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ABSTRACT

Several research have pointed out the potential use of the
medial axis in various geometric modeling applications. The
computation of the medial axis for a three dimensional shape
often becomes the major bottleneck in these applications.
Towards this end, in a recent work, we suggested an efficient
algorithm that approximates the medial axis of a shape from
a point sample. The input to this algorithm is only the coor-
dinates of the sample points. As a result the approximation
quality is limited by the input sample density. However,
in geometric applications involving CAD models, the sur-
faces from which samples need to be derived are known. In
this paper we show how to take advantage of this a pri-
ori knowledge in our medial axis approximation algorithm.
This is achieved by first sampling the CAD surfaces appro-
priately and then modifying the medial axis approximation
algorithm to exploit the known ‘features’ of the input sur-
faces. The quality of the approximation achieved by the
method is surprisingly high as our experimental results ex-
hibit.

Categories and Subject Descriptors

1.3.5 [Computer Graphics]: Computational Geometry and
Object Modeling; 1.4 [Image Processing and Computer
Vision]: Reconstruction,Image Representation
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1. INTRODUCTION

The medial axis of a three dimensional shape embedded
in three dimensions is the closure of all points that have
more than one closest point on the shape boundary. As
a skeleton shape representation, medial axis has been used
in various applications including image processing [21, 22],
computer vision [8, 15], solid modeling [17, 23, 25, 26], mesh
generation [24] and many others [16, 19, 27]. The medial
axis together with the distance to the boundary at each
point is called the medial axis transform. Since it essentially
captures the shape information, the medial axis transform
has been proposed as an alternate representation to B-rep
or CSG system for shape manipulation [12, 18].

Although many research have identified the potential ap-
plication of the medial axes in various shape manipulations,
the difficulty in their computations has stymied the progress.
The difficulty in computing medial axes can be attributed
to their high algebraic degree and their sensitivity to small
changes in shape [11, 28]. Both contribute to numerical in-
stability and inefficiency in their computations. As a result,
few algorithms that have been proposed to compute exact
medial axes are limited to special class of shapes [12, 18].
This seriously restricts the applications of the medial axis.
Consequently efforts have been made to approximate the
medial axis.

Voronoi diagrams have been shown to be useful for ap-
proximating the medial axes. In two dimensions Brandt and
Algazi [10] show that that the Voronoi vertices derived from
a point sample of the boundary curve of a shape approxi-
mate the medial axis. Amenta, Bern and Eppstein [2] ob-
served that this property does not hold in three dimensions.
The circumcenters of the so called ‘slivers’ can be arbitrar-
ily close to the surface no matter how dense the sample is.
However, Amenta and Bern [1] show that certain Voronoi
vertices called poles lie far away from the surface. Amenta,
Choi and Kolluri [4] and Boissonnat and Cazals [9] show
that the poles indeed lie close to the medial axis and con-
verge to it as the sample density approaches infinity. Based
on this observation Amenta, Choi and Kolluri also give an
algorithm that connects the poles with a cell complex ap-
proximating the medial axis [4].

In another work, Attali and Lachaud [6] and Attali and
Montanvert [7] show how to prune the Voronoi diagram with
an angle and thickness criterion to approximate the medial
axis. They observe that the noisy vertices of the medial
axis have small bisector angle or small thickness. Conse-
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Figure 1: Computed medial axis of CLAW with MEDIAL and the new algorithm CAD_MEDIAL. The artifacts in
the regions leading to the convex edges and non-concave corners are rectified with the new algorithm.

quently, these vertices are removed from the medial axis if
they have bisector angle or thickness smaller than the user
defined thresholds. Although it gives good results, the users
have to fine tune the two parameters. The shock graph
approach of Leymarie and Kimia [20] also relates to the
Voronoi diagrams.

