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ABSTRACT

Medial axis as a compact representation of shapes has evolved
as an essential geometric structure in a number of applica-
tions involving 3D geometric shapes. Since exact compu-
tation of the medial axis is difficult in general, efforts con-
tinue to approximate them. One line of research considers
the point cloud representation of the boundary surface of a
solid and then attempts to compute an approximate medial
axis from this point sample. It is known that the Voronoi
vertices converge to the medial axis for a curve in 2D as the
sample density approaches infinity. Unfortunately, the same
is not true in 3D. Recently, it is discovered that a subset of
Voronoi vertices called poles converge to the medial axis in
3D. However, in practice, a continuous approximation as
opposed to a discrete one is sought.

Recently few algorithms have been proposed which use the
Voronoi diagram and its derivatives to compute this contin-
uous approximation. These algorithms are scale or density
dependent. Most of them do not have convergence guaran-
tees, and one of them computes it indirectly from the power
diagram of the poles. Recently we proposed a new algo-
rithm that approximates the medial axis straight from the
Voronoi diagram in a scale and density independent man-
ner with convergence guarantees. In this paper we present
several experimental results with this algorithm that sup-
port our theoretical claims and also show its effectiveness
on practical data sets.
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1. INTRODUCTION

Medial axis of a shape provides a compact representation
of its features and their connectivity. As a result, researchers
have discovered and are still exploring its use in a number
of applications ranging over image processing [22], computer
vision [6, 23], solid modeling [19, 20, 26, 27], mesh generation
[24, 25] and many others [18, 21, 29]. Medial axis is defined
when the shape is embedded in an Euclidean space and is
endowed with a distance function. In this paper we are
concerned with the medial axis of surfaces embedded in three
dimensions. Informally, the medial axis of a surface in 3D is
the set of all points that have more than one closest point on
the surface. They are often called the medial axis transform
or MAT in short for the three dimensional solid bounded
with the surface.

Driven by the need of applications, a handful of researchers
have focused on the computational aspects of the medial
axis. Exact computation of the medial axis is hard in gen-
eral. Culver, Keyser and Manocha [10] and Hoffman [20]
have given algorithms for computing the exact medial axis
for some special class of shapes. Even these algorithms have
to deal with the numerical instability associated with the
medial axis computations. This instability can be attributed
in part to the fact that the medial axis is sensitive to tiny
changes in shape [17, 30]. Consequently, efforts have been
made to approximate the medial axis. For polyhedral in-
put Etzion and Rappoport [16] suggest a method for medial
axis approximation using an octree subdivision of space. An-
other scheme considered by many uses a set of sample points
on the shape boundary and then approximates the medial
axis with the Voronoi diagram of these points [3, 5, 4, 9, 24,
28, 29].

We follow the Voronoi diagram approach. It is apt for
point clouds that are being used for geometric modeling
over a wide range of applications with rapidly advancing
sampling technology. It is known that the Voronoi vertices
approximate the medial axis of a curve in 2D. In fact, Brandt
[8] showed that if the sample density approaches infinity, the
Voronoi vertices in this case converge to the medial axis.
Unfortunately, the same is not true in three dimensions.
Amenta and Bern observe that some Voronoi vertices can
come close to the surface [1]. These are the centers of the
flat tetrahedra called ‘slivers’. In the context of surface re-
construction, they also observe that some Voronoi vertices
called ‘poles’ remain far from the surface. These poles are



the farthest Voronoi vertices from the sample points in their
Voronoi cells. Boissonnat and Cazals [7] and Amenta, Choi
and Kolluri [3] show that the poles indeed lie close to the
medial axis and converge to it as sample density approaches
infinity.

For most practical applications, a continuous approxima-
tion of the medial axis is required rather than a set of dis-
crete set of points even if they lie close to the medial axis.
In 2D, Brandt and Algazi [9] achieve this by retaining a sub-
set of Voronoi edges incident to the Voronoi vertices. In 3D
since poles lie close to the medial axis, Amenta, Choi and
Kolluri [3] design an algorithm that connects them with a
cell complex. They consider the Delaunay balls centering the
poles and then compute the medial axis of the boundary of
the union of these balls. Since this union approximates the
original object whose boundary is sampled, the computed
medial axis approximates the original one. Although theo-
retically sound, this method requires two Voronoi diagram
computations and produces noisy medial axis in some cases.

