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Abstract
Many applications in geometric modeling, computer graphics, visualization and computer vision benefit from a re-
duced representation called curve-skeletons of a shape. These are curves possibly with branches which compactly
represent the shape geometry and topology. The lack of a proper mathematical definition has been a bottleneck in
developing and applying the the curve-skeletons. A set of desirable properties of these skeletons has been identi-
fied and the existing algorithms try to satisfy these properties mainly through a procedural definition. We define a
function called medial geodesic on the medial axis which leads to a methematical definition and an approximation
algorithm for curve-skeletons. Empirical study shows that the algorithm is robust against noise, operates well
with a single user parameter, and produces curve-skeletons with the desirable properties. Moreover, the curve-
skeletons can be associated with additional attributes that follow naturally from the definition. These attributes
capture shape eccentricity, a local measure of how far a shape is away from a tubular one.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Line and Curve Genera-
tion

1. Introduction

The problem of representing a three dimensional shape with
a one dimensional geometry (curves) appears in various ap-
plications of geometric modeling, computer graphics, visu-
alization and computer vision. For example, in animation
and tracking a ‘stick-figure’ is immensely useful which rep-
resents the main geometric entities of a shape with their con-
nectivities. It allows registrations, deformations, matching
and other operations in a more controlled manner because
of the reduced dimension. The concept of curve-skeleton
was born from these various needs which, roughly speak-
ing, should be a curve possibly with branches in the ‘center’
of the shape. A related and much more well defined concept
is the medial axis which is also referred as the skeleton. The
medial axis consists of the centers of the maximal balls in-
scribed inside the shape. For a three dimensional shape, the
medial axis, in general, has two dimensional components of-
ten referred as medial surface. Therefore, medial axis cannot
be a substitute for one dimensional skeletons.

A main problem with computing curve-skeletons is that
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they are not well defined. Although desirable properties of
these skeletons have been identified based on different ap-
plications, no mathematical definition has been formulated.
To fill this void different procedural definitions leading to
different methods have been proposed for computing curve-
skeletons. They include, to name a few, topological thinning
[BNB99], distance field based methods [ZT99] [BKS01]
[BST03] [HF05], potential field based methods [CSYB05],
and others [OK95] [Cos99] [VL00]. Cornea et al. [CSM05]
give a comprehensive survey of these techniques. Although
many of these methods produce curve-skeletons with a set
of desirable properties, they are not completely satisfactory
as pointed out in Cornea et al. [CSM05]. We believe that
this limitation stems from the lack of a proper mathematical
definition of curve-skeletons.

In this paper, we give a mathematical definition of the
curve-skeletons. Since the curve-skeleton should be in the
‘middle’ of the shape it is natural to define it as some sub-
set of the medial axis. What we aim for is to determine the
‘middle’ of the medial axis. Algorithms to thin the medial
axis based on the distances from the boundary have been de-
signed on this principle. The main problem in this approach
is that a large part or the entire medial axis may have the
same distance from the boundary; e.g., the medial surface of
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Figure 1: (a) Female model, (b) approximated medial axis
rendered with MGF values, (c) extracted curve-skeleton ren-
dered with the eccentricity values, Coloring scheme: red
tone : big values, blue tone : small values, green tone :
medium values.

a thin plate. It is not clear how the thinning process should
proceed in such cases. One of our main contributions is to
define a function on the medial axis whose singularity brings
out its ‘middle’. The function is based on the geodesic dis-
tances between points where the maximal balls defining the
medial axis touch the shape boundary. We call it the medial
geodesic function(MGF). In a sense, the medial geodesic
function combines the intrinsic property of the bounding
surface (by geodesic distances) with its embedding in three
space (by the medial axis) thereby capturing the shape in-
formation comprehensively. Just as the singular points of the
standard distance function gives the medial axis, the singular
points of this function gives the curve-skeleton. Figure 1(b)
and (c) show the medial geodesic function and the curve-
skeleton of the Female model respectively.

