Manifold Reconstruction from Point Samples
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Abstract Euclidean space from its point sample. This algorithm also
We present an algorithm to “reconstruct’” a smodth Ca&n reconstructa curve ora surface in three dimensions thus
dimensional manifold\ embedded in an Euclidean Spacgolving the general problem in three dimensions. Giesen and
R? from a “sufficiently dense” point sample from the managner [15] gave an improved algorithm in terms of time
ifold. The algorithm outputs a simplicial manifold that i§nd space complexities. However, these algorithms cannot
homeomorphic and geometrically closetd. The running reconstruct the manifolds in higher dimensions in the sense
time is O(nlogn) wheren is the number of points in the Of producing an approximation manifold that is topologial
sample (the multiplicative constant depends exponeytiall equivalent and geometrically close to the sampled one.

the dimension though). In this paper we present an algorithm that solves the gen-
eral manifold reconstruction problem. Specifically, given
1 Introduction sufficiently dense point sampkeof a smoothk-dimensional

. . . ._manifold M c R?, the algorithm can produce a triangula-
There are a number of applications in science and engmet\er—

ing that deal with data points lying on a manifold embedde on T interpolatings so thatVf and the underlying space of

. . N , denotedT’|, are homeomorphic. Furthermore, the Haus-
in an Euclidean space. Data collected for scientific angl—

. . . _ %rﬁ distance between\! and |T'|, and the (appropriate)
ysis through natural phenomena or simulations lie on SuG : .
. . . _ istance between their respective normal spaces are prov-
manifolds. This has led to the problemmfnifold learning

) . ) I Il. The algorith in tim@(n 1 the hid-
that, ideally, seeks to approximate a manifold embeddedal?]y Sma © algorithm runs |r_1 im8(n log n.) ( e. !
den constant depends exponentially on the dimension of the

an EtL_Jclld;ahan;ptace f.rotm apoint Samplet[(ici 17t,h19]' Oﬂen’s‘ﬁace). The algorithm builds on tlveconealgorithm for
practice, the data points are approximated With an approRil - .o reconstruction by Amenta, Choi, Dey and Leekha

. . _ u
ate I!ngar flqt. Prmupgl component analysis (PCA) and t and the sliver exudation technique to remove certaie typ
multidimensional scaling (MDS) are two prevalent metho oo . Lo

flat simplices, calleglivers from a simplicial mesh by

used for this probelm [16, 18]. Although these are usef(éheng Dey, Edelsbrunner, Facello and Teng [8]. Intuti-

techniques, they are r?ot appropriate fo approximate pOI{l]\t/Ser, the Delaunay complex restricted fof (see defini-
that come from a non-linear class such as smooth manifolds. ~". . . .
. . _lions in next section) is a good candidate for a reconstruc-

The cases for two and three dimensions where the manif; : . .
However, asM is not known, it cannot be directly

has co-dimension one have recently been solved [1, 2, 3.(:omputed: the difficulty lies in that Voronoi cells dual to

10] starting with the work of Amenta, Berm and Eppstei +1)-dimensional simplices may lie neat and then make

[2] in two dimensions and Amenta and Bern [1] in thre . . - )
t tract fD b d difficult. Theid
dimensions. Dey, Giesen, Goswami and Zhao [11] gave aﬁ extraction of Del; (:5) ambiguous and difficu eldea

. . . . "~ _borrowed from [8] is that an assignment of Weig@m the
algorithm that detects the dimension of a manifold in any . . .
[%mts, as a way of perturbation, moves any such Voronoi
cell away fromM and then extracting Dg}(S) from the
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of the algorithm, we extend several ideas in sliver exudatipolyhedral complex, denoted Vo, that decomposeR®.
and surface reconstruction to higher dimensions, which diee (d — j)-dimensional faces are the nonempty céljs=
interesting on their own. The main theorem to be proved(%. 7 V5, whereT C S with |T| j (so bothVz and
(precise definitions follow later): Vigy denote the Voronoi cell of). The weighted Delaunay
triangulationDel S of S is thedualto the weighted Voronoi
diagram ofS. Thatis, asimplex isin Del S iff Veert(ry 7 0,
where vertr) is the set of vertices of. Alternatively, a
simplexr is in Del S if there is a sphere (weighted points),
calledorthosphereorthogonal to each weighted vertex and
further than orthogonal from all other weighted points?m
Faithful means that it has the right topology and it is a clos®r simplicity of notation, we writd/, instead ofViert(r),
geometric approximation (both in normal and distance) when 7 is known. Also for simplicity, other variations in
M. Thee obtained in the analysis is exponentially small ithe notation appear later; for examplg, is Vi, ;. The
the dimension. Efficiently means tim@(nlogn), but the meaning will be clear in the context. Vst andDel S refer
hidden constant is very large. to the unweighted Voronoi and Delaunay complexes.

Contents. Section 2 contains definitions and some prelimSampled Manifold. We assume that the samplde
inary facts. The basic algorithm is described in Section dmensional manifold\ ¢ R¢ is compact, smooth and has
Sections 4-8 develop geometric facts needed to extend flaeboundary. For any point € M, 7, andA, denote the
method of sliver exudation. Sections 10-12 develop furthghgent space and the normal space,aespectively. The
geometric facts needed to verify the correctness of theubutmedial axis ofM is the closure of the centers of the maximal
produced by the algorithm. Section 13 describes how the lglls that meet\ only tangentially at two or more points.
gorithm is modified to achieve the running tirtén logn), These balls are calleshedial balls Thelocal feature size
and how it can be extended to other less restrictive sampling:) at a pointz € M is the distance af to the medial axis
conditions. Because of space limitation, several proofe haf M. We require thaff (z) > 0 for all z € M. The local
been omitted. They can be found in an extended versiorf@éture size is 1-Lipschitz, that ig(z) < f(y) + ||z — ||
this paper. for any two pointse, y in M.