In this paper we experiment with an algorithm that ap-
proximates the medial axis directly from the Voronoi dia-
gram. This approach does not pay any special attention to
poles, but rather computes a subcomplex from the Voronoi
diagram that lies close to the medial axis and converges to
it as sampling density approaches infinity. Approximating
the medial axis from the Voronoi diagram in 3D has been
attempted in the past. Attali and Montanvert [5] and Attali
and Lachaud [4] compute the subset of the Voronoi facets,
edges and vertices that reside ‘inside’ the surface and then
prune some Voronoi vertices and their incident elements ac-
cording to some angle and length criteria. Although the
strategy achieves good results in many cases, the pruning in
[5] is insufficient as we argue later and the pruning in [4] is
scale dependent and more seriously depends on the sampling
density. Consequently, one needs to fine tune the pruning
parameters individually for each data set and it is not clear
if these strategies are apt for a data where the density varies
in different parts of the shape.

The algorithm we explore also uses two criteria to select
the Voronoi facets from the Voronoi diagram. But, unlike
[4], these two criteria are scale and density independent. The
Delaunay edges are filtered from the Delaunay triangulation
of the sample points and then their dual Voronoi facets are
output as an approximate medial axis. The filtration is such
that the thresholds used for two criteria remain fixed over
data sets of different densities. Thus, there is no need for
fine tuning the parameter values. The convergence guaran-
tee of this algorithm is proved in a companion paper [13].
We present several experimental results with this new algo-
rithm. We also perform some experiments on two strategies
of simplifying the medial axis.

The rest of the paper is organized as follows. Section
2 contains preliminaries and definitions that we use later.
Section 3 details the two conditions that we use to filter
the Delaunay edges. Section 4 describes the algorithm and
the experimental results. Section 5 illustrates experimental
results on simplifying the approximated medial axis. Section
6 contains concluding remarks.

2. SURFACE SAMPLES

Let P be a point sample from a smooth compact surface
S C R® without boundary. A ball is called medial if it meets
S only tangentially in at least two points. The medial axis

M of S is defined as the closure of the set of centers of
all medial balls. Each point on S has two medial balls,
one touching it from outside and the other touching it from
inside. It follows that the line going through a point p € S
and the centers of its medial balls is normal to S at p. See
Figure 1 for an illustration in 2D.

Figure 1: A curve and its medial axis in 2D.

Obviously, a sample P needs to be dense enough to con-
tain information about the features of S. Following [1] we
define the local feature size f() as a function f : S — R
where f(z) is the distance of z € S to the medial axis M.
Intuitively, f() measures how complicated S is locally. A
sample is an e-sample if each point x € S has a sample
point within €f(x) distance. We have observed that ¢ < 0.4
is sufficient for approximating S with a piecewise linear sur-
face in practice [11].

The Voronoi diagram and its dual, the Delaunay trian-
gulation, plays a key role in capturing information about
shapes from a sufficiently dense sample. This observation
has led to a number of algorithms for the related problem of
surface reconstruction which exploit the structures of these
diagrams [1, 2, 7, 11, 14, 15]. The Voronoi diagram Vp for
a point set P € R® is a cell complex consisting of Voronoi
cells {V,}pep and their facets, edges and vertices, where
Vo = {z € R®||lp — z|| < |lg — z||, Vg € P}. The dual com-
plex, Dp, called the Delaunay triangulation of P, consists
of Delaunay tetrahedra and their incident triangles, edges
and vertices. A Delaunay tetrahedron is dual to a Voronoi
vertex, a Delaunay triangle is dual to a Voronoi edge, a De-
launay edge is dual to a Voronoi facet and a Delaunay vertex
is dual to a Voronoi cell. It is an important result proved
in [1] that the Voronoi cells are elongated along the normal
direction to the surface at the sample points if the sample is
sufficiently dense. The definition of poles as borrowed from
[1] plays an important role in approximating these normals.

DEFINITION 1. The pole p* of a sample point p is the
farthest Voronoi vertex in the Voronoi cell V,. If V,, is un-
bounded, p* is taken at infinity. The vector v, = pT —p
s called the pole vector for p and its direction is taken as
the average of all directions of infinite edges in case Vp is
unbounded, see Figure 2.

It is proved in [1] that the pole vector v, approximates
the normal n, to the surface S at p up to orientation.

DEFINITION 2. The tangent polygon for a sample point is
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Figure 2: A Voronoi cell V,,. The corresponding pole,
pole vector, tangent polygon (a), and the umbrella

(b).

defined as the polygon in which the plane through p with vp
as normal intersects V. See Figure 2(a) for an illustration.

