! 0 � 10 � 4 � xm � x
�
.

Second consider a sample point p inside B
�
xm � 5he � . We have2 πp

�
x � tu � n � x ��� 2 6 2 πp

�
xm � n � x ��� 2 � �

xm � x
�6 2 πp

�
xm � 2 � �

xm � p
� ?

n
�
xm �"� n � x �7� �

xm � x
� (3.14)

which is less than 0 ! 25he. Let t � t0 maximizes
�
x � tu � p

�
.

Equation 3.9 gives2 Q p
�
xm � n � x �X�O�+Q p

�
x � n � x ��� 2 � 0 ! 5 � e � � x _ t0u � p

� 2
h2

e
�
xm � x

� !
(3.15)

Furthermore, Q p
�
xm � n � x ���#�(Q p

�
x � n � x ��� has the same sign

for all the sample points inside B
�
xm � 5he � .

Equation 3.10, 3.11 and the fact 2 πp
�
xm � v � θ ��� 2 6 2 πp

�
xm � 2 �
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xm � p

� ?
n
�
xm �"� n � x ��> 0 ! 15he give2 Q p
�
xm � n � xm ���O�ZQ p

�
xm � n � x ��� 2> e � � xm � p

� 2
h2

e
�
xm � p

� 75
�
xm � x

�= hn
! (3.16)

Hence,2 Q p
�
xm � n � xm ���O�ZQ p

�
xm � n � x ��� 22 Q p

�
x � n � x ���O�ZQ p

�
xm � n � x ��� 2 > 150

e � � xm � p
� 2

h2
e

e � � x _ t0u � p
� 2

h2
e

xm � p= hn
!

Also, since the points x � t0u and xm are on � x � n � x � we have�
x � t0u � p

� 2 � �
xm � p

� 2 6 π2
p
�
x � t0u � n � x ���

which is less than 0 ! 0625h2
e from inequality 3.14. Hence2 Q p

�
xm � n � xm �X�k��Q p

�
xm � n � x ��� 2 > 1

2
2 Q p

�
x � n � x �X�k��Q p

�
xm � n � x ��� 2
(3.17)

In particular, there exists a sample point p0 inside B
�
x̃m � ε �

based on the sampling condition (i) We have
�
xm � p0

� >
ε � δ and

�
x � t0u � p0

� > ε � 3δ. Hence 3.15 and 3.16 give2 Q p0

�
xm � n � x �X�O�+Q p0

�
x � n � x ��� 2 � 0 ! 27

�
xm � x

�
(3.18)

2 Q p0

�
xm � n � xm ���O�ZQ p0

�
xm � n � x �X� 2 > 0 ! 017

�
xm � x

� ! (3.19)

By triangle inequality, inequalities 3.12 and 3.18 give2 ∑
p � p0 l � B � xm � 5he �m� c � Q p

�
xm � n � x ���k�	Q p

�
x � n � x ���X� 2 � 0 ! 2 � xm � x

� !
In addition ∑p � p0 l � B � xm � 5he �n� c � Q p

�
xm � n � x �X�o�pQ p

�
x � n � x �����

has the same sign as Q p0

�
xm � n � x �X�O�+Q p0

�
x � n � x ��� . Similarly

from inequalities 3.13 and 3.19 we have2 ∑
p � p0 l � B � xm � 5he �n� c � Q p

�
xm � n � xm �X�O�+Q p

�
xm � n � x �X��� 2> 0 ! 02

�
xm � x

� !
Hence,2 ∑

p � p0 l � B � xm � 5he �m� c � Q p
�
xm � n � xm ���O�ZQ p

�
xm � n � x ����� 2

> 1
10

2 ∑
p � p0 l � B � xm � 5he �m� c � Q p

�
xm � n � x ���O�ZQ p

�
x � n � x ���X� 2 !

(3.20)

The theorem follows from the inequalities 3.17, 3.20 and the
fact that Q p

�
xm � n � x ���q�IQ p

�
x � n � x ��� has the same sign for all

sample points inside B
�
xm � 5he � .

4. Isotopy

We have seen that the projection procedure takes any point
within δΣ to a point on the extremal surface in δΣ. Let W �
g � 1 � 0 �kr δΣ, the subset of g � 1 � 0 � inside δΣ. Lemma 13
shows that R g cannot vanish in δΣ and hence 0 is a regu-
lar value. So, by implicit function theorem W is a compact,

smooth surface. Recall that ν : � 3 � Σ takes a point to its
closest point on Σ. Let ν 2W be the restriction of ν to W . We
prove that ν 2W is a homeomorphism. Since W is included in
a topological thickening δΣ of Σ and W separates the sides
of δΣ, we also have W and Σ isotopic in � 3 due to a result of
Chazal and Cohen-Steiner [CCS04]. This means that there
is a continuous map F : � 3 � @ 0 � 1 B � � 3 so that F

�Xs � 0 � is
the identity of � 3 , F

�
W � 1 �#� Σ and for each t �8@ 0 � 1 B F

�Xs � t �
is a homeomorphism. So, to prove isotopy we only need to
prove that W and Σ are homeomorphic.

Theorem 2 ν 2W is a homeomorphism.

Proof The function ν 2W is continuous since ν is. Since W
is compact, it is sufficient to show that ν 2W is surjective
and injective which are the statements of Lemma 12 and
Lemma 14 respectively.