THEOREM1.1. There exist > 0 such that ifS is a (¢, §)-
sampling of a compadi-manifold M c R? with a positive
local feature size, then there is a weight assignmeRftsach
thatDel ¢ S is a “faithful” reconstruction of M and can be
“efficiently” computed.

o R (g,0)-Sampling. A set S of points on M is a (g,9)-

2 Definitions and Preliminaries sampling [11] if (i) for each point € M, there is a sample

Weighted points. A weighted pointp € R? x R* is ad- p e S such thal|p — z|| < ef(x), and (i) for anyp, q € S,
ball with the centep € R? and weight (radius> € R*; |p—q|| > 6f(p). We assume thatands is within a constant
we write p = (p, P). Unweightedpoints correspond tofactor. Thatisg/d is a constant. An alternative condition is
points with zero radius. Theveighted distancef z from (e, ¢)-sampling in which we have (ii’) for any € S, the
pisms(T) = ||z —p||* — X? — P2 If m5(z) = 0, we say that number ofg with ||p — ¢|| < f(p) is at most, instead of
p andz areorthogonal If m5(Z) is greater (smaller) than(ii). This allows for some but limited locally dense samplin
0, we say tha is further (closer) than orthogondfomp.  Restricted Voronoi and Delaunay. The  restricted
The bisector planeof p andq is the locus of (unweighted) (weighted) Voronoi cell/y ,, is given byVi, = V, N M.
pointsz at equal weighted distances frgmandg, that is, A simplex 7 with the vertex setR is in the restricted
mp(x) = mg(w). Equivalently is in the bisector if there is a (weighted) Delaunay triangulatidiel v, S if the restricted
weight X such thatr = (z, X) is orthogonal tgy andg. We  \ioronoi cells of the vertices i have a non-empty intersec-
uses to denote the set of points with certain assignmentgjon. An important fact [12] that we use later is that if each

of weights. We say tha hasweight property] if for each yestricted Voronoi cell is topologically a ball, théel v, S
pointp € S, P < w- N(p), whereN(p) is the distance to jq homeomorphic tou.

the closest point ity different fromp. o .
P i P Cocone. If the sampling is dense, then for a sample point

Weighted Voronoi and Delaunay. We assume points in,, jts neighbors in the sample relevant for creating a recon-
general position For a set of weighted p0|nt§ the  struction can be found nedy. More precisely, within a cone
weighted Voronoi cellVy of 5 € S is Vs {z € of apertured, aroundZ, wheref, = O(e). This can also be

RY|75(x) < mr()forall 7 € S}. The Welghted Voronoi yiewed as the complement of a coneecone- around\/,,
cells and theirk-dimensional facesp < k£ < d form a



(and we follow [11] in refering to it as cocone). Algorithmithe following result due to Giesen and Wagner [15].
cally, the cocone is determined as follows [11]. First, a way
to estimate7, is needed. Thé&/ronoi subpolytopefor a LEMMA 1.

sample poinp € M are special subsety’ C V,,i=1,..,d (i) The distance betweane S and its nearest neighbor in
of the Voronoi cellV,,, defined inductively as follows. For S —{p}isat mOSthEEf(p)-

the base case 18t/ = V,. Inductively, assume that; is
already defined. Let;, be the farthest point i} from p.
We call v, the pole of V,; and the vectow,, = v, — p its

pole vector If V;j‘is unboundedy’, is taken at infinity, and (iii) Let p be a pointinM. Letq be a point in7, such that
the direction ofv;, is taken as the average of all directions ~,, _ 411 < ¢£(p) for some0 < ¢ < 1/4. Letq’ be the

given by unbounded _edges. The Voronoi subpoly_tb’;")e1 point onM closest tay. Then|jq — ¢'[| < 2¢2f(p).
is the intersection of; and the hyperplangr — p) - v;, = 0.

It is shown in [11] thaTaff(Vp’“) approximates/,, within an g Algorithm

angleO(g). This carries over for a weighted Voronoi di-

agram given the weight property. (In the definitions herlen, this section, we present the basic reconstruction alyori

V,, stands for the Voronoi cell of the weighted pojn) If Section 13 describes how to modify it to achieve running

k is not known in advance, then it can actually be detet'rr-ne O(nlogn). The inputis arle, d)-sampling from the

mined through this construction, for appropriately uninformanif0|dM with ¢ suffit_:iently small (to be determined in
sampling [11]. Lep € S be a sample point fromt where the analysis). The algorithm proceeds as follows:
M has dimensioit. Thecoconeof p, C,,, is defined asthe 1 construct VoS and DelS.
set of all pointse € V), so that the segment connectingnd
p makes an acute angle less thgmwith V*.A simplexr in 2. Determine the dimensidnof M.
Del S is aC),-simplex if V. intersects”),. In particular, ifr
is an edgeyq, we callpg a Cp-edgeandq a cocone neighbor
of p.

Simplex Shape. The circumsphereof a simplexr is the 4. Extractall cocone simplices as the resulting output.

smallest circumsphere of its vertices; dscumcenterand Step 1 uses any standard algorithm, step 2 uses the algo-

|t?fC|rcu;r:lr;;1i|il:§u(:§rr;(§ii(i}2; t?]r: é:lte:ucnigtire(rvghl?rmgel::r:nrEhm in [11], and step 4 is essentially trivial (simply setle

zf 'E;;)shortest cdae of is denotedl. ThpecirCLeradius g{ e cocone simplices according to the definition). We elab-

edaeratio R/ S 2 measure of thTé ality of Still. a orate now on step 3. This follows [8]. The algorithm iter-
geratio R /L, i u quaity ot Stll, atively assigns real weights to the sample points in an arbi-

simplext with O(1) circumradius-edge ratio may be “ver){ . . .
der. Lep be th I th d.A
flat”. This is captured by the concept of sliver simplicest Forary order. Lep be the sample point being processed. As in

) . , . . , . sliver exudation [8], using the predicted by the theoretical
a(j — 1)-simplext’ and a pointp not in aff ('), thejoin : . Lo
, . A result in section 8 would be extremely pessimistic. Instead
p* 7' of pand7’ is the convex hull op andr’, aj-simplex.

o , for eachj-dimensionalC,-simplexr, 3 < j < k + 1, we
For aj-simplexr and a vertex of 7, let 7, be the(j — 1)- . ; . ;
. . ) compute the intervall’ (7) of weight for whichr appears in
dimensional boundary simplex ef such thatr = p * 7,.

. L o . the triangulation and the sliver measure
The property of being sliver is quantified with a constant
to be chosen later. We define slivers by induction on the
dimension: 0- and 1-simplices are not slivers; fop 2, a

j-simplexr is aj-sliverif none of its boundary simplices is . . ,
J P J ysimp where the min is over all vertices ef We include allC,,-

a sliver and for some vertexof 7, vol(r) < oL,vol(r,) . ~ . . . .
holds. Thus, if neither nor any of its boundary simplices iSS|mpI|ces in the weighted Delaunay triangulations gereerat

. by varying the weight ofp and keeping all other weights
asliver, them_Ol(T) = GLT_VOI(TP) for every vertex of ~ fixed. The weight (radius) op is varied within the range
(¢,0)-Sampling Properties. We henceforth assume thaty ,n(p)]. As the weight is increased from zero, all sim-

M is a smooth manifold with nonzero local feature size apfices in the weighted Delaunay triangulations incident to
that 5 is an(e, §)-sample ofM. Given a line Segmenty, - are generated by repeated flip operations. For each simplex
Z(pg, T,) denotes the angle betweppand7,. We will use ¢ ;rrently incident tg, we keep it in a priority queue indexed

(i) Forany pointsp, ¢ € M such that|p —¢|| = tf(p) for
somed < t < 1,sin Z(pq, T,) < t/2.