Since v, approximates n,, the tangent polygon approxi-
mates the tangent plane at p restricted within V,,. We define
a dual structure to the tangent polygon from the Delaunay
triangulation Dp.

DEFINITION 3. The umbrella U, for a sample point p is
defined as the topological disc made by the Delaunay trian-
gles incident to p that are dual to the Voronoi edges inter-
sected by the tangent polygon, see Figure 2(b).

In what follows we will denote the angles between two
vectors u and v by Zu, v where the angle is measured as
the acute one between the lines supporting u and v.

3. FILTER CONDITIONS

Our aim is to approximate the medial axis M with a sub-
set of Voronoi facets and their incident edges and vertices.
We choose these Voronoi facets as a dual of a set of selected
Delaunay edges. This means we need some criteria to filter
these Delaunay edges from Dp. Let us examine a medial
ball B closely to determine the Delaunay edges to be fil-
tered. Consider Figure 3. The segment pg makes an angle
0 with the tangent planes at p and g where the medial ball
touches the surface S. If B touches S in more than two
points, let p and g be such that the angle 8 is maximum.
We associate each medial axis point m with such an angle
6, which we call the medial angle of m. We approximate
each medial axis point with the medial angle 8 greater than
a threshold with an Angle condition. For the rest of the
medial axis points we apply a Ratio condition.

3.1 Anglecondition

The approximation of the medial angle 8 for a medial axis
point requires approximation to the tangent planes at that
points where the medial ball touch the surface. It is known
that a set of Delaunay triangles lie close and flat to the sam-
pled surface S if P is dense, see [2] for a precise statement.

Figure 3: A medial axis point m, its medial angle 0
and the corresponding medial ball.

In particular, the triangles in the umbrellas necessarily lie
close to S with their normals almost matching those of S at
their vertices.

Therefore, we take umbrella triangles in U, for approxi-
mating the tangent plane at a sample point p and determine
all Delaunay edges pg that make relatively large angle with
this tangent plane. To compute this we measure the angle
Zng, tpe between the unit vector tpy from p to g and the
normal n, to a triangle o in U,. We select those edges that
make this angle less than a threshold angle 7 — 6 for all
umbrella triangles in U, for 0 < § < 7, see Figure 4. This

means a selected edge pq satisfies:

Angle condition [f]: max,cu, £n,,tpy < 5 — 4.

Figure 4: The angle 6 for the Angle condition [4].
The Voronoi edge shown with the dotted line is par-
allel to the normal of the shaded triangle.

3.1.1 Experiments.

First, we experiment with the ‘only Angle condition’ to se-
lect the the output facets, i.e., only those Voronoi facets are
output whose dual Delaunay edges satisfy the Angle Con-
dition [f]. We varied the value of 6 in order to get a good
approximation to the medial axis. As expected, larger value
of 6 produces less facets in the output resulting in unde-
sirable ‘holes’, see the rightmost picture of 3HOLE data in
Figure 5. On the other hand, smaller values of 6 generate
too many facets resulting in undesirable ‘spikes’, see the left-
most picture for the 3HOLE data in Figure 5. For each model
shown in Figure 5 we attempted to determine a value of
for which we can obtain an approximation as good as pos-
sible. The second row of Figure 5 shows the output of this
experiment. The major drawback of the ‘only Angle con-
dition’ approach is that the value of 6 for which we obtain



3HOLE
0 = 3 degrees
\
SCREWDRIVER

0 = 15 degrees

|

3HOLE
0 = 18 degrees

0 = 20 degrees

3HOLE
0 = 32 degrees

KnoT
0 = 30 degrees

Figure 5: Results with ‘only Angle condition’.

good approximation differs from sample to sample. It turns
out that the required value of 6 gets larger with decreasing
sample density. Consequently, we could not find any consis-
tent value for which the approach works for all models we
experimented with.

3.2 Ratio condition

We have observed that ‘only Angle condition’ approxi-
mates the medial axis well only when we use appropriate
6 for each model. If we fix 6 for all models, some of the
medial axis points with medial angle below 6 are not ap-
proximated. Consider the medial ball B as shown in Figure
3. From simple geometry of spheres, we get

llp —gll = 2psin 6

where p = ||m — p|| is the radius of B. Therefore, if 8 > ¢,
where ¢ is the sampling density, we have ||[p — g|| > 2usine.
Also, it follows from a result in [2] that the radius of the
umbrella triangles are only of the order of pue. This means
that the length of pg will be much larger than the circumradii
of the umbrella triangles.

