
Maintaining Deforming Surface Meshes∗

Siu-Wing Cheng† Tamal K. Dey‡

Abstract

We present a method to maintain a mesh approximating a

deforming surface, which is specified by a dense set of sam-

ple points. We identify a reasonable motion model for which

a provably good surface mesh can be maintained. Our algo-

rithm determines the appropriate times at which the mesh

is updated to maintain a good approximation. The updates

use simple primitives, and no costly computation such as

line-surface intersection is necessary. Point insertions and

deletions are allowed at the updates. Each update takes time

linear in the size of the current sample set plus the new sam-

ple points inserted. We also construct examples for which,

under the same model, no other algorithm makes asymptot-

ically fewer changes to the mesh than our algorithm.

1 Introduction.

Digital simulations of deforming bodies often require
a surface mesh to be maintained as time progresses.
A major concern is the maintenance of a non-self-
intersecting mesh that reflects the geometry of the de-
forming surface. In this paper we study the problem of
maintaining a surface mesh to approximate an unknown
deforming surface. We are given a set of dense sample
points (ε-sample) on the deforming surface, a subset of
which constitutes the vertex set of the mesh.

We do not deal with the generation of sample points
to maintain appropriate density because it may be
obtained by different mechanisms in different situations.
For example, Pandya, Gao and Hwang [14] imaged a
moving bioprosthetic heart valve’s leaflet to determine
sample points by stereoscopy. Successive images were
used to sample the deforming leaflet. Glimm et al. [12]
described a numerical method in which the sample
points are obtained by intersecting the moving surface
with the edges of a background uniform grid. We leave
the generation of the sample set as a separate issue, and

∗Research of the first author is supported by Research Grant
Council, Hong Kong, China (612107). Research by the second
author is supported by NSF grants CCF-0430735 and CCF-
0635008.

†Department of Computer Science and Engineering, HKUST,
Clear Water Bay, Hong Kong. Email: scheng@cse.ust.hk

‡Department of Computer Science and Engineering, The
Ohio State University, Columbus, OH 43210, USA. Email:
tamaldey@cse.ohio-state.edu

focus on the problem of maintaining a deforming mesh
given a set of dense sample points.

We assume that the surface does not change topol-
ogy. However, both the geometry and the sampling den-
sity may change. The mesh is continually deformed as
its vertices move. The problem is to stop the simulation
at appropriate times and update the mesh, in order to
maintain the mesh quality. A mesh is good if its ap-
proximation error is small – pointwise in terms of the
Hausdorff distance from the surface, and normalwise in
terms of the deviations between normals of triangles and
surface normals nearby.

The related problems of meshing and reconstruct-
ing a surface in the static case has been actively stud-
ied [2, 6, 9, 10, 11]. The maintenance of geometric con-
figurations under motion has been extensively studied
within the realm of kinetic data structures [1, 5, 13].
There is no previous work on maintaining a deforming
surface mesh with theoretical guarantees when the sur-
face is unknown. One approach is to reconstruct the
surface from the set P of sample points at each update.
One may use one of the several provable surface recon-
struction algorithms available [2, 10, 11]. Most of these
algorithms run in time O(|P |2) since they compute the
3D Delaunay triangulation of P [2, 10], or uses sophis-
ticated tools to achieve a bound of O(|P | log |P |) [11].
Naturally, one would like to avoid rebuilding the mesh
at each update and, instead, use the spatial coherence to
(i) design a simpler and faster mesh update algorithm,
and (ii) determine the update times.

Our main result is that, under some mild assump-
tions on the motion and sampling, we can update the
mesh in O(|P |) time, making O(A/(εγ)2) changes to the
mesh, where A is the surface area, γ is the reach, and ε
is the sampling factor (i.e., ε is the smallest value such
that P is an ε-sample). We only require P to be an
ε-sample and P can be arbitrarily dense in some local
regions. We guarantee a small approximation error and
a bounded radius-edge ratio (ratio of the circumradius
to the smallest edge length of the triangles) at all times.
Our update algorithm uses relatively simple primitives
such as edge flips in a triangulation and constructing the
2D constrained Delaunay triangulation of O(1) points.
It builds upon our recent edge flip result [8]. During the
update, we can insert new sample points and delete ex-

isting sample points requested by the user. At the end
of the update, our algorithm computes the time for the
next update. We show that the approximation error
remains small until the next update. In Section 6 we
construct examples for which, under the same model,
no other algorithm makes asymptotically fewer changes
to the mesh in the entire simulation.

2 Preliminaries.

2.1 Background. Let Σ ⊂ R
3 be a smooth compact

surface without boundary. The medial axis is the set of
centers of all maximally empty balls. The reach γ of Σ
is the infimum of the distances of the points in Σ to its
medial axis. For any ε > 0, a discrete set P ⊂ Σ is an
ε-sample of Σ if for any point x ∈ Σ, there exists p ∈ P
such that ‖p − x‖ 6 εγ. We call P a tight ε-sample of
Σ if P is an ε-sample and the distance between some
point x ∈ Σ and its nearest sample point is εγ. For a
tight ε-sample, we call ε its sampling factor. We call
P an (ε, αε)-sample for some α 6 1 if P is an ε-sample
and the distance between any two points in P is at least
αεγ. We use nx to denote a unit normal of Σ at a point
x ∈ Σ. For a triangle pqr with vertices on Σ, we use
npqr to denote its normal. For any two vectors, line
segments or lines d1 and d2, ∠d1, d2 denote the acute
angle between the support lines of d1 and d2. Two
triangles sharing an edge e subtend two angles θ1 and θ2

around the edge with θ1 + θ2 = 2π. We call min(θ1, θ2)
the edge-angle at e. We need several geometric results
from previous work.

Lemma 2.1. ([3, 7]) For any two points x, y ∈ Σ such
that ‖x − y‖ 6 εγ for some ε 6 1

2 , ∠nx,ny 6 ε
1−ε and

∠nx, (y − x) > arccos(ε
2).

Lemma 2.2. ([10]) Let pqr be a triangle with vertices
on Σ and circumradius at most εγ. Assume that p
subtends a maximal angle in pqr. Then ∠npqr,np 6

arcsin ε + arcsin(2√
3

sin(2 arcsin ε)).

Corollary 2.1. Let τ be a triangle with vertices on Σ
and circumradius at most εγ. For any vertex p of τ ,
∠nτ ,np 6 7ε for sufficiently small ε.

