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» Inference of topology and geometry of a hidden manifold
from its point data is a fundamental problem.




Contributions

s Inference of topology and geometry of a hidden manifold
from its point data Iis a fundamental problem.

s An algorithm to compute a set of loops from point data
that approximate a shortest basis of the homology

group H; (M) of the sampled manifold A1.
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I Contributions

s Inference of topology and geometry of a hidden manifold
from its point data Is a fundamental problem.

s An algorithm to compute a set of loops from point data
that approximate a shortest basis of the homology
group H; (M) of the sampled manifold A1.

s A polynomial time algorithm for computing a shortest
basis of H{(K) for any finite simplicial complex K
embedded in an Euclidean space.
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» Algorithms for computing homology groups from the
point data [COO08].
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» Algorithms for computing homology groups from the
point data [COO08].

» Cycles from persistence algorithms[ELZ02] lack
geometry.
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Background

s Algorithms for computing homology groups from the
point data [COOQ08].

» Cycles from persistence algorithms[ELZO02] lack
geometry.

» Reconstruction of the sampled space (can be costly).

» Rips, Cech or witness complexes are less constrained.
We use Rips complex.
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Background

s Algorithms for computing homology groups from the
point data [COOQ08].

» Cycles from persistence algorithms[ELZO02] lack
geometry.

» Reconstruction of the sampled space (can be costly).

» Rips, Cech or witness complexes are less constrained.
We use Rips complex.

s 2-manifold triangulations [EWO05].
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Background

s Algorithms for computing homology groups from the
point data [COOQ08].

» Cycles from persistence algorithms[ELZO02] lack
geometry.

» Reconstruction of the sampled space (can be costly).

» Rips, Cech or witness complexes are less constrained.
We use Rips complex.

s 2-manifold triangulations [EWO05].

» NP-hard for higher dimenisonal homology groups
[CF10].
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s H,(T):j-dimensional homology group of T under Zs.




s H,;(T):j-dimensional homology group of T under Zs.

» The elements of H,(T) are equivalent classes [g] of
1-dimensional cycles g, also called loops.




Homology groups & generators

» H,;(T):j-dimensional homology group of T under Zs.

» The elements of H{(T) are equivalent classes [g¢] of
1-dimensional cycles g, also called loops.

o A minimal set {[¢1], ..., [gx]} generating H(T) is called its
basis.
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Homology groups & generators

» H,;(T):j-dimensional homology group of T under Zs.

» The elements of H{(T) are equivalent classes [g¢] of
1-dimensional cycles g, also called loops.

o A minimal set {[¢1], ..., [gx]} generating H(T) is called its
basis.

s Here k =rank(H{(T)).
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Homology groups & generators

» H,;(T):j-dimensional homology group of T under Zs.

» The elements of H{(T) are equivalent classes [g¢] of
1-dimensional cycles g, also called loops.

o A minimal set {[¢1], ..., [gx]} generating H(T) is called its
basis.

s Here k =rank(H{(T)).
» We associate a weight w(g) > 0 with each loop ¢ In T.
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. Homology groups & generators

» H,;(T):j-dimensional homology group of T under Zs.

» The elements of H{(T) are equivalent classes [g¢] of
1-dimensional cycles g, also called loops.

o A minimal set {[¢1], ..., [gx]} generating H(T) is called its
basis.

s Here k =rank(H{(T)).
» We associate a weight w(g) > 0 with each loop ¢ In T.

» The length of a set of loops G = {g1, ..., g;. } IS given by
Len(G) = S5 w(gi).
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. Homology groups & generators

» H,;(T):j-dimensional homology group of T under Zs.

» The elements of H{(T) are equivalent classes [g¢] of
1-dimensional cycles g, also called loops.

o A minimal set {[¢1], ..., [gx]} generating H(T) is called its
basis.

s Here k =rank(H{(T)).
» We associate a weight w(g) > 0 with each loop ¢ In T.

» The length of a set of loops G = {g1, ..., g;. } IS given by
Len(G) = S5 w(gi).