4.1. Function g and its gradient

The implicit function g
�
x � can be written as

g
�
x �� ∑

p � P
gp
�
x �

where

gp
�
x �� e � � x � p

� 2
h2

e πp
�
x � $ 1 � π2

p
�
x �

h2
e & ! (4.21)

The gradient of the implicit function g
�
x �R g

�
x �#� ∑

p � P

R gp
�
x �

where R gp
�
x �#� e � � x � p

� 2
h2

e S � 1 � 3π2
p
�
x �

h2
e

� n � x �� 2
� π3

p
�
x �

h4
e

� πp
�
x �

h2
e

� � x � p �� �
1 � 3π2

p
�
x �

h2
e

� J � n � x ��� � x � p �tTu!
(4.22)

Here we drop a factor of 2 since it does not affect the sign of
g
�
x � and the direction of R g

�
x � .

Similar to the function Q in the convergence proof, we
decompose the function g into two parts. The sample points
outside B

�
x � 5he � have much smaller contribution to g and

its gradient R g at x than that of the sample points inside
B
�
x � 5he � . Let

g
�
x �� ∑

p � B � x � 5he � gp
�
x �7� ∑

p W� B � x � 5he � gp
�
x �

R g
�
x �#� ∑

p � B � x � 5he � R gp
�
x �7� ∑

p W� B � x � 5he � R gp
�
x �9!
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4.2. Surjectivity of ν 2W
To prove that ν 2W is surjective we use the following lemma
which helps us to argue that a normal line � z � ñz for any z � Σ
always intersects W .

Lemma 11

g
�
x � � 0 if x � �

2δΣ � δΣ �7N ΩO> 0 if x � �
2δΣ � δΣ �7N ΩI

Proof We prove the first half of the lemma, the second half
can be proved similarly. Let x � �

2δΣ � δΣ �vN ΩO . First con-
sider any sample point p outside B

�
x � 5he � . Equation 4.21

gives 2 gp
�
x � 2 � e � � x � p

� 2
h2

e
%% πp

�
x � $ 1 � π2

p
�
x �

h2
e & %% !

Since 2 πp
�
x � 2 6 �

x � p
�

and
�
x � p

� L 5he, one can verify

from the graph of the function
%% πp

�
x � $ 1 � π2

p � x �
h2

e & %% in terms of
πp
�
x � that it reaches the maximum when 2 πp

�
x � 2 � �

x � p
�
.

It follows that2 gp
�
x � 2 6 e � � x � p

� 2
h2

e
� � x � p

� 3

h2
e

� �
x � p

� �
which is a decreasing function of

�
x � p

�
when

�
x � p

� L
5he. We decompose the entire space outside B

�
x � 5he � as we

did in the convergence proof. If p �': x
�
wi � 5he � , then2 gp

�
x � 2 6 e � w2

i
h2

e
� w3

i

h2
e
� wi �"!

Due to Lemma 2, we have an upper bound on the number of
the sample points in each : x

�
wi � 5he � . Hence we obtain2 ∑

p W� B � x � 5he � gp
�
x � 2 6 ∑

p W� B � x � 5he � 2 gp
�
x � 2

> C1

2ε2
g∑

i h 1

�
w2

i � 5wihe � 25h2
e � e � w2

i
h2

e
� w3

i
h2

e
� wi �

> C1
ε2
�
w2

1 � 5w1he � 25h2
e � e � w2

1
h2

e
� w3

1
h2

e
� w1 �> 9000C1e � 25 h3

e

ε2

which is less than 2 ! 6 � 10 � 3he.
Now consider a sample point p � B

�
x � 5he � . We have 0 >

πp
�
x �w> 0 ! 135he and hence gp

�
x � � 0 from equation 4.21.

In particular, there exists a sample point p0 � B
�
x̃ � ε � by the

sampling condition (i). Since
�
x � p

� 6 ε � 2δ and πp0

�
x � �

0 ! 045he we have

gp0

�
x � � e � d ε _ 2δ f 2

h2
e πp0

�
x � $ 1 � π2

p0

�
x �

h2
e &

which is greater than 0 ! 025he .

Therefore, for any point x � �
2δΣ � δΣ �7N ΩO

g
�
x � � ∑

p � B � x � 5he � gp
�
x �O� 2 ∑

p W� B � x � 5he � gp
�
x � 2� gp0

�
x �O� 2 ∑

p W� B � x � 5he � gp
�
x � 2 � 0 !

Lemma 12 ν 2W is surjective.

Proof Let z be any point in Σ. The normal line � z � ñ � z � inter-
sects g � 1 � 0 � within δΣ, thanks to Lemma 11. By definition
of W , it intersects W . This means ν 2W maps a point of W
to z or another point y � Σ Nx� z � ñz . We argue that y Y� z does
not exist. For if it does, the distance

�
y � z

�
has to be more

than the distance of z to the medial axis, which is at least
1. However, since both z and y are in δΣ,

�
y � z

� 6 2δ > 1.
Therefore, for each point z � Σ, there is a point in W which
is mapped by ν 2W to z.

4.3. Injectivity of ν 2W
The following lemma states that the gradient of g and the
normals to the surface Σ cannot be too far apart (proof ap-
pears in the appendix). This, in turn, helps us to prove that
ν 2W is injective.

Lemma 13 Let z be any point on Σ, then for any x �*� z � ñz N δΣ? R g
�
x �"� ñz > π

2 and
� R g

�
x � � � 0 !

Lemma 14 ν 2W is injective.

Proof To prove the injectivity of ν 2W , assume for contra-
diction that there are two points w and w G in W so that
ν 2W �

w �J� ν 2W �
w G �J� z. This means � z � ñz intersects W at w

and w G within δΣ. Without loss of generality assume that w
and w G are two such consecutive intersection points. Then,� z � ñz makes at least π

2 angle with one of the normals to W at
w and w G . But, that is impossible since by Lemma 13?

