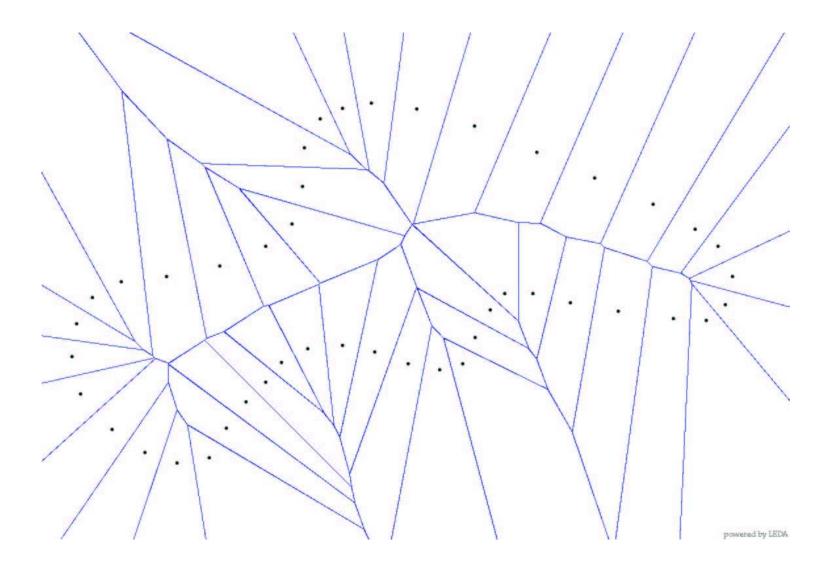
Estimating Geometry and Topology from Voronoi Diagrams

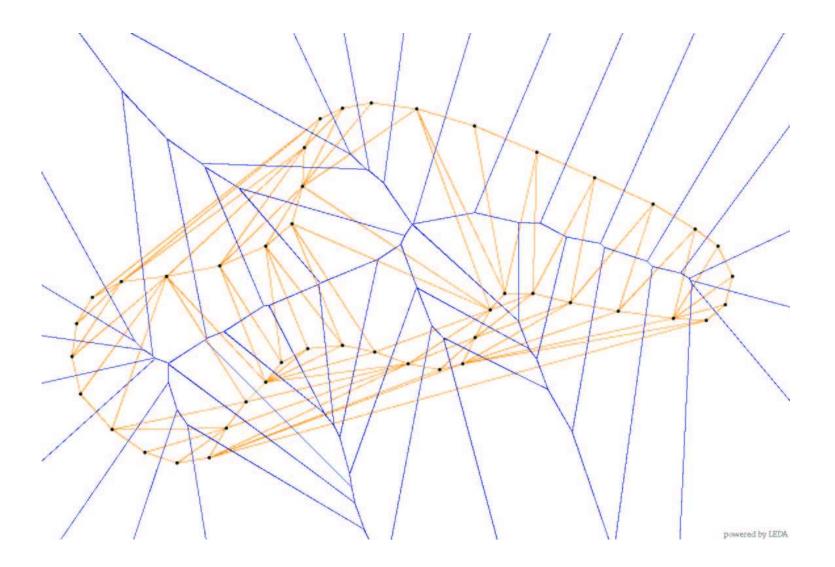
Tamal K. Dey

The Ohio State University

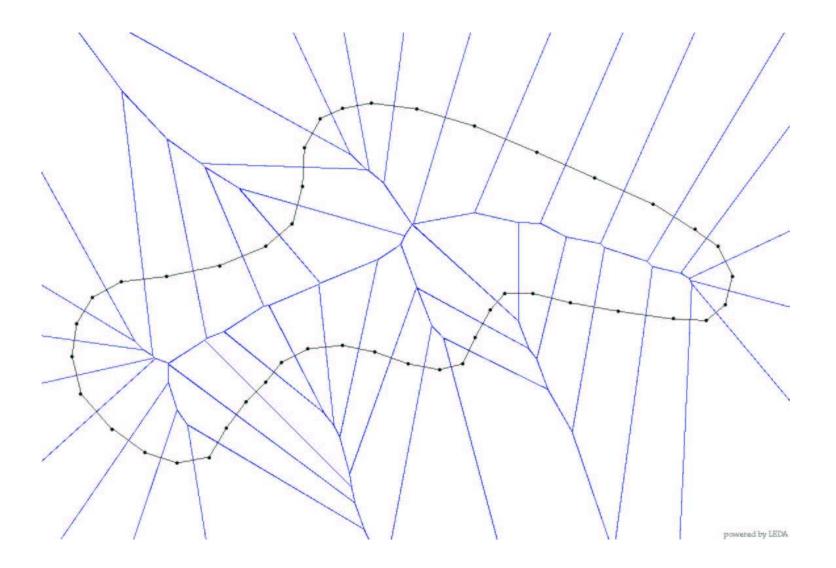
Voronoi diagrams



Voronoi diagrams



Voronoi diagrams

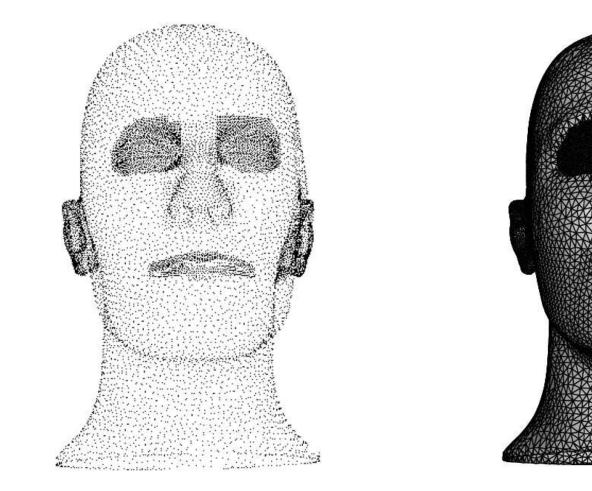


Problem

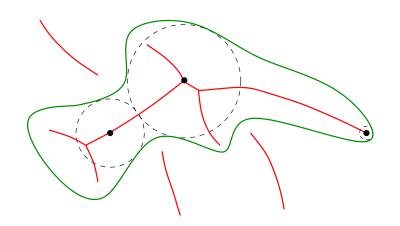
Estimating geometry: Given P presumably sampled from a k-dimensional manifold $\mathcal{M} \subset \mathbb{R}^d$ estimate geometric attributes such as normals, curvatures of \mathcal{M} from $\operatorname{Vor} P$.