3. “Pump up” the sample point weights to remove all
slivers,j = 3,...,k + 1, from all point cocones.

. wol(r)
o(r) = T L,vol(ry)’



by the weight ofp at which will be destroyed for the first ifold M. The first part is verified in section 9. It depends

time. Thus the minimum weight in the priority queue tellen the success of the sliver removal step to eliminate cocone

us the next event time. It is easy to extract @)esimplices j-slivers forj < k + 1, which is verified in section 8. More

from the entire set of simplices incidentjo precisely, it is shown that (i) far sufficiently small, there is
After we generate allC,-simplices in all the weighteda weight assignment to the sample points so that no cocone
Delaunay triangulations, each can be represented by g-simplex,; < k+1, is a sliver, and that (ii) fo sufficiently

rectangleW (7) x [o(7), +00), whereW (7) is the weight small, any coconék + 1)-simplex must be a sliver.

interval for. Thatis, if the weight op is set to a value within For the homeomorphism, we show that each restricted

W (r), T may appear and the quality of simplices incidenoronoi cell is atopological ball [12]. The argument

to p is at besto(7). We take the union of the rectangleproceedsin three steps: (i) The normal spaces of points clos

corresponding to al’,-simplices. This produces a skylineon M are close (section 10); (ii) for anjysimplexr, j < k,

and the highest point in the skyline yields the best weightifats circumradiusisD(e f (p)) and neither nor its boundary

be assigned tp. As in sliver exudation, there is an apparersimplices is a sliver, the normal spaceofs close to the

normal space ofM at any vertex ofr; (iii) each cell in

\Vor, S is a topological ball (section 12). Result (i) also

shows that the output approximatés well in normal. With

small extra effort, the distance approximation also foow

- WP 4 \oronoi Cell Width

0 13 In this section, for each samptec S, we bound the width
of C, N'V,,. We first need a technical result.

Figure 1: The skyline (borrowed from [8]).

LEMMA 2. Lety be a pointinside’,, such that|p — y|| =
- " . . . for some constant with < 1/5. Letgq be the
difficulty of readmitting somej-dimensionalC,-simplexr c=f(p) . «“ -, / 4

. . . orthogonal projection ofj onto7,. Letq’ be the point on\1
eliminated earlier when we process a different sample point

. . closest tag. Then

q later. Note thatr(7) is a symmetric measure, regardless
whether we viewr as aC,- or C;-simplex. The theoretical (i) ||, — ¢/|| < c22f(p)/2.
result guarantees that there israsuch that the weight we
assign tog makeso(7) > o. Thus this readmitted’,- (i) |¢ — y|| < cef(p)/10and||¢’ — y|| < cef(p)/4.
simplexr cannot be worse than what the theoretical result
guarantees fop. In all there is no harm done. (ii) |lp—d'll = cef(p)/4.

If ¢ is sufficiently small, at the end of the pumping step, N _
there are ng-slivers,j < k + 1, in the cocones, and the last EMMA 3. Assume tha$ has weight propertj]. For each

step proceeds without problem. pointz € C, NV, [lp — z|| < c1ef(p) for e1 = 160 and

Running Time. Letn be the number of sample points. The < 1/5¢1.

time is dominated by the construction of the Voronoi di%- .

gram, which has worst-case running ti¢n/?/21).2 The Cocone Neighbors

following sections show that under the sampling conditiohhere are many possible weight assignmentstiuat has the
the number ofC,-simplices incident to a sampje in all Weight propertyw]. Each such weight assignment produces
weighted Delaunay triangulations (1), and so the run- @ possibly different set of cocone neighbors for We
ning time is dominated by the first step. In the last sectig#€fineG,, to be the set ot’;-edges that arise iall weight

we discuss how to improve the running time. assignment with weight properfy]. In this section, we

Correctness. We claim that the algorithm actually output§tUdy the lengths of edges @, the cardinality ofG,, and

Dely(S and that this is homeomorphic to the original marﬁhe angle between any edgeGh and7,.

_ _ _ LEMMA 4. Assume thatS has weight propertyw]. For
ZActually, for an (e, §)-sampling, the worst-case size of its Delaunaya

) . rd/2] X any edgepg € Gy, |lp — qll < coef(p) wherecy =
triangulation may not be as large @¢n ) as in the general case. This >
is known for dimension 3 [5]. c1(1+1/v1 — 4w?) is a constant.



LEMMA 5. Assume thaf has weight propertyw]. Letpg the weight (radius) interval fos such thatr remains aC,-
andpr be edges irt7,. Then simplex. We first prove two technical results.

(i) lp—qll <v-|p—r| wherev = cy(c/6) is a constant. LEMMA 8. Assume thatS has weight propertyjw]. Let

T = p * 7, be aCy,-simplex. The distance between the
orthocenter ofr and aff(7,) is at mostese f(p) for the
LEMMA 6. For e > 0 sufficiently small, there are at most constantcs = ¢; + ca(1 + w + pv).

edges inG,, whereX = (202 + 1)4 is a constant.

(i) Z(pg,7,) < arcsin(caoe/2) < cqe.

For a simplex- and a vertex; of 7, let D, be the distance
Proof. Let pr be any edge irG,. Letu be the nearestfromq to aff(r,) (recallT = g * 7).

neighbor ofr. We first show thatu is an edge inG,. It
suffices to show thatu is a C,-edge with respect to the
unweighted Delaunay triangulation ¢f. Observe that
andu define a non-empty Voronoi facét.,. Observe that
the edgeru stabsV,, (let x be the midpoint ofru and
suppose thag is closer tox thanr andu, then||r — ¢|| <
lr — || +lz —ql| < |lr—=z|| +|r—=z|| < |r—wu|, Weareready toboundthe weightinterval.

which is a contradiction). By Lemma 4 and Lemma 1(ii}, e pma 10. Let + be aj-dimensionalC,-simplex. Ifr is

Z(ru,T;) < arcsin(cze/2). Thus, where is sufficiently 5 jiver, 7 remains aC,-simplex in an interval of squared
small, ru lies insideC;. It follows thatV;.,, intersectsC: weight that has length at most,csjoe? f(p)2.

and soru is aC,.-edge.