ñz � R g
�
x �J> π

2

for any point x ��� z � ñz δΣ.

5. Normal estimation

The computation of the normal vector field n requires as-
signed normals at the points of P. These assigned normals
should approximate the normals at the closest points of Σ.
Estimating normals of a surface from a noisy sample is
an intriguing problem. We adopt an approach of Dey and
Goswami [DG04] to estimate the normals from the Delau-
nay balls. When the sample points are “noise-free", Amenta
and Bern [AB99] showed that the poles (furthest Voronoi
vertices) help in estimating the normals. In presence of
noise, the centers of relatively big Delaunay balls play the
roles of the poles. We show that the vectors from the sample
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points incident to such big Delaunay balls towards their cen-
ters indeed approximate the normals of Σ. Figure 4 shows an
implementation of this concept.

c
p

pv

Figure 4: Outward normals are estimated from big Delau-
nay balls at a subset of sample points (middle); points after
projection with these normals (right).

Lemma 15 below tells us that normals can be estimated
from large Delaunay balls. We prove it in the appendix as-
suming uniform sampling for P.

Lemma 15 Let p � P be incident to a Delaunay ball B
�
c � r �

where r � 1 y 5 and c � ΩO. Then,
?-z

pc � ñp̃ � O
�
ε � for a suf-

ficiently small ε � 0.

The next lemma is a direct consequence of Lemma 5 in
[DG04] which says that there are many big Delaunay balls.

Lemma 16 For each point x � Σ, there is a Delaunay ball
containing a medial axis point inside and a sample point on
the boundary within O

�
ε � distance from x.

Lemma 16 and Lemma 15 together suggest an algorithm
for estimating the normals of Σ from P. The big Delau-
nay balls whose radii are of the order of minimum feature
size need to be determined. We compute them by comparing
their radii with the nearest neighbor distances of the incident
sample points. For a point p � P, let λp denote the average
nearest distances to the five nearest neighbors of p in P. We
determine all Delaunay balls incident to p whose radii are
larger than cλp where k is an user defined parameter. We
take c � 2 ! 5 in our experiments. Notice that some points in
P may not satisfy this condition which means they do not
contribute any big Delaunay balls.

The vector from a sample point p to the center of an inci-
dent big Delaunay ball estimates the normal at p̃, but without
any consistent orientation. In order to orient the normals we
determine the big Delaunay balls whose centers lie in the
bounded component of � 3 ) Σ. We follow the algorithm of
Dey and Goswami [DG04] to do so. We call them inner big
Delaunay balls. The estimated normal at p is the negated av-
erage of all directions from p to the centers of all big inner
Delaunay balls, see Figure 4.

Figure 5: Reconstruction with Robust Cocone [10] produces
unnecessary undulations (left). Reconstruction after smooth-
ing with the projections (right).

6. Results

We implemented the projection method after estimating the
normals with the Delaunay balls. A surface is computed
from the projected points with the Tight Cocone algorithm
for surface reconstruction [DG03]. Two examples are shown
in Figure 5. Figure 6 shows the effect of different values of
he and hn on smoothing. As expected, the larger the value of
he and hn, the smoother the surface becomes. For computing
the normal field and also for the projection, not all sample
points are taken as the actual theory dictates. Instead, only
a set of nearby points are taken to save the cost of com-
putations. Figure 7 shows a comparison between k-nearest
neighbor approach [ABCO

�
01, ZPKG02] and the points in

balls of radius 6 � max / hn � he 3 for these computations.
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7. Appendix

Proof of Lemma 8.

Proof Equation 3.7 gives

n
�
x � T R

y Q p
�
y � n � x ���#� e � � y � p

� 2
h2

e
$ 1 � 5

π2
p
�
y � n � x �X�
h2

e� 2
π4

p
�
y � n � x ���
h4

e & ! (7.23)

Consider a sample point p outside B
�
x � 5he � . Since

�
y �

p
� L �

x � p
� � 4δ we have

n
�
x � T R

y Q p
�
y � n � x �X�JL�� 17

8
e � d � x � p

� � 4δ f 2
h2

e

which is an increasing function of
�
x � p

�
when

�
x �

p
� � 5he. Decompose the space outside B

�
x � 5he � using� : x

�
wi � 5he ���Xgi h 1 with wi � 5ihe. If p ��: x

�
wi � 5he � , then

n
�
x � T R y Q p

�
y � n � x ����L�� 17

8
e � d wi � 4δ f 2

h2
e !

Using Lemma 2, which bounds the number of the sam-
ple points inside : x

�
wi � 5he � , we obtain a lower bound on

the contribution of the sample points outside B
�
x � 5he � toQ � y � n � x ��� .

∑
p W� B � x � 5he � Q p

�
y � n � x ���

L C1
2ε2

g∑
i h 1

�
w2

i � 5wihe � 25h2
e � $ � 17

8
e � d wi � 4δ f 2

h2
e &L C1

ε2
�
w2

1 � 5w1he � 25h2
e � $ � 17

8
e � d w1 � 4δ f 2

h2
e &L4� 1275C1

8
h2

e

ε2 e �ed 5he � 4δ f 2
h2

e

which is greater than � 3 ! 18 � 10 � 4.
Consider a sample point p inside B

�
x � 5he � . We have2 πp

�
y � n � x ��� 2 6 2 πp

�
x � 2 � �

y � x
� > 0 ! 3he. One can verify

that n
�
x � T R

y Q p
�
y � n � x ��� � 0 (equation 7.23). In particu-

lar, there exists a sample point p0 inside B
�
x̃ � ε � so that�

y � p0
� 6 ε � 4δ. Hence

n
�
x � T R

y Q p0

�
y � n � x ����L 0 ! 5e �xd ε _ 4δ f 2

h2
e

which is greater than 0 ! 25. Therefore,

n
�
x � T R

y Q � y � n � x ���#� n
�
x � T ∑

p � B � x � 5he � R y � p
�
y � n � x ���� n

�
x � T ∑

p W� B � x � 5he � R y � p
�
y � n � x ��� � 0 !