2.2 Motion model. We assume that a compact,
smooth closed surface deforms within a fixed time
interval [0, I], carrying with it a dense set of sample
points. Any simulation must progress at discrete steps,
so we assume a time unit of 1 and any update of the
mesh can only be performed at integral times within
[0, I]. A mesh maintenance algorithm needs to select a
subset of integral times within [0, I], called time steps, at
which the updates are performed. The motion is frozen
during the update at a time step and resumed at the

end of the update. The updates should keep the mesh
a good approximation at all times within [0, I].

For any t ∈ [0, I], we have the following notation:
Σ(t) = deforming surface, P (t) = the set of sample
points on Σ(t), Tri(t) = surface mesh, Vert(t) = vertex
set of Tri(t), γ(t) = reach of Σ(t), ε(t) = sampling factor
of P (t). We require Vert(t) ⊆ P (t). Sometimes we abuse
the notation Tri(t) to denote its underlying space as well.

The input sample P (0) is required to be an ε-sample
for sufficiently small ε. Notice that ε(0) 6 ε as P (0) is
a tight ε(0)-sample by definition.

When the mesh is updated at a time step, the
user is allowed to insert new sample points and delete
existing sample points. It is a limitation that insertions
and deletions cannot be be allowed at all times. If
we run our mesh update algorithm whenever insertions
and deletions occur, we can still maintain the surface
mesh and its quality. However, we cannot show that
our algorithm makes asymptotically the fewest changes
to the mesh in this case. We discuss in Section 7
that if certain extra conditions are met, insertions and
deletions can be allowed at all times.

Due to insertions and deletions, the set of sample
points may change at a time step and so may the
sampling factor. Thus, for a time step t, we distinguish
between its beginning ť and its end t̂. P (ť), ε(ť),
and Tri(ť) may be different from P (t̂), ε(t̂), and Tri(t̂),
respectively. The surface and its reach do not change
from ť to t̂, so they are still denoted by Σ(t) and γ(t).

At a time step t, P (ť) may be changed by the
insertions and deletions of sample points. Take the
union of P (ť) and the sample points to be inserted at t.
We use εt to denote the sampling factor of this combined
point set. Notice that the sample points to be deleted
at t are ignored in defining εt.

We make several assumptions about the motion and
sampling. First, we assume that we know Σ(0), but
not Σ(t) for any t > 0. (In fact, we do not even need
to know Σ(0), but this simplifies our exposition.) We
do not know the deformation of the surface. We only
have access to the coordinates of the sample points at
the current time. Second, for any t ∈ [0, I], ε(t) is
sufficiently small and εt is greater than a fixed positive
constant. We do not need to know ε(t) or εt. Third,
we are given an upper bound λ on the displacement of
any point on the surface within a time unit. We assume
that λ 6 mint∈[0,I] 4ε(t)γ(t)/(5κ), where κ > 468 is a
constant fixed in advance.

It is sometimes necessary for Vert(t) to be an ε-
sample for some ε 6 1 so that Tri(t) is a good approx-
imation of Σ(t); for example, when Σ(t) is a sphere. If
λ > εγ(t) for some t, one can construct an example in
which a mesh triangle is inverted within a time unit.

This requires an upper bound of mint∈[0,I] εγ(t) on λ.

Our bound on λ is within a constant factor 4
5κ of the

best possible in the worst case.
We say that the approximation error at t is small

if the Hausdorff distance between Tri(t) and Σ(t) is
O(ε(t)γ(t)), the normal of any triangle in Tri(t) makes
an angle O(ε(t)) with surface normals nearby, and the
edge-angles in Tri(t) are at least π − O(ε(t)).

2.3 Overview of our strategy. We first select a
(2ε(0), ε(0))-sample Vert(0) from P (0). In general, at
any t > 0, the sample points not used as mesh vertices
(i.e., P (t) \ Vert(t)) are stored in the dormant lists of
some vertices. For a vertex v, dormant(v) denotes its
dormant list. (The points in dormant lists are still
sample points on the surface and they also move with
the surface. The sampling factor still refers to the
sampling factor of P (t).) We set Tri(0) to be either the
restricted Delaunay triangulation of Vert(0) if Σ(0) is
known, or we can also run any provable reconstruction
algorithm [10] on Vert(0) to construct Tri(0).

We keep some sample points in dormant lists so that
the mesh vertices form a sparse sampling of the surface.
This is necessary so that, at the next time step, we can
repair the mesh using edge flips and perform insertions
and deletions efficiently.

The next time step t2 is computed at the end of the
current time step t1. For any t ∈ [0, I], let R(t) denote
the maximum circumradius in Tri(t). We compute

t2 = t1 + dR(t̂1)/(κλ)e.

That is, we will repair the mesh and perform the next
batch of insertions and deletions specified by user at
t2. For λ 6 mint∈[0,I] 4ε(t)γ(t)/(5κ), we show that the
circumradii do not increase too much before t2. This
allows us to employ our recent edge flip result [8] at
t2 to bring the circumradii below some threshold. If a
new sample point p to be inserted is close to a vertex
v, we simply insert p into dormant(v). If p is far from
all vertices, we split the triangle abc nearest to p and
perform O(1) edge flips to keep the circumradii small.
The deletion of a vertex v is handled by projecting
the link of v onto an appropriate plane, computing
the constrained Delaunay triangulation of the projected
link, and map the 2D triangulation to a triangulation
of the link in 3D. Afterwards, O(1) edge flips are
performed to keep the circumradii small.

Theorems 2.1 and 2.2 summarize our main results.

Theorem 2.1. Assume that our motion model holds.
For any time step t > 0, our update algorithm takes
time linear in |P (ť)| plus the number of new sample
points inserted at t, and makes O(area(Σ(t))/(εtγ(t))2)

changes to the mesh. At any time t′ from t to the next
time step, Vert(t′) is a (6ε(t′), 1

5ε(t′))-sample and Tri(t′)
is a valid mesh with maximum circumradius at most
7ε(t′)γ(t′) and the approximation error at t′ is small.

Theorem 2.2. Assume that our motion model holds.
There exists examples such that no algorithm can make
asymptotically fewer changes to the mesh than our
algorithm, while keeping the approximation error small
at any t ∈ [0, I].

3 MeshUpdate.

Let t > 0 be a time step. We run a procedure
MeshUpdate at t to restore the mesh quality.

MeshUpdate

1. Call RefineVert.

2. Call Insertion.

3. Call Deletion.

RefineVert improves the mesh quality. Inser-
tion and Deletion handle the insertions and deletions
requested by the user, respectively.