In a recent work [14], we also proposed a Voronoi based
algorithm called MEDIAL that approximates the medial axis
as a Voronoi subcomplex. This algorithm selects a set of
Delaunay edges with two conditions called Angle and Ra-
tio conditions and then output their dual Voronoi facets to
approximate the medial axis. The algorithm works in scale
and density independent manner so that no parameter is
needed to be tuned. Also, a convergence guarantee between
the output and the true medial axis is proved.

The common drawback of the Voronoi-based algorithms
applied to CAD models is that the structure of the medial
axis is not complete. The Voronoi-based algorithms work
on the assumption that the sample is dense. However, with
finite sampling, this density condition can never be satisfied
at non-smooth edges and corners which are common to CAD
models. The approximate medial axis with Voronoi facets
stops before touching the convex edges and non-concave cor-
ners while the true medial axis does pass through them.
For example, see Figure 1. Further, due to inherent under-
sampling the medial axis is approximated poorly near the
sharp edges and corners. In some applications, especially in
CAD/CAM, it is sometime needed that the medial axis is
properly approximated even in the vicinity of sharp edges
and corners. For example, in dimensional reduction [5], a
medial vertex and two medial lines which connect to two
vertices of a beam are used to identify a beam end. Ap-
plications such as decomposition of general solids into sub
regions, and recognition of small features for suppression
also need good approximation of the medial axis near edges
and corners.

The work in this paper which aims to solve the above
problems grows out of our previous work on medial axis
approximation. The new algorithm constructs a complete
structure of the medial axis and connect it to convex edges
and non-concave corners. We achieve this by sampling the
known CAD surface in a specific way and then using the
information about the surface in approximating the me-

dial axis from the Voronoi diagram. The new algorithm
CAD_MEDIAL uses MEDIAL as basis and makes nontrivial
extensions and modifications to complete the structure of
the medial axis. Although we focus on the CAD objects,
our algorithm works for other objects where its boundary is
known a priori.

The rest of the paper is structured as follows. Section
2 provides some necessary definitions. Section 3 gives an
overview of our original algorithm MEDIAL. Section 4 de-
scribes the difficulties we face for the CAD models and how
we solve them with the new algorithm CAD_MEDIAL. Ex-
perimental results are shown in section 5. We conclude the
paper in section 6.

2. PRELIMINARIES

Let P be a point sample from a compact surface S C R?
without boundary. A ball is called medial if it meets S only
tangentially in at least two points. The medial axis M of S
is the closure of the set of centers of all medial balls. Each
point on S has two medial balls, one touching it from outside
and the other touching it from inside. It follows that the line
going through a point p € S and the centers of its medial
balls is normal to S at p.

The surface S separates R® into two open subsets S+
and S~ where ST is bounded, S~ is unbounded and R® =
STUST'US. The medial axis M of S has two components,
the inner medial azis which is the closure of M N ST and
the outer medial azis which is the closure of M N S™. We
are interested in computing the inner medial axis which re-
sides inside the solid bounded by S. The algorithm initially
approximates the entire medial axis M and later separates
out the inner medial axis from the outer one.

Obviously, a sample P needs to be dense enough to con-
tain information about the features of S. Following Amenta
et al. [2] we define the local feature size f() as a function
f S — R where f(z) is the distance of the point z € S
to the medial axis M. Intuitively, f() measures how com-
plicated S is locally. A sample is an g-sample if each point
x € S has a sample point within ef(x) distance. We have
observed that € < 0.4 is sufficient for approximating S with
a piecewise linear surface in practice [13].

The Voronoi diagram and its dual, the Delaunay triangu-



Figure 2: A curve and its medial axis in 2D.

lation are the main data structure used in our algorithms.
The Voronoi diagram Vp for P is a cell complex consisting
of Voronoi cells {V, }pep and their facets, edges and vertices,
where V, = {z € R®|||p — z|| < ||g — z||, Vg € P}. The dual
complex Dp of Vp, called the Delaunay triangulation of P,
consists of Delaunay tetrahedra and their incident triangles,
edges and vertices.