Estimating topology: (i) capture the major topological features (persistent topology) of \mathcal{M} from $\operatorname{Vor} P$ (ii) capture the exact topology of \mathcal{M} from $\operatorname{Vor} P$.

Three dimensions



Medial Axis and Local Feature Size

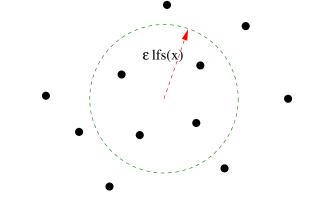


MEDIAL AXIS: Set of centers of maximal empty balls.

LOCAL FEATURE SIZE: For $x \in \mathcal{M}$, f(x) is the distance to the medial axis.

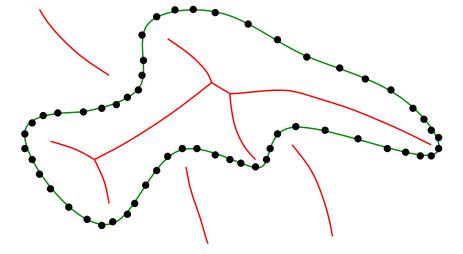
 $f(x) \le f(y) + ||xy||$ 1-Lipschitz

Good Sampling

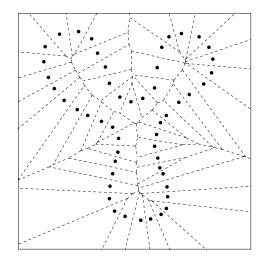


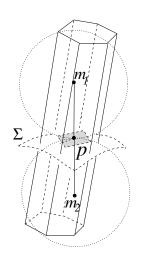
 ε -SAMPLING[AMENTA-BERN-EPPSTEIN 97]: $P \subset \mathcal{M}$ such that

 $\forall x \in \mathcal{M}, \quad B(x, \varepsilon \cdot f(x)) \cap P \neq \emptyset.$

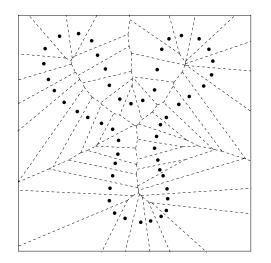


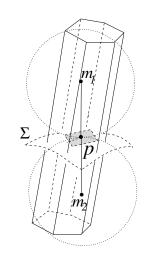
Normal estimation





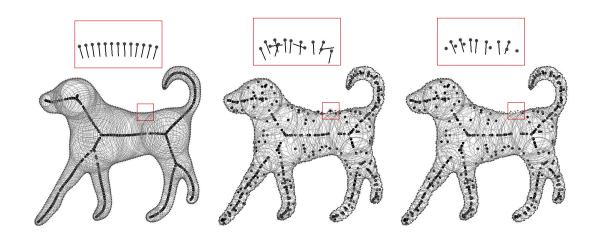
Normal estimation

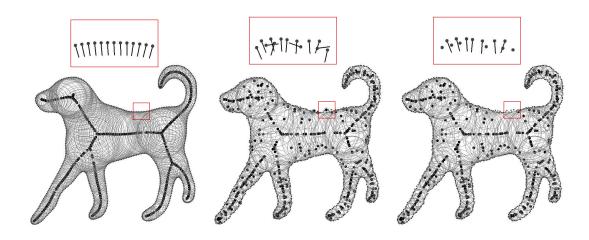




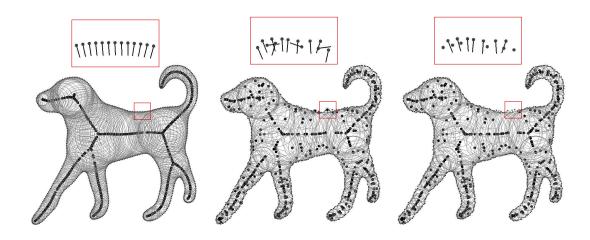
Normal Lemma [Amenta-Bern 98] : For $\varepsilon < 1$, the angle (acute) between the normal n_p at p and the pole vector v_p is at most

$$2 \arcsin \frac{\varepsilon}{1-\varepsilon}.$$

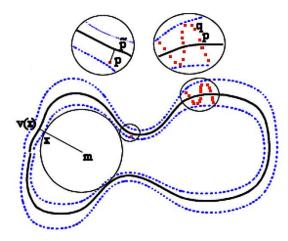


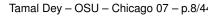


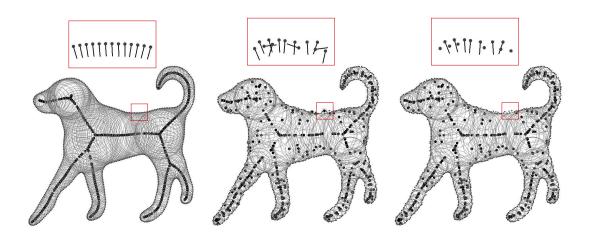
• \tilde{p} , \tilde{P} are orthogonal projections of p and P on \mathcal{M} .



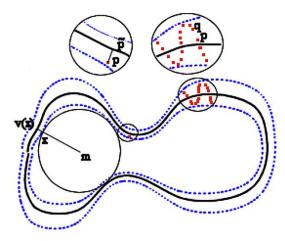
• \tilde{p} , \tilde{P} are orthogonal projections of p and P on \mathcal{M} .