Proof of Lemma 9.

Proof We show the first half of the lemma and the second
half can be proved symmetrically. Consider a sample point

p outside B
�
x � 5he � . Since

�
x . � p

� L �
x � p

� � 2δ and
πp
�
x . � n � x ����6 �

x � p
� � 2δ equation 3.6 gives2 Q p

�
x . � n � x ��� 2 6 e � d � x � p

� � 2δ f 2
h2

e
$ ��� x � p

� � 2δ � 3
h2

e� �F�
x � p

� � 2δ � &
which is a decreasing function of

�
x � p

�
when

�
x � p

� �
5he. Hence we have2 ∑

p W� B � x � 5he � Q p
�
x . � n � x �X� 2 6 C1

2ε2
g∑

i h 1

�
w2

i � 5wihe � 25h2
e �

e � d wi � 2δ f 2
h2

e
$ � wi � 2δ � 3

h2
e

� �
wi � 2δ � &6 75C1

h2
e

ε2 e �ed 5he � 2δ f 2
h2

e
$ � 5he � 2δ � 3

h2
e

� �
5he � 2δ � &

which is less than 7 ! 25 � 10 � 3he.
Now consider a sample point p inside B

�
x � 5he � . One can

verify that p is in between the planes < . and < � . So
πp
�
x . � n � x ��� � 0 and 2 πp

�
x . � n � x ��� 2 > �

x . � x � � 6 2δ,
see Figure 3. Hence we have Q p

�
x . � n � x ��� � 0 from equa-

tion 3.6. In particular, there exists a sample point p0 inside
B
�
x̃ � ε � . We have

�
x . � p0

� 6 ε � 2δ and πp0

�
x . � n � x �X���

πp0

�
a � n � x ��� � 0 ! 045he from Observation 3. HenceQ p0

�
x . � n � x ��� � e �ed ε _ 2δ f 2

h2
e πp0

�
x . � n � x ��� � 1 � π2

p0

�
x . � n � x �
h2

e
�

which is greater than 2 ! 63 � 10 � 2he. Therefore,Q � x . � n � x ���L 2 ∑
p � B � x � 5he � Q p

�
x . � n � x ��� 2 � 2 ∑

p W� B � x � 5he � Q p
�
x . � n � x ��� 2� Q p0

�
x . � n � x ���O� 2 ∑

p W� B � x � 5he � Q p
�
x . � n � x ��� 2 � 0 !

Proof of Observation 1.

Proof The condition
?

m � ñx̃ > π
2 � asin � r . δ � 2 . ε2

r . δ forces that
the line � x̃ �m intersect the planes < � and < . inside B

�
x̃ � r �

δ � . One can verify that 2mT � p j � pi � 2 reaches the maximum
when x is on Σ . δ, pi

�
p j � is on < � � < . � and the segment

pi p j is a diameter of B
�
x̃ � r � δ � . Hence2mT � p j � pi � 2 6 2 2mT � p j � x̃ � 26 2

�
r � δ � cos

� ?
ñx̃ � � p j � x̃ �O� ?

m � ñx̃ �6 2
�
r � δ � � cos

?
ñx̃ � � p j � x̃ �7� sin

?
m � ñx̃ �6 2

�X�
r � δ � 2 � ε2 � �

r � δ � ? m � ñx̃ !
Proof of Observation 2.

Proof The condition
?

m � ñx̃ > π
2 � asin δ . � r . δ � 2 . ε2

r . δ forces
that the line � x �m intersect the planes < � and < . inside
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B
�
x̃ � r � δ � . So 2 πp

�
x � m � 2 reaches the maximum if x is on

Σ . δ and p is on < � . Hence2 πp
�
x � m � 2 6 �

δ � �
r � δ � 2 � ε2 �7� d

�
p �K� x̃ � ñx̃ � ? m � ñx̃ !

Proof of Observation 3.

Proof We only prove the first half and the second half can
be proved similarly. For x � �

2δΣ � δΣ �5N ΩO , the condition?
m � ñx̃ > atan δ � � r . δ � 2 � ε2

r . δ forces that the intersection point
between the line through x with normal m and the plane < .
be outside B

�
x̃ � r � δ � . As a result, πp

�
x � m � becomes minimal

if x is on Σ . δ and p is on < . . Hence

πp
�
x � m ��L �

δ � �
r � δ � 2 � ε2 � cos

?
m � ñx̃� d

�
p �K� x̃ � ñx̃ � sin

?
m � ñx̃ L E !

The proof for the normal lemmas below is based on the
observation that the sample points outside B

�
x � 6hn � have lit-

tle effect on n
�
x � since the weight of the sample point outside

B
�
x � 6hn � is less than e � 36 V 2 ! 31 � 10 � 16. To take advan-

tage of this fact we decompose Aw
�
x � as follows:

Aw
�
x �#� AIwI

�
x �7� AOwO

�
x �

where AI is the row vector of the equipped normals of the
samples inside B

�
x � 6hn � and AO is the row vector of nor-

mals of the samples outside B
�
x � 6hn � . wI

�
x � is the column

vector of weights of the samples inside B
�
x � 6hn � for x and

wO
�
x � is the column vector of weights of the samples outside

B
�
x � 6hn � for x. In addition, in the following proofs for the

normal lemmas we decompose the space outside B
�
x � 6hn �

using
� : x

�
wi � 6hn �Xgi h 1 with wi � 6ihn.