Amenta and Bern [1] proved that the Voronoi cells for a
dense sample P of a surface are elongated along the nor-
mal directions to the surface. This motivates the following
definitions of poles and pole vectors.

DEFINITION 1. The pole p* for a sample p is the farthest
Voronoi vertex from p in the Voronoi cell V,. The vector
vy, = pT — p is called the pole vector. In case Vp is un-
bounded, p* is taken at infinity and the pole vector is taken
in the average direction of all unbounded Voronoi edges.

It is proved in [1] that, up to orientation, the pole vector
vp approximates the normal n, to the surface at p. In what
follows we will use Zu, v to denote the acute angle between
the supporting lines of two vectors u and v.

3. ALGORITHM MEDIAL

Since we use the algorithm MEDIAL as the basis for the
new algorithm, we describe its main concepts briefly. The al-
gorithm MEDIAL was mainly designed for approximating the
medial axes of smooth surfaces. It assumes that the input
is a dense sample for sufficiently small value of ¢ > 0. Un-
fortunately, this sampling condition can never be achieved
for CAD models which have non-smooth edges and corners.
This warrants special action. Fortunately, we can leverage
the knowledge of the input CAD surface into our new algo-
rithm to handle the problem of non-smoothness.

The important observations used in MEDIAL are that the
Voronoi facets lie close to the medial axis if their dual De-
launay edges tilt away from the surface or are very long. To
filter the Delaunay edges that tilt away from the surface, we
use an Angle condition while for the long Delaunay edges
we use a Ratio condition. In order to measure the angle be-
tween the Delaunay edges and the surface, approximations
to the tangent planes at the sample points are required. We
use the pole vectors for this approximation.

DEFINITION 2. The tangent polygon for a sample point
is defined as the polygon in which the plane through p with
normal v, intersects V.

Since v, approximates the normal n,, the tangent polygon
approximates the tangent plane at p restricted within V. It
turns out that a dual structure to the tangent polygon from
the Delaunay triangulation Dp is useful for checking both
the Angle and Ratio conditions.

DEFINITION 3. The umbrella U, for a sample point p is
defined as the topological disc made by the Delaunay trian-
gles incident to p that are dual to the Voronoi edges inter-
sected by the tangent plane.

Figure 3: The angle 6 for the Angle condition [4].
The Voronoi edge shown with the dotted line is par-
allel to the normal of the shaded triangle.

We take umbrella triangles in U, for approximating the
tangent plane at the sample point p and determine all De-
launay edges pq that make relatively large angle with the
planes of the triangles. To compute this we measure the
angle Zn,,t,, between the vector t,, from p to ¢ and the
normal ny, to a triangle ptu in U,. We select those edges
that make this angle less than a threshold angle 7 —§ for all
umbrella triangles in U, for 0 < § < 7, see Figure 3. This
means a selected edge pq satisfies:

Angle condition [f]: maXpiueu, LNptu, tpg < 5 — 6.

To filter the Delaunay edges which are relatively long, we
compare the length of the Delaunay edges with the circum-
radii of the umbrella triangles. The rationale behind this
choice is explained in our previous paper [14]. Let Ry, de-
note the circumradius of a triangle ptu, refer to Figure 4.
We measure the ratio of the length of a Delaunay edge to
the circumradii of the umbrella triangles and consider those
that satisfy:

Ratio condition [p]: miny¢yueu, ”Rp;‘i” > p.

Figure 4: Radius of interest for the Ratio condition

[p]-

Intuitively, the Angle condition captures the Delaunay
edges that lie away from the surface, and the rest of the



Delaunay edges whose duals lie close to the medial axis but
make small angles with the surface are captured by the Ratio
condition. As shown earlier [14], the Angle and Ratio con-
dition individually is not sufficient for a good medial axis
approximation. Combining these two conditions we get the
algorithm MEDIAL.