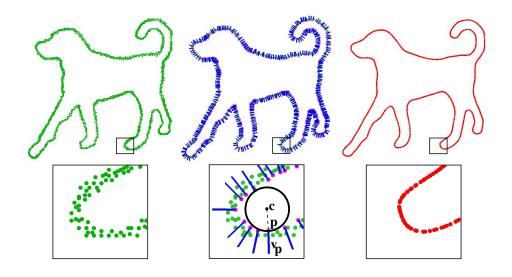




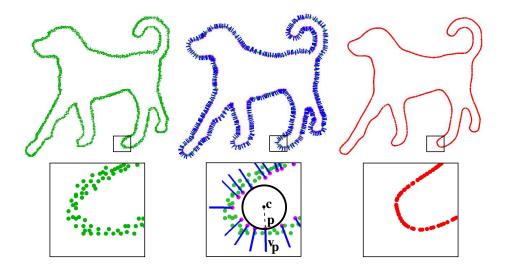
- \tilde{p} , \tilde{P} are orthogonal projections of p and P on \mathcal{M} .
- P is (ε, η) -sample of \mathcal{M} if
 - \tilde{P} is a ε -sample of \mathcal{M} ,
 - $d(p, \tilde{p}) \le \eta f(\tilde{p})$.



Noise and normals



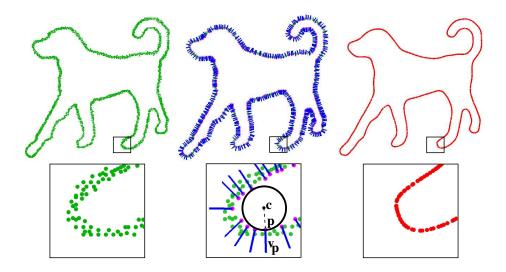
Noise and normals



Normal Lemma [Dey-Sun 06] : Let $p \in P$ with $d(p, \tilde{p}) \leq \eta f(\tilde{x})$ and $B_{c,r}$ be any Delaunay/Voronoi ball incident to p so that $r = \lambda f(\tilde{p})$). Then,

$$\angle cx, \mathbf{n}_{\tilde{x}} = O(\frac{\varepsilon}{\lambda} + \sqrt{\frac{\eta}{\lambda}}).$$

Noise and normals

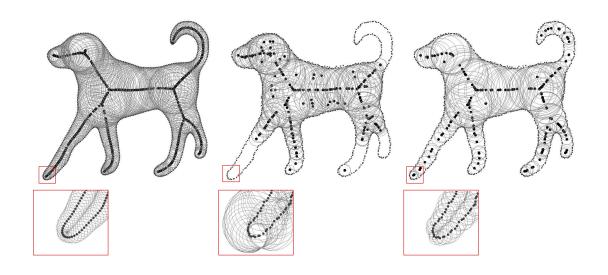


Normal Lemma [Dey-Sun 06] : Let $p \in P$ with $d(p, \tilde{p}) \leq \eta f(\tilde{x})$ and $B_{c,r}$ be any Delaunay/Voronoi ball incident to p so that $r = \lambda f(\tilde{p})$). Then,

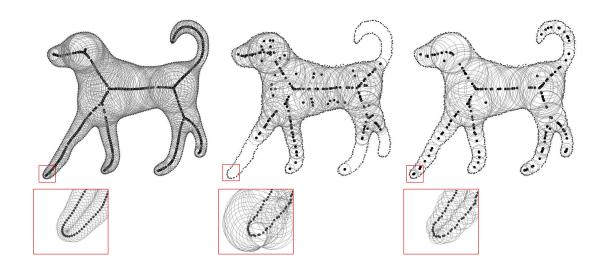
$$\angle cx, \mathbf{n}_{\tilde{x}} = O(\frac{\varepsilon}{\lambda} + \sqrt{\frac{\eta}{\lambda}}).$$

Gives an algorithm to estimate normals.

Noise and features

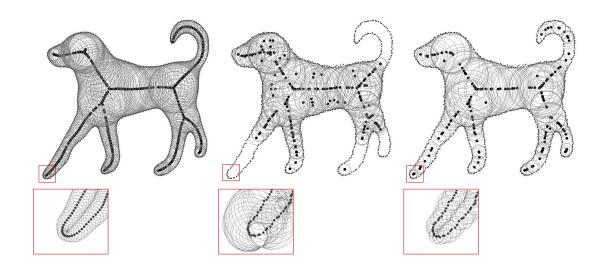


Noise and features



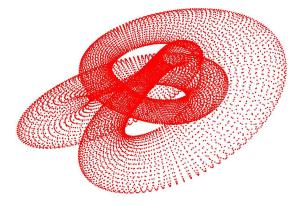
Medial Axis Approximation Lemma [Dey-Sun 06] : If *P* is a (ε, η) -sample of \mathcal{M} , then the medial axis of \mathcal{M} can be approximated with Hausdorff distance of $O(\varepsilon^{\frac{1}{4}} + \eta^{\frac{1}{4}})$ times the respective medial ball radii.

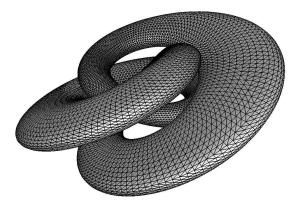
Noise and features



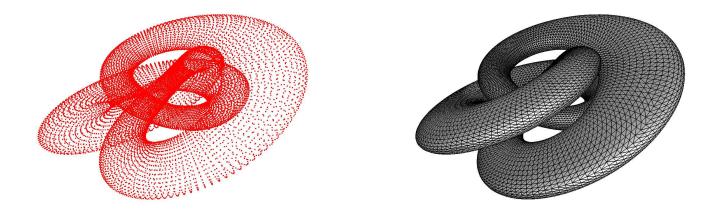
Medial Axis Approximation Lemma [Dey-Sun 06] : If *P* is a (ε, η) -sample of \mathcal{M} , then the medial axis of \mathcal{M} can be approximated with Hausdorff distance of $O(\varepsilon^{\frac{1}{4}} + \eta^{\frac{1}{4}})$ times the respective medial ball radii.