We are ready to bounfi7,|. Without loss of generality,
assume that the shortest edgedp has unit length. Since
Ip — 7| > 1, Lemma 5(i) implies that/r — ul| > 1/v.
Thus if we place a balB, with centerr and radiusl/(2v)
for every edger in Gy, these balls are disjoint. Note thaPf aff
vol(B,) = Ka(5)?4, whereK, is the volume of the unit
d-ball. All such B,’s lie inside a bigger balB with center
p and radiusL + 1/(2v), where L is the length of the
longest edge irG,. By Lemma 5(i),L < v. Therefore,
vol(B) < Kq(252)* = (202 + 1)%vol(B,). Hence there
are at most2v2 + 1)¢ edges inG,,.

LEMMA 9. Assume thatS has weight propertyw]. Let
7 be a j-dimensionalC,-simplex. Ifr is a sliver, then
D, < joL., for some vertex of 7. If neitherr nor its
boundary simplices are slivers, thdn, > joL, for each
vertexg.

Proof. Letp be a vertex ofr such thatD, < joL.. Let
£(P?) be the signed distance of the orthocentef ~ from
aff(r,) whenp has squared weigh®? (see figure).£(P?)

is positive if the orthocenter af andp lie on the same side
(7,); otherwise¢(P?) is negative. It has been proved

. . Figure 2: The orthosphere of three weighted points on the
6 _Ortho_radlus-Edge Ratio . _ plane shown and a fourth one off but close to the plane. The
In this section, we bound the orthoradius-edge ratiC’pf gistance of the orthocenterto the plane is very sensitive to

simplices. The orthoradius-edge ratio of a simplexs change in the weight of the fourth point (borrowed from [8]).
R! /L., whereR/ is the radius of the smallest orthosphere

of 7 (its center lies imaff(7)), and L, is the shortest edge
length of 7. Note that the smallest orthosphere ofis N [8] that

2
not necessarily further than orthogonal from other weidhte E(P?*) =¢(0) — %
vertices inS. Also note that the circumradius-edge and _ P )
orthoradius-edge ratios may be quite different. By Lemma 8, forr to be aC',-simplex, |{(P?)| < cse f(p).

5 i Substituting into the above, we get
LEMMA 7. Assume that has weight propertjw]. For any

C,-simplexr, R\ < pL., wherep = 5v(e/5) is aconstant.  2D,(£(0) — ez f(p)) < P? < 2D, (£(0) + cae f(p))-

This implies that the length of the squared weight intersal i

7 Weight Interval at mostdcze D, f(p). Using Lemma 9 and Lemma 4, we get
When we pump a vertegxof a sliverr, 7 may remain -  4cseD, f(p) < desjoeL, f(p) < 4eacsjoe f(p)?.

simplex for a while. In this section, we bound the length of



8 Pumping Slivers by induction assumption. Observe that Zagr = |ja —

Our strategy is to pump slivers in increasing order of theifl/ (2R). Using the previous inequality and Lemma 5(i), we

dimensions. That is, we first pump all 3-slivers, then £€t

slivers, and so on. Therefore, when we considgsanplex sin Zagz < \/57.7'—1]#;) < %'flVLr.

7, all the boundary simplices af are guaranteed not to be 2R V2R

slivers. This will allow us to invoke Lemma 10. The volume ofr is at most1 vol(r,) - |la — q|| - sin Zaga.
Consider a sample. By Lemma 6 and Lemma 10,Let L be the maximum edge length of Using the previous

JN - deaegoe? f(p)? is an upper bound on the total lengtinequalities for|a — ¢| andsin Zagz, we obtain

of the squared weight intervals for theslivers to remain

Cp-simplices. Summing over the ran@ie k + 1] for j, we  vol(r) < M V2vy;1L -

obtain an upper bound of J

Yi—1vLr
V2R
Sincer is not a sliveryol(r) > oL.vol(r,). Substituting
above, we gelR/L, < ~; ,(v*/o). ThusR/L, < v,
By the (¢, §)-sampling, the maximum weight gfis at least wherey; = ’732_1(1/2/0’)-

w262 f(p)?. Therefore, if we choose such that

2 272
Vi1V LT

< vol(7p) i

(k 4+ DA deyezoe? f(p)2

1 w? 5\? LEMMA 12. LetT be aj-dimensional’,-simplex. Let: be
< (k + 1)\k+2 descs ’ a pointin7. If 7 and its boundary simplices are not slivers,
thenZ(pz,7,) < 4cayje.

3
then we can assign a weightgcsuch that na’,-simplex is
asliver. (Recall thad/< is a constant.) If: is not known, we proof. Take ad-dimensional medial sphere that toush
can replacé by d and the resulting choice ofis guaranteed at . Shrink this sphere towardsuntil its radius becomes
to work, albeit even more pessimistic. f(p). Denote the resulting sphere byf;. Let M, be
The following lemmas show that, ifis sufficiently small, another sphere with radiug(p) such thatM, touchesp
provided its boundary simplices are not sliverska+ 1)-  at M andp is the midpoint of the centers dff, and M.
dimensional’,-simplex is a sliver. Hence after pumping, Nqhe smallest circumsphere of intersects)M; and M, at
Cp-simplex has dimensioh + 1 or higher. We first bound two hyperspheres’; and C,, respectively. By Lemma 4
the circumradius-edge ratio of a non-sliver. and Lemma 11, the circumradiusofs at mosteay,¢ £ (p).

LEMMA 11. Let be aj-dimensionalC,-simplex. Ifr and Thus the angle between the normal of the support hyper-

its boundary simplices are not slivers, its circumradiuge Planes ofCy and the vector from p to the center of, is
ratio is bounded by the constamt = (12 /)2 1. at mostarcsin(coy;e). The same holds for the normal of

the support hyperplane af,. It follows that the support
Proof. We prove by induction on. Forj = 1, 7is an pyperplanes oCl and C, make a wedge of angle at most
edge. We define the circumradius of an edge to be halfj)ﬁcsm (c2v;¢). Since the vertices of lie outsideM; and

its length. Then the circumradius-edge ratio is 1/2 Wh|chj\;:, they lie within this wedge. This implies that: lie
less thamy; = v?/o. Assume thaj > 1. Letz be the \inin the wedge too. Sinc€, cuts through the wedge,

circumcenter ang a vertex O.fT. Recall thatT. =P*Tp /(pz,T,) < 2 arcsin(cyy;¢), which is at mosticyy;e for
There are two cases to consider. Ii&2be the circumradius sufficiently smalke.

of 7.

Case 1:z € int(7). Let H be a(j — 1)-flat in aff(7) that
passes throughand is orthogonal tpz. Sincez € int(r), LEMMA 13. Letk = dim(M). Assume thakt > 2,
H separates a vertexof 7 from p. It follows that/pzq > ¢ < (k + 1)o/(1 + 47v;)v, and S has weight propertyw].
n/2and||p — q|| > R. ThusR/L, < ||p—q||/L- < v, by Letr be a(k + 1)-dimensional’,,-simplex. If the boundary
Lemma 5(i), which is less thap,. simplices ofr are not sliversy is a sliver.