Lemma 17 If ε > 0 ! 1 and hn L 8ε, then for any x � 2δΣ with
δ � 0 ! 08ε �

wI
�
x � � 1 � 2

where
�
v
�

1 is the 1-norm of the vector v, which is the sum-
mation of all the components of v.

Proof There exists a sample point inside B
�
x̃ � ε � from the

sampling condition (i). In addition, S
�
x̃ � 2ε � and S

�
x̃ � 4ε � in-

tersect Σ since the local feature size of Σ at any point is
greater or equal to 1. Hence, there exists a sample point in-
side : x̃

�
ε � 2ε � and : x̃

�
3ε � 2ε � respectively from the sampling

conditions. Hence�
wI
�
x � � 1 � e � d δ _ ε f 2

h2
n � e � d δ _ 3ε f 2

h2
n � e � d δ _ 5ε f 2

h2
n � 2 !

Lemma 18 If hn 6 0 ! 01, 10ε 6 hn 6 1000ε and α 6 10, then
for any point x � 2δΣ with δ � 0 ! 08ε,�

Aw
�
x � � L $ � 1 � 4C2

2 � 1
4 � 108C1

h2
n

ε2 e � 36 & � wI
�
x � � 1 (7.24)

and �
w
�
x � � 1 6 $ 1 � 108C1

h2
n

ε2 e � 36 & � wI
�
x � � 1 ! (7.25)

Proof
First, we could have an upper bound of the weights for the
sample points outside B

�
x � 6hn � since the number of the sam-

ple points inside each : x
�
wi � 6hn � can be bounded due to

Lemma 2.�
wO

�
x � � 1 6 C1

2ε2
g∑

i h 1

�
w2

i � 6wihn � 36h2
n � e � w2

i
h2

n

6 108C1
h2

n

ε2 e � 36 !
We have

�
wI
�
x � � 1 � 2 from Lemma 17, hence�

wO
�
x � � 1 6 108C1

h2
n

ε2 e � 36 � wI
�
x � � 1 ! (7.26)

Second, we find the lower bound for
�
AIwI

�
x � � .�

AIwI
�
x � � �C{ 2 � AIwI

�
x ��� T � AIwI

�
x ��� 2�H| 2 ∑

pi � p j � B � x � 6hn � wpi

�
x � wp j

�
x � vT

pi vp j
2 !

>From Lemma 3, vT
pi vp j � cos

?
vpi � vp j L { 1 � 4C2

2 which
gives �

AIwI
�
x � � L �

1 � 4C2
2 � 1

4
�
wI
�
x � � 1 !

We obtain inequality 7.24 from
�
Aw

�
x � � L �

AIwI
�
x � � ��

wO
�
x � � 1 and inequality 7.25 from

�
w
�
x � � 1 � �

wI
�
x � � 1 ��

wO
�
x � � 1

Proof of Lemma 5.

Proof

n
�
x �� AIwI

�
x ��

Aw
�
x � � � AOwO

�
x ��

Aw
�
x � �

We have shown
?

ñx̃ � vp 6 C2 for any sample point p �
B
�
x � 6hn � in the proof of Lemma 3. Hence

?
ñx̃ � AIwI � x �[

Aw � x � [ is
also less than or equal to C2.
Equation 7.26 gives�

AOwO
�
x � � 6 �

wO
�
x � � 1 6 108C1

h2
n

ε2 e � 36 � wI
�
x � � 1 !

In addition C2 > 0 ! 075 and 108C1
h2

n
ε2 e � 36 > 4 � 10 � 4 under

the given conditions. Hence,2 � AIwI
�
x � � � �

AOwO
�
x � � 2 � �

AIwI
�
x � � � �

A0wO
�
x � �L $ � 1 � 4C2

2 � 1
4 � 108C1

h2
n

ε2 e � 36 & � wI
�
x � � 1 !
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One can verify that?
n
�
x �"� AIwI

�
x ��

Aw
�
x � � 6 asin

�
AOwO

�
x � �2 � AIwI

�
x � � � �

AOwO
�
x � � 26 asin

108C1
h2

n
ε2 e � 36�

1 � 4C2
2 � 1

4 � 108C1
h2

n
ε2 e � 36

which is less than 216C1
h2

n
ε2 e � 36.

The lemma follows from the fact
?

n
�
x �"� ñx̃ 6?

n
�
x �"� AIwI � x �[

Aw � x � [ � ?
ñx̃ � AIwI � x �[

Aw
[ !

Proof of Lemma 6.

Proof We have�
J
�
n
�
x ��� � 6 $ 1 � �}�

Aw
�
x ��� � Aw

�
x ��� T ��

Aw
�
x ��� T � Aw

�
x ��� & � Aw G � x � ��

Aw
�
x � � !

It can be shown that
�}�

Aw
�
x �X� � Aw

�
x �X� T � ��

Aw
�
x ��� T � Aw

�
x ��� . So,�

J
�
n
�
x ��� � 6 2

�
Aw G � x � ��
Aw

�
x � � !

We have
�
Aw G � x � � 6 �

AIw GI � x � � � �
AOw GO � x � � . First we find

an upper bound for
�
AIw GI � x � � .�

AIw GI � x � � 6 2
h2

n
∑

p � B � x � 6hn � wp
�
x � � vp

�
x � p � T � !