The goal of MeshUpdate is to guarantee the
following global invariants at t̂:

(i) Vert(t̂) is an (3ε(t̂), 1
15ε(t̂))-sample.

(ii) R(t̂) 6 3ε(t̂)γ(t) and for any u, v ∈ Vert(t̂), ‖u −
v‖ > R(t̂)/3.

(iii) The dormant lists are disjoint. For any v ∈ Vert(t̂)
and for any p ∈ dormant(v), ‖p − v‖ 6 5R(t̂)/4.

(iv) The function that maps a point in Tri(t̂) to its
nearest point in Σ(t) is a homeomorphism.

In this section we show that the mesh quality
does not deteriorate too much from t̂ to the next
time step, provided that the global invariants hold at
t̂. Based on this, we will show in Section 5 that
RefineVert, Insertion, and Deletion can restore
the global invariants at the end of the next time step.
Theorem 2.1 then follows inductively.

3.1 Initialization. We need to initialize at time 0
so that the global invariants hold. Notice that ε(0) =
ε(0̌) = ε(0̂) as no point is inserted or deleted at time 0.

Assuming that Σ(0) is given, one can compute
ε(0)γ(0) exactly from the restricted Delaunay triangula-
tion. If Σ(0) is not given, one may reconstruct a surface
from P (0), say with the Cocone algorithm [10], and then
estimate ε(0)γ(0) within a small constant factor using
the maximum circumradius of the triangles. To simplify

the calculations, we assume that ε(0)γ(0) is computed
exactly from P (0). After computing ε(0)γ(0), we ini-
tialize the vertex set to contain an arbitrary point in
P (0). Then, we repeatedly insert the point in P (0)
whose distance from the current vertex set is largest.
We stop growing the vertex set when this distance drops
below ε(0)γ(0). The final vertex set is Vert(0). For
any point x ∈ Σ(0), there exists p ∈ P (0) such that
‖p − x‖ 6 ε(0)γ(0). If p 6∈ Vert(0), by construction,
there exists v ∈ Vert(0) such that ‖p − v‖ 6 ε(0)γ(0).
Thus, ‖x − v‖ 6 2ε(0)γ(0), implying that Vert(0) is a
2ε(0)-sample. By construction, for any u, v ∈ Vert(0),
‖u − v‖ > ε(0)γ(0). Hence, Vert(0) is a (2ε(0), ε(0))-
sample. For any p ∈ P (0) \ Vert(0), we insert p into
dormant(v), where v is the vertex nearest to p. We
set Tri(0) to be the restricted Delaunay triangulation
of Vert(0). (If Σ(0) is unknown, reconstruct a surface
from Vert(0) instead.) This completes the initialization.

Lemma 3.1. Let P be a tight ε-sample of a surface with
reach γ. Let T be a mesh with vertex set V ⊆ P . If V
is an O(ε)-sample, the maximum circumradius in T is
at least 4εγ/5 for sufficiently small ε.

Proof. Assume that the maximum circumradius is at
most εγ; otherwise, we are done. Let y be the point
on the surface that achieves the distance εγ from P .
Consider the 3D Voronoi diagram of V . Let a be the
vertex whose Voronoi cell contains y. Because P is a
tight ε-sample and V is an O(ε)-sample, ‖a − y‖ > εγ
and ‖a − y‖ = O(εγ). For each triangle incident to a,
we obtain an infinite planar wedge by extending the
triangle beyond the edge opposite a. Let the wedge
W induced by the triangle abc be the one closest to y.
Let z be the point in W closest to y. We consider the
case of z lying in the interior of W . The case of z lying
on the boundary of W can be handled similarly. The
acute angle between ay and W is at most ∠nabc,na

plus the angle between ay and the tangent plane at a.
By Lemma 2.1 and Corollary 2.1, this is O(ε). Thus,
‖a − z‖ > ‖a − y‖ cos(O(ε)) > 4εγ/5 for sufficiently
small ε. Consider the 2D Voronoi diagram of {a, b, c}
in the plane of abc. Because y projects orthogonally
onto z and y lies in the 3D Voronoi cell owned by a, z
lies in the 2D Voronoi region owned by a. Thus, the
circumcenter of abc is further from a than z, i.e., the
circumradius of abc is at least 4εγ/5.

Lemma 3.2. The global invariants hold at 0.

Proof. We showed before that Vert(0) is a (2ε(0), ε(0))-
sample. Since Tri(0) is a restricted Delaunay triangu-
lation, R(0) 6 2ε(0)γ(0). Thus, for any u, v ∈ Vert(0),

‖u−v‖ > ε(0)γ(0) > R(0)/2. By construction, the dor-
mant lists are disjoint. Moreover, for any v ∈ Vert(0)
and for any p ∈ dormant(v), ‖p − v‖ 6 ε(0)γ(0), which
is at most 5R(0)/4 by Lemma 3.1. Since Tri(0) is a
triangulated 2-manifold with maximum circumradius
O(ε(0)γ(0)), the function that maps a point in Tri(0) to
its nearest point in Σ(0) is a homeomorphism [10].

3.2 Deterioration of the mesh. We quantify the
deterioration of the mesh between two successive time
steps in Lemma 3.6. We need some technical results.

Lemma 3.3. Let t1 < t2 be two successive time steps.
Assume that the global invariants hold at t̂1. For any
t ∈ [t1, t2], (t − t1)λ 6 2R(t̂1)/κ.

Proof. Follows from the definition of time steps.

Lemma 3.4. Let t1 < t2 be two successive time steps.
Assume that the global invariants hold at t̂1. Any
edge in the surface mesh turns an angle no more than
arcsin 12

κ−12 from t̂1 to ť2.

Proof. Consider an edge pq at t̂1. The length of
pq decreases by at most 2(t2 − t1)λ 6 4R(t̂1)/κ by
Lemma 3.3. By the global invariants, the length of pq
is at least R(t̂1)/3 at t̂1. So the length of pq is at least
(1/3 − 4/κ) · R(t̂1) within [t̂1, ť2]. Let θ be the angle
turned by pq. The displacement of q relative to p within
[t̂1, ť2] is at most 4R(t̂1)/κ by Lemma 3.3. Then, sin θ
is at most 4R(t̂1)/κ divided by (1/3− 4/κ) ·R(t̂1).

Lemma 3.5. Let t1 < t2 be two successive time steps.
Assume that the global invariants hold at t̂1. For any
t ∈ [t̂1, ť2], ε(t)γ(t) > (1

3 − 4
κ)R(t̂1).