Therefore, if we compare the length of the Delaunay edges
with the circumradii of the umbrella triangles, we can ap-
proximate all medial axis points with medial angles only few
times larger than €. Of course, we will not be able to ap-
proximate the medial axis points with medial angle less than
€ with this method, but as € approaches zero, we get the re-
quired convergence. Let R, denote the circumradius of a
triangle o, refer to Figure 6. We measure the ratio of the

length of a Delaunay edge to the circumradii of the umbrella
triangles and consider those that satisfy:

Ratio condition [p]: min,eu, ”’}2;“” > p.

o

Figure 6: Radius of interest for the Ratio condition

(o]

3.21 Experiments

We experimented with the ‘only Ratio condition’ approach.
In this case only those facets are output whose dual Delau-
nay edges satisfy the Ratio Condition [p]. No angle condition
is considered. As expected, larger value of p produces less
noisy medial axis, but with ‘holes’ as shown in the rightmost
picture for the FOOT data in Figure 7. On the other hand,
smaller p produces undesirable spurious ‘spikes’ as exhibited
by the leftmost picture of the FooT in Figure 7.
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Figure 7: Results with ‘only Ratio condition’.

In this case also we could not find a value of p for which all
samples produce good result. See Figure 7 for some exam-
ples. When the sample is less dense, a smaller p is needed to
obtain an approximation as good as possible. ‘Only Ratio
condition’ approach has one more disadvantage. If the sam-
ple density is not uniform over the entire surface, one value
of p cannot capture the medial axis for the entire shape.
This is why no value of p gave a good result for the Foor
and 3HOLE data though we could find an appropriate p for
ROCKER and KNOT data which are mostly uniform.

4. ALGORITHM AND RESULTS

It is clear from the above experiments that each of Angle
and Ratio conditions individually is not sufficient for a good
medial axis approximation. Our experiments support that
both Angle and Ratio conditions together produce a good
approximation to the actual medial axis. We find that the
values of § and p can remain fixed for all tested data sets
when we use them together. With a fixed value of 6 all De-
launay edges that lie away from the surface are determined
by the Angle condition [6] when 8 is sufficiently large. The
rest of the Delaunay edges whose duals contribute to the ap-
proximate medial axis make small angles with the umbrella
triangles but are comparatively larger than their circum-
radii. They are captured by the Ratio condition [p]. These
two pronged strategy lets both 8 and p fixed over different
sampling densities. If the density is not high, the Angle
condition captures almost all required Delaunay edges. The
Ratio condition plays a more significant role when density
is high.

Our experiments suggest that § = § and p = 8 are ap-
propriate for all tested data sets. With these two values we
enumerate the steps of our algorithm MEDIAL to approxi-

mate the medial axis.

MEDIAL(P)
1 Compute Vp and Dp;
2 F =
3 for each p € P
4  Compute Uy;
5 for each Delaunay edge pg € U,
6 if pq satisfies Angle Condition [%]
or Ratio condition [8]

7 F := F UDualpq
8 endif

9 endfor
10 endfor

11 output closure(F)

Using the properties of the Voronoi diagram and e-sampling
we prove the following result in a companion paper [13].

THEOREM 1. Let F, be the subcomplex computed by ME-
DIAL for an e-sample of a surface S C R® without boundary.
We have lim._,o F. = M, where M 1is the medial azis of S.

Note: The proof of convergence [13] suggests that only
ratio condition is sufficient. The anomaly between the the-
ory and practice can be explained as follows. The value of
€ required for theoretical guarantee of converegence is ex-
tremely small which often is not the case in practice. The
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Figure 8: Medial axis with MEDIAL shown dark shaded.

Angle condition compensates for this shortcoming in prac-
tice.

4.1 Experimental results.
4.1.1 Point cloud data.

Figure 8 and 9 show our result on some example point
cloud data sets. In these pictures we show only the ‘inner’
medial axis that is ‘enclosed’ by the surface. We computed
the ‘inner’ medial axis as follows. A piecewise linear surface
interpolating the sample points is computed with our TIGHT
COCONE software [32]. This surface is a subcomplex of the
Delaunay triangulation and is guaranteed to be watertight.
We output those Voronoi facets computed by MEDIAL that
are dual to the Delaunay edges enclosed by the computed
surface of TIGHT COCONE.

The approximation of the medial axis is better where the
data is dense. Near high curvature regions, or non-smooth
regions where undersampling happens, the approximation
contains artifacts. For example, in the CLUB and ROCKER
data, the medial axis is well approximated in most part
where the density is high. But, near the handle of the CLUB
and top of the ROCKER, the sampling density suffers due to
high curvature and small features. As a result the approxi-
mation is poor in these regions.