Case 2: 2 ¢ int(r). Let az be the radius of the
circumsphere of such thatz is orthogonal taaff(7,,). Let
x be the pointz N aff(7,). Letq be a vertex ofr,. Let R/
be the circumradius of,. Sincez ¢ int(7), we have

Proof. Let 7 be a(k + 1)-dimensionalC,-simplex. Recall
thatk +dim(N,,) is equal to the dimension of the underlying
space. Thus, there is some unit normak N, such that
p+ 7 € aff (7). Without loss of generality, we treatas the
la—q|| < V2R < V2v;1L,, vertical axis ofaff (7).



For each vertex of 7 other tharp, let 7 = r *x 7,., as usual,
and letr’ be the projection along of r onto aff(r,.). We
claim that there is a vertex# p of 7 such that the suppor
line of pq’ intersects, at a point other thap. There are two
cases.

Case 1: there is a verticalflat H in aff(r) throughp and
containingn such that at least three other verticesrdfe
on one side + of H. RotatingH aroundii brings it into
contact with two verticess andb of 7 in H'. Letq be
any vertex ofr in H* other thane andb. The orthogonal
projection ofpq onto the plane ofibp intersectsabp at a
point other tharp. It follows thatpq’ intersectsr, at a point
other tharp.

Case 2: thé:-flat in case 1 does not exist. L&t be anyk-
flat in aff (7) throughp and containingi. Sincek > 2, there
must be exactly two vertices efon one sidef ™ of H. Let
these two vertices be denoted byandb. Let H~ denote
the side opposite té/ . If we extendap andbp into H—,
we obtain a 2-d con€’ in the plane ofubp in H~. For any
vertexq of 7 in H—, the projection ofpg onto the plane of

algorithm. Recall thak is the set of cocone simplices.

(LEMMA 14. X is Dely(S3).

Proof. The assignment of weights of our algorithm ensures
that no Voronoi cell of dimension less thdn- & intersects
the cocone of a poinp in S. So certainly, no Delaunay
simplex of dimension larger thahis in X. Also certainly,
any simplexr in Dely((S) is in X because by definition its
dual Voronoi cellV; intersectsM and hencé/. intersects
the cocone of the vertices of It remains to see that there is
no Voronoi cellV, that intersects the cocorig, of a vertex
p of its dual simplexr, but it does not intersecs1. For
the sake of contradiction, 18, be such a Voronoi cell of
smallest dimensionality and lat be a point ofV, inside
Cp. Also, let T be the intersection off, with aff(V;).
Inside aff(V;), let N be the orthogonal complement &f
throughz. N must interseciM inside C,,. SinceV, does
not intersectM then N should intersect insid€’, a smaller
dimensional Voronoi cell that boundg, and which also
does not interseci. This is a contradiction.

abp must lie inside the 2-d con@; otherwise, there would be

a k-flat that haven, b, andq on the same side, contradicting Section 11 shows that Del

(S) approximates\ well in

the assumption that case 1 does not apply. Thus, the SUPHBFFnaI, and section 12 shows that Mﬂg) is homeomor-

line of the projection ofpg onto the plane ofbp intersects

abp at a point other thap. It follows that the support line of

pq’ intersectsr, at a point other thap.

This completes the proof of our claim. Now, let# p
be a point in the intersection of the support linepgf and
7,. By Lemma 12, applied to,, Z(pq’,T,) < 4caype.
By Lemma 4 and Lemma 1(ii}/(pq, 7,) < arcsin(cee/2),
which is at most,e for sufficiently smalk. Asqq’ is parallel
to 7, we conclude thatqpq’ < Z(pq.T,) + L(pq', T,) <
c2(1 4 dyg)e.

The height ofy from aff (7, ) is at mosi|p—¢|| -sin Zgpq’ <
llp = qll - sin(c2(1 + 4vk)e) < ca(1 + 4k )eL, whereL is
the maximum edge length ef Thus

< co(1 4 4v)el

E+1

By Lemma 5(i),L < vL,. Thus, if
(k+1)o

(1 + 4y)v’

vol(7) vol(ry).

e<

thenr is a sliver.

9 Algorithm Output
We show that our algorithm actually outputs QE(IS‘). Let

phic to M.

10 Normal Variation

The proof of the following lemma extends that of a 3-d
version that appears in [1].

LEMMA 15. Letp, ¢ € M suchthat|p—q|| < cef(p), then
ZNLN, < cqce for some constanty.

Proof. Consider the line segmep joining p andq and let
p(t) be a linear parametrization @f in the interval(0, 1].
Fort € [0,1], let g(t) be the closest point tp(t) in M.
Sincepq is away from the medial axig(t) is well-defined
(there is a unique closest point) and also one-to-one (if
is closest forp’ andp” in pg then bothp’z andp”z are
normal to.M at x and hencepq is in the normal space of
M at z; therefore the diametral sphere pf is tangent to
M atz, and so|p — || > 2f(x), which is in contradiction
with [[p — ¢|] < cef(p) for ¢ and e sufficiently small).
The functiong(t) is indeed smooth. Let be the curve in
M described by(t), and letdt andds be the lengths of
corresponding infinitesimal segments jpj and~y, that is,
ds = |lg(t + dt) — g(t)]|. We claim thatds < 4d¢. To see
this, first consider the medial ball tangent toM atg(¢) and
with center on the ray from(t) towardsp(¢). The radius of

X be the set of all simplices output by our reconstructidB is greater tharf (¢(¢)) and so greater tharf (p) for some



constant’ (by Lipschitz property off), and also the bal’ 11 Normal Approximation

centered ap(t + dt) and passing through(t). Note that The conditions on the simplexin the following lemma hold

g(t + dt) must lie in the portion 0B’ outsideB (sinceB is  for the simplices computed by our algorithm. The lemma
a medial ball and hence its interior is disjoint frof, and implies that the reconstruction produced approximatés
sinceg(t + dt) cannot be further from(t + dt) thang(t)). well in the sense of normal approximation. This result is
This portion lies within distancedt sin ¢ from g(¢) where giso useful in proving that the restricted Voronoi cells are
0 is the angle betweepy andp(t)g(t): Consider the figure, topological balls. In the following proof, the term cocone
which shows the 2-flat spanned by andp(t)g(t), where refers to the complement of a (usual) double cone around an
Pl =pt), p" =p(t+dt), dt = [lp" = p"[l, ¢' = g(t), 2is  specified direction; its aperture4s’2 minus the aperture of
the center and the radius of53, ¢ is the projection off on  he cone. For a simplex, a vectorii. is normal tor if it is

the line that containsp”, d = [|p’ — ¢'|| andh = [¢" = ¢"||.  orthogonal toaff (7).

