Eurographics Symposium on Geometry Processing 2011
Mario Botsch and Scott Schaefer

Volume 30 (2011), Number 5

(Guest Editors)
Localized Delaunay Refinement for Volumes
Tamal K Dey’! and Andrew G Slatton®!
I'The Ohio State University, Computer Science and Engineering
Abstract

Delaunay refinement, recognized as a versatile tool for meshing a variety of geometries, has the deficiency that
it does not scale well with increasing mesh size. The bottleneck can be traced down to the memory usage of 3D
Delaunay triangulations. Recently an approach has been suggested to tackle this problem for the specific case
of smooth surfaces by subdividing the sample set in an octree and then refining each subset individually while
ensuring termination and consistency. We extend this to localized refinement of volumes, which brings about some
new challenges. We show how these challenges can be met with simple steps while retaining provable guarantees,
and that our algorithm scales many folds better than a state-of-the-art meshing tool provided by CGAL.

Categories and Subject Descriptors (according to ACM CCS): 1.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Curve, Surface, Solid, and Object Representations

1. Introduction

Delaunay refinement is accomplished by iteratively sam-
pling an input geometry at points locally farthest from the
current sample set whenever a condition is violated [Che89,
Rup95]. It has been recognized as an effective tool for
sampling and meshing a variety of geometries including
polyhedra [She98], smooth surfaces [BO05, CDRRO7] and
volumes [ORYO05], piecewise smooth surfaces [BO06] and
complexes [CDRO8]. The popularity of the technique can
be attributed to its ability to equip algorithms with provable
guarantees and also to generate good quality meshes in con-
junction with optimizations [ACSYDO0S, TWADO09].

One shortcoming of such an otherwise excellent tool is
its lack of scalability. Since traditional Delaunay refinement
maintains a complete three dimensional Delaunay triangu-
lation of a growing sample, its time and memory usages are
determined by those of the Delaunay triangulation algorithm
being employed. Although considerable progress has been
made to speed up Delaunay triangulations [ACRO03,ILSS06],
still the state-of-the art does not scale well for computing
3D meshes with simplices in the range of a few million. Par-
allel algorithms could be a solution to this problem, but to

T e-mail: dey.8@osu.edu
 e-mail: slatton.2 @buckeyemail.osu.edu

(© 2011 The Author(s)

Computer Graphics Forum (©) 2011 The Eurographics Association and Blackwell Publish-
ing Ltd. Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK
and 350 Main Street, Malden, MA 02148, USA.

date they are limited only to Delaunay refinement of polyhe-
dra [NCCO04].

Recognizing the gap, very recently Dey, Levine, and Slat-
ton [DLS10] proposed an algorithm that can sample and
mesh a smooth surface using localized Delaunay refinement.
The localization is obtained by maintaining the current sam-
ple in an octree and then refining each leaf node separately.
The obvious problems this solution faces are how to main-
tain a lower bound on inter-point distances over the global
set and how to fit individual meshes consistently. Dey et al.
showed that these two concerns can be alleviated by careful
point insertion and a re-processing technique, while ensur-
ing quality guarantees. The algorithm improved the mem-
ory usage by an order of magnitude and therefore prevented
memory thrashing—a culprit of scaling.

In this paper, we extend the technique of Dey et
al. [DLS10] to volumes bounded by smooth surfaces. Since
volume meshing with quality tetrahedra is an important re-
quirement for many scientific simulations, extension of a
successful technique for surface meshing to this domain is
an important undertaking. It turns out that this extension
from surface to volume is non-trivial, bringing new chal-
lenges and requiring additional observations and results. In
this discourse, we reveal theoretical results which guaran-
tee some qualities for the output, as well as practical results
which show that our method surpasses the performance of a
CGAL [cga] volume meshing tool by many folds; these are

Tamal K Dey & Andrew G Slatton / Localized Delaunay Refinement for Volumes

the two main contributions of this investigation. It should
be noted that our method does not address sliver removal,
a nontrivial problem commonly faced by Delaunay refine-
ments in general.

1.1. Definitions and Notations

Our algorithm and the analysis thereof make use of
Voronoi/Delaunay tessellations and their restrictions to a
volume O and its boundary dO, as well as the idea of "lo-
cally farthest points". For completeness, we recapitulate the
definitions of these here.

For a set of points P C R3, we denote its Voronoi di-
agram and Delaunay triangulation as VorP and Del P re-
spectively. Each k-dimensional Delaunay simplex o (ver-
tex, edge, triangle, and tetrahedron) is dual to a (3 — k)-
dimensional Voronoi face Vs (cell, facet, edge, vertex re-
spectively).

The point set P in our case will be from a volume O
bounded by a smooth boundary dO in R3 often approxi-
mated by a polygonal surface in practice. The set of De-
launay simplices whose dual Voronoi faces intersect O or
dO will be of special interest to us. We use special sub-
complexes of DelP called the restricted Delaunay com-
plexes with respect to O and dO. They are defined as:

DelP|o ={0c €DelP: Vo NO # 2}
DelP|yo ={0 € DelP: VN IO # @}

Figure 1: A restricted triangle in Del P|,o: its dual Voronoi
edge intersects the surface. One such intersection point is p
which is the center of a surface Delaunay ball of the triangle.

The complex DelP|o consists of tetrahedra, triangles,
edges, and vertices whose dual Voronoi faces intersect O.
Similarly, Del P| 5o consists of triangles, edges, and vertices
whose duals intersect dO. The dual Voronoi edge of a re-
stricted Delaunay triangle f may intersect dO at multiple
points. Each of these intersection points is the center of a
three dimensional ball that does not contain any point of P
inside, but contains the vertices of f on its boundary (Fig-
ure 1). They are called the surface Delaunay balls of f.