Proof. Let x be the point in Σ(t̂1) whose distance
from the nearest sample point in P (t̂1) is ε(t̂1)γ(t̂1) .
Therefore, at time t, the distance from x to the nearest
sample point in P (t) is at least ε(t̂1)γ(t̂1)−2(t− t1)λ >

ε(t̂1)γ(t̂1) −
4
κR(t̂1) > (1

3 − 4
κ)R(t̂1) by Lemma 3.3 and

the global invariants at t̂1. By the sampling condition,
this distance is at most ε(t)γ(t).

Lemma 3.6. Let t1 < t2 be two successive time steps.
Assume that κ > 468 and the global invariants hold at
t̂1. The following hold for any t ∈ [t̂1, ť2]:

(i) R(t) < κ2−144
κ(κ−348)R(t̂1);

(ii) Vert(t) is a (5ε(t), 1
15ε(t))-sample;

(iii) 4ε(t)γ(t)/5 6 R(t) 6 12ε(t)γ(t);

(iv) for any v ∈ Vert(t) and for any p ∈ dormant(v),
‖p − v‖ 6 4ε(t)γ(t).

Proof. Consider a triangle pqr at any time t ∈ [t̂1, ť2].
Let p′q′r′ denote this triangle at t̂1. Let `′ denote
the shortest edge length of p′q′r′ at t̂1. By the global
invariant, `′ > R(t̂1)/3. Thus, the shortest edge length
of pqr is at most `′ + 2(t − t1)λ 6 `′ + 4R(t̂1)/κ 6

(1 + 12/κ)`′. Let θ′ denote the smallest angle of p′q′r′

at t̂1. By Lemma 3.4, the smallest angle of pqr at t is
at least θ′ − 2 arcsin(12/(κ− 12)).

Let R′ and R denote the circumradii of p′q′r′

and pqr, respectively. Observe that R′ = `′

2 sin θ′

and R 6
(1+12/κ)`′

2 sin(θ′−2 arcsin(12/(κ−12))) . Therefore,

R 6
(1+12/κ)R′ sin θ′

sin(θ′−2 arcsin(12/(κ−12))) . The right hand

side is maximized when θ′ is minimized. Since
the global invariants imply that sin θ′ > 1/6,

R 6
(1+12/κ)R′

cos(2 arcsin 12

κ−12)−6 sin(2 arcsin 12

κ−12) cos(arcsin 1

6)
6

(1+12/κ)R′

cos(2 arcsin 12

κ−12)−6 sin(2 arcsin 12

κ−12)
. Then we simplify us-

ing the inequalities cosx > 1 − x, sin x < x, and
arcsinx < 2x to obtain (i).

For any point z ∈ Σ(t), there exists p ∈ P (t) such
that ‖p − z‖ 6 ε(t)γ(t). If p 6∈ Vert(t), p ∈ dormant(v)
for some v ∈ Vert(t). By the global invariant and the
maximum displacement of points, ‖p− v‖ 6 5R(t̂1)/4+
4R(t̂1)/κ. Thus, ‖v − z‖ 6 ε(t)γ(t) + (5/4 + 4/κ)R(t̂1).
By Lemma 3.5, ‖v − z‖ 6 19κ

4κ−48ε(t)γ(t) < 5ε(t)γ(t) for
κ > 468. This proves the first half of (ii).

We prove (iii) first. Since Vert(t) is a 5ε(t)-
sample, by Lemma 3.1, R(t) > 4ε(t)γ(t)/5. By (i) and

Lemma 3.5, R(t) 6 κ2−144
κ(κ−348)R(t̂1) 6 κ2−144

κ(κ−348) · 3κ
κ−12 ·

ε(t)γ(t) 6 12ε(t)γ(t) for κ > 468.
By the global invariant and the maximum dis-

placement of points, the nearest neighbor distance in
Vert(t) is at least (1/3 − 4/κ)R(t̂1). By (i) and (iii),

R(t̂1) >
κ(κ−348)
κ2−144 R(t) >

4κ(κ−348)
5(κ2−144) ε(t)γ(t). Substitut-

ing κ > 468, the nearest neighbor distance in Vert(t)
is bounded from below by ε(t)γ(t)/15. This proves the
second half of (ii).

The correctness of (iv) can be proved similarly
using the global invariants, the maximum displacement
of points, and Lemma 3.5.

3.3 Faithful approximation. Is the mesh non-self-
intersecting? For any t ∈ [0, I], define the function
µt : Tri(t) → Σ(t) that maps a point in Tri(t) to its
nearest point in Σ(t). Lemma 3.7 shows that µt is a
homeomorphism, which implies that Tri(t) is non-self-
intersecting. We omit the proof which is based on the

continuity of the motion. A similar result was proved
in [4] assuming that the triangles are Delaunay. This
assumption may not hold in our case.

Lemma 3.7. Let t1 < t2 be two successive time steps.
Assume that the global invariants hold at t̂1. For any
t ∈ [t̂1, ť2], µt is a homeomorphism.

Lemma 3.7 implies that the edge-angles are greater
than π/2 at any t ∈ [t̂1, ť2]. We can then apply
Lemma 2.1 and Corollary 2.1 to show that the approx-
imation error at any t ∈ [t̂1, ť2] is small.

4 Edge flips.

Define the diametric ball of a triangle abc as the smallest
ball containing a, b, and c on its boundary. We call the
edge ab between two triangles abc and abd flippable if
d lies in the diametric ball of abc. (Under the setting
of this paper, if d lies in the diametric ball of abc, c
lies in the diametric ball of abd too [8].) Flipping ab
means that ab is flippable, and triangles abc and abd
are replaced by acd and bcd. We extract the following
theorem from [8].

Theorem 4.1. ([8]) Let V be an (ε, αε)-sample of a
closed surface for some α 6 1 and sufficiently small
ε. Let T be a mesh with vertex set V such that the
maximum circumradius in T is O(εγ), where γ is the
reach, and the edge-angles in T are at least π − O(ε).
Then: (i) among the triangles whose diametric balls
contain a vertex v ∈ V , there is one with a flippable
edge; (ii) if abc, abd ∈ T and ab is flippable, the
maximum circumradius of abc and abd is greater than
the maximum circumradius of acd and bcd; (iii) repeated
edge flips can make the diametric balls of all triangles
empty of vertices; (iv) after any sequence of edge flips,
the function that maps a point in the mesh to its nearest
point on the surface is a homeomorphism.

