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Contributions

Inference of topology and geometry of a hidden manifold
from its point data is a fundamental problem.

An algorithm to compute a set of loops from point data
that approximate a shortest basis of the homology
group H1(M) of the sampled manifold M .

A polynomial time algorithm for computing a shortest
basis of H1(K) for any finite simplicial complex K

embedded in an Euclidean space.
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Background

Algorithms for computing homology groups from the
point data [CO08].

Cycles from persistence algorithms[ELZ02] lack
geometry.

Reconstruction of the sampled space (can be costly).

Rips, Čech or witness complexes are less constrained.
We use Rips complex.

2-manifold triangulations [EW05].

NP-hard for higher dimenisonal homology groups
[CF10].
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Homology groups & generators

Hj(T):j-dimensional homology group of T under Z2.

The elements of H1(T) are equivalent classes [g] of
1-dimensional cycles g, also called loops.

A minimal set {[g1], ..., [gk]} generating H1(T) is called its
basis.

Here k = rank(H1(T)).

We associate a weight w(g) ≥ 0 with each loop g in T.

The length of a set of loops G = {g1, ..., gk} is given by
Len(G) = Σk

i=1w(gi).

A shortest basis of H1(T) is a set of k loops with
minimal length generating H1(T).
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Theorem 1

Let K be a finite simplicial complex with non-negative
weights on edges.

A shortest basis for H1(K) can be computed in O(n4)

time where n = |K|.
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Shortest basis

H1(K) is a vector space and supports matroid theory.

If a set of loops L in K contains a shortest basis, then
the greedy set G chosen from L is a shortest basis by
matroid theory.

The greedy set G is an ordered set of loops {g1, ..., gk}

satisfying the following conditions:
g1 is the shortest loop in L nontrivial in H1(K);
gi+1 is the shortest loop in L independent of g1, ..., gi.
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Canonical loop

Let T be a shortest path tree in K rooted at p.

p

q1

q2
e

For q1, q2 ∈ P ,
spT (q1, q2) denotes the unique
path from q1 to q2 through p in T .

Let ET be the set of edges in T .

The canonical loop
for a non-tree edge e is defined as

T (e) = spT (p, q1) ◦ e ◦ spT (q2, p).
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Candidate loops

A simple cycle l is tight if it contains a shortest path
between every pair of points in l.

Proposition Loops in a shortest basis of H1(K) are tight.

Let Cp be the set of all canonical loops with respect to p:

Cp = {T (e) : e ∈ E\ET}.

Proposition ∪p∈P Cp contains all tight loops and hence
any shortest basis.

Let Gp be the greedy set chosen from Cp.

Proposition The greedy set chosen from ∪p∈P Gp is a
shortest basis of H1(K).
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Computing Gp

Proposition CANONGEN(p,K) outputs Gp.

CANONGEN(p,K)

1: Construct a shortest path tree T in K with p as the root.

2: For each non-tree edge e = (q1, q2) ∈ E\ET , let T (e) be
the canonical loop of e.

3: Run the persistence algorithm based on the following
filtration of K: vertices in P = Vert(K), tree edges in T ,
non-tree edges in the canonical order, triangles in K.
Return the set of canonical loops associated with
k = rank(H1(K)) edges unpaired after the algorithm.
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Computing shortest basis

SPGEN(K)
1: For each p ∈ P = Vert(K), set Gp := CANONGEN(p,K).
2: Sort all loops in ∪pGp by lengths in the increasing order.
3: Let g1, ..., gk|P | be this sorted list. Initialize G := {g1}.
4: for i := 2 to k|P |, do
5: if |G| = k, then
6: Exit the for loop.
7: else if gi is independent of loops in G, then
8: Add gi to G.
9: end if

10: end for
11: Return G.
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Computing independence

How to determine if g is independent of loops in G?

For each loop g′1, ..., g
′
s in G we add triangles to fill it.

We choose a dummy vertex, say v, and add triangles
vvivi+1 for each edge vivi+1 of the loops to be filled.

These triangles destroy the generators g′1, ..., g
′
s. They

destroy g as well if and only if g is dependent on g ′1, ..., g
′
s

[Chen-Freedman].

Whether g is rendeded trivial can be determined by
augmenting the filtration of K with the simplices in K′\K

and continuing the persistence algorithm.
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Approximation from point cloud

Let P ⊂ R
d be a point set sampled from a smooth closed

manifold M ⊂ R
d embedded isometrically.

We want to approximate a shortest basis of H1(M) from
P .

Compute a complex K from P . Compute a shortest
basis of H1(K). Argue that if P is dense, a subset of
computed loops approximate a shortest basis of H1(M)

within constant factors.
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Complexes

Let P ⊂ R
d be a point set. B(p, r) denotes an open d-ball

centered at p with radius r.