Since vp is a unit vector, one can prove that
�
vp
�
x � p � T � ��

x � p
�
, which is less than 6hn for any p � B

�
x � 6hn � . There-

fore, �
AIw GI � x � � 6 12

hn

�
wI
�
x � � 1 !

Similarly we have�
AOw GO � x � � 6 2

h2
n

∑
p W� B � x � 6hn � wp

�
x � � x � p

� !
Using the decomposition strategy for the proof of the normal
lemmas, we have�

AOw GO � x � � 6 2
h2

n

C1
2ε2

g∑
i h 1

�
w2

i � 6wihn � 36h2
n � e � w2

i
h2

n wi6 12
hn

108C1
h2

n

ε2 e � 36 !
Under the given conditions

�
wI
�
x � � 1 � 2. So, we have�

Aw G � x � � 6 12
hn

$ 1 � 108C1
h2

n

ε2 e � 36 & � wI
�
x � � 1 !

Equation 7.24 gives �
Aw G � x � ��
Aw

�
x � � 6 C3

12
hn

! (7.27)

Proof of Lemma 7.

Proof Let u � y � x[
y � x

[ , which is either n
�
x � or � n

�
x � since y

is on � x � n � x � . We can express n
�
y � as

n
�
y �� n

�
x �7� ] [

y � x
[

0
J
�
n
�
x � tu ��� udt (7.28)

from which we get

n
�
x � T n

�
y �� 1 � ] [

y � x
[

0
n
�
x � T J

�
n
�
x � tu �X� udtL 1 � ] [

y � x
[

0

�
n
�
x � �k� J � n � x � tu ��� � dt ! (7.29)

We need to find an upper bound for�
n
�
x � �k� J � n � x � tu �X� � 6 1�

Aw
�
x � �v� Aw

�
x � tu � � 2�k�

Aw
�
x ��� T � Aw

�
x � tu �X� T � Aw

�
x � tu �X�� �

Aw
�
x ��� T � Aw

�
x � tu ��� � Aw

�
x � tu ��� T � � Aw G � x � tu � ��

Aw
�
x � tu � � !

(7.30)

Since x � tu � δΣ, equation 7.27 gives�
Aw G � x � tu � ��
Aw

�
x � tu � � 6 C3

12
hn

! (7.31)

Similar to the bounds for
�
wI
�
x � � 1,

�
Aw

�
x � � and

�
w
�
x � � 1,

we can have bounds for
�
wI
�
x � tu � � 1,

�
Aw

�
x � tu � � and�

w
�
x � tu � � 1 with t 6 2δ, i.e.,�

wI
�
x � tu � � 1 � 2 (7.32)

and �
Aw

�
x � tu � � L $ � 1 � 4C2

2 � 1
4 � 108C1

h2
n

ε2 e � d 6hn � 2δ f 2
h2

n &�
wI
�
x � tu � � 1

(7.33)

and�
w
�
x � tu � � 1 6 $ 1 � 108C1

h2
n

ε2 e �ed 6hn � 2δ f 2
h2

n & � wI
�
x � tu � � 1 !

(7.34)

Notice that
�
wI
�
x � tu � � 1 is the summation of the weights

for the sample points inside B
�
x � 6hn � rather than B

�
x �

tu � 6hn � .
Now we compute an upper bound for the following term
with 0 6 t 6 �

y � x
�
.�}�

Aw
�
x �X� T � Aw

�
x � tu ��� T � Aw

�
x � tu ���� �

Aw
�
x ��� T � Aw

�
x � tu ��� � Aw

�
x � tu ��� T �� �

∑
pi � p j � pk � P

S wpi

�
x � wp j

�
x � tu � wpk

�
x � tu �� wpi

�
x � tu � wp j

�
x � wpk

�
x � tu �tT � vT

p j vpk � vT
pi

�
6 �

w
�
x � tu � � 1 ∑

pi � p j � P
wpi

�
x � wp j

�
x � tu � %% 1 � e � 2

uT d p j � pi f t
h2

n
%% !
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Partition ∑pi � p j � P wpi

�
x � wp j

�
x � tu � %% 1 � e � 2

uT d p j � pi f t
h2

n
%% into

four parts depending on whether pi or p j is inside B
�
x � 6hn �

or not.
In case both pi and p j are inside B

�
x � 6hn � , we have?

n
�
x �"� ñx̃ > 8 ! 12hn from Lemma 5 under the given con-

dition. Hence 2 uT � p j � pi � 2 > 170h2
n from Observation 1.

Therefore,

∑
pi � p j � B � x � 6hn � wpi

�
x � wp j

�
x � tu � %% 1 � e � 2

uT d p j � pi f t
h2

n
%%

6 �
w
�
x � � 1

�
w
�
x � tu � � 1

�
e340t � 1 �

which is less than 375t
�
w
�
x � � 1

�
w
�
x � tu � � 1 since t 6 2δ 6

1 ! 6 � 10 � 4 and e340t � 1 > 375t.
In case pi is inside B

�
x � 6hn � while p j is not, we have2 uT � p j � pi � 2 6 wi � 12hn if p j �
: x

�
wi � 6hn � . So,

∑
pi ~ B d x � 6hn f
p j �~ B d x � 6hn f wpi

�
x � wp j

�
x � tu � %% 1 � e � 2

uT d p j � pi f t
h2

n
%%

6 C1

2ε2
g∑

i h 1

�
w2

i � 6wihn � 36h2
n � e � d wi � 2δ f 2

h2
n

$ e2 wi _ 12hn
h2

n
t � 1 &6 108C1

h2
n

ε2 e � d 6hn � 2δ f 2
h2

n
$ e 36t

hn � 1 &
which is less than t since t

hn
> 0 ! 016 and hence e

36t
hn � 1 >

60 t
hn

. Similarly, the same upper bound holds when p j is in-
side B

�
x � 6hn � and pi is not.