MEDIAL(P)
1 Compute Vp and Dp;
2F=0;
3 for each p € P
4  Compute Uy;
5 for each Delaunay edge pg € U,
6 if pg satisfies Angle Condition [6]
or Ratio condition [p]

7 F := F UDual pq
8 endif
9 endfor

10 endfor

11 output closure(F')

The values of § and p remained fixed for all tested data
sets. Our experiments suggested that § = T and p = 8 are
appropriate for all tested data sets. Using the properties of
the Voronoi diagram and e-sampling we proved the following

result [14].

THEOREM 1. Let F; be the subcomplex computed by ME-
DIAL for an e-sample of a surface S C R® without boundary.
We have lime_,0 F. = M, where M s the medial azis of S.

4. ALGORITHM CAD_MEDIAL

The algorithm MEDIAL produces nice results if the input
point set is sufficiently dense. Usually the surfaces of the
CAD objects are non-smooth and it is impossible to sample
non-smooth regions satisfying the e-sampling condition for
any € > 0. As a result, the approximation becomes poor
near these regions. We use the knowledge of the input sur-
face to solve this problem.

4.1 Difficulties
4.1.1 Completion

It follows from the definition that the medial axis of a non-
smooth surface passes through the points where the surface
is non-smooth. We would be interested in the inner medial
axis, i.e., the subset of the medial axis enclosed by the sur-
face. This inner medial axis passes through sharp edges
that are convex and corners that are non-concave. The
algorithm MEDIAL approximates the medial axis with the
Voronoi facets which cannot meet sample points. Conse-
quently, the approximated medial axis is not complete. A
2D example is shown in Figure 5. The medial axis is approx-
imated by the Voronoi edges near the corner cannot meet
the corner point though it should.

4.1.2 Normal estimation

The next difficulty we face is that the normal estimation
at the sample points near non-smooth regions is poor. Re-
call that the pole vectors estimate true normals only if the
sampling density is sufficiently high. But, since this density
cannot be achieved by finite sampling in the neighborhoods
of non-smooth regions, we face a difficulty. Both Angle and
Ratio conditions are affected by poor normal estimation.

Figure 5: Approximated medial axis shown with
solid Voronoi edges does not pass through the corner
point.

4.1.3 Separation

The algorithm MEDIAL approximates the entire medial
axis including both inner and outer ones. We separate the
inner medial axis from the outer one by first reconstructing
a water-tight surface from the input point sample and then
retaining only that part of the approximated medial axis
which resides inside the water-tight surface. This strategy
works well with smooth surfaces. If we apply the same strat-
egy in case of CAD models, we face the difficulty that the
reconstructed water-tight surface may have small artifacts
near non-smooth regions. These artifacts also propagate to
the approximated medial axis. Since we aim for a complete
medial axis as accurate as possible, we seek a better solution
to this problem.

4.2 Remedies

The undersampling caused by non-smooth edges and cor-
ners is the source of all problems in approximating the me-
dial axis for CAD surfaces. Therefore, we pay special atten-
tion while sampling the vicinity of these regions. First of
all, we can sample non-smooth edges and vertices since the
CAD surface is known. Secondly, we can choose the sam-
ple placements so that the medial axis can be completed by
connecting it to proper edges and corners.

4.2.1 Sampling

First, we make sure that the non-smooth edges and ver-
tices can be recovered from the Delaunay triangulation, i.e.
if p and ¢ are two consecutive sample points on a non-smooth
edge, then the edge pg should be present in the Delaunay tri-
angulation. This needs that the sampling is dense enough
in the following sense. Let 1 > 0 be such that any ball
with radius smaller than r; and with a center on a non-
smooth edge e intersects the surface in a topological disk
and does not intersect any vertex or facet that is not inci-
dent on e. Similarly, let ro > 0 be such that any ball with
radius smaller than r; and centering a non-smooth vertex
v intersects the surface in a topological disk and does not
intersect any vertex, edge, or facet that is not incident to
v. We call 7 = min{ry, 2} the minimum size of the input
surface.