Theorem 4.1 implies that the surface mesh obtained
by repeated edge flips is Delaunay. The lemma below
strengthens the above result further. We omit its proof.

Lemma 4.1. Assume the same conditions in Theo-
rem 4.1. For any v ∈ V , (i) there are O(1) changes
in the edges incident to v in any sequence of edge flips;
(ii) we can perform O(1) edge flips in O(1) time to make
v lie outside the diametric balls of all triangles.

For any ball B and any β 6 1, βB denotes the
concentric ball with radius β ·radius(B). The next result
bounds the circumradius of a triangle τ if a “fraction”
of its diametric ball is empty of any sample point.

Lemma 4.2. Let P be an ε-sample of a closed surface
with reach γ. Let T be a mesh with vertex set V ⊆ P
such that V is an O(ε)-sample. Let B be the diametric
ball of a triangle in T . If βB is empty of points in P for
some β > 2/5, radius(B) 6 3εγ for sufficiently small ε.

Proof. Let B be the diametric ball of the triangle pqr.
Let R = radius(B). Let z be the center of B. It is
known that B∩Σ is a topological disk that lies in a thin
slab of width O(ε2γ) parallel to the equator of B. So
the line through z orthogonal to the plane of pqr inter-
sects Σ. Let x be the intersection point closest to z. By
Lemma 2.1 and Corollary 2.1, the angle between px and
pqr is O(ε). Thus, ‖x− z‖ 6 R tan(O(ε)). For β > 2/5
and sufficiently small ε, βR − R tan(O(ε)) > R/3. So
the ball B′ centered at x with radius R/3 lies inside
βB. As βB does not contain any point in P , neither
does B′. So R/3 6 εγ ⇒ R 6 3εγ.

5 Update routines.

Let t denote the current time step. We describe
and analyze the procedures RefineVert, Insertion,
and Deletion. They assume certain conditions on
the input and intermediate results, which we call the
(k, α, ε)-conditions for some constants k and α:

(i) the set P of sample points is an ε-sample of Σ(t)
and the sampling factor of P is Ω(ε);

(ii) the vertex set V ⊆ P is a (kε, αε)-sample;

(iii) the maximum circumradius is at most 3kεγ(t);

(iv) for any v ∈ V and for any p ∈ dormant(v), ‖p−v‖ 6
2k
3 εγ(t).

5.1 RefineVert. When RefineVert is called in
MeshUpdate, the (5, 1

15 , ε(ť))-conditions hold by
Lemma 3.6. Since RefineVert will also be called in
Insertion and Deletion, we analyze RefineVert as-
suming that the input satisfies the (k, α, ε)-conditions
for general values of k, α, and ε, and that the sampling
factor is ε.

RefineVert keeps inserting points in dormant lists
as vertices until their distances from the current vertex
set becomes less than a certain fraction of the maximum
circumradius. So the largest diametric ball of triangles
in the final mesh is empty of vertices and almost
empty of sample points, which allows us to bound the
maximum circumradius in terms of εγ(t). Note that
the set of sample points do not change and neither does
the sampling factor. Only the vertex set is updated.
We maintain the (k, α′, ε)-conditions throughout the
execution of RefineVert, where α′ = min{α, 1/15}.

RefineVert

1. For each vertex v, set Sv to be an empty list.

2. Loop

(a) Set R to be the maximum circumradius
of triangles in the current mesh.

(b) For each vertex v, scan dormant(v) to
remove the subset Sv of vertices p such
that ‖p− v‖ > R/3.

(c) While some Sv is non-empty, do:

i. Pick a non-empty Sv and remove a
point p from it.

ii. Determine the vertex w and the
triangle abc nearest to p.

iii. If ‖p − w‖ 6 R/3, insert p to
dormant(w); else call Add(p, abc).

(d) Flip edges to make the diametric balls of
all triangles empty of vertices.

until the maximum circumradius of triangles
in the current mesh is greater than 2R/3.

Add(p, abc)

1. Split abc using p.

2. Flip edges to make the diametric balls of
triangles incident to p empty.

Except for step 2(c) and Add, the rest of RefineV-
ert is self-explanatory and, in each iteration of the loop
in step 2, they take time linear in the number of sample
points. The maximum circumradius starts out to be at
most 3kεγ(t). For the loop in step 2 of RefineVert to
iterate again, the maximum circumradius must decrease
to two-third of its value or less. By Lemma 3.1, it is at
least 4εγ(t)/5 at the termination of RefineVert. So
there are O(1) iterations of the while-loop at step 2.

In step 2(c), using the inductive assumption of the
(k, α′, ε)-conditions, we can show that for any vertex v
and any p ∈ Sv, ‖p − v‖ 6 2k

3 εγ(t). So we can search
the mesh from p in O(1) time to find the nearest vertex
w. We also find the nearest triangle abc in O(1) time.

We elaborate on Add. The splitting of abc works
as follows. Let p̃ be the point on abc nearest to p.
We assume that p̃ is in the interior of abc and so pp̃
is perpendicular to abc. The case of p̃ lying on the
boundary of abc can be handled similarly. We connect
p̃ to the vertices of abc to split it into three triangles.
Consider abp̃. If p̃ and the circumcenter of abp̃ lie on
opposite sides of ab and ab is flippable, then we flip ab.

If ab is flipped, this completes the splitting; otherwise,
repeat the above to acp̃ and bcp̃. (It is possible that
no edge of abc is flipped in the end.) Afterwards, we
move the vertex p̃ to the position of p, which deforms
the mesh slightly. We claim that all new triangles in
the final mesh have O(1) radius-edge ratio. The proof
is omitted. By Lemma 4.1(ii), step 2 of Add can be
done in O(1) time. Add has the following effect.

Lemma 5.1. If the (k, α′, ε)-conditions hold and the
distance from p to any other vertex is at least α′εγ(t),
Add(p, abc) preserves the (k, α′, ε)-conditions.

Proof. The insertion of p in step 1 of ADD may
possibly violate the bound of 3kεγ(t) on the maximum
circumradius in the (k, α′, ε)-conditions. Nevertheless,
step 1 ensures that the new triangles incident to p
have O(1) radius-edge ratio. Therefore, we can apply
Lemma 4.1 for the flip sequence in step 2 of Add.
Then, we invoke Lemma 4.2 with both P and V being
equal to the current vertex set. So the maximum
circumradius in the star of p is at most 3kεγ(t) at the
end of ADD. If a pair of triangles not in the star of p
are flipped, since the (k, α′, ε)-conditions held before
the insertion of p, their maximum circumradii were at
most 3kεγ(t) before the flip and it can only decrease
after the flip by Theorem 4.1. Other conditions are
inherited or guaranteed by assumption.