The locally farthest point in a Delaunay refinement is a

point where a Voronoi face such as a Voronoi edge or a
Voronoi vertex intersects the input geometry.

2. Overview

Usually, the Delaunay refinement is accomplished by main-
taining the Delaunay triangulation of the entire sample set in
memory because any refinement based on proper subsets of
the sample incurs two questions, namely:

1. How can one ensure that the meshes of these subsets fit
together consistently?
2. How can one guarantee termination of such an algorithm?

The first of these arises because, given two arbitrary sub-
sets of a sample, some points in one may lie inside some
Delaunay balls of the other; therefore, some simplices that
are restricted with respect to the subset may then not be re-
stricted (or may not exist at all) with respect to the entire
point set. The solution to this problem lies in choosing sub-
sets carefully, and appropriately selecting from the triangu-
lations of these subsets those simplices which will comprise
the final output.

The second problem arises because an added point that
is locally farthest in a subsample may not remain so in the
full sample. This means that there is no lower bound on
inter-point distances within the sample, and therefore no up-
per bound on the number of point-insertions. This problem
is solved by a point-insertion scheme that can guarantee a
lower bound on inter-point distances.

In this paper, we draw upon the approach of Dey et
al. [DLS10] to mesh the volume O bounded by a smooth
2-manifold input dO, a problem for which the questions
and general solutions mentioned above remain valid. How-
ever, there are additional difficulties that arise during volume
meshing — one pertaining to termination and another to the
topology of the output.

We prove termination via a packing argument; there-
fore we must show that we only insert points inside some
bounded domain. This can be troublesome when we refine
tetrahedra because, though O is bounded, the dual Voronoi
vertex of an arbitrarily chosen Delaunay tetrahedron may not
lie in O. So, we must take some measures to ensure that we
refine only those tetrahedra whose dual Voronoi vertices lie
in O. We discuss our solution to this problem at the end of
our algorithm description and in our argument for termina-
tion.

We aim to guarantee the topological equivalence of the
output mesh to the input volume. This assurance requires all
restricted triangles to have all their vertices on dO. To meet
this condition, Oudot et al. [ORYO05] force a triangle refine-
ment, and we follow suit; however, this strategy faces the
following problem in localized refinement: a Voronoi ver-
tex may be inserted arbitrarily close to dO as it is not com-
pletely protected by surface Delaunay balls in the partial set;

(© 2011 The Author(s)
(© 2011 The Eurographics Association and Blackwell Publishing Ltd.

Tamal K Dey & Andrew G Slatton / Localized Delaunay Refinement for Volumes

Figure 2: Cut away views show some tetrahedra in meshes produced by our algorithm. Surface colors signify decomposition

with octree leaf nodes.

Figure 3: The black Voronoi vertex, if inserted as a cir-
cumcenter, would be very close to the curve (surface). Even
though the restricted Delaunay edges (triangles) with sam-
ples on the curve (surface) form a manifold, the curve (sur-
face) near the vertex may not yet be meshed properly to pre-
vent volume triangulation introducing the Voronoi vertex in
a local refinement.

see Figure 3 for an illustration. Then to get rid of restricted
triangles incident to such an interior vertex the refinement
could be arbitrarily dense, jeopardizing termination. Our so-
lution: when a surface vertex is inserted, all volume vertices
close to it are deleted. Our proof of termination leverages
this action.

We prove that the algorithm terminates, outputting a 3D
mesh which is always a manifold and is close to the input
volume with respect to A, a user supplied parameter. The
guarantee remains valid no matter what value of the parame-
ter A is supplied. Furthermore, when A is sufficiently small,
the output becomes isotopic to the input volume.

(© 2011 The Author(s)
(© 2011 The Eurographics Association and Blackwell Publishing Ltd.

3. Algorithm

Our algorithm computes and refines the surface and volume
mesh simultaneously. It divides the sample set P using an
octree, and processes only one leaf node of the octree at a
time. During the processing of a node Vv, six conditions are
checked. When one of these conditions is violated, the al-
gorithm refines the node’s local triangulation accordingly.
When there are no more violations in Vv, it begins process-
ing another node of the octree. When none of the refinement
criteria are violated in any of the nodes, a final output is gen-
erated. Throughout the algorithm, we utilize a point inser-
tion strategy that is necessary for our proof of termination,
and we may select some nodes for reprocessing in order to
maintain a global consistency across meshes. Details follow.

3.1. Node Processing

The nodes of the octree requiring processing are maintained
in a queue Q, and each node is processed when it reaches the
head of Q. A node may be processed by one of two actions:
split or refine. Each node v of the octree maintains a set of
points Py = PN v. When the number of points in v exceeds a
user-defined parameter «, that is, |Py|>k, we invoke a split;
if |Py| < k when v reaches the head of Q, we invoke a refine.

In a split, v is divided into eight children of equal size,
each of which is geometrically similar to v. The points of
Py are then divided among these children, with each child
taking the points that lie within its volume, and then these
children are enqueued in Q.