An elementary calculation shows that
LEMMA 16. Supposer is a j-simplex forj < k, with
-dtsind vertices onM, circumradiusO(e f(p)), wherep is one of its
vertices, and such that neithernor its boundary simplices
which is smaller thadt sin ¢ for e sufficiently small so that ig 3 sliver. Then for any normai, of M atp, 7 has a normal

d < R/2. Finally, g(t + di) lies within distance2h from 5 sych that/7i, i, is at mostk;z, for some constarit;.
q = g(t), that is, within distancédt sin §. This is at most

4dt. Proof. The proofis by induction ori. Forj = 0, the claim

is trivial. Forj > 1, let7 = ¢ * 7, as usual and leD, be
the distance frony to aff(r,). Becauser is not a sliver,
D, > joL. > djef(p) with d; a constant that depends on
J and the dimensiod. By induction,r, has a normaii.,
such that/7i,7, is at mostk;_,e. Let ¢’ be the point in
aff(r,) closest tog, let h be the(d — 1)-flat (hyperplane)
containingr, and normal toi , and lety be the(d — 2)-flat

in h orthogonal togq’. Consider now rotating. around

Figure 3: The point oo\ closest top” = p(t + dt) must 7 until a hyperplaney’ that containsy is obtained; note
be closer than the closest poiit= g(t) to p’ = p(t) and that its normal is also a normal of and so we denote it

outside of the medial balB of M atq’ with center on the With 7i-. We claim that/si. 7~ is at most(c’/d;)k;—1c
ray fromg’ towardsp’. for some constant’. This will imply that Z7i7; is at most

kj_1e + (c'/d;j)k;—1c and so at most;e wherek; is a so-
lution to the recurrenck; = k;_1(1 + ¢’/d;). To complete
Now, for a unit normafi € \,, let7i(t) be the unit normal the proof, we verify the claim as follows; is in a cocone
in Ng(t) that forms a smallest angle witih Thus,7(t) is C, aroundii,, of aperture2k; ;¢: itis in a cocone around
the normalized projection of on N, ;) andii(0) = 7. We ii, of aperturece by the dense sampling, and since we are
claim that Z7i(t)7i(t + dt) is bounded by(4/c’f(p))ds. changing the reference 0, , then we need to increase the
To verify this, consider the set of ballBs/, with radius aperture byk;_,c (we setcy = ¢ so thate < k;_;). We
R = f(g(¢)) and tangent toV at g(¢) in the directioni’/, want to see thag is also in awedgew around-, obtained
where#’ is a normal direction ag(¢). Because of the ballsby pivoting » around~, with an anglea that is at most
By, the rate of change of the normalAd in any direction (c/d;)k;—1c. An elementary geometric computation shows
with respect tals = ||g(t + dt) — g(t)|| is bounded byt /R. that if ¢ is in the cocon&”, with aperturep and at distance
So Z7(t)7(t + dt) < ds/R. SinceR = f(g(t)) is at least R from p, and D, from ~, then it is inside the wedge
c f(p), thenZsi(t)7i(¢t + dt) is upper bounded bys/c’ f(p), of angleq, if sihna < (R/D,)singp (see figure). Since
which is at mostidt /¢’ f (p) by the argument above. AddingR = ||p — q|| < ceef(p), Dy > djef(p), andyp < 2k;_qe,
this bound over0, 1], we obtain that/7(0)7(1) is at most then forsina < (ca/d;)sin(2k;_1¢), ¢ is in the wedgev
4l[lp — ql|/¢ f(p), which is at most,ce for some constantaroundy. This means thavn i, < (c'/d;)k;_1e, for
c4. some constant, as we had claimed.

R
h <
“R-d




Figure 4: ¢ is exactly on the boundary of a cocone jof 2
aroundi., (the vertical) with aperture and a wedge around o bump detal /
~ of aperturex. ' '

Using this lemma, we choosesufficiently small so that Figure 5: A small bump is introduced in the cube manifold,
each simplex in Del;$ has a normal within say /32 of @ detailed on the right. The effect of the bump on the local
normal of either of its vertices. We call thgood normal ¢ea¢re size at any point is negligible (even at points on the
approximatiorfor the simplices. bump). For any > 0, £ can be chosen sufficiently small

Remark. Removing slivers is an essential part of our recomnd A even smaller, so that for the corresponding manifold
struction algorithm and its proof of correctness. In a whis s with bump, there is ar-sampling in whichp is the only

actually needed if we want to guarantee good normal app@tiom  sample point in a large neighborhood of the bump.

for the simplices. The normal of a sliver can be arbitrarilsoing

even if its circumradius i®(c f (p)) and the circumradius-edge ra-

tio is bounded. Consider a cubelf with side lengthi and smooth sliver pgrs and its neighbors. We actually want the ngyss to
out its ridges and comers, to get a smooth 3-manifeld Close to be in the restricted Delaunay triangulation; to achievs, thie ac-

the center of the facets, the manifold is flat and the localfessize tually need to be more careful in moving movep so that there
. . . . |s still a restricted Voronoi vertex corresponding to theeslon the
is ©(d). Consider the Delaunay triangulation of a dense sampling
on M such that the circumradius-edge radius for every tetramedr manifold; this can be achieved by movipgn the circumsphere of
is larger than a constant. In the central portion of a facesglly,
this is a 3-d triangulation (since the manifold is flat thegg)d the . ~
normal of all simplices are correct (point to the 4th dimengi 12 Ball Property for Cells in VOFM S
Suppose there is a sliver there, made up of a triangleand an To verify that Delv(S) is homeomorphicta\, it suffices to
extra vertexp, so thaip is at a distance from aff(grs) with A ar-  Show that each of the cells in Vor(S) is homeomorphicto a
bitrarily small (this is possible under the condition of adle sam- ball [12] (the result there is proved for unweighted poinit b
pling and a triangulation with bounded circumradius-edggoy. carries over to the weighted case given the weight property)
To be precise, leb = (0,0, A,0), ¢ = (1,0,0,0),» = (1,1,0,0) We assume in this section thatis sufficiently small and
ands = (0,1, 0,0). Then the normal is in the directign, 0,0,1). that no simplex dual to a restricted Voronoi cell is a sliver,
Now, we deform very slightly\M near((0, 0,0,0) into the 4th di- SO that good normal approximation for these simplices hold,
mension —creating a very smalimp- (recall M was flat there) Say with angler/32.
to obtain a manifold\M’, and movep into the 4th dimension into  We need the following lemma, which is a minor modifica-
the bump, also a distanck away fromaff(qrs). More precisely tion of lemma 3.