By Lemma 3.1, R is always greater than or equal to
4εγ(t)/5 in RefineVert. So when p is inserted in step
2(c)(iii), ‖p − w‖ > R/3 > 4εγ(t)/15 > α′εγ(t), where
α′ = min{α, 1/15}. Then, the inductive maintenance
of the (k, α′, ε)-conditions follows from Lemma 5.1 and
the fact that step 2(d) can only decrease the maximum
circumradius. At the termination of RefineVert, step
2(d) allows us to bootstrap from the (k, α′, ε)-conditions
to obtain the following stronger guarantees.

Lemma 5.2. Assume that the (k, α, ε)-conditions hold
and the sampling factor is ε. RefineVert performs
O(area(Σ(t))/(εγ(t))2) edge flips and takes O(|P |) time,
where P is the set of sample points. A mesh T with
vertex set V ⊆ P is returned such that: (i) V is an
(3ε, α′ε)-sampling of Σ(t), where α′ = min{α, 1/15};
(ii) the maximum circumradius R in T is at most
3εγ(t); (iii) for any p ∈ P \ V , p ∈ dormant(v) for
some v ∈ V and ‖p− v‖ 6 R/2.

Proof. The last execution of step 2(b) ensures that for
any vertex v and for any p ∈ dormant(v), ‖p − v‖ is at
most 1/3 of the maximum circumradius at that time.
Afterwards, the maximum circumradius may decrease
to at least 2/3 of its original value for the loop to
terminate. Therefore, (iii) is correct.

Let pqr be a triangle with maximum circumradius
at the termination of RefineVert. Let R be its
circumradius. Let B be the diametric ball of pqr. We
claim that 1

2B is empty of any sample point. If there
is a sample point inside 1

2B, it would be at distance
greater than R/2 from other vertices. Thus, this sample
point would be at distance greater than R′/3 from
other vertices at the last execution of step 2(b), where
R′ 6 3R/2 was the maximum circumradius then. This
is a contradiction because this sample point would have
been inserted as a new vertex in step 2(c). By our claim
and Lemma 4.2, R 6 3εγ(t), which proves (ii).

The lower bound of α′εγ(t) on the intervertex
distances follows from the inductive maintenance of the
(k, α′, ε)-conditions. For any point z ∈ Σ(t), there exists
p ∈ P such that ‖p − z‖ 6 εγ(t). If p 6∈ Vert(t),
p ∈ dormant(w) for some w ∈ Vert(t). By (iii), ‖p−w‖ 6

R/2. Thus, if v is the nearest vertex in Vert(t) to z, then
‖v − z‖ 6 ‖p − z‖ + ‖p − w‖ 6 εγ(t) + R/2 < 3εγ(t).
This shows that the vertices form a (3ε, α′ε)-sampling.

The total running time of one iteration of the loop
in step 2 is clearly O(|P |) based on our discussion of
the implementation. By the (k, α′, ε)-conditions, the
number of vertices on Σ(t) is Θ(area(Σ(t))/(εγ(t))2)
throughout one iteration of the loop. As discussed
before, each call of ADD generates O(1) edge flips.
By Theorem 4.1, the number of edge flips in step 2(d)
is linear in the number of vertices. So RefineVert
performs O(area(Σ(t))/(εγ(t))2) edge flips in one
iteration of the loop. How many iterations are there?
The maximum circumradius must decrease to two-third
of its value or less for the loop to iterate again. We
know that the maximum circumradius starts out to be
at most 3kεγ(t). By Lemma 3.1, it is at least 4εγ(t)/5
at the end. Therefore, there are O(log k) = O(1) it-
erations. This proves the time complexities stated.

For the call of RefineVert in MeshUpdate, we
instantiate Lemma 5.2 with ε = ε(ť), k = 5, and
α = α′ = 1/15. If there is no insertion or deletion at the
time step t, RefineVert already restores the global in-
variants at t̂: the working of RefineVert guarantees
that for any u, v ∈ Vert(t̂), ‖u − v‖ > R(t̂)/3; the cor-
rectness of invariant (iv) follows from Theorem 4.1(iv);
the other invariants follow from Lemma 5.2.

5.2 Insertion. Let R be the maximum circumradius
in the current mesh. For each new sample point p
to be inserted, we find the vertex w and the triangle
abc nearest to p. If ‖p − w‖ 6 R/3, insert p into
dormant(w); otherwise, call Add(p, abc). After inserting
the new sample points, Insertion calls RefineVert
and returns.

Recall that εt is the sampling factor of the union
of P (ť) and the new sample points to be inserted at
the time step t. Although the sampling factor drops
from ε(ť) to εt during the insertion, ε(ť)/εt = O(1)
by our motion model. When inserting a new sample
point p, it may be reasonable to assume that a vertex v
close to p is also given in the input. Then, it suffices
to search the mesh from v in O(1) time to find the
vertex and triangle nearest to p. If such information
is unavailable in the input, we can invoke a more
expensive search as follows. We implicitly divide R

3 into
a uniform grid with cell width 30R(ť). By making one
of the occupied cell the “origin”, the cells can naturally
be given integer coordinates, with each coordinate in
the range [−|P (ť)|, |P (ť)|]. For each v ∈ Vert(ť), we
compute the coordinates iv of the grid cell occupied by
Vert(ť) in O(1) time. Clearly, at most |P (ť)| grid cells
are occupied. Therefore, we can radix-sort the iv’s for
all v ∈ Vert(ť) in lexicographical ordering in O(|P (ť)|)
time. Then, in linear time we obtain a list L of sets:
each set contains the vertices in the same grid cell and
L is sorted in lexicographical order of the coordinates of
the grid cells storing the sets. Similarly, we can compute
the sorted list of coordinates of the cells occupied by the
new sample points, as well as the cells adjacent to these
occupied cells. By merging this list with L, for each
new sample point p, we obtain the grid cell containing
p and its nine adjacent cells. We check all vertices in
these ten cells to find the vertex wp nearest to p. The
above takes time linear in the size of the mesh plus the
number of new sample points.

When a new sample point p is actually inserted, wp

may not be the nearest vertex as new vertices may have
been added by previous insertions. Still, we can search
the mesh from wp in O(1) time to find the vertex and
triangle nearest to p. The correctness follows from an
analysis similar to that of RefineVert.