ROCKER and SCREWDRIVER data are mostly very dense
and almost uniform except near some small curvature re-
gions. On the other hand, 3HOLE is relatively sparse data
set. In both cases, MEDIAL approximated the medial axis
quite well. This shows that MEDIAL is tolerant to different
levels of data densities.

In general, the medial axis of a surface is a CW-complex
where each cell can be zero, one or two dimensional. In
MEDIAL we approximate all cells with two dimensional cells,
namely the Voronoi facets. The data set KNOT shows this
interesting phenomenon. The one dimensional medial axis
in this case has been approximated with very thin Voronoi
facets.

The HEART data is extracted as an iso-surface from the
intensity field of a volumetric image. The data contains
some noise introduced by the iso-surface extraction proce-
dure. MEDIAL could tolerate this noise as the output in
Figure 8 suggests.

In Figure 9, we show the two views of the medial axis for
FanDIsK. The medial axis is well approximated except at
the boundaries where it is ‘jagged’. The poor approximation
at these places is caused by the sharp edges of the surface
where it is nonsmooth and thus have inherent problem of
undersampling, see [11]. In the FOOT data we zoom some
places of the toes and the heel. The zoomed region in the toe
has undersampling and the medial axis near the boundary
has some roughness. However, the heel is well sampled, and
the corresponding medial axis boundary is smoother. The
FooT data has abrupt density changes in some parts. As
a result ‘only Ratio condition’ did not produce good result
for any ratio. MEDIAL produced a good approximation to
the medial axis. It shows that MEDIAL is impervious to
nonuniformity in data.

4.1.2 CAD data.

We experimented with some CAD data sets where the
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Figure 9: Computed medial axis of FANDISK and FoOT.

CAD surface was given as input. In this case we know the
surface from which we can sample points according to our
wish. We sampled the CAD surfaces densely and, in par-
ticular, sampled the non-smooth edges and corners. The
approximated medial axes are much nicer in these cases,
mainly due to the dense sampling of the surfaces which are
given as input.

In Figure 10, we show three such CAD examples TAP-
BOLT, ANCHOR and ENGINE. The upper row contains the re-
constructed surfaces and lower one contains the correspond-
ing medial axes. The medial axis of the TAPBOLT consists of
both one and two-dimensional components which are prop-
erly captured by MEDIAL. Note that the one-dimensional
medail axis along the cylinder is too thin to be visible in
this picture, but they actually exist as very tiny Voronoi
facets as in KNOT. The ANCHOR shows how MEDIAL com-
putes clean medial axes for complicated shapes.

The sample in ENGINE lie on several connected compo-
nents. In this case we computed the entire medial axis
since ‘inner’ and ‘outer’ distinction in this case does not
have much meaning.

4.1.3 Timing

All of our softwares are written in C++. We used the
CGAL library [31] for the Voronoi and Delaunay code and
used filtered floating point arithmetic for robust geometric
computations. Experiments were conducted on a PC with
933 MHz CPU and 512MB memory. The code was compiled
with CGAL2.3 library and g++ compiler with O1 level of
optimization. The time for the Delaunay triangulation and

filtration are listed in Table 1.

# points | Delaunay Filter
object time(sec.) | time(sec.)
3HOLE 4000 2.37 0.82
KNoOT 10001 8.36 2.66

TAPBOLT 56354 333.32 9.98
ENGINE 11361 37.0 1.82
ANCHOR 28453 87.49 5.14
FANDISK 16475 13.4 3.0
CLUB 16865 18.81 3.06
Foot 20021 13.24 3.71
SCREWDRIVER 27152 51.87 5.36
HEART 37912 32.49 6.58
ROCKER 40177 74.54 8.25

Table 1: Time data.

4.1.4 Comparisons

We comment on two most competitive approaches for ap-
proximating the medial axis from point samples, one by At-
tali et. al [4, 5] and the other by Amenta et. al [3].

Attali and Montanvert [5] first proposed a filtration method
depending only on an angle condition similar to ours though
not same. We have already seen that ‘only Angle condition’
does not produce good approximations with a fixed angle
threshold. This method depends heavily on the data den-
sity. Later Attali and Lachaud [4] proposed two criteria for
the filtration.