When a node v is refined, we begin by computing its local
triangulation Del Ry, where Ry is a superset of Py. Specifi-
cally, we initialize Ry := Ny |JPy, where N, C P contains
the points of P that lie within a distance 24 of the boundary
of v (Figure 4); the value of 2A is chosen in order to prove
our claims regarding the output. While violations of our re-
finement criteria persist, we refine the local triangulation of
v. Detailed descriptions of the refinement criteria are given

Tamal K Dey & Andrew G Slatton / Localized Delaunay Refinement for Volumes

° e o n @ oNv.o
° ® °
0 o o ° ¢
L4 °
° A °
L ®e ° L4 ¢
ol o @ ° °

Figure 4: Ry := Ny UPy. The solid rectangle shows the
boundary of node v. Solid points are in the initial Ry; hollow
points are not.

later. If |Py| > Kk at any point during the refinement of the
local triangulation, we invoke a split of v.

When a node v is not being processed we clear its local
Delaunay triangulation (along with all the data structures as-
sociated with it) in order to save memory, maintaining only
its P, C P and a list of restricted tetrahedra inside v. The list
of tetrahedra can be stored on disk to reduce memory foot-
print, as it will not be required again until the output step;
however, Py, should be kept in memory because it may be
accessed often by our point-insertion method.

3.2. Localized Refinement

For each point p in a node v, we want the local triangulation
around p be nice, that is, surface triangles around p form a
topological disk, and tetrahedra around p form a topologi-
cal ball. Our ultimate goal is to fit all these individual local
triangulations seamlessly in a global one. Toward that goal,
we define the surface star F), of a point p € Py, as the set
of triangles incident on p that are restricted to dO in the lo-
cal triangulation, and the sub-simplices of all such triangles.
Formally,

F, ={f|f € DelRy|j0 is either a triangle incident to p

or a sub-simplex of such a triangle}.

Similarly, we define the volume star T, of a point p € Py
as the set of tetrahedra incident on p that are restricted to O
in the local triangulation, and the sub-simplices of all such
tetrahedra. Formally,

T, = {t|t € DelRy|o is either a tetrahedron incident to p

or a sub-simplex of such a tetrahedron}.

3.2.1. Refinement

During the refinement phase we check six conditions in a
priority order which gives priority to CI over CJ if I<J:

1. (C1)Vf € Fy, where fis a triangle and p € Py, the surface
Delaunay ball of f has radius less than A;

2. (C2)Vf € Fp, where f is a triangle and p € Py, all vertices
of f lie on dO

3. (C3) Vp € Py, if p(1dO = p then F}, is a topological disk
with each edge e € F), that is incident on p being also
incident on exactly two triangles in F;

4. (C4) Vf € Fp, where f is a triangle and p € Ry, the
Voronoi edge dual to f intersects dO only once;

5. (C5) Vt € T, where ¢ is a tetrahedron and p € Py, ¢ has
circumradius less than A;

6. (C6) Vt € T, where t is a tetrahedron and p € Py, the
radius-edge ratio is at most 2.

In the event of a violation, a tuple (p,q) is returned, where
q is a candidate for insertion and p is the closest point to
g in Ry. If C1, C2, or C4 is violated, g is the center of the
largest surface Delaunay ball of the culprit f. In the case of
C3, g is the center of the largest surface Delaunay ball of all
triangles in F),. For violations of CS5, ¢ is the circumcenter of
the culprit ¢. For violations of C6, let ¢ be the circumcenter
of the culprit 7. If ¢ lies inside some surface Delaunay ball,
then ¢ is the center of that surface Delaunay ball; otherwise,
q := c. When no violations remain, we return a null tuple.

° ® o o
g o |0 ° b
14
°
) O .. [] O
Os
° °
° o |0 °
VI
v
oy
vl/
[22

Figure 5: (top) shows some examples of point insertion
(solid points are in Ry; hollow points are not). In the right-
most image, s is added to Ry; in the other two images q is
added to both Ry and P. (bottom) depicts an example of re-
processing: when V inserts q, V' and V" are enqueued for
reprocessing.

3.3. Point Insertion and Deletion

Algorithm 1 InsertDelete(v, p,q,A)

1: s:=argmin,p d(q, u)

2: ifd(q,s) <A and s & Ry then
3: Ry :=RyU{s};returns

4: else

5. if g € O then

6 delete any p € P\ dO with d(p,q) < 4
7: endif

8: P:=PU{q};update Ry; return g

9: end if

Let (p,q) be a tuple returned by some violation during
refinement. Then ¢ is a candidate for insertion, but it may

(© 2011 The Author(s)
(© 2011 The Eurographics Association and Blackwell Publishing Ltd.

Tamal K Dey & Andrew G Slatton / Localized Delaunay Refinement for Volumes

lie arbitrarily close to some point in P despite being locally
far in Ry. In order to disallow arbitrarily close insertions in
our sample, we find the closest point s € P to g. If s lies
within distance A of ¢, and s & R (recall that p is the nearest
point to g in Ry), then we throw away ¢ and insert s into Ry ;
otherwise, we insert ¢ into Ry and add it to P. Note that Ry
is augmented in both cases, and P is augmented in only the
latter case. Figure 5(top) illustrates different cases.

Sometimes we also require point deletions in response to
the insertion of a surface point, that is, a point in dO. Deleted
points are always volume points, that is, points that are in
P but not in dO. If the new point g is a surface point, we
delete all volume points that are within A distance of g. We
remark that deletions happen rarely in practice and only at
the beginning when the surface dO is not yet completely
covered with surface Delaunay balls.

Furthermore, when a new point is added to or deleted from
P it is possible that some nodes are enqueued for reprocess-
ing. At the onset, it may seem that insertion, deletion, and
reprocessing may cause an endless cycle, preventing termi-
nation. We prove that this never happens.