Lemma 5.3. At a time step t, Insertion takes time
linear in |P (ť)| plus the number of new sample points
inserted, and it performs O(area(Σ(t))/(εtγ(t))2) edge
flips. Afterwards, the properties stated in Lemma 5.2
hold with ε = εt and α = ε(ť)/(15εt).

5.3 Deletion. By Lemma 5.2 or Lemma 5.3 depend-
ing on whether points have been inserted, the input
to Deletion satisfies the (3, 1

15 , εt)-conditions. First,
we mark the sample points to be deleted. The marked
points in dormant lists are deleted right away. We can-
not delete the marked vertices all at once. Otherwise,
the density of the vertices may become very uneven and
it is unclear how to obtain the global invariants after-
wards. Instead, Deletion proceeds in iterations.

Deletion

While there is a marked sample point, do:

1. Delete the marked points in dormant lists.

2. Call UserDeletion.

3. Call Decimation.

4. Call RefineVert.

UserDeletion

1. Set R to be the maximum circumradius.

2. While there is a marked vertex, do:

(a) Pick a marked vertex v.

(b) Collect two sets S1 and S2 of marked
vertices w such that S1 = {w marked :
‖v − w‖ 6 2R} and S2 = {w marked :
2R < ‖v − w‖ 6 4R}.

(c) Find an unmarked vertex u at distance
4R or less from v. Find a vertex w∗ ∈ S1

such that dormant(w∗) is non-empty.

(d) If neither u nor w∗ was found, call
Remove(w) for each w ∈ S1 and return.

(e) For each w ∈ S1 ∪ S2, call Remove(w).

(f) If u was found, for each w ∈ S1 ∪
S2, append dormant(w) to dormant(u).
Otherwise, w∗ was found and we do:

i. Remove some q from dormant(w∗).

ii. Find the triangle abc nearest to q.
Call Add(q, abc).

iii. Concatenate dormant(w) for all w ∈
S1 ∪ S2 to form dormant(q).

Decimation

1. Set R to be the maximum circumradius.
Color all vertices white.

2. For each white vertex v, color all vertices w
such that ‖v − w‖ < R/2 black.

3. While there is a black vertex, do the following:

(a) Pick a black vertex u.

(b) For each point p ∈ dormant(u) ∪ {u},
find the white vertex w nearest to p and
insert p into dormant(w).

(c) Call Remove(u).

In each iteration we delete the marked points in dor-
mant lists first. Then, we call UserDeletion which
delete marked vertices until the sampling factor has
increased by a certain factor greater than 1. After
UserDeletion returns, Decimation is called to deci-
mate the mesh to match the increased sampling factor.
Then, RefineVert is called to restore the (3, 1

15 , ε)-
conditions, where ε is the current sampling factor. This
is repeated until no marked sample point is left.

UserDeletion and Decimation use a subroutine
Remove which works as follows. Remove(v) assumes
that the vertex set is a (O(ε), Ω(ε))-sample, where ε is
the current sampling factor. It takes the plane H of a
triangle incident to v, project the link of v onto H , and
compute the 2D constrained Delaunay triangulation of
the projected link. Based on the sampling conditions,
we can show that this 2D triangulation has constant
size and bounded radius-edge ratio. We map the
2D triangulation to the triangulation of the link of v
in 3D. Because of the sampling condition, the angles
decrease by O(ε) and so the triangulation in 3D also
has bounded radius-edge ratio. Finally, we flip edges
to make the triangles incident to vertices in the link of
v empty of vertices. Notice that there are only O(1)
vertices in the link of v. Clearly Remove(v) can be
implemented in O(1) time. The edge flips allow us to
show that the maximum circumradius at the completion
of Remove(v) is at most 3kεγ(t), if the vertex set is a
kε-sample for some k > 1.

Let ε be the sampling factor at the beginning of
UserDeletion. Both UserDeletion and Decima-
tion require and preserve the (k1, α, k2ε)-conditions
for some constants k1, α and k2 throughout their
execution. The sampling factor ε′ at the end of
Decimation lies between ε and k2ε. So we can
rewrite the (k1, α, k2ε)-conditions as the (k1k2ε

ε′
, αε

ε′
, ε′)-

conditions. Then, by Lemma 5.2, RefineVert restores
the (3, 1

15 , ε′)-conditions and so the next iteration in
Deletion works correctly.

If neither u nor w∗ is found in UserDeletion,
there is no sample point within a distance of 2R from
v. Then, we can show that the sampling factor has
gone up by a factor greater than 1, and so UserDele-
tion returns. In Decimation, the current maximum
circumradius R reflects the increased sampling factor.
Decimation clearly enforces that the intervertex dis-
tance is at least R/2 at the end.

In Deletion, since the sampling factor increases
by a constant factor greater than 1 from one iteration
to the next, there are O(log(ε(t̂)/εt)) = O(1) iterations.
Each iteration takes time linear in the number of sample
points and performs O(area(Σ(t))/(εtγ(t))2) edge flips.
Using Theorem 4.1(iv), one can show that µt̂ is a

homeomorphism between Tri(t̂) and Σ(t). The last call
of Decimation ensures that any two vertices are at
distance R/2 or more. By Lemma 5.2, the last call of
RefineVert guarantees that the other conditions in
the global invariants hold at t̂.

Lemma 5.4. At a time step t, Deletion takes time
linear in |P (ť)| plus the number of new sample points
inserted, and does O(area(Σ(t))/(εtγ(t))2) flips. The
global invariants hold afterwards.

Our first main result, Theorem 2.1, follows from
Lemmas 3.6, 5.2, 5.3, 5.4, and 3.7.

6 Examples.

We describe examples for which no algorithm can per-
form asymptotically fewer changes to the mesh than our
algorithm (Theorem 2.2). We ignore the initialization.
Let A denote any other algorithm. The surface is a
sphere with radius γ in our first example. Our algo-
rithm and A are given the same set of sample points. To
approximate the sphere well, A must maintain a mesh
whose vertex set is an ε-sample for some ε 6 1. Consider
the time step 0. Let T be the mesh maintained by A at
time 0. The size of T is Ω(1/ε2). A constant fraction
of the triangles in T have O(1) neighboring triangles.
This allows us to find a set S of Ω(1/ε2) triangles in T
so that no two share a vertex. Take a triangle abc ∈ S.
We design the motion such that: (i) a first moves on the
sphere to a point close to the midpoint of bc; (ii) a then
moves slightly away from the sphere center; and (iii) a
reverses the motion to return to its original position.
Let the speed of a be λ = θγ throughout. The motion
of a can be accomplished in time O(εγ/λ) = O(ε/θ). A
must destroy abc before (iii); otherwise, (ii) will make
abc nearly perpendicular to the sphere, which makes it
impossible for nabc to approximate any surface normal
nearby. Hence, A must destroy all of the triangles in S
within a time interval Γ = [0, O(ε/θ)]. This amounts to
Ω(1/ε2) changes to the mesh within Γ.