When both pi and p j are not inside B
�
x � 6hn � , we have2 uT � p j � pi � 2 6 wi � w j � 12hn if pi �	: x
�
wi � 6hn � and p j �: x

�
w j � 6hn � . Hence,

∑
pi �~ B d x � 6hn f
p j �~ B d x � 6hn f wpi

�
x � wp j

�
x � tu � %% 1 � e � 2

uT d p j � pi f t
h2

n
%%

6 C2
1

4ε4 ∑
1 � i � g1 � j � g �

w2
i � 6wihn � 36h2

n � � w2
j � 6w jhn � 36h2

n �
e � w2

i
h2

n e � d w j � 2δ f 2
h2

n
$ e2

wi _ w j _ 12hn
h2

n
t � 1 &6 1082C2

1
h4

n

ε4 e � 36e �ed 6hn � 2δ f 2
h2

n
$ e 48t

hn � 1 &
which is less than 10 � 3t since t

hn
> 0 ! 016 and hence e

48t
hn �

1 > 75 t
hn

.
Since

�
w
�
x � � 1 � 2 and

�
w
�
x � tu � � 1 � 2, we have�k�

Aw
�
x ��� T � Aw

�
x � tu ��� T � Aw

�
x � tu ���� �

Aw
�
x ��� T � Aw

�
x � tu ��� � Aw

�
x � tu ��� T �6 400t

�
w
�
x � � 1

�
w
�
x � tu � � 2

1 ! (7.35)

We obtain from inequalities 7.30, 7.31 and 7.35�
n
�
x � �v� J � n � x � tu ��� � 6 4800C3

t
hn

�
w
�
x � � 1

�
w
�
x � tu � � 2

1�
Aw

�
x � �v� Aw

�
x � tu � � 26 4800C2

3C2
4

t
hn

where

C4 � $ 1 � 108C1
h2

n
ε2 e � d 6hn � 2δ f 2

h2
n &$ � 1 � 4C2

2 � 1
4 � 108C1

h2
n

ε2 e �ed 6hn � 2δ f 2
h2

n & !
Integrating the integral in 7.29 we obtain

n
�
x � T n

�
y �JL 1 � 2400C2

3C2
4

�
y � x

� 2

hn
!

Hence,

sin
?

n
�
x �"� n � y �o6 = 4800C3C4

�
y � x

�= hn

where C3 and C4 are close to 1 under the given conditions
and hence

?
n
�
x �"� n � y � is small. One can verify that?

n
�
x �"� n � y �o6 75

�
y � x

�= hn
!

Proof of Lemma 13.

Proof Since n
�
x � and J

�
n
�
x ��� � x � p � are perpendicular for

any p � P (Lemma 4), equation 4.22 gives� R gp
�
x � � 6 e � � x � p

� 2
h2

e
$ 2 %% π3

p
�
x �

h4
e

� πp
�
x �

h2
e

%% � x � p
�

� %% 1 � 3π2
p
�
x �

h2
e

%% { 1 � �
J
�
n
�
x ��� � 2 �k� x � p � � 2 & !

Consider a sample point p outside B
�
x � 5he � . Since 2 πp

�
x � 2 6�

x � p
�

and
�
x � p

� L 5he,
%% π3

p � x �
h4

e
� πp � x �

h2
e

%% and
%% 1 � 3π2

p � x �
h2

e

%%
reaches maximum when πp

�
x �� �

x � p
�� R gp

�
x � � 6 e � � x � p

� 2
h2

e � 2
�
x � p

� 4

h4
e

� 2
�
x � p

� 2

h2
e� $ 3 � x � p

� 2

h2
e

� 1 & { 1 � �
J
�
n
�
x ��� � 2 � x � p

� 2 �
which is a decreasing function of

�
x � p

�
when

�
x � p

� �
5he. Hence we have�

∑
p W� B � x � 5he � R gp

�
x � � 6 ∑

p W� B � x � 5he � � R gp
�
x � �

6 C1
2ε2

g∑
i h 1

�
w2

i � 5wihe � 25h2
e � e � w2

i
h2

e � 2
w4

i

h4
e
� 2

w2
i

h2
e� $ 3w2

i
h2

e
� 1 & { 1 � �

J
�
n
�
x ��� � 2w2

i
�

6 75C1e � 25 h2
e

ε2
� 1200 � 74 { 1 � 25

�
J
�
n
�
x ��� � 2h2

e �
(7.36)
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which is less than 0 ! 03 since we have
�
J
�
n
�
x ��� � he > 0 ! 4

from Lemma 6.
Now consider a sample point p inside B

�
x � 5he � and evaluate

the angle between R gp
�
x � and n

�
x � .

n
�
x � T R gp

�
x �P� e � � x � p

� 2
h2

e � 1 � 5
π2

p
�
x �

h2
e

� 2
π4

p
�
x �

h4
e

� (7.37)

which is greater than 0 ! 96e � � x � p
� 2

h2
e since 2 πp

�
x � 2 > 0 ! 085he

for any x � δΣ. In addition,� R gp
�
x � � 6 e � � x � p

� 2
h2

e � 10
%% π3

p
�
x �

h4
e

� πp
�
x �

h2
e

%% he� %% 1 � 3π2
p
�
x �

h2
e

%% { 1 � 25
�
J
�
n
�
x ��� � 2h2

e �
which is less than 3 ! 1e � � x � p

� 2
h2

e . Hence?
n
�
x �"� R gp

�
x �� acos $ n � x � T R gp

�
x �� R gp

�
x � � & > 1 ! 26 ! (7.38)