• Gives an algorithm to estimate local feature size.



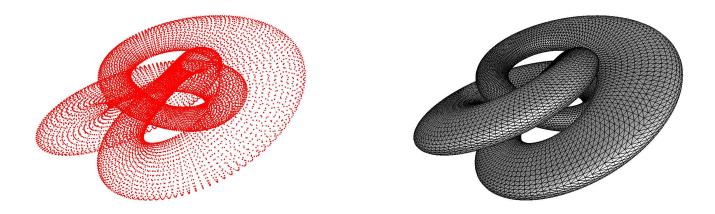


Topology



Homeomorphic/Isotopic reconstruction [ACDL00]: Let $P \subset M$ be ε -sample. A Delaunay mesh $T \subset \text{Del } P$ can be computed so that

Topology

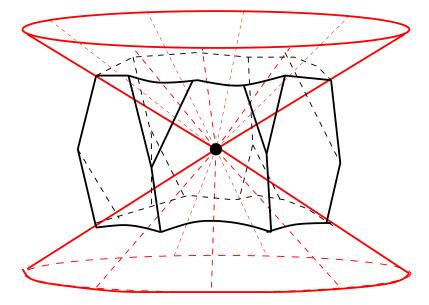


Homeomorphic/Isotopic reconstruction [ACDL00]: Let $P \subset M$ be ε -sample. A Delaunay mesh $T \subset \text{Del } P$ can be computed so that

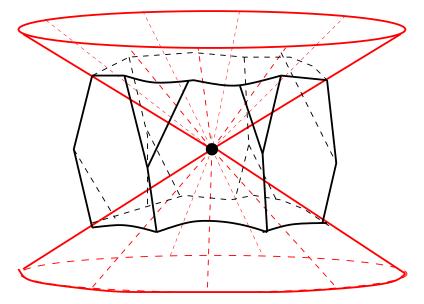
- there is an isotopy $h: |T| \times [0,1] \to \mathbb{R}^3$ between |T| and \mathcal{M} . Moreover, h(|T|,1) is the orthogonal projection map.
- the isotopy moves any point $x \in |T|$ only by $O(\varepsilon)f(\tilde{x})$ distance.
- triangles in T have normals within $O(\varepsilon)$ angle of the respective normals at the vertices.

Original Crust algorithm [AB98], Cocone algorithm [ACDL00], Natural neighbor algorithm [BC00] enjoy these properties.

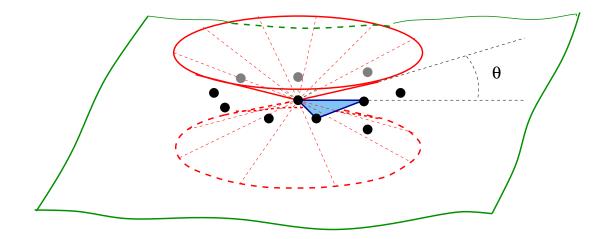
Amenta, Choi, Dey and Leekha

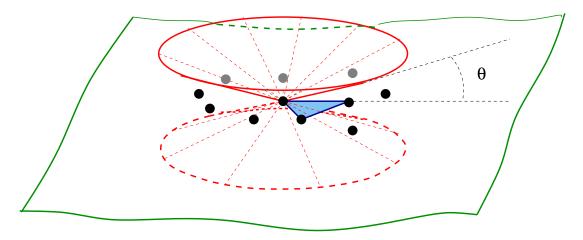


Amenta, Choi, Dey and Leekha



Cocone triangles for p: Delaunay triangles incident to p that are dual to Voronoi edges inside the cocone region.

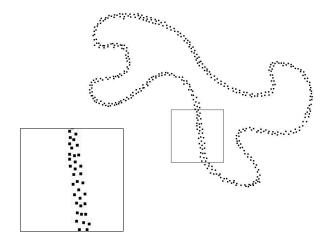




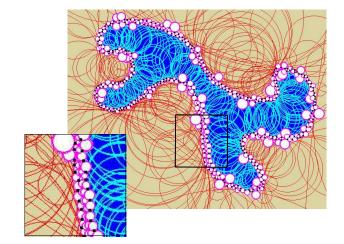
Cocone triangles :

- are nearly orthogonal to the estimated normal at p
- have empty spheres that are near equatorial.

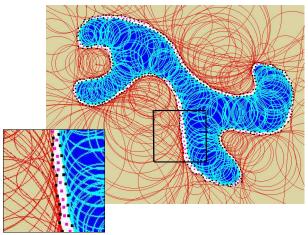
Noisy sample : Topology



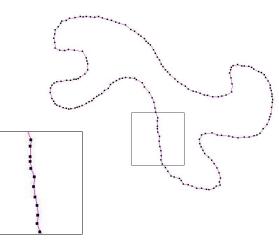
Input noisy sample



Step 1



Step 2



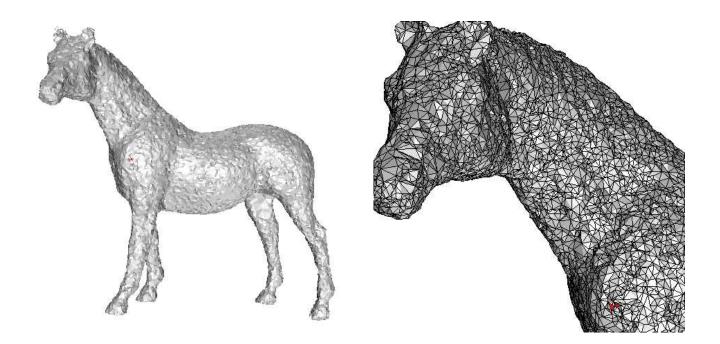
Step 3

Noisy sample : topology

Homeomorphic reconstruction [Dey-Goswami 04] : Let $P \subset \mathcal{M}$ be $(\varepsilon, \varepsilon^2)$ -sample. For $\lambda > 0$, Let $B_{\lambda} = \{B_{c,r}\}$ be the set of (inner) Delaunay balls where $r > \lambda f(\tilde{c})$. There exists a $\lambda > 0$ so that $\operatorname{bd} \bigcup B_{\lambda} \approx \mathcal{M}$.