For each non-smooth vertex v we put a ball around it
with radius less than r. The intersection point, say p, of
this ball with each edge incident to v is introduced in the



sample. No other sample point is introduced inside this ball
making it empty. Thus, all edges between v and intersection
points such as p appear in the Delaunay triangulation of the
sample. The rest of the non-smooth edges are sampled at
regular interval of distance less than 7. This guarantees
that each edge pg between two consecutive sample points
on non-smooth edges has a diametric ball which is empty
of any other sample point. Therefore, pg appears in the
Delaunay triangulation. In our implementation we avoided
computing the minimum size by sampling the sharp edges
and corners densely with conservative estimates.

The structure of the medial axis will be complete if we can
identify the Voronoi facets that should be connected to the
convex edges and non-concave corners. Keeping this in mind
we sample the convex edges and its vicinity in the following
way. Let f; and f, be two facets incident to a convex edge
e. First we place sample points sufficiently densely on e as
described before. For each such sample s, we compute two
points s; and s, on f; and f. respectively in such way that
the segments s;s and s,s are perpendicular to e at s and
their Euclidean lengths are equal. Call the three sample
points s, s; and s, a triplet, and s; and s, the neighbors of
s. See Figure 6.

Figure 6: Edge sampling. The red points are sam-
ples on the edge and the blue line segments connect
the corresponding neighbors to samples.

4.2.2 Convex edges

Since the sampling respects the minimum size, the triangle
ssps; with a triplet has an empty circumcircle. This means
that it is a Delaunay triangle. If the dihedral angle at the
convex edge e is not too shallow, the Delaunay edge s;s;
is selected by the Angle condition meaning that its dual
Voronoi facet participates in the approximate medial axis.
In fact, if the dihedral angle at the edge e is more than
m—20, the Angle condition with the threshold angle § cannot
capture the Delaunay edge s,s;. We have observed that
some of the convex edges of CAD surfaces can have dihedral
angles as large as 170°. As a result we have lowered down
the threshold of 6 to 5° for the new algorithm.

The dual Voronoi edge of the Delaunay triangle ss,s; is an
edge of the Voronoi facet dual to s,s;. Let v1 and v2 be the
two end points of this dual Voronoi edge. The triangle svivs
is placed to connect the medial axis to the sample point

s on the convex edge e. All such triangles form a zigzag
shape (marked as red triangles in Figure 7). We fill the
triangular holes left (marked as blue triangles) completing
the connection of the medial axis to the convex edge e except
possibly at the ends.

Figure 7: The picture in left shows the medial axis
before connecting the Voronoi facets to the edge.
The right picture shows how they are connected.

Let F be the collection of Voronoi facets chosen by Angle
and Ratio conditions. Let s’ and s" be the two adjacent
sample points of s on the convex edge. We summarize the
above steps as follows.

PROCCONVEXEDGES(P,F')
1 for each triplet ss;s,
2 find the dual Voronoi edge vivs2 of ssis, € Dp;
3 F:=FUsviv
4 ifvi € Vy and v € Vi
F:=FUss'v; and F := F Uss"vy;
5 end for

Notice that the true medial axis bisects the dihedral angle
formed by the two facets f. and f; at e. Since we choose
the lengths of ss, and ss; equal, its dual Voronoi facet nicely
approximates the medial axis. This Voronoi facet lies on the
bisector plane of s,s; and passes through the point s. So the
triangle svjvy joins the dual Voronoi facet of s;s, smoothly.

4.2.3 Non-concave corners

The non-concave corners usually connect to several branches
of the medial axis. We have a sample point on every cor-
ner. Consider the Voronoi cell V, of a non-concave corner p.
Observe that some Voronoi edges in V, are incident to the
Voronoi facets that are chosen to approximate the medial
axis as shown in the left picture of Figure 8. We need to
identify these Voronoi edges and connect them to p to com-
plete the medial axis as shown in the right picture of Figure
8.