3.4. Reprocessing Nodes

Algorithm 2 NodeEnqueue(v,s,A)
1: Compute W :={V' #£ v|d(s,V') <21}
2: for each v/ € W do
3: Enqueue(V’,Q)
4: end for

Each node in the octree represents a well-defined subset
of P, specifically a node represents its Ry = Py [JNy. It is
possible that when a point ¢ ¢ P is inserted during the refine-
ment of node V, it changes the content of some Ry, V' # v
through insertion or deletion, and so may affect the part of
the final output generated by v’. Then in order to maintain
consistency between the meshes of v/ and others we must
reprocess V'. Therefore, whenever some g ¢ P is inserted by
node v, we enqueue all nodes v/ # v within distance 2A of
q. See Figure 5(bottom).

3.5. Algorithm LocVol

Our algorithm LocVol first encloses the input surface dO
into a bounding box which becomes the root of the octree
subdivision. As in [DLS10], some points sampled from dO
initialize P. The inner while loop (4-12) processes a node
v assuming a routine Violation that checks for respective
violations of conditions in the priority order C1-C6.

When a node v is not being processed, we maintain its
sample set P, = P(\v C P and a list of tetrahedra J,¢p, Tp-
This list is maintained to avoid recomputing the mesh in a
node while finalizing the output mesh. When Vv is extracted

(© 2011 The Author(s)
(© 2011 The Eurographics Association and Blackwell Publishing Ltd.

from Q for processing, we compute Del Ry, which is also up-
dated with each insertion and deletion of point(s). To check
violations C1-C4, we compute and maintain the restricted
surface triangulation Del Ry | ;0. To check violations C5-C6,
we also need the restricted volume triangulation Del Ry |o.
We initially identify the tetrahedra of Del Ry|o by walking
from a dummy tetrahedron in DelR, which is assumed to
be at infinity, and marking tetrahedra appropriately by mak-
ing a note each time we pass through a restricted triangle.
After the initial marking, subsequent markings (due to point
insertion/deletion) can be handled locally.

We prove that LocVol terminates. At termination we out-
put Upep Tp- Figures 2,6, and 7 show some examples.

Algorithm 3 LocVol(d0, k, 1)
1: Initialize P and Initialize Q with a bounding box;
2: while Q is not empty do
3: v:= Dequeue(Q);
4: while (p,q):= Violation(dO, v,) is not null do
5: s:= InsertDelete(v, p,q,A)
6
7
8
9

if s ¢ P then
NodeEnqueue(v,s,A)

end if

if |Py| > Kk then
10: Split v and enqueue its eight children to Q
11: end if
12: end while
13: end while
14: Return P and U, 7).

Figure 6: Buddha and Bimba with 718K and 661K tetrahe-
dra respectively.

Tamal K Dey & Andrew G Slatton / Localized Delaunay Refinement for Volumes

4. Guarantees
4.1. Termination

We use a standard packing argument that only finitely many
points can be inserted in a bounded domain with a fixed
lower bound on inter-point distances. The points inserted on
the boundary dO satisfy the boundedness condition automat-
ically. However, the circumcenters of tetrahedra that are in-
serted may lie outside the volume O, and hence potentially
threaten to populate an unbounded domain. Condition C4
prevents this by recalling a result from [ORYO0S5, Lemma 1]:
If each Voronoi edge in VorRy either intersects dO in a sin-
gle point (transversally) or does not intersect it at all, then
d(DelRy|o) = DelRy|j0. The conclusion means that the
surface triangulation DelRy|;q also bounds the restricted
volume triangulation Del Ry |o whose tetrahedra necessarily
have their circumcenters in O by definition. Therefore, if we
access only those tetrahedra that lie in a volume bounded
by the restricted surface triangulation, we are ensured that
their circumcenters are in O. The algorithm LocVol pre-
cisely finds these tetrahedra at a time when condition C4 is
satisfied. Therefore, all points inserted by LocVol lie in a
bounded domain, namely in O.

The points inserted by LocVol are distinguished into two
classes, the surface points which lie on dO and the volume
points which lie in the interior O\ dO. Now we argue that
the algorithm terminates.

Assume that the algorithm does not terminate. Then we
have either an infinite number of deletions or an infinite
number of insertions; however, because we only delete when
we insert a surface point, one must have an infinite number
of surface insertions in order to have an infinite number of
deletions. Because we never delete surface points, an infinite
number of surface insertions implies that there is no fixed
lower bound on the distance between pairs of surface points.
‘We show that this is not the case. To facilitate discussion,
let us divide point pairs into three main classes: surface-
surface pairs (ss), surface-volume pairs (sv), and volume-
volume pairs (vv). Each refinement criterion, directly or in-
directly, implies a lower bound for the interpoint distances of
one or more of the above pair types, and this is the premise
of the proof of termination. Let dy, dy,, and d,, denote the
smallest inter-point distances in the current pair classes. Fur-
thermore, let dyy, dyy, and d,, denote the new such distances
after a point insertion or deletion in any of the violations C1-
Cé6.