Noisy sample : topology

Homeomorphic reconstruction [Dey-Goswami 04] : Let $P \subset \mathcal{M}$ be $(\varepsilon, \varepsilon^2)$ -sample. For $\lambda > 0$, Let $B_{\lambda} = \{B_{c,r}\}$ be the set of (inner) Delaunay balls where $r > \lambda f(\tilde{c})$. There exists a $\lambda > 0$ so that $\operatorname{bd} \bigcup B_{\lambda} \approx \mathcal{M}$.



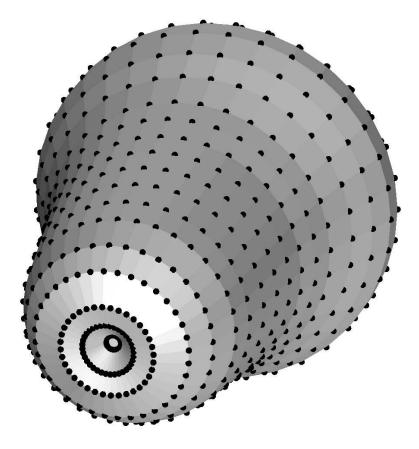
Higher dimensions

Assumptions: Sample *P* from a smooth, compact *k*-manifold $\mathcal{M} \subset \mathbb{R}^d$ without boundary. *P* is "sufficiently dense and uniform".

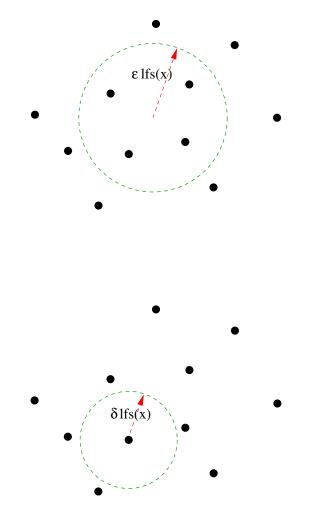
Assumptions: Sample *P* from a smooth, compact *k*-manifold $\mathcal{M} \subset \mathbb{R}^d$ without boundary. *P* is "sufficiently dense and uniform".

- Normal space estimation, dimenison detection;
- Homeomorphic reconstruction

Good Sampling



Good Sampling



 $0<\delta<\varepsilon$

 $(\varepsilon,\delta)\text{-}\mathsf{SAMPLING:}\ P \subset \mathcal{M}$ such that

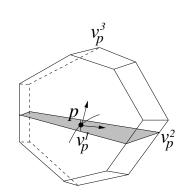
 $\forall x \in \mathcal{M}, \quad B(x, \varepsilon \cdot f(x)) \cap P \neq \emptyset.$ $\forall p \in P, \quad B(p, \delta \cdot f(p)) \cap P = \{p\}.$

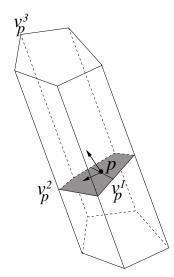
Dimension detection

Dey-Giesen-Goswami-Zhao 2002

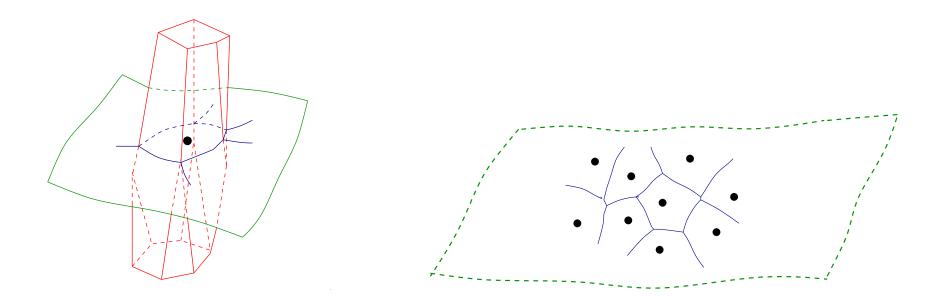
Define Voronoi subset V_p^i recursively for a point $p \in P$.

- $\operatorname{aff} V_p^k$ approximates T_p .
- k can be determined if P is (ε, δ) -sample for appropriate ε and δ .





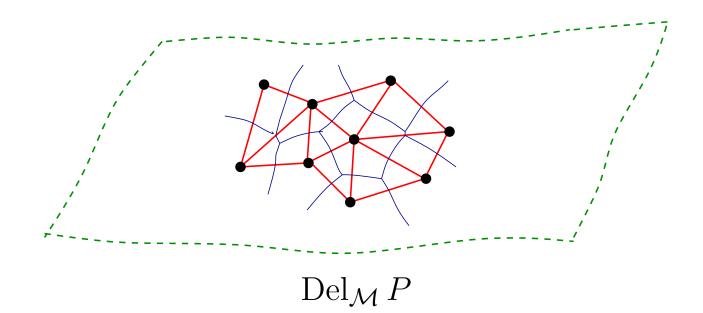
Restricted Voronoi Diagram



RESTRICTED VORONOI FACE: Intersection of Voronoi face with manifold

BALL PROPERTY: Each Voronoi face is topologically a ball.

Restricted Delaunay Triangulation



This is a good candidate to be a "correct reconstruction".