» A shortest basis of H;(T) Is a set of £ loops with
minimal length generating H;(T). a
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s Let K be a finite simplicial complex with non-negative
weights on edges.

» A shortest basis for H;(KX) can be computed in O(n*)
time where n = |K|.




» H{(K) Is a vector space and supports matroid theory.




s H{(K) Is a vector space and supports matroid theory.

s If a set of loops £ Iin K contains a shortest basis, then
the greedy set G chosen from L is a shortest basis by
matroid theory.




Shortest basis

» Hi;(K) Is a vector space and supports matroid theory.

s If a set of loops £ In K contains a shortest basis, then
the greedy set G chosen from £ Is a shortest basis by

matroid theory.

s The greedy set G is an ordered set of loops {g1, ..., g1}
satisfying the following conditions:
g1 Is the shortest loop in £ nontrivial in H{(K);
gi+1 1s the shortest loop In £ independent of ¢, ..., g;.
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Let T be a shortest path tree in K rooted at p.

For gi,q2 € P,
spr(q1, g2) denotes the unique
path from ¢; to ¢ through pin T.

Let £ be the set of edges in T.

The canonical loop
for a non-tree edge ¢ is defined as

T'(e) = spr(p,q1) o e ospp(ge, p).




» A simple cycle [ is tight if it contains a shortest path
between every pair of points in |.




» A simple cycle [ is tight if it contains a shortest path
between every pair of points in |.

s Proposition Loops in a shortest basis of H (K) are tight.




. Candidate loops

s A simple cycle [ is tight If it contains a shortest path
petween every pair of points in /.

» Proposition Loops in a shortest basis of H;(K) are tight.

» Let C, be the set of all canonical loops with respect to p:

C, = {T(e): e € E\Er).
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- Candidate loops

s A simple cycle [ is tight If it contains a shortest path
petween every pair of points in /.

» Proposition Loops in a shortest basis of H;(K) are tight.

» Let C, be the set of all canonical loops with respect to p:
C,={T(e):e € E\Er}.

» Proposition uU,cpC), contains all tight loops and hence
any shortest basis.
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~Candidate loops

s A simple cycle [ is tight If it contains a shortest path
petween every pair of points in /.

» Proposition Loops in a shortest basis of H;(K) are tight.

» Let C, be the set of all canonical loops with respect to p:
C,={T(e):e € E\Er}.

» Proposition uU,cpC), contains all tight loops and hence
any shortest basis.

» Let G, be the greedy set chosen from C,,.
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- Candidate loops

s A simple cycle [ is tight If it contains a shortest path
petween every pair of points in /.

» Proposition Loops in a shortest basis of H;(K) are tight.

» Let C, be the set of all canonical loops with respect to p:
C,={T(e):e € E\Er}.

» Proposition uU,cpC), contains all tight loops and hence
any shortest basis.
» Let G, be the greedy set chosen from C,,.

» Proposition The greedy set chosen from U,cpG, IS a
shortest basis of H,(K). a
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Proposition CANONGEN(p, ) outputs G,.

CANONGEN(p, K)

1. Construct a shortest path tree T in K with p as the root.




Proposition CANONGEN(p, ) outputs G,.

CANONGEN(p, K)

1. Construct a shortest path tree T in K with p as the root.

2. For each non-tree edge ¢ = (¢q1,¢2) € E\Er, let T(e) be
the canonical loop of e.




~Computing G,

Proposition CANONGEN(p, K) outputs G,.

CANONGEN(p, K)

1:
2.

3.

Construct a shortest path tree 7' in K with p as the root.

For each non-tree edge e = (¢1,¢2) € E\Er, let T'(e) be
the canonical loop of e.

Run the persistence algorithm based on the following
filtration of KC: vertices in P = Vert(K), tree edges in T,
non-tree edges in the canonical order, triangles in K.
Return the set of canonical loops associated with

k = rank(H{(K)) edges unpaired after the algorithm.
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Computing shortest basis

SPGEN(K)
. For each p € P = Vert(K), set G, := CANONGEN(p, K).
: Sort all loops in U,G, by lengths in the increasing order.
. Let g1, ..., g5 p| D€ this sorted list. Initialize G := {g1}.
. fori:=2to k|P|, do
If |G| =k, then
Exit the for loop.
else If ¢; Is Independent of loops In G, then
Add g; 10 G.
end if
. end for
. Return G.