First, we argue the following implications:

(Cl) = dy5 > min{d, A}, dy > min{dg,, A}
2 = d_ss > min{dsmdsv/z:dvv/z} and d_sv >
min{ds,,A}

(C3) = dys > min{dyy, Ayo } and dy, > min{d,,, A}

CH = d_XS > min{d‘vsal*} and d_sv > min{dswl}

(C5) = dy, > min{dy,, A} and d,, > min{d,,,A}.

e (C6) = d_swd_vv > min{sts>dsV7dvv} or d_ss >
min{dss7 dgy 5 dvv}~

Notice that during insertion InsertDelete either augments
Ry with an existing point s from P, or inserts a new point
qg. When a new point ¢ is inserted, its closest point p over
the global point set P lies in Ry. Also, because insertion
of a surface point causes the removal of all volume points
within a distance of A of the inserted point, we have
dsy, > min{d,,,A} for C1..C4. We argue for the other
implications in the following.

(C1): In this case we consider g because ¢ has circumra-
dius more than A. The distance d(g,p) = d(g,P) is at least
A providing the implication.

(C2): Consider the case where C2 is violated by a re-
stricted triangle having at least one surface sample as a ver-
tex. Then the inserted point ¢ must be at least d,/2 away
from all other points. If C2 is violated by a triangle having
no surface samples as vertices, then the inserted point must
be at least d,,/2 away from all other points. This leads to
dgs > min{dvm d_w/27dw/2}.

(C3): Here we can argue as in [DLS10] that d(q,p) =
d(q,P) is at least a surface dependent constant 4.

(C4): When C4 is considered, condition C2 ensures that
f has all vertices on dO. We can safely assume that f
has a circumradius smaller than any fixed positive constant,
say A*, since otherwise d(q, p) = d(q,P) > A*, and we are
done. Therefore, assume in particular that d(p,q) < A* for
A* = 0.06Ifs (p) Where Ifs i, (p) = min,, Ifs(p) is the min-
imum local feature size of dO at p [AB99], and thus a sur-
face dependent constant. The furthest intersection point of
the dual Voronoi edge of such a small triangle f with the
surface must lie at least Ifs(p) away from p; see [Dey06,
Lemma 3.7]. It follows that d(g, P) > A* > Ifs .

(C5): Since ¢ in this case is the circumcenter of a tetrahe-
dron with circumradius at least A, d(p,q) = d(q,P) > A.

(C6): Recall that for a violation of C6, we insert the
Voronoi vertex ¢ if it is not inside any surface Delau-
nay ball, and insert a surface point otherwise. In the for-
mer case, the circumradius r of the tetrahedron ¢ being
split is more than 2 times its smallest edge. Then, r >
2min{dss,dsy,dyy }. Since r = d(q,p) = d(g,P), we have
{dsy,dyy} > min{2d,dsy,d,y}. In the other case, when a
surface point is inserted, the surface Delaunay ball contain-
ing the circumcenter of 7 has a radius at least /2. Then, we
have ds > r/2 > 2min{dyy,dsy,dy } /2 = min{dys, dsy, dy }.

Theorem 1 LocVol terminates.

Proof. As we argued earlier, we need to show that finitely
many surface and volume points are inserted, or dss and d,,
have a positive lower bound. Observe that all steps maintain
a positive lower bound on dss except possibly C2 and C6.
In C2, it may decrease to half of dy, or d,,. But, dy, and

(© 2011 The Author(s)
(© 2011 The Eurographics Association and Blackwell Publishing Ltd.

Tamal K Dey & Andrew G Slatton / Localized Delaunay Refinement for Volumes

d,, maintain a positive lower bound through all steps except
possibly in C6 where it may decrease to 2d,,. But, then, a
possible cycle through C2 and C6 cannot decrease dys. This
implies a positive lower bound on dss through all steps. Since
dyy has a positive lower bound in every step except possibly
in C6 where it can be 2d,g, we have the desired result.

4.2. Geometric and Topological Guarantees

Theorem 2 The output mesh of LocVol(dO,k,A) satisfies
the following two properties:

(i) The output mesh 7' = U,T, is a subcomplex of the
restricted Delaunay complex DelP|o with 0T a 2-
manifold. Each point in the output is at a distance A from
O and each tetrahedron has radius-edge ratio at most 2.

(ii) There exists a A* > 0 so that if A < A*, the output mesh
becomes isotopic to O with a Hausdorff distance O(1.2).

Proof. (i) We show that each tetrahedron ¢ € U,T) is a
restricted Delaunay tetrahedron in the global triangulation
Del P. Let t belong to T, where p is in the node v. When v
is processed for the last time, the circumscribing ball B of ¢
is empty of points in Ry since it is a Delaunay tetrahedron in
DelRy. No points of P can lie inside B either. Since B has a
radius less than A (condition C5), any such point would be
within 22 distance of p € v and thus would be in Ry by def-
inition. We claim that no point of P can be inserted in B after
the last time v is processed because, assuming the contrary,
the point inserted inside B has to be generated by processing
another node V' after v. In that case, v would have a point
inserted within 2A distance, as the B has radius at most A.
This would cause v to be enqueued and reprocessed. But,
this would contradict that v had already been processed for
the last time.

Now we argue that S = T is a 2-manifold. Notice that
any triangle which is in 97 is a restricted Delaunay trian-
gle f in DelRy|y0 for some node v when v is processed
for the last time. The restricted triangles incident to a point
p € v form a topological disk (condition C3). By an argu-
ment similar to the one used for tetrahedra, we can show
that these triangles remain restricted in the global triangu-
lation Del P. Furthermore, they remain so when no volume
point is considered. Now we can argue as in [DLS10] to es-
tablish that triangles in S are consistent, that is, if a triangle
f € S has vertices a,b,c, it appears in each surface star £y,
Fp,, and F¢. In sum, the triangles incident to each vertex in S
form a topological disk (with each edge having exactly two
triangles). By a standard result in PL topology S must be a
2-manifold.