Take any time step t > 0 scheduled by our algorithm
that falls inside Γ. Our algorithm makes O(1/ε2

t)
changes to our mesh at t, which is within a constant
factor of Ω(1/ε2). By Lemma 3.1, the gap between t
and the next time step is Ω(R(t̂)/λ) = Ω(ε(t̂)γ/λ) =
Ω(ε(t̂)/θ), which is a constant fraction of Γ. The same
holds for any other time step scheduled by our algorithm
that falls inside Γ. So our algorithm schedules only O(1)
time steps in Γ. We charge the edge flips performed at
these time steps to the mesh changes performed by A
within Γ. We take the next time step t′ of our algorithm
not covered by Γ. This induces another time interval Γ′

containing t′ in which A must destroy Ω(1/ε2) triangles.
Γ′ is disjoint from Γ because the motion progresses

forward in time. So we can repeat the analysis above.
In all, A does not perform asymptotically fewer changes
to the mesh than our algorithm in the entire simulation.

What if we had called MeshUpdate at every time
unit instead? We would have O(1/θ) updates within
each of the intervals Γ, Γ′, etc. Recall that θ controls
the speed of points and it can be very small. When
θ is very small, the problem should be easier because
the sample points move less. However, if we had
called MeshUpdate at every time unit, we could have
performed a factor of O(1/θ) more changes to the mesh
than A, which is arbitrarily large as θ approaches zero.

We can generalize the above construction to work
for an arbitrary surface, if we further require A to keep
the longest edge length at most ε times the reach for
some constant ε 6 1. In this case, the size of the mesh
maintained by A is Ω(A/(εγ)2), where A is the surface
area. The rest of the argument is the same as before.

Because the sample points can be arbitrarily dense
in some local regions, the mesh size may be much less
than the number of sample points. Thus, our examples
do not say anything on whether our running time is
small or large. It seems unlikely that one can avoid
looking at all the sample points regularly though.

7 Discussion.

In our model, insertions of sample points are only
allowed during updates at time steps scheduled by our
algorithm. It is because we can only afford to run
RefineVert at the time steps in order to prove that
our algorithm makes asymptotically the fewest changes
to the mesh. Suppose that we call Insertion but not
RefineVert in the end to handle insertions between
two successive time steps. The sampling factor may be
reduced by a large constant factor, which will invalidate
the lower bound on ε(t)γ(t) in Lemma 3.5 and hence the
rest of the analysis. If there is a known constant upper
bound on the decrease in the sampling factor caused
by insertions between two successive time steps, we can
factor this constant upper bound into the analysis.

Stronger conditions are needed for deletions. In
addition to a known constant upper bound on the
increase in the sampling factor caused by deletions, we
need to assume that deletions between two successive
time steps do not make the density of mesh vertices
highly uneven. Under this assumption, we can delete
the vertices specified by the user all at once.

Given these assumptions, the number of changes to
the mesh made by us is asymptotically no more than
the number of insertions and deletions plus the number
of changes to the mesh made by any other algorithm.

Some open questions ensue with this research. Can
the sampling density condition be relaxed to be sensi-

tive to the local feature size instead of the reach? Can
insertions and deletions be allowed at any time without
extra assumptions while making asymptotically mini-
mum changes to the mesh? How can changes in the
surface topology be accommodated?

References

[1] P.K. Agarwal, Y. Wang, and H. Yu. A 2D kinetic tri-
angulation with nearly quadratic topological changes.
Proc. 20th Annu. Sympos. Comput. Geom. (2004), 180–
189.

[2] N. Amenta and M. Bern. Surface reconstruction by
Voronoi filtering. Discrete Comput. Geom. 22 (1999),
481–504.

[3] N. Amenta and T. K. Dey. Normal variation with
adaptive feature size. A note as an erratum to Lemma 2
in [2].

[4] N. Amenta, S. Choi, T. K. Dey and N. Leekha. A
simple algorithm for homeomorphic surface reconstruc-
tion. Internat. J. Comput. Geom. Appl. 12 (2002), 125–
141.

[5] J. Basch, L. J. Guibas, and J. Hershberger. Data struc-
tures for mobile data. Proc. 8th ACM-SIAM Sympos.
Discrete Alg. (1997), 747–756.

[6] J.-D. Boissonnat and S. Oudot. Provably good sam-
pling and meshing of surfaces. Graphical Models, 67
(2005), 405–451.

[7] H.-L. Cheng, T. K. Dey, H. Edelsbrunner and J. Sul-
livan. Dynamic skin triangulation. Discrete Comput.
Geom. 25 (2001), 525–568.

[8] S.-W. Cheng and T.K. Dey. Delaunay edge flips in
dense surface triangulations. arXiv:cs.CG/0712.1959,
2007. Available from authors’ web-pages.

[9] S.-W. Cheng, T. K. Dey, E. A. Ramos, and T. Ray.
Sampling and meshing a surface with guaranteed topol-
ogy and geometry. Proc. 20th Annu. Sympos. Comput.
Geom., 2004, 280–289.

[10] T. K. Dey. Curve and surface reconstruction : Algo-
rithms with mathematical analysis. Cambridge Univer-
sity Press, New York, 2006.

[11] S. Funke and E.A. Ramos. Smooth-surface reconstruc-
tion in near-linear time. Proc. 13th Annu. ACM-SIAM
Sympos. Discrete Alg., 2002, 781–790.

[12] J. Glimm, J.W. Grove, X.L. Li, and D.C. Tan. Ro-
bust computational algorithms for dynamic interface
tracking in three dimensions. SIAM J. Sci. Comput.,
21 (1999), 2240–2256.

[13] L. Guibas. Kinetic Data Structures: a state of the art
report. Proc. 3rd Workshop Alg. Found. Robotics, 1998.

[14] S. Pandya, B.Z. Gao, and N.H.C. Hwang. Biopros-
thetic heart valve leaflet deformation monitored by
double pulse stereo photogrammetry. Proc. First Joint
BMES/EMBS Conference, 1999.