PO OONOOUAWNER
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» How to determine if ¢ is independent of loops in G?




s How to determine if ¢ Is independent of loops in G?

s For each loop ¢/, ..., g5 In G we add triangles to fill it.




. Computing independence

s How to determine if g Is Independent of loops In G?
s For each loop g1, ..., ¢; In G we add triangles to fill it.

» We choose a dummy vertex, say v, and add triangles
vvivi41 for each edge v;v;1 of the loops to be filled.
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- Computing independence

s How to determine if g Is Independent of loops In G?
s For each loop g1, ..., ¢; In G we add triangles to fill it.

» We choose a dummy vertex, say v, and add triangles
vvivi41 for each edge v;v;1 of the loops to be filled.

» These triangles destroy the generators ¢, ..., g.. They
destroy g as well if and only if g IS dependent on ¢/, ..., ¢’
[Chen-Freedman].
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- Computing independence

s How to determine if g Is Independent of loops In G?
s For each loop g1, ..., ¢; In G we add triangles to fill it.

» We choose a dummy vertex, say v, and add triangles
vvivi41 for each edge v;v;1 of the loops to be filled.

» These triangles destroy the generators ¢, ..., g.. They
destroy g as well if and only if g IS dependent on ¢/, ..., ¢’
[Chen-Freedman].

s Whether g Is rendeded trivial can be determined by
augmenting the filtration of 1 with the simplices in X'\ K
and continuing the persistence algorithm.
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s Let P c R? be a point set sampled from a smooth closed
manifold M c R? embedded isometrically.




Let P c R? be a point set sampled from a smooth closed
manifold M c R? embedded isometrically.

We want to approximate a shortest basis of H; (M) from
P.




- Approximation from point cloud

» Let P c R? be a point set sampled from a smooth closed
manifold M c R? embedded isometrically.

» We want to approximate a shortest basis of H; (M) from
P.

s Compute a complex £ from P. Compute a shortest
basis of H{(K). Argue that if P Is dense, a subset of
computed loops approximate a shortest basis of H (M)
within constant factors.
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» Let P c R? be a point set. B(p,r) denotes an open d-ball
centered at p with radius r.




» Let P c R? be a point set. B(p,r) denotes an open d-ball
centered at p with radius r.

» The Cech complex C"(P) is a simplicial complex where
a simplex o € C"(P) Iff Vert(o), the vertices of o, are in P

and Npevert(o)B(p, 1/2) # 0.




Complexes

» Let P c R? be a point set. B(p,r) denotes an open d-ball
centered at p with radius r.

s The Cech complex C"(P) is a simplicial complex where
a simplex ¢ € C"(P) Iff Vert(o), the vertices of ¢, are in P

and mpEVert(a)B(p7 T/Q) # 0.

» The Rips complex R"(P) is a simplicial complex where
a simplex ¢ € R"(P) if and only If Vert(c) are within
pairwise Euclidean distance of r.
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Complexes

» Let P c R? be a point set. B(p,r) denotes an open d-ball
centered at p with radius r.

s The Cech complex C"(P) is a simplicial complex where
a simplex ¢ € C"(P) Iff Vert(o), the vertices of ¢, are in P

and Nyevert(o)B(p,7/2) # 0.
» The Rips complex R"(P) is a simplicial complex where

a simplex ¢ € R"(P) if and only If Vert(c) are within
nalrwise Euclidean distance of r.