Since all tetrahedra in U, T}, have circumcenters in O and
have radii no larger than A, all points in U7}, lie within A
distance of O. Condition C6 ensures that all tetrahedra in this
set have radius-edge ratio no more than 2. This completes the
proof of (i).

(i) We have already shown that S is a subcomplex of

(© 2011 The Author(s)
(© 2011 The Eurographics Association and Blackwell Publishing Ltd.

the global triangulation restricted to the surface, that is, S C
Del P| ;0. Let P’ denote the vertex set of S. Since P’ C P, we
have S C Del P’| 5. Now consider a triangle f € Del P’| 0 \
S. We claim that no such f exists when A < 0.06f,,;,, prov-
ing that S = Del P’|50. When A < 0.061fs,y,i, the restricted
triangles in Del P'|5o around any point p € P/ must make
a topological disk [BOO05, CDRRO7]. This disk is already
made by the triangles in S and there is no room for any extra
triangle such as f proving the claim.

Since S = dT coincides with a restricted surface triangu-
lation, the underlying space of dT is isotopic to dO when
A < 0.06Ifs,,;;, [BOO05]. It follows from standard results in
piecewise linear topology that the underlying space of T
is isotopic to the volume O bounded by dO. The bound of
O(A?) on Hausdorff distances between S and 9O also fol-
lows from the result in [BOOS5]. This completes the proof.

Figure 7: Lucy with 729K tetrahedra.

5. Experiments and Results

We have implemented LocVol using the Delaunay triangu-
lation of CGAL [cga]. A number of experiments were con-
ducted on a PC with 2.0GB of 667MHz RAM, 1.5GB swap
space, and a 2.8GHz processor running with Ubuntu 9.04.
In all tables, the parameter A is expressed as a factor of the
smallest dimension of the bounding box of O. Its effect on
mesh size is illustrated in Figure 10.

It is worth noting that the times recorded herein are not
CPU times, but rather the total time elapsed from the be-
ginning of the experiment to the end. We have elected to

Tamal K Dey & Andrew G Slatton / Localized Delaunay Refinement for Volumes

model A K #tets mem time
Buddha | 0.0075 2M 7.90M 2616 12:25
Buddha | 0.0075 IM 7.90M 1936 3:30
Buddha | 0.0075 | 500k | 7.91M 1001 5:30
Buddha | 0.0075 | 250k | 7.91M 730 5:35

Buddha | 0.007 2M | *Abort | *Abort | *Abort
Buddha | 0.007 M 9.72M 1945 7:00
Buddha | 0.007 | 500k | 9.72M 1127 8:10
Buddha | 0.007 | 250k | 9.72M 760 7:50

Bimba | 0.0065 | 2M | 7.75M 2616 11:05
Bimba | 0.0065 | IM | 7.75M 1968 2:30
Bimba | 0.0065 | 500k | 7.75M 1330 4:55
Bimba | 0.0065 | 250k | 7.75M 766 3:50

Table 1: Time(hr:min) and memory(MB) usage while vary-
ing K. All experiments for k <IM had 8 nodes except Bud-
dha for A = 0.007, xk = 250k, which had 36.

present this timing instead of CPU timing because the main
purpose of our algorithm is to scale better by avoiding mem-
ory thrashing.

5.1. Tuning x

The parameter x is the maximum number of points that any
one node is permitted to contain, and as such the number of
nodes required to maintain a given triangulation in LocVol
is heavily dependent on its value. There is a time-overhead
associated with the processing of each node; specifically, for
each node v we must find its Ny, construct its Del(Ny J Py),
and possibly check whether some simplices satisfy the re-
finement criteria that were already known to satisfy these
criteria at the end of some previous visit to v or one of its
ancestors.

Figure 8: 3Holes: Mesh quality is mostly impervious to K
(x = 4000,500 from left to right).

This overhead favors the single-node case where x > |P|;
however, as the size of the triangulation increases so does
memory consumption, and when memory consumption sig-
nificantly exceeds the available space in main memory, the
single-node case begins to slow due to frequent page swap-
ping. It is reasonable to hypothesize that LocVol performs
optimally when k is chosen maximally such that LocVol

never significantly exceeds the capacity of main memory.
Such a selection minimizes overhead while avoiding fre-
quent page swaps. The experimental data in Table 1 sup-
ports this hypothesis, showing k = 1M to be the optimum
(from among the values tested) on our platform for various
input models. We also see that a change in 2M tetrahedra
(approx. 0.3M vertices) causes only a very small change in
peak memory. This indicates that the optimal k is ‘nearly’
independent of mesh size (which is governed by A4). But, of
course, as huge meshes occupy more memory even to store
only the vertex data structures, less memory becomes avail-
able for other purposes affecting the optimal x value.

5.2. Scaling

Table 2 shows the experimental results of three compara-
ble experiments (two using LocVol, one using CGAL’s
“mesh_polyhedral_domain" from CGAL 3.8, in release
mode with -O3 optimization) run on several input models.
One may notice that the LocVol experiments with k = 2M
have only a single node, and thus they do not leverage the lo-
calization techniques of our algorithm, whereas the k¥ = 1M
shown here do make use of localization. A comparison of the
results of these two types of experiments then reveals some-
thing about the effects of incorporating localization into De-
launay refinements in general: namely that localization of an
implementation of Delaunay refinement conserves memory
and thereby attains a speedup (at least for large refinements)
over a non-localized implementation that is otherwise the
same.