Our definition allows additional shape information to
be associated with the curve-skeleton. First, the medial
geodesic function values given by the shortest geodesic dis-
tances between the points where the maximal balls touch the
surface give the size information of the shape. Second , the
ratios between the geodesic and the Euclidean circles pass-
ing through these touching points tell how far the shape is
locally away from a tubular one. We refer to this ratio as ec-
centricity. The coloring in Figure 1(c) shows the eccentric-
ity values associated with the curve-skeleton. Furthermore,
Our definition allows to map the curve-skeleton back to the
surface easily. These extra features are useful for various ap-
plications.

2. Definition
Let O ⊂ R

3 be a space called shape bounded by a connected
manifold surface S. The medial axis M ⊂ O is the set of cen-
ters of the maximal balls inscribed in O.

Giblin and Kimia [GK04] show that, generically, M con-

sists of five types of points giving it a stratified structure.
One type form two dimensional sheets, two of the types form
curves and the rest two types remain as isolated points on the
medial axis. Figure 2(a) shows four of these types.
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Figure 2: (a) The stratified structure of the medial axis of
a rectangular block. (b) One sheet of the medial axis. Red
points x, y, z are on this sheet. Green points are their corre-
sponding contact points on the surface and black paths are
the shortest geodesic paths between these contact points. (c)
Medial axis rendered with MGF values following the color-
ing scheme of the title figure. (d) Red lines, blue lines and
green points are Sk2, Sk3 and the limit points of their union,
respectively.

First we focus on the points that form sheets; shown with
grey in Figure 2(a). The maximal inscribed balls of such
points touch the surface S at exactly two distinct points. Let
M2 ⊆ M be the set of such points. Each point in M2 has a
neighborhood which is an open disk and hence M2 is a 2-
manifold. Since M \M2 has measure zero in M, in general,
M2 covers most of M.

2.1. Medial Geodesic Function (MGF)

For a point x ∈ M2, let Bx be the maximal inscribed ball cen-
tered at x and ax and bx be the two points of S where Bx
meets S. Define f (x) to be the length of the shortest geodesic
path on S between ax and bx. We call f the medial geodesic
function, MGF, of O. Figure 2(b) shows the corresponding
shortest geodesic paths for several points on M2. If a point
x ∈ M2 have more than one shortest geodesic paths between
ax and bx, their lengths are equal. Hence MGF is well de-
fined on M2. Figure 2(c) shows the rendering of M2 based
on the MGF value. We will define the curve-skeleton in M2
as the singular set of f . Several properties of this singular set
(some observed and some proved) motivates this definition.
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By our assumption the surface S is connected, compact,
and without boundary. Further, we assume that S is smooth
(C∞). The function f is defined on M2. Define φ : M2 →
S × S, x 7→ (ax,bx). Using a technique similar to Attali et
al. [AJDL03], it can be shown that M2 is a smooth manifold
and φ is differentiable provided S is smooth. We denote the
lengths of the shortest geodesic between two points x and y
in S, M2, and R

2 by dS(x,y), dM(x,y), and d(x,y) respec-
tively. Considering dS as a function from S×S to R we have
f = dS ◦ φ. Let α : M2 → R

2 be the local coordinate func-
tion for x ∈ M2. The map α is a diffeomorphism since M2
is a smooth manifold. We use α to define f̃ : R

2 → R so
that f̃ (α(x)) = f (x). From standard definition in differential
geometry f is called differentiable at x if and only if f̃ is
differentiable at α(x).

We argue that the singularities of f , i.e., the points in M2
where f is not differentiable has a Lebesgue measure zero.
This would mean that the singularities of f constitute curves
or isolated points on M2, which we define as the curve-
skeleton in M2.

Property 1 The singularity of f has measure zero in M2.

To prove that the singularity of f has measure zero, we
show that f̃ is locally k-Lipschitz (defined below) for some
k > 0. For then the singular set of f̃ has measure zero by
Rademacher’s theorem [Fed96]. It follows that the singular
set of f has measure zero by local coordinate maps.

A function g : R
n → R is called locally k-Lipschitz near a

point x ∈ R
n if for some ε > 0

g(x)−g(y) ≤ k‖x− y‖

for any y ∈ R
n where ‖x− y‖ ≤ ε.