Topology of RDT

TBP Theorem [Edelsbrunner-Shah 94] : If $\operatorname{Vor} P$ has the topological ball property w.r.t. \mathcal{M} , then $\operatorname{Del}_{\mathcal{M}} P$ has homeomorphic underlying space to \mathcal{M} .

TBP Theorem [Edelsbrunner-Shah 94] : If $\operatorname{Vor} P$ has the topological ball property w.r.t. \mathcal{M} , then $\operatorname{Del}_{\mathcal{M}} P$ has homeomorphic underlying space to \mathcal{M} .

RDT Theorem [AB98, CDES01] : If *P* is 0.2-sample for a surface $\mathcal{M} \subset \mathbb{R}^3$, then $\operatorname{Vor} P$ satisfies TBP with respect to \mathcal{M} .

Difficulty I: No RDT Thm.

Negative result [Cheng-Dey-Ramos 05] : For a k-manifold $\mathcal{M} \subset \mathbb{R}^d$, $\operatorname{Del}_{\mathcal{M}} P$ may not be homeomorphic to \mathcal{M} no matter how dense P is when k > 2 and d > 3.

 Due to this result, Witness complex [Carlsson-de Silva] may not be homeomorphic to *M* as noted in [Boissonnat-Oudot-Guibas 07].

Difficulty I: No RDT Thm.

Negative result [Cheng-Dey-Ramos 05] : For a k-manifold $\mathcal{M} \subset \mathbb{R}^d$, $\operatorname{Del}_{\mathcal{M}} P$ may not be homeomorphic to \mathcal{M} no matter how dense P is when k > 2 and d > 3.

 Due to this result, Witness complex [Carlsson-de Silva] may not be homeomorphic to *M* as noted in [Boissonnat-Oudot-Guibas 07].

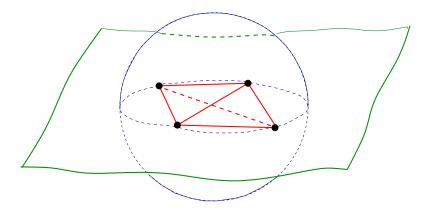
Problem caused by slivers

Difficulty I: No RDT Thm.

Negative result [Cheng-Dey-Ramos 05] : For a k-manifold $\mathcal{M} \subset \mathbb{R}^d$, $\operatorname{Del}_{\mathcal{M}} P$ may not be homeomorphic to \mathcal{M} no matter how dense P is when k > 2 and d > 3.

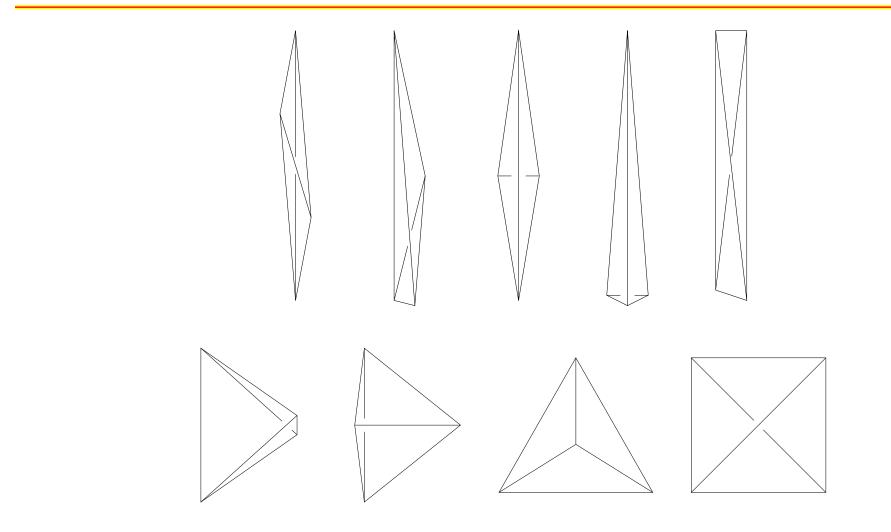
 Due to this result, Witness complex [Carlsson-de Silva] may not be homeomorphic to *M* as noted in [Boissonnat-Oudot-Guibas 07].

Problem caused by slivers

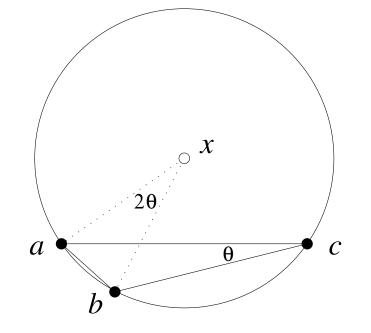


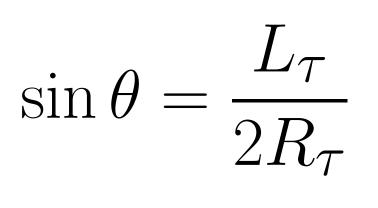
- RDT theorem used the fact that Voronoi faces intersect ${\cal M}$ orthogonally.
- This is not true in high dimensions because of slivers whose dual faces may have large deviations from the normal space.

Simplex Shape



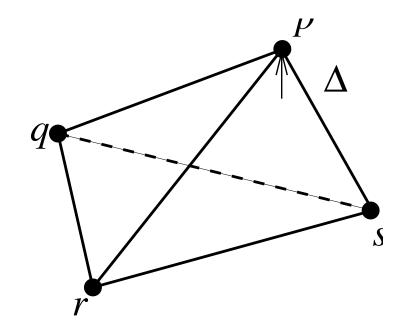
Simplex Shape





R	• • •	circumradius
$L_{ au}$	• • •	shortest edge length
$R_{ au}$	• • •	circumradius
$R_{ au}/L_{ au}$	• • •	circumradius-edge ratio