The memory recorded for each experiment is the peak
memory footprint observed. We observe that the memory
requirements for our localized algorithm are lower than
those required by our non-localized implementation and the
CGAL demo for comparable experiments.

Buddha
60 T
[X LocVol (k=1M)
I @@ CGAL
50 / 1
!
!

~ 40 4 B
= !
=7 1
L - 1 -
g 30 h
= /

20 i 1

1
o
10 e u
7
'
0 h I . I . I

6 8§ 10 12 14 16
Millions of Tetrahedra

Figure 9: Time plots to illustrate scaling.

5.2.1. Comparison to CGAL volume meshing

We selected CGAL'’s “mesh_polyhedral_domain" demo for
comparison to LocVol for two reasons. First, we wanted to

(© 2011 The Author(s)
(© 2011 The Eurographics Association and Blackwell Publishing Ltd.

Tamal K Dey & Andrew G Slatton / Localized Delaunay Refinement for Volumes

model A Version #leaf nodes #tets #verts | mem (MB) | time (hr:min)
0.028 LocVol: k =2M 1 7.65M | 1.26M 2598 14:30
9HandleTorus 0.028 LocVol: k = 1M 8 7.65M | 1.26M 1921 5:10
0.028 CGAL - 7.14M | 1.18M 2240 13:55
0.0032 | LocVol: k =2M 1 7.32M | 1.22M 2545 11:40
OctaHandles 0.0032 | LocVol: x = 1M 8 7.32M | 1.22M 1943 2:30
0.0032 CGAL - 6.82M | 1.14M 2185 8:10
0.0105 | LocVol: k =2M 1 7.46M | 1.25M 2592 14:50
Bracelet3 0.0105 LocVol: k = 1M 8 7.46M | 1.25M 1923 3:10
0.00105 CGAL - 6.95M | 1.17M 2213 12:00
0.0042 | LocVol: k =2M 1 6.91IM | 1.19M 2483 10:15
HoledRing 0.0042 | LocVol: k = 1M 8 6.90M | 1.19M 1941 1:30
0.0042 CGAL - 6.43M | 1.11M 2119 3:10
0.0115 | LocVol: k =2M 1 7.80M | 1.26M 2574 11:40
3Holes 0.0115 | LocVol: k = IM 8 7.80M | 1.26M 1889 3:00
0.00115 CGAL - 7.26M | 1.18M 2241 15:30
0.0085 | LocVol: k =2M 1 8.02M | 1.30M 2658 16:25
Homer 0.0085 | LocVol: k = 1M 8 8.02M | 1.30M 1914 4:25
0.0085 CGAL - 745M | 1.22M 2315 20:00
0.007 LocVol: x =2M 1 7.50M | 1.25M 2576 12:15
Lucy 0.007 LocVol: k = 1M 8 7.50M | 1.25M 1920 4:05
0.007 CGAL - 6.98M | 1.16M 2212 9:15
0.0065 | LocVol: k =2M 1 7.75M | 1.25M 2616 12:05
Bimba 0.0065 | LocVol: k = IM 8 7.75M | 1.25M 1968 2:35
0.0065 CGAL - 7.20M | 1.17M 2287 18:10
0.0075 | LocVol: k =2M 1 7.90M | 1.27M 2616 12:25
Buddha 0.0075 | LocVol: k = 1M 8 790M | 1.27M 1936 3:35
0.0075 CGAL - 7.33M | 1.19M 2292 12:30
model A Version #leaf nodes #tets #verts | mem (MB) | time (hr:min)
Buddha | 0.006 | LocVol: k = 1M 8 15.43M | 247 2005 18:40
Buddha | 0.0065 | LocVol: k = 1M 8 12.14M | 1.95M 1961 11:20
3Holes | 0.0105 | LocVol: k = 1M 8 10.25M | 1.66M 1912 6:30
Table 2: Top table: Time and memory usage for different models for CGAL (CGAL 3.8, release mode, -O3 optimization) and

single- and multi-node mesh generation with LocVol. Bottom table: aborted CGAL experiments for which a comparable LocVol

terminates.

compare to a reputable meshing tool. Second, the method
employed by CGAL’s volume meshing tools is readily ap-
plicable to meshing volumes bounded by smooth surfaces,
and therefore appropriate for comparison to methods such
as LocVol that are geared toward meshing volumes bounded
by smooth surfaces.

We find that our implementation of the algorithm de-
scribed herein achieves a considerable speedup over CGAL’s
“mesh_polyhedral_domain" demo. This is mainly due to
the memory swapping that occurs during the CGAL experi-
ments, as they average 320 swaps/second while our localized
experiments average 10 swaps/second. Furthermore, we find
that there are some experiments that CGAL cannot complete
because the OS aborts them due to their memory require-
ments, but LocVol is able to complete comparable experi-

(© 2011 The Author(s)
(© 2011 The Eurographics Association and Blackwell Publishing Ltd.

ments (even with 15M tetrahedra) because its memory foot-
print for a reasonable value of k is smaller. Bottom table
of Table 2 shows some examples of this. Figure 9 shows
the time plots comparing CGAL and LocVol, where one
may observe that after 5.5M, though the slope (which corre-
sponds to the number of hours per tetrahedron) of LocVol’s
plot increases, its increase in slope is considerably less than
that of CGAL'’s plot, showing that LocVol does indeed scale
better than CGAL.