Observation 1 The function f̃ : R
2 → R is locally k-

Lipschitz for some k > 0.

Proof For some ε > 0 and a point x ∈ M2, let y be any point
where d(α(x),α(y)) ≤ ε. Consider the shortest geodesics γx
between ax and bx, and γy between ay and by. The lengths
|γx| and |γy| satisfy

|γx| ≤ |γy|+dS(ax,ay)+dS(bx,by).

Since φ is differentiable, there is some k1 > 0 so that we have
max{dS(ax,ay),dS(bx,by)} ≤ k1dM(x,y) when x and y are
sufficiently close. Also since the local coordinate function
α is differentiable, we have dM(x,y) ≤ k2d(α(x),α(y)) for
some k2 > 0. Therefore,

f̃ (α(x)) = |γx| ≤ |γy|+2k1k2d(α(x),α(y))
= f̃ (α(y))+2k1k2d(α(x),α(y))

proving that f̃ is locally 2k1k2-Lipschitz.

We do not have rigorous mathematical proofs for the next
two properties though we conjecture them to be true. We
have observed the properties from experiments as well.

Property 2 There is no local minimum of f in M2.

This property can be argued roughly as follows. Since M2
is a manifold, any point x in M2 has a neighborhood N ⊂M2,
which is a disk. Let γ be the geodesic path between ax and
bx. In any small enough neighborhood of x, there is a point
y such that ay is on γ. If by is also on γ then f (x) > f (y) and
we are done. However, in general, by may not be on γ. But
we observe that by is close to γ and hence it is likely that
f (x) > f (y) still holds.

Property 3 At each singular point x of f there are more than
one shortest geodesic paths between ax and bx.

A rough argument why the above property is true may
proceed as follows. We have f = dS ◦ φ and φ is differen-
tiable on M2. Therefore, f is differentiable at a point x ∈ M2
if dS is differentiable at φ(x). Suppose that there is only a
single shortest geodesic path γ between ax and bx. Then in
a sufficiently small neighborhood N of (ax,bx) in S× S, all
geodesic paths between a and b for (a,b)∈ N smoothly con-
verge to γ as (a,b) approaches to (ax,bx). This means dS is
smooth at (ax,bx) and so is f at x contradicting that f is
singular at x.

2.2. Skeleton definition
We observe that the behavior of the medial geodesic func-
tion is like a distance function. First, MGF is continuous and
differentiable everywhere on M2 except at a measure zero set
in M2. Second, we have observed that property 2 and 3 hold
in practice. This means MGF has no local minimum on M2
which is open in M and the singularity of f occurs roughly
in the ‘middle’ of M2.

We define the curve-skeleton in M2, denoted by Sk2, as
the set of singular points of MGF on M2. To extend the defi-
nition beyond M2, we use a different characterization of the
singular points by means of divergence. It is reminiscent of
the use of divergence for defining medial axis by Siddiqi et
al. [SBTZ99]. The gradient of MGF, ∇ f , defines a vector
field on M2 except at the singular points. The divergence of
the vector field at point x, div(x), is the net outward flux per
unit area on M2 taken over a neighborhood D shrinking to
zero, i.e.,

div(x) := limA→0

R

C < ∇ f ,n > dC
A

where A is the area of D, C is the boundary of D and n is
the outward normal at a point on C as shown in Figure 3(a).
The divergence is negative at the singular points but 0 every-
where else. In other words, Sk2 consists of the points where
the gradient flow of MGF sinks into.

Next we consider the set of points M3 ⊆M where M3 con-
stitutes curves lying at the intersection of the closure of three
sheets in M2. The thick black lines in Figure 2(a) are such
curves. The maximal inscribed ball of such a point touches S
at three points. Although MGF is not well defined for these
points, we consider MGF defined on their neighborhoods.
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Figure 3: (a) Neighborhood of a point in M2. (b) Neighbor-
hood of a point in M3.

Let x be such a point. The neighborhood of x in M2 con-
sists of three topological half disks. Consider one of them,
say HD. We define the divergence with respect to HD for