The Čech complex Cr(P ) is a simplicial complex where
a simplex σ ∈ Cr(P ) iff Vert(σ), the vertices of σ, are in P

and ∩p∈Vert(σ)B(p, r/2) 6= 0.

The Rips complex Rr(P ) is a simplicial complex where
a simplex σ ∈ Rr(P ) if and only if Vert(σ) are within
pairwise Euclidean distance of r.

Proposition For any finite set P ⊂ R
d and any r ≥ 0, one

has Cr(P ) ⊆ Rr(P ) ⊆ C2r(P ).
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Point set P
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Balls B(p, r/2) for p ∈ P
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Čech complex Cr(P )
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Rips complex Rr(P )
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Manifold constants and sampling

Geodesic ball: BM (p, r) = {q | dM (p, q) < r}.

There is a rp > 0 for each p ∈ M where rp is the
supremum r so that BM (p, r) is convex (the minimizing
geodesics between any two points in BM (p, r) lie in
BM (p, r)).

Convexity radius of M : ρc(M) = infp∈Mrp.

ρ(M) is the reach defined as the minimum distance
between M and its medial axis.

P is an ε-sample of M if B(x, ε) ∩ P 6= ∅ for each x ∈ M .
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Approximation Theorem

Let M ⊂ R
d be a smooth, closed manifold with l as the

length of a shortest basis of H1(M) and k = rank H1(M).

Given a set P ⊂ M of n points which is an ε-sample of M

and 4ε ≤ r ≤ min{1
2

√

3
5ρ(M), ρc(M)}, one can compute a

set of loops G in O(nn2
ent) time where

1

1 + 4r2

3ρ2(M)

l ≤ Len(G) ≤ (1 +
4ε

r
)l.

Here ne, nt are the number of edges and triangles in
R2r(P ).
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Using Rips complexes

Let ι∗: H1(R
r(P )) → H1(R

2r(P )) and Hr,2r
1 (P )=im ι∗.

A shortest basis of Hr,2r
1 (R(P )) coincides with a shortest

basis of H1(C
r(P )).

A shortest basis of H1(C
r(P )) has length within a small

factor of the length of a shortest basis of H1(M).

We weight edges in R2r(P ), creating a complex K. Each
edge e ∈ R2r(P ) \ Rr(P ) has a large weight W . Other
edges have lengths as their weights.

R
r(P ) R

2r(P )
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Approximation Algorithm

Theorem SHORTLOOP(P, r) computes a shortest basis for
the persistent homology group Hr,2r

1 (R(P )).

SHORTLOOP(P, r)

1: Compute Rips complex R2r(P ).

2: Let K be R2r(P ) where edges of R2r(P )\Rr(P ) are
weighted with large weight W .

3: Compute the shortest basis for H1(K).

4: Return first k loops from the computed basis where k is
the rank of the H1(R

r(P )) → H1(R
2r(P )).
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Connecting Cr(P ) and M

f
MP r

t

h = t ◦ f

Cr(P )
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Bounding Lengths

Let P ⊂ M be an ε-sample and
4ε ≤ r ≤ min{1

2ρ(M), ρc(M)}.

Let g be a geodesic loop in M . There is a loop ĝ in Cr(P )

so that [h(ĝ)] = [g] where h is a homotopy equivalence
and Len(ĝ) ≤ (1 + 4ε

r
)Len(g).
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Upper bound

Let P ⊂ M be an ε-sample and
4ε ≤ r ≤ min{1

2ρ(M), ρc(M)}.

If G = {g1, ..., gk} and G′ = {g′1, ..., g
′
k} are the generators of

a shortest basis of H1(M) and H1(K) respectively, then
we have Len(G′) ≤ (1 + 4ε

r
)Len(G).
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Lower bound

Let P ⊂ M be an ε-sample and
4ε ≤ r ≤ min{1

2ρ(M), ρc(M)}.

Let G and G′ be defined as before.

We have Len(G) ≤ (1 + 4r2

3ρ2(M))Len(G′).
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Length Approximation Theorem

Let P ⊂ M be an ε-sample and

4ε ≤ r ≤ min{1
2

√

3
5ρ(M), ρc(M)}.

Let G and G′ be a shortest basis of H1(M) and H1(K)

respectively.

We have 1

1+ 4r2

3ρ2(M)

Len(G) ≤ Len(G′) ≤ (1 + 4ε
r

)Len(G).
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Conclusions

Algorithms for shortest basis of the first homology groups
of a simplicial complex and point sampled manifolds.

What about higher dimensional homology groups?
Recent results of [CF10] indicate that this problem is
NP-hard.

What about shortest homologous loop/cycle? Under Z2

the problem is NP-hard [CF10]. Under Z, surprisingly
this optimization is polynomial time solvable for a large
class [DHK10].

Software ShortLoop is available from authors’ web-pages.
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Thank you!
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