6. Discussions

Our volume meshing algorithm has many notable features:
(i) it always guarantees a manifold output irrespective of the
choice of the scale parameter while ensuring shape quality
(radius-edge ratio) for all tetrahedra, (ii) it captures the input

Tamal K Dey & Andrew G Slatton / Localized Delaunay Refinement for Volumes

Q7

sy

Figure 10: Lion: Meshes with different resolutions and ap-
proximation quality can be produced by changing A (A =
0.2,0.1,0.025 from left to right).

topology and geometry when the scale parameter is suffi-
ciently small, (iii) it scales well, (iv) it can lead to a possible
parallelization of the Delaunay refinements for smooth sur-
faces and volumes, and above all (v) it beats a state-of-the
art meshing tool by many folds for large meshes while not
sacrificing the mesh quality.

There is one limitation of our algorithm worth mention-
ing: the method cannot get rid of slivers, a notorious prob-
lem known for Delaunay refinement. Recently, optimization
techniques have been combined with Delaunay refinement
to suppress the occurrence of slivers in practice [TWADOQ9].
It would be an interesting exercise to investigate whether our
localized Delaunay refinement technique can be extended to
this approach.

Our algorithm is geared toward meshing volumes
bounded by smooth surfaces. Non-smooth volumes bounded
with piecewise smooth surfaces is a well known chal-
lenge in the meshing community. The algorithms proposed
in [CDRO8,DL09] which leverage weighted Delaunay trian-
gulations to protect non-smooth features have provable guar-
antees in meshing. We plan to investigate whether this ap-
proach can be adapted to incorporate our localized Delaunay
refinement framework.

Acknowledgments.

Most of the models used in this paper are taken from the
AIM@SHAPE repository. We acknowledge CGAL consor-
tium for making the Delaunay triangulation code available
for experiments. The work on this research is partially sup-
ported by NSF grants CCF-0830467 and CCF-0915996.

References

[AB99] AMENTA N., BERN M.: Surface reconstruction by
voronoi filtering. Discrete & Computational Geometry 22
(1999), 481-504. 6

[ACR0O3] AMENTA N., CHOI S., ROTE G.: Incremental construc-
tions con BRIO. In Proceedings of the 19th Annual Symposium
on Computational Geometry (2003), pp. 211-219. 1

[ACSYDO05] ALLIEZ P., COHEN-STEINER D., YVINEC M.,
DESBRUN M.: Variational tetrahedral meshing. ACM Trans-
actions on Graphics 24, 3 (July 2005), 617-625. 1

[BO0O5] BOISSONNAT J.-D., OUDOT S.: Provably good surface
sampling and meshing of surfaces. Graphical Models 67 (2005),
405-451. 1,7

[BO06] BOISSONNAT J.-D., OUDOT S.: Provably good sam-
pling and meshing of Lipschitz surfaces. In Proceedings of the
22nd Annual Symposium on Computational Geometry (2006),
pp. 337-346. 1

[CDRO8] CHENG S.-W., DEY T. K., RAMOS E. A.: Delaunay
refinement for piecewise smooth complexes. Discrete & Compu-
tational Geometry (2008). 1, 10

[CDRRO7] CHENG S.-W., DEY T., RAMOS E., RAY T.: Sam-
pling and meshing a surface with guaranteed topology and ge-
ometry. SIAM Journal on Computing 37 (2007), 1199-1227. 1,
7

[cga] http://www.cgal.org. 1,7

[Che89] CHEW L. P.: Guaranteed-quality triangular meshes.
Tech. Rep. Report TR-98-983, Department of Computer Science,
Cornell University, Ithaca, New York, 1989. 1

[Dey06] DEY T. K.: Curve and surface reconstruction : algo-
rithms with mathematical analysis. Cambridge University Press,
New York, 2006. 6

[DL0O9] DEY T. K., LEVINE J. A.: Delaunay meshing of piece-
wise smooth complexes without expensive predicates. Algo-
rithms 2 (2009), 1327-1349. 10

[DLS10] DEY T. K., LEVINE J. A., SLATTON A. G.: Local-
ized Delaunay refinement for sampling and meshing. Computer
Graphics Forum 29 (2010), 1723-1732. 1,2,5,6,7

[ILSS06] ISENBURG M., L1U Y., SHEWCHUK J., SNOEYINK J.:
Streaming computation of Delaunay triangulations. ACM Trans.
Graphics 25, 3 (2006), 1049-1056. 1

[NCC04] NAVE D., CHRISOCHOIDES N., CHEW L.
Guaranteed-quality parallel Delaunay refinement for restricted
polyhedral domains. Computational Geometry: Theory and
Applications 28 (2004), 191-215. 1

[ORY05] OUDOT S., RINEAU L., YVINEC M.: Meshing vol-
umes bounded by smooth surfaces. In Proceedings of the 14th
International Meshing Roundtable (2005), pp. 203-219. 1,2, 6

[Rup95] RUPPERT J.: A Delaunay refinement algorithm for qual-
ity 2-dimensional mesh generation. Journal of Algorithms 18
(1995), 548-585. 1

[She98] SHEWCHUK J. R.: Tetrahedral mesh generation by De-
launay refinement. In Proceedings of the 14th Annual Symposium
on Computational Geometry (1998), pp. 86-95. 1

[TWADO09] ToOURNOIS J., WORMSTER C., ALLIEZ P., DES-
BRUN M.: Interleaving Delaunay refinement and optimization
for practical isotroic tetrahedron mesh generation. ACM Trans.
Graphics 28 (2009). 1, 10

(© 2011 The Author(s)
(© 2011 The Eurographics Association and Blackwell Publishing Ltd.