Sliver



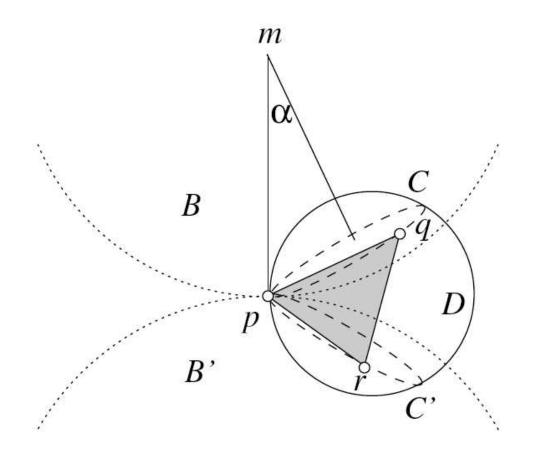
A *j*-simplex, j > 1, τ is a sliver if none of its subsimplices are sliver and

 $vol(\tau) \le \sigma^j L^j_{\tau}$

where L_{τ} is the shortest edge length, and σ is a parameter.

Difficulty I: Slivers in 3D

In 3-d, if a Delaunay triangle has a circumradius $O(\varepsilon f(p))$ then its normal and the normal of \mathcal{M} at p form an angle $O(\varepsilon)$.



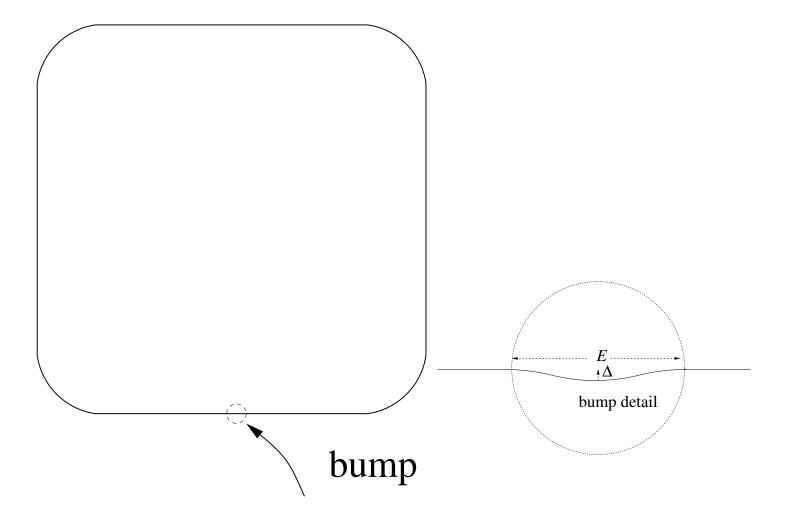
Difficulty I: Slivers' Normals

In 4-d, considering a 3-manifold, a Delaunay 3-simplex may have small circumradius, that is $O(\varepsilon f(p))$, but its normal may be very different from that of \mathcal{M} at p. Slivers are the culprits:

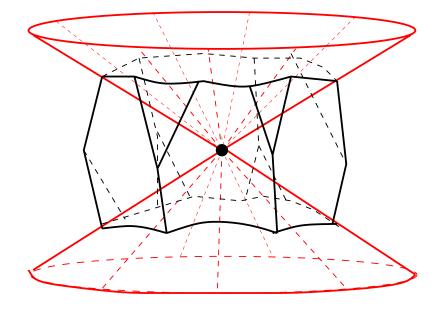
$$p = (0, 0, \Delta, 0); q = (1, 0, 0, 0), r = (1, 1, 0, 0), s = (0, 1, 0, 0)$$

$$p = (0, 0, 0, \Delta); q = (1, 0, 0, 0), r = (1, 1, 0, 0), s = (0, 1, 0, 0)$$

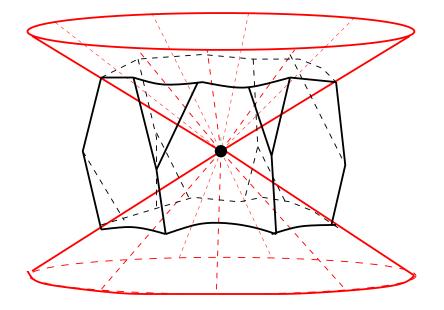
Bad Normal



Difficulty II



Difficulty II



• It is not possible to identify precisely the restricted Delaunay triangulation because of slivers: there are Voronoi faces close to the surface but not intersecting it.

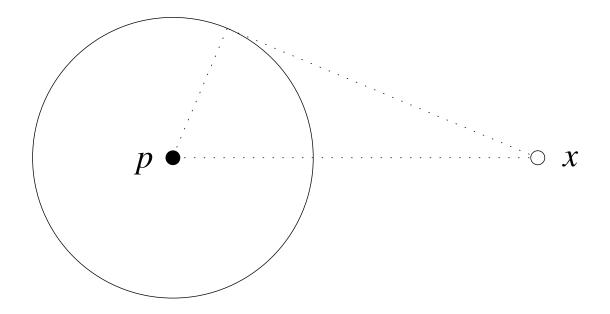
Solution[Cheng-Dey-Ramos 05]

Get rid of the slivers:

Follow sliver exudation approach of Cheng-Dey-Edelsbrunner-Facello-Teng 2000 in the context of meshing.

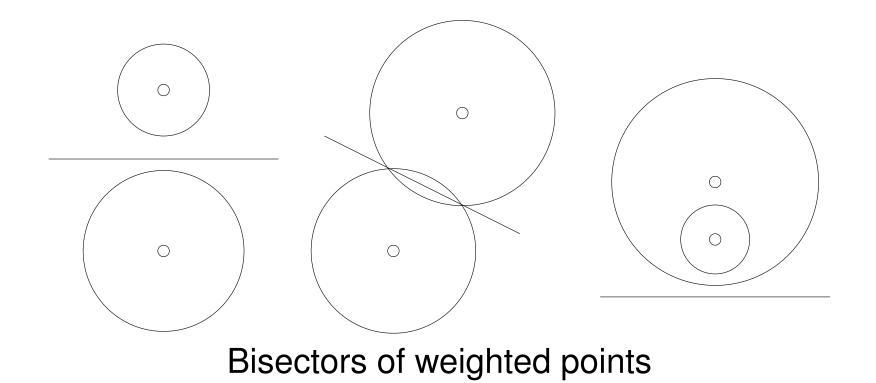
Weighted Voronoi/Delaunay

Weighted Points: (p, w_p) .