= (0,0,0,A). SinceA is very small, this can be done without A
changing significantly the local feature size bt and, in particu- LEMMA 17. If 2,y € M belong to a common cell &br S,
lar, even neap’, the local feature size remains essentially the safen||z — y|| < csef(x).
(say the bump has curvature radi®gd)). However, the normal is
in the direction(0,0, 1,0). Thus, after moving, we still have an LEMMA 18. For (e, §)-sampling withe sufficiently small,
e-sampling for the new manifold(’, and also the restricted Delau2nd assuming that no restricted Voronoi cell is dual to a
nay triangualtion remains the same except for the slighitgnged Sliver, then each-cell of Vor ¢ S is a topological ball.

q,r,Ss.



13 Improvements

distances between samples). Details for these last egtesi

Improved Running Time. As described in Section 3,Still need to be worked out.

our algorithm requires the computation of the complete

(weigthed) Delaunay/Voronoi complex. Though the conReferences
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A Omitted Proofs

A.1 ProofofLemma 2 Proof. Since|p—ql|| < |lp—y|| =
ce f(p)/2, Lemma 1(jii) implies thatlg — ¢'|| < ¢*e* f(p)/2.
This proves (i). Sincey lies insideC,, |l¢ — y|| < |lp —

y|| - sin(7/16), wherer /16 accounts for half of the angula

aperture ofC;, and the approximation error &, through
aff(VF). Thus,

cE s cE
<& sin— < = £(p).
llg —yll < ) f(p) - sin 6= 10f(p)

Thus triangle inequality implies that

<

lg =yl +llg =4I

ce  Pe?

< <E+T) f(p),

which is at mostce f(p)/4 for sufficiently smalle. This
proves (ii). By triangle equality,

lld" — vl

lo=dl > lp—vll—Ild -yl
2.2
> Sf) - ) - S f )
>

ce
Zf(p)a

sincesc < 1/5.

A.2 Proof of Lemma 3 Proof. Let B be the ball centered
atp with radiusc, e f (p). Assume that the contrary that there

is a pointz € C,, NV, — B. We usecone(px) to denote the
cone with axispz, apexp, and aperturer/3. Lety be the
point onpz such that|p — y|| = cief(p)/2. Letq be the
orthogonal projection of onto7,. Letq’ be the point on\t
closest ta;. By Lemma 2(ii),

lla -yl
o —yll

sin Zypq = < = Lypg < 1—7;

1
)
By Lemma 2(i),||¢ — ¢'|| < c2e%f(p)/8. By considering the
trianglepqgq’ and using Lemma 2(i) and (iii), we have

lla—d| e
lp—d'll —

It follows that Zgpq’ < 2c;e for sufficiently smalle. We
haveZypq' < Zypq+ Zqpq’ < w/15 4 2¢1e. We conclude
thatpq’ lies insidecone(pz), and the angle between’ and
the boundary otone(pz) is at leastr /6 — 7/15 — 2¢1e =
/10 — 2¢1€, which is at leastr /20 for sufficiently smalke.
Note thatlp — ¢'| < [lp — yll + [ly — &'l < c1ef(p)/2 +
cief(p)/4 = (Ber/4)ef(p) < f(p) fore < 4/3¢y, where

sin Zgpq' <

we have used Lemma 2(ii). By Lipschitz properfyy’) <
() + lp — ¢|l < 2f(p). Let B’ be the ball centered at
with radius||p — ¢’|| - sin(7/20). By Lemma 2(jii), the radius
of B’ is at least(cief(p)/8) - sin(7/20) > (c1ef(p)/8) -
0.1 > 2ef(p) > ef(¢’) asc; > 160. Note thatB’ does not

Tcontainp, and B’ lies insideB. By the (g, 6)-sampling,B’

contains a sample Then

lp = @||* = llr - @||* — P* + R
lp = @||*  [Ir - z||* - P?

2 2 2 2
lp—2)” = lIr — 2| =« llp = r[I"-

mp(x) — 7 (2)

(\VAAY

Note that Zprz > =/2 since B/, and sor, is con-
tained in the diametral ball opz (because its centey’
satisfies|l¢’ — y|| < (1/4)(c1ef(p)/2), and its radius
is p — ¢l - sin(w/20) < (1/4)(c1ef(p)/2)). Thus,
lp —2* = |Ir — 2*> > [lp — r||*, which implies that
mp(z) — m-(z) > 0. Butthenz ¢ V), contradicting the
assumption that € C, NV, — B.

A.3 Proof of Lemma 4 Proof. The edgepq is aC,-edge
for somes. SoV,,, intersects”,. (Note that we do not know
whetherV,,, intersects’,.) Take any pointz € C, N V.
We claim that|q — z|| < |lp — 2| /V/1 — 4w?2.

If |¢ — z|| < |lp — |, we are done. Suppose not. Then
lp—qll < 2|lg—=|. Sincer € V,,, we have|p—z|*—P? =
g — z||? — Q2. After rearranginng terms, we get

lg —z|I” — Q°
lg — z|I* — w® [Ip — ql|?

lg = 2|* - 40? [lg — %

Ip— |

AV}

This proves that our claim.

By Lemma 3,|p — z|| < cief(p). Thus, by tri-
angle inequality,[p — ¢l < [lp — 2| + [l¢ — 2| <
a(1+1/vV1—4w?)ef(p).

A.4 Proof of Lemma 5 Proof. By Lemma 4, any
edge inG, has length at mosteef(p). By the (g, 6)-
sampling, any edge i, has length at leastf(p). Thus
lp— gl < <= |p—r|. (Recall that:/s is a constant.)
By Lemma 4 and Lemma 1(ii}/(pq, 7,) < arcsin(cee/2),
which is at mostse for sufficiently smalle.

A5 Proof of Lemma 7 Proof. Sincer is aC)p-simplex,
V; intersects”,. There is a balB with centerz € V. N C,
and radiusZ such thatB is orthogonal to the vertices of



7, and B is further than orthogonal from other weighted
vertices inS. Observe thai?. < Z. Thus it suffices to

show thatZ < pL.,.
We prove the lemma for the constant 5ve/6. Assume

to the contrary thaf > 5veL, /6. By Lemma 5(i) and the which is at mostse f(p) for cz = ¢1 4 ca(14+w+ pv).