In particular, there exists a sample point p0 � B
�
x̃ � ε � from

the sampling condition (i) so that
�
x � p0

� 6 δ � ε. We have� R gp0

�
x � � 6 e � � x � p0

� 2
h2

e � 2
%% π3

p0

�
x �

h4
e

� πp0

�
x �

h2
e

%% � δ � ε �
� %% 1 � 3π2

p0

�
x �

h2
e

%% { 1 � �
J
�
n
�
x ��� � 2 � δ � ε � 2 �

which is less than 1 ! 24e � � x � p
� 2

h2
e . So?

n
�
x �"� R gp0

�
x �� acos $ n � x � T R gp0

�
x �� R gp0

�
x � � & > 0 ! 69 !

In addition, equation 7.37 gives� R gp0

�
x � � L n

�
x � T R gp0

�
x � � 0 ! 6 ! (7.39)

Inequalities 7.36 and 7.39 give? R gp0

�
x �"� $ R gp0

�
x �7� ∑

p W� B � x � 5he � R gp
�
x � & 6

asin

�
∑p W� B � x � 5he � R gp

�
x � �%% � R gp0

�
x � � � �

∑p W� B � x � 5he � R gp
�
x � � %% > 0 ! 06 !

Hence,?
n
�
x �"� $ R gp0

�
x �7� ∑

p W� B � x � 5he � R gp
�
x � & > 0 ! 75 ! (7.40)

The first part of the lemma follows from inequalities 7.38
and 7.40 and the fact

?
n
�
x �"� ñx̃ > 6 ! 5 � 10 � 3.

>From inequality 7.37, we have n
�
x � T R gp

�
x � � 0 for all

sample point p � B
�
x � 5he � . Hence� R g

�
x � � � n

�
x � T R gp0

�
x �O� �

∑
p W� B � x � 5he � R gp

�
x � � � 0

The following lemma is used to prove the guarantee about
normal estimation in Lemma 15.

Lemma 19 Let D and D G be two parallel disks within dis-
tance of δr in a ball B � B

�
c � r � having the center c on

the same side. Let the angle between D and the boundary
of B be more than 2θ. Further, let q � D be a point where
d
�
q � ∂D �bL kr and q G � ∂B be a point where qq G is perpen-

dicular to D. Then, we have (i)
�
q � q G � � kr tan θ and (ii)

d
�
q � ∂D Ga� � kr � δr

tan θ .

Proof We assume that D is larger than D G and prove the
lemma. The other case where D is smaller than D G can be
handled similarly achieving even a better bound. Refer to
Figure 7 for all references of labels. Let p be the closest
point of q on ∂D. We are given that

�
p � q

� L kr. We have�
a � t

� � �
1 � cos2θ � r and

�
p � a

� > r sin2θ. Consider the
similar triangles pat and pqu. We have�

q � u
� � �

p � q
��s��

a � t
��

p � a
� � kr

�
1 � cos2θ � r
r sin2θ � kr tan θ !

Since
�
q � q G � � �

q � u
�
, we have the claim (i). To prove

claim (ii), consider the similar triangles pqu and wsu and use
the facts d

�
q � ∂D Gn� � �

s � w
�
,
�
q � s

� > δr and
�
s � u

� ��
q � u

� � δr � kr tan θ � δr.

B

t

w
s

a
b

D
D’

q
p

q’

r

>2θc

u θ

q
p

B’

B

B’’

Figure 8: Illustration for Lemma 19 on the left. Illustration
for Lemma 15 on the right.

Proof of Lemma 15.

Proof Let B � B
�
c � r � . Assume that

z
pc makes an angle θ

with the normal ñp̃. We claim that, if θ � 600ε, the ball B
contains a point of P inside contradicting the fact that B is a
Delaunay ball.
Consider the slab Lp with width 2 � 101ε2 for the point p̃ de-
limited by two planes < . and < � as stated in Lemma 1. The
ball B

�
p̃ � 10ε � contains Σ and points from P only within Lp

due to Lemma 1. Since
�
p � p̃

� 6 ε2, the ball B G�� B
�
p � 9ε �

is contained within B
�
p̃ � 10ε � and thus contains Σ and points

from P only within Lp.
Let Np denote the plane passing through p and with the
normal ñp̃. Consider the disk D in which B intersects Np.
Let q be a point on the diameter of D passing through p
where

�
p � q

� � 4ε for sufficiently small ε. By Lemma 19
d
�
q � ∂B � � 4ε tan θ

2 � 400ε2.
The distance of q from the bounding planes of Lp is at most
202ε2. This means both of these bounding planes intersect
B. Let D G and D G G be the disks in which < . and < � inter-
sect B. By Lemma 19 the boundaries of D G and D G G are at
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least 4ε � 202ε2

tan 300ε � 3ε distance away from q when ε is suf-
ficiently small. This means the ball B G G � B

�
q � 3ε � intersects

the slab Lp within B. The ball B G G cannot have any sample
point from Lp as B does not have any. Also, B G G cannot have
any sample points from other slabs as B G G is contained in
B
�
p � 9ε � that has all sample points within Lp. A line passing

through q and perpendicular to Np must intersect the surface
Σ within Lp since Σ separates these two planes within B G . Let
this point be x. Then, x � Σ does not have any sample point
within 3ε � 202ε2 � ε distance violating the sampling con-
dition (i). Therefore, the angle θ cannot be larger than 600ε
as we assumed.
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