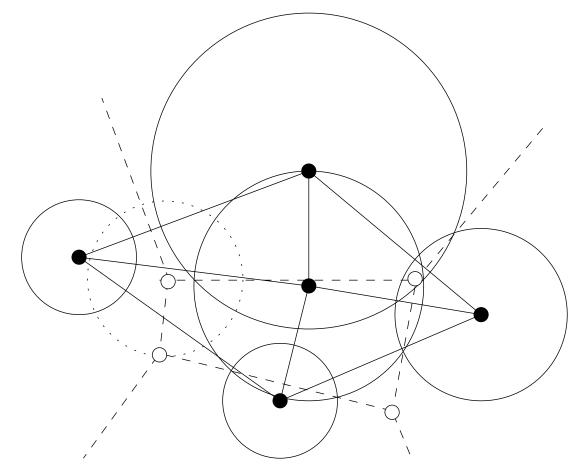
Weighted Distance: $\pi_{(p,w_p)}(x) = ||x - p||^2 - w_p^2$.

Weighted Voronoi/Delaunay



Weight property $[\omega]$: For each $p \in P$, $w_p \leq \omega N(p)$, where N(p) is the distance to closest neighbor. Limit $\omega \leq 1/4$.

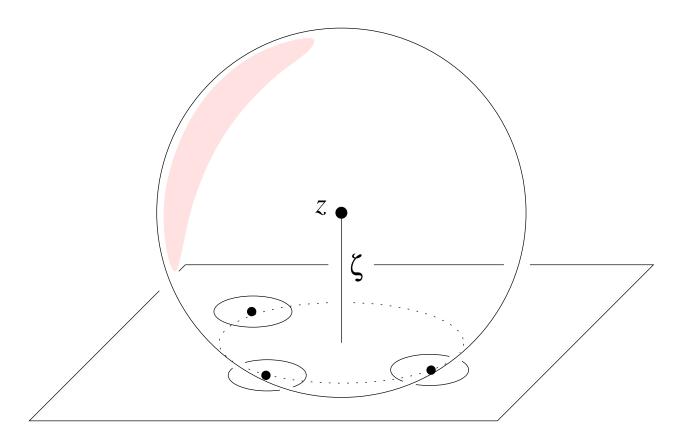
Weighted Voronoi/Delaunay



Weighted Delaunay/Voronoi complexes

Orthocenter Sensitivity

• An appropriate weight on each sample moves undesirable Voronoi faces away from the manifold



Sliver Exudation

• By a packing argument, the number of neighbors of p that can be connected to p in any weighted Delaunay triangulation with $[\omega]$ weight property is

$$\lambda = O(\nu^{2d})$$

where $\nu = \varepsilon / \delta$.

• The number of possible weighted Delaunay $(\leq k)$ -simplices in which p is involved is at most

$$N_p = O(\lambda^k) = O(\nu^{2kd})$$

Sliver Exudation

• The total w_p^2 length of "bad" intervals is at most:

$$N_p \cdot c' \sigma \varepsilon^2 f^2(p).$$

• The total w_p^2 length is $\omega^2 \delta^2 f^2(p)$. So if we choose

$$\sigma < \frac{\omega^2}{c' N_p \nu^2}$$

then there is a radius w_p for p such that no cocone simplex is a sliver.

• For ε sufficiently small, if τ is a cocone (k+1)simplex, it must be a sliver.

Algorithm

- Construct Vor *P* and Del *P*.
- Determine the dimension k of \mathcal{M} .
- "Pump up" the sample point weights to remove all *j*-slivers, j = 3, ..., k + 1, from all point cocones.
- Extract all cocone simplices as the resulting output.

Correctness

The algorithm outputs $Del_{\mathcal{M}}(\widehat{P})$:

- (i) for σ sufficiently small, there is a weight assignment to the sample points so that no cocone *j*-simplex, $j \le k + 1$, is a sliver;
- (ii) for ε sufficiently small, any cocone (k + 1)-simplex must be a sliver.

$\operatorname{Del}_{\mathcal{M}}(\widehat{P})$ is "close" to \mathcal{M} and homeomorphic to it:

- (i) the normal spaces of close points in \mathcal{M} are close: if p, q are at distance $O(\varepsilon f(p))$, then their normal spaces form an angle $O(\varepsilon)$;
- (ii) for any *j*-simplex with $j \le k$, if its circumradius is $O(\varepsilon f(p))$ and neither τ nor any of the boundary simplices is a sliver, then the normal space of τ is close to the normal space of \mathcal{M} at *p*;
- (iii) each cell of $\operatorname{Vor}_{\mathcal{M}} \widehat{P}$ is a topological ball

(iii) implies that $\operatorname{Del}_{\mathcal{M}} \widehat{P}$ is homeomorphic to \mathcal{M} (Edelsbrunner and Shah)

Summary

- For sufficiently dense samples, the algorithm outputs a mesh that is *faithful* to the original manifold.
- The running time under (ε, δ)-sampling is O(n log n) (constant is exponential with the dimension).
- The ε for which the algorithm works is quite small (more than exponentially small in the dimension).

Concluding remarks

- Various connections to Voronoi diagrams and geometry/topology estimations
- Further works on manifold/compact reconstructions [Niyogi-Smale-Weinberger 06, Chazal-Lieutier 06, Chazal-Cohen Steiner-Lieutire 06, Boissonnat-Oudot-Guibas 07]
- Practical algorithm under realistic assumptions ...???

Thank You