(e,9)-sampling,vL, > 6f(p). ThusZ > 5vel./§ >
5¢f(p). Lety be the point orpz such that|ly — z|| =
Z — 5ef(p). Thus, the ballB’ with center aty and of

e1ef(p) + 22/ (p) + /w2 I — a2 + Bo?r2e2 ()2

c1ef (p) + e f(p) + 1/ Bwe2 f(0)? + Bpr2e2 f(p)2,

A

A.7 Proof of Lemma 9 Proof. First, vol(r)

radius5e f(p) is contained inB. By Lemma 4, the edgesvol(7q) - Dq/j. If vol(r) < oL.vol(ry) thenDy < joL,.

of 7 incident top have length at moste f(p). The weight
property [w] implies that the weightP of p is at most
wege f(p). We conclude that

5¢f(p) <llp —yll < (54 wea)ef(p)

(the upper bound follows becausemn B’ and the weighted
ball at p overlap). Letq be the orthogonal projection ofN onto L/

y onto 7, and letq’ be the point onM closest tog. By
Lemma 2(ii), we have

5+ wea)e
g~y < Bz

f(p).

Settingw < 3/ce, then |p — y|| < 8ef(p) and

ld" — yll < 2ef(p). By Lipschitz propertyf(q’) <
f@)+lp=dll < f®)+p—yl+lly—d| < (1+10¢)f(p),
and sof (¢') < 2f(p) for sufficiently smalke. It follows that
we can place a balB” strictly inside B’ with centerg’ and
radiuse f(q") < 2e f(p) (since the radius aB’ is 5¢ f (p), its
center isy and||¢’ — y|| < 2¢f(p)). SoB” is insideB and
B is empty asB is empty. But thee, §)-sampling implies
that B” contains a sample, a contradiction.

A.6 Proof of Lemma 8 Proof. Let o and z be the
orthocenters ofr, and 7, respectively. LetR’Tp be the
orthoradius ofr,. The distance between and aff(r,) is
equal to|lo — z||. Observe that is the closest point tp in
aff(V;). Therefore, Lemma 3 implies that

lp — 2| < cief(p)-

By applying Lemma 7 to,,, we getR’p <pL.,. Letgbea
vertex ofr,. Using Lemma 5(i) and Lemma 4, we get

R, < pv-|lp—q| < copref(p).
Then triangle inequality implies that

llo — =]l

IN

llp — 2|l + lp — qll + llg — o]

cief(p) + coef(p) + 1/ Q%+ R'Z,

A

If vol(7) > oL,vol(ry) thenDy > jo L.

A.8 Proof of Lemma 18 Let k£ be the dimension oM.
Let o be aj-cell of Vory, S which is the intersection of
the (d — k + j)-cell o’ of Vor S with M. Letz be in the
interior of o, L’ = aff(¢’) and N, be the projection of
— z (translation ofL’ so thatz coincides with
the origin). Letp be a sample point determining —that
is, a vertex of the dual simplex*—, because of the normal
approximation of simplices, for any norma), of p there
is a normali,- to o* with £7i,i,~ < 7/32. This means
that ZV/ N, < m/32. With sufficiently smalle, normal
variation onM implies thatZN,N, < 7/32. Therefore,
INGNT < NN, + ZN,N!. < /16 holds.

For z in the interior of a restricted Voronoi cefl, let B(z)
be a ball centered at and with the smallest radiugz) so
that B(z) containss. We haver(z) < cse f(x). For a point
x € M, let B(z) be interior of the union of all balls of radius
R(z) = f(z) that are tangent to\ at z. Note that the
intersection of3(z) andM is empty.

Proof. (Sketch We use the notation established in the
paragraphs above. The proofis by inductionjoforj = 0,
leto’ be a(d — k)-cell and suppose it intersectd in at least

a pointz. In this caseV, = aff(¢’). Sinces’ N M must lie

in B(z), andZN, N, < /16, it follows that, except:, o’
lies insideB(z) and sor is the unique intersection between
o’ and M.

Now, for j > 1, consider gj-cell o and its corresponding
(d—k+j)-cello’,let L’ = aff(¢’), M’ be the intersection
of M and L/, x be an arbitrary point in the interior af,
N, be the orthogonal projection ¢f, onto L' — x, and7,/
be the intersection of, with L' — z. N/ and7] are the
normal and tangent spaces/f’ atz in L. As noted above,
LNGNL < 7/16.

Let#be a unit vector ir7;/ (a direction) and lef’ = F, ybe
the(d—k+1)-half-flat determined by, and positive factors
of . Because/ N, V!, < /16, Mp = FN M’ N B(x) is
a smooth 1-manifold irB(z) (the intersection is transversal
and hence generic insid®(x)) with boundary only possible



on the boundary oB(z) and onz + A. The normal space We claim thath (i) = y> defines a homeomorphism be-
N,/ at an interior poinyy € My in I is close toVN,: for tween the(j — 1)-sphere and the intersection.’ with the
iy € N/, there is anii, € N, with Zijn, < 7/8 boundaryofs’. The maph is continuous because the inter-
(including the error betwee#y, andNZj and betweem/’; section ofM with each(d — k + j — 1)-dimensional cell on
and N, —which determineg’). The tangenPy’ on the other the boundary ot is a topological ball (by inductive argu-
hand is close to: L%Fg /8. M intersects the facets ofment), and these pieces are glued continuously. Sinise
o’ N F almost orthogonally. one-to-one and continuos, it is a homeomorphism (as it is a
We now verify that it is possible to parametri2d » with map between compact spaces).
the distance from; that is, that fol0 < r < r(x), there is  Thus, we can then use the fibers = ([0, r7]) to define
a unique pointyz(r) on M at distance- from z. Because a homeomorphism between a (Euclidean) ball andh
M is a smooth 1-manifold, for sufficiently smallM g the natural way (proceeding as in the standard proof that
is monotone with respect to (that is, for eachr, there is a convex cell is a topological ball): a ray of the ball in the
a uniquey on M at distancer from z). We claim that directionz maps to the fiber* in the directiont.
M is monotone with respect toinside B(z). Otherwise
somey € Mg would have a norma’i;’ in the direction of
y — =, that is Z7i (y — x) = 0, which is a contradiction:
there is a normaii, in V, such that/7i,7; < m/8, while
/tly — =) < w/8 and /tii, > ©/2 — w/8, so this is a
contradiction (making sufficiently small).
So lety(r), r € I = [0,r(x)] be the parametrization of
M according to its distance from z. We claim that

Figure 6: WithinB(z), M is “sandwiched” between large
tangent empty balls.

7 Starts atr insides’ N F, eventually leaves’ N F, and
does not reenter it. It leaves N F' becauseV  may have a
boundary only on the boundary &f(z). To see that it does
not reenters’ N F', letr2 be such thayy = ~;(r}) is the
first point ofy; on the boundary of’ N F', and letw be the
facet of o’ in Vor S intersected at this point. As observed
above,yy intersectsv N F within 7/16 from orthogonality
and/f)t < /16, so aftery*, 77 lies inside a cone with apex
y7, axis parallel to the tangenttg aty>, and aperture/16.

It follows by convexity ofo’ N F that, afteryt’i, ~ris outside
of o/ N F, that is, it does not reentef.