» Proposition For any finite set P ¢ R¢ and any » > 0, one
nas C"(P) C R"(P) C C?"(P).
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» Geodesic ball: By (p,r) ={q | dyi(p,q) < r}.




s Geodesic ball: By (p,r) ={q | dyi(p,q) < r}.

s Thereisar, > 0for each p € M where r, Is the
supremum r so that By, (p,r) IS convex (the minimizing
geodesics between any two points in By (p,r) lie in

BM(p7 7“))




Manifold constants and sampling

o Geodesic ball: By/(p,r) ={q | dr(p,q) <7}.

» Thereis ar, > 0 for each p € M where r, Is the
supremum r so that By, (p,r) IS convex (the minimizing
geodesics between any two points in By (p,r) lie In

BM(p7 '7'))
» Convexity radius of M: p.(M) = infyepmp.
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Manifold constants and sampling

o Geodesic ball: By/(p,r) ={q | dr(p,q) <7}.

» Thereis ar, > 0 for each p € M where r, Is the
supremum r so that By, (p,r) IS convex (the minimizing
geodesics between any two points in By (p,r) lie In

BM(p7 T))
» Convexity radius of M: p.(M) = infyepmp.

s p(M)Is the reach defined as the minimum distance
between M and its medial axis.
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Manifold constants and sampling

o Geodesic ball: By/(p,r) ={q | dr(p,q) <7}.

» Thereis ar, > 0 for each p € M where r, Is the
supremum r so that By, (p,r) IS convex (the minimizing
geodesics between any two points in By (p,r) lie In

BM(p7 T))
» Convexity radius of M: p.(M) = infyepmp.

s p(M)Is the reach defined as the minimum distance
between M and its medial axis.

s Pis an e-sample of M if B(z,e) N P # () for each z € M.
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s Let M c RY be a smooth, closed manifold with [ as the
length of a shortest basis of H,; (M) and k& = rank H{(M).




Approximation Theorem

s Let M c R? be a smooth, closed manifold with / as the
length of a shortest basis of H, (M) and k = rank Hi(M).

s Givenaset P c M ofn points which Is an e-sample of M

and 4e < r < mm{Z\[p M)}, one can compute a
set of loops G In O(nnent) t|me Where

1
| < Len(G) < (1+ ).

42
L+ 5000 r

Here n.,n; are the number of edges and triangles in
R (P).
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s Let s Hi(R"(P)) — Hy(R¥(P)) and H}*"(P)=im .*.




s Let*: Hi(R"(P)) — Hy(R¥(P)) and H}*"(P)=im .*.

» A shortest basis of H;*"(R(P)) coincides with a shortest
basis of H{(C"(P)).




. Using Rips complexes

s Let*: Hi(R"(P)) — Hi(R¥(P)) and H}*" (P)=im .*.

s A shortest basis of H"*"(R(P)) coincides with a shortest
basis of H{(C"(P)).

» A shortest basis of H;(C"(P)) has length within a small
factor of the length of a shortest basis of H; (M).
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Using Rips complexes

s Let*: H(R"(P)) — Hi(R*¥(P)) and H}*" (P)=im .*.
» A shortest basis of H;*"(R(P)) coincides with a shortest
basis of H{(C"(P)).

s A shortest basis of H;(C"(P)) has length within a small
factor of the length of a shortest basis of H; (M).

» We weight edges in R?"(P), creating a complex K. Each
edge e € R?"(P) \ R"(P) has a large weight W. Other
edges have lengths as their weights.

—
P I ,t‘
RT(P) R27(P)
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Using Rips complexes

s Let*: H(R"(P)) — Hi(R*¥(P)) and H}*" (P)=im .*.
» A shortest basis of H;*"(R(P)) coincides with a shortest
basis of H{(C"(P)).

s A shortest basis of H;(C"(P)) has length within a small
factor of the length of a shortest basis of H; (M).

» We weight edges in R?"(P), creating a complex K. Each
edge e € R?"(P) \ R"(P) has a large weight W. Other
edges have lengths as their weights.

—
.yal ,t‘
RQT‘ (P)

R"(P)
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Theorem SHORTLOOP(P,r) computes a shortest basis for
the persistent homology group H?* (R(P)).

SHORTLOOP(P, 1)

1: Compute Rips complex R?"(P).