They compute the Voronoi diagram and extract the com-
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Figure 10: Medial axis with MEDIAL of some CAD models. The surfaces and the corresponding medial axes

are shown in upper and lower row respectively.

plex enclosed by the surface. Next, they approximate the
radius p of the medial ball centered at a medial axis point
m near a Voronoi vertex v by computing the radius of the
Delaunay ball centered at v. Also, they approximate the
medial angle § for m by computing the maximum angle
made by two Voronoi edges incident to v. They only retain
those Voronoi vertices and their incident edges and facets for
which the computed value of p and 6 are more than certain
thresholds.

Clearly, this method depends on scaling as p is computed
in absolute terms. Even the angle 6, as argued earlier, re-
quires a sampling dependent threshold. This is why this
method needed different thresholds for the example models
considered in [4]. Our method differs in two fundamental
ways. First, all comparisons are relative to the umbrella tri-
angles in our method which make it scale independent and
immune to varying densities. Secondly, instead of using an
‘and’ between two conditions, we use ‘or’. This is also nec-
essary to achieve immunity against density variations. We
have already shown that ‘only Angle condition’ cannot find
a common threshold and requiring another condition con-
junctively makes the filtration even stricter.

The Power Crust algorithm by Amenta et. al [3] produces
an approximation to the medial axis as a dual shape, which
is called the Power Shape. This algorithm first computes
the poles from the Voronoi diagram of the sample points.
Next, a power diagram of the Delaunay balls centered at the
poles is computed. The dual weighted Delaunay triangula-
tion with the poles as vertices, called Power Shape, is out-
put as the approximate medial axis. This method uses two

Voronoi diagram computations, one to compute the poles
and another to compute the power diagram, as opposed to
our approach which approximates the medial axis straight
from the Voronoi diagram. Worse, the Power Shape pro-
duces sometimes too many ‘spikes’ as in the FooT, HEART
data and ANCHOR data, see Figure 11. The authors pro-
pose to clean up the noisy medial axis using criteria similar
to Attali et. al [4] which suffers from the scale and density
dependencies as we pointed out earlier.

5. SIMPLIFICATION

Mesh simplification that reduces the number of elements
is widely used in graphics and modeling so that further pro-
cessing can be done efficiently. Of course, the major concern
in simplification is preserving the shape while still reducing
the mesh size. First, we experimented with a strategy of
simplifying the medial axis that operates at the sample level
rather than directly on the medial axis. This has the advan-
tage that one does not have to worry about which parts of
the medial axis need to be deleted so that its shape is still
preserved. Instead of collapsing edges that is used in usual
mesh simplification we first decimate the samples and then
construct their medial axis with MEDIAL. In [12] we showed
how a sample can be decimated while still keeping it dense
enough for surface reconstruction. This means all high level
feature information are preserved by the sample decimation.

Figure 12 shows the approximate medial axes computed
out of these samples. The medial axes become coarser as
the samples are decimated.

In a second experiment we carried out the simplification
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Figure 11: Medial axis approximation with the Power Shape of [3] generates too many spikes.

without any sample decimation. Medial axis is sensitive to
small changes in shape. Since a finite sample cannot capture
the complete information of a surface, the uncertainty in
surface definition shows up in the medial axis as ‘spikes’
that abut from a more stable part. MEDIAL already captures
only this stable part of the medial axis. But, even within
the ‘stable’ parts there is a hierarchy of ‘stability’. Some
parts are more stable than others. One can associate this
stabilty with the angle § and the ratio p. In Figure 13 we
show how larger values of § and p would capture the subset
with higher ‘stability’.

6. CONCLUSIONS

In this paper we proposed and experimented with an algo-
rithm that approximates the medial axis from the Voronoi
diagram of a set of sample points. Unlike previous ap-
proaches, this algorithm is scale and density independent. It
is known that a small change in shape can cause the medial
axis change considerably. This leads to unwanted ‘spikes’
in the medial axis which abut from a more ‘stable’ part. A
finite sample cannot capture a shape completely and this
small uncertainty in shape definition shows up in the medial
axis approximation through the noisy spikes. The challenge
was to remove this uncertainty from the medial axis approx-
imation in a manner impervious to scale and density. Our
empirical results suggest that our algorithm achieves this
goal.

In many applications it is useful to have a simplification
of the medial axis. We showed a method to simplify the
medial axis in terms of the number of elements. If the sim-
plification is to be in terms of its stability, we can use larger
values for the filter conditions. Is there way to determine the
parameter values automatically that bring up the hierarchy
of the medial axis in terms of stabilty? More investigations
are necessary to answer this question.
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