However not all the Voronoi edges of V, appearing on
the approximated medial axis should be connected to p. We
find that if a Voronoi facet of V}, is chosen in the medial axis,
then none of its edges should be connected to p. In Figure
9 we show an example. The left picture shows that all the
Voronoi edges of the chosen Voronoi facets are connected
to the corner (yellow triangles). We can see that this is
obviously not correct because there is a branch which should
not meet the corner though it shares a Voronoi facet with
the Voronoi cell of the corner. The right picture shows the
correct result.
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Figure 8: Nonconcave corners handling

Figure 9: Non-concave corners special case

PROCNONCONCAVECORNERS(P, F)

1 for each non-concave corner p ;

2 for each Voronoi edge viv2 on the medial axis;
3 if no Voronoi facet of V,, incident to vivz is in F'
4 F := F U pvjvs;

5 end if
6 end for
7 end for

4.2.4 Umbrella

As we pointed out earlier, the umbrella for sample points
in the vicinity of the non-smooth regions may deviate con-
siderably from the tangent plane. This is mainly because
the normal estimation suffers in these regions. As a remedy
we redefine the umbrellas as follows.

Consider the sample points on a facet of the model. We
can reconstruct the facet from its sample points using our
COCONE algorithm [13]. This algorithm can reconstruct sur-
faces with boundaries from a dense sample. Since each in-
dividual facet can be thought of as a smooth surface with
boundaries, the sample points on each facet constitute a suf-
ficiently dense sample. Therefore, each facet is reconstructed
accurately with our CoCONE algorithm. For details of this
algorithm see [13].

Thus, we reconstruct the entire input CAD surface facet
by facet and stitching them together along the non-smooth
edges and corners. In our actual algorithm we do not need
this explicit stitching. The set of triangles incident to a
sample point over all facet reconstructions constitute its um-
brella. Notice that, since facet reconstructions are accurate,
the umbrellas as defined above approximate the surface and
hence the tangent planes quite accurately.

The left and right pictures in Figure 10 shows the medial
axis approximation by using the old and new definitions of

Figure 10: The effect of different umbrellas on the
medial axis

the umbrella respectively. We can see that the hole near the
corner point gets shrunk when the new definition of umbrella
is used.

4.2.5 Inner medial axis

We are interested in the inner medial axis. We know that
for a CAD model with a single boundary, each of the compo-
nent of the outer medial axis must extend to infinity. This
means each component in the approximation of the outer
medial axis must have an unbounded Voronoi facet. Fur-
ther, the inner and outer medial axis can only be connected
through non-concave corner points. We use these facts to
separate the inner medial axis from the outer one.

We start a walk from an infinite Voronoi facet that is on
the medial axis and then continue collecting all other facets
in the outer medial axis without ever going through the sur-
face triangles around a non-concave corner point. If some
infinite Voronoi facets chosen for the medial axis are left
after this walk, we start a new walk from one of these in-
finite facets. This continues until we are not left with any
infinite Voronoi facet that has been chosen for the medial
axis approximation. At the end of this process we only col-
lect the Voronoi facets approximating the outer medial axis.
The rest of the Voronoi facets and the forced triangles are
output as the inner medial axis.

4.2.6  New algorithm

With all the modifications described above the steps of the
new algorithm CAD_MEDIAL can be enumerated as follows.