Approximation Algorithm

Theorem SHORTLOOP(P,r) computes a shortest basis for
the persistent homology group H*" (R(P)).

SHORTLOOP(P, 1)

1: Compute Rips complex R?"(P).

2: Let K be R?"(P) where edges of R*"(P)\R"(P) are
weighted with large weight .
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Approximation Algorithm

Theorem SHORTLOOP(P,r) computes a shortest basis for
the persistent homology group H*" (R(P)).

SHORTLOOP(P, 1)

1: Compute Rips complex R?"(P).

2: Let K be R?"(P) where edges of R*"(P)\R"(P) are
weighted with large weight 1.

3: Compute the shortest basis for H(K).

A,
a
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Approximation Algorithm

Theorem SHORTLOOP(P,r) computes a shortest basis for
the persistent homology group H*" (R(P)).

SHORTLOOP(P, 1)

1: Compute Rips complex R?"(P).

2: Let K be R?"(P) where edges of R*"(P)\R"(P) are
weighted with large weight 1.

3: Compute the shortest basis for H(K).

4: Return first k& loops from the computed basis where % is
the rank of the H{(R"(P)) — H{(R*"(P)).
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s Let P c M be an e-sample and
4e <7 < min{gp(M), pe(M)}.




s Let P c M be an e-sample and
4e <7 < min{gp(M), pe(M)}.

s Let g be a geodesic loop in M. Thereis aloop g in C"(P)
so that [h(g)] = [¢g] where h Is a homotopy equivalence
and Len(g) < (1 + %) Len(g).




s Let P c M be an e-sample and
4e <7 < min{gp(M), pe(M)}.




s Let P c M be an e-sample and
4e <7 < min{gp(M), pe(M)}.

s IfG={g1,....9:} and G’ ={g}, ..., 9.} are the generators of
a shortest basis of H{ (M) and H;(K) respectively, then
we have Len(G’) < (1 + %)Len(G).




s Let P c M be an e-sample and
4e <7 < min{gp(M), pe(M)}.




s Let P c M be an e-sample and
4e <7 < min{gp(M), pe(M)}.

o Let G and G’ be defined as before.




s Let P c M be an e-sample and
4e <7 < min{gp(M), pe(M)}.

o Let G and G’ be defined as before.
s We have Len(G) < (1 + 3 ( ))Len(G’)




s Let P c M be an e-sample and
de < < min{}/3p(M), po(M)}.




s Let P c M be an e-sample and
de < < min{}/3p(M), po(M)}.

s Let G and G’ be a shortest basis of H, (M) and H; (K)
respectively.




s Let P c M be an e-sample and
de < < min{}/3p(M), po(M)}.

s Let G and G’ be a shortest basis of H, (M) and H; (K)
respectively.

L—Len(G) < Len(G’) < (14 %£)Len(G).

3p2 (M)

» We have




» Algorithms for shortest basis of the first homology groups
of a simplicial complex and point sampled manifolds.




Conclusions

s Algorithms for shortest basis of the first homology groups
of a simplicial complex and point sampled manifolds.

s What about higher dimensional homology groups?

Recent results of [CF10] indicate that this problem is
NP-hard.
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Conclusions

s Algorithms for shortest basis of the first homology groups
of a simplicial complex and point sampled manifolds.

s What about higher dimensional homology groups?
Recent results of [CF10] indicate that this problem is
NP-hard.

» What about shortest homologous loop/cycle? Under 72,
the problem is NP-hard [CF10]. Under Z, surprisingly
this optimization is polynomial time solvable for a large
class [DHK10].
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Conclusions

s Algorithms for shortest basis of the first homology groups
of a simplicial complex and point sampled manifolds.

s What about higher dimensional homology groups?
Recent results of [CF10] indicate that this problem is
NP-hard.

» What about shortest homologous loop/cycle? Under 72,
the problem is NP-hard [CF10]. Under Z, surprisingly
this optimization is polynomial time solvable for a large
class [DHK10].

s Software ShortLoop IS avallable from authors’ web-pages.
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Thank you!
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