CAD_MEDIAL(S)
1 Get P by sampling S appropriately;
2 Compute Dp and Vp ;
3 Reconstruct S facet by facet;
4 Let U, be the set of triangles incident to p in this recon-
struction;
5 for each Delaunay edge pq € U,
6 if either p or g satisfies Angle or Ratio condition
7 F := F UDual pq
8 endif
9 endfor
10 ProcConvexEdges(P,F);
11 ProcNonconcaveCorners(P,F);
12 Extract inner medial axis into F;
13 output closure(F);



S. EXPERIMENTAL RESULTS

Figure 11 shows our results on some example CAD ob-
jects. For all the data sets, CAD_MEDIAL constructed a
complete medial axis in terms of the structure. We used
p =8 and 6 = 5° for all models.

In general, the medial axis of a surface is a CW-complex
where each cell can be zero, one or two dimensional. In
CAD_MEDIAL, we approximate all cells with two dimen-
sional cells, namely the Voronoi facets. The medial axis for
the data sets CHUCK, MAILBOX and TAPBOLT contains one
dimensional components along the cylinders which are ap-
proximated by thin Voronoi facets and are too thin to be
visible in the picture.

CAD_MEDIAL works for complicated shapes as the ex-
amples in Figure 11 exhibit. The QUIDE example shows the
result for objects with smooth parametric facets. CAP shows
objects without corners. ANCHOR shows a complex shape.

Figure 12 shows the medial axis with different sampling
density. We approximate the medial axis with piecewise lin-
ear polygon, i.e. Voronoi facets. The geometric accuracy of
the approximation increases as the density increases. With
more sample points, we can get smoother approximation of
the high curvature regions by smaller Voronoi facets, see the
middle picture. However, this high geometric accuracy is not
necessary for some applications. In these cases low sample
density can be used. The right picture in the figure shows a
low resolution version of the medial axis with smaller sam-
ple. The number of Voronoi facets decreases considerably,
while the size of the Voronoi facets increases which can be
seen from the magnified pictures. But if the density is too
low, the artifacts such as holes will appear in the medial
axis.

All of our softwares are written in C++. We used the
CGAL library [29] for the Voronoi and Delaunay computa-
tion and used filtered floating point arithmetic for robust
geometric computations. Experiments were conducted on a
PC with 933 MHz CPU and 512MB memory. The code was
compiled with CGAL2.3 library and g++ compiler with 01
level of optimization. The time for the Delaunay triangula-
tion, reconstruction by facets and Delaunay edge selection
are listed in Table 1.

# points | Delaunay Recon. Filtering

object time(sec.) | time(sec.) | time(sec.)
ANCHOR 27,619 129.66 75.6 2.62
CapP 17,805 72.95 56.55 1.43
CHUCK 46,906 301.63 148.08 3.68
MAILBOX 6,980 29.51 27.61 0.56
QUIDE 14,951 52.52 44.16 1.13
TAPBOLT 47,870 241.84 263.3 4.04
WIDGET 66,686 440.53 300.43 5.83

Table 1: Time data.

6. CONCLUSIONS

In this paper, we extended a general purpose medial axis

algorithm to three dimensional CAD objects. Several diffi-
culties that one encounters with non-smooth boundaries in
CAD objects are addressed successfully with the new algo-
rithm. The original algorithm does not connect the medial
axis to the convex edges and non-concave corners which it
should to complete the structure. We solved this problem

by extracting the sharp features information from the CAD
objects, then forcing the connection of the medial axis to the
convex edges and non-concave corners. The second problem
due to poor normal estimations near the non-smooth regions
is solved by reconstructing the surface ‘perfectly’ through
the facet by facet reconstruction. The third problem of sep-
arating the inner medial axis from the outer one is solved
by a simple walk over the approximated medial axis.

We have indicated that the sampling density near the
non-smooth regions should be sufficiently high so that all
required edges appear in the Delaunay triangulation. We
have also suggested how one can guarantee this property.
However, this guarantee requires some extra computation
that we have avoided by simply being conservative during
sampling. But as more samples increase the computation
time and may create unnecessary burdon for further appli-
cations, it would be worthwhile to sample as much as needed
for the good approximation. Can this be determined a priori
efficiently? We plan to look into this problem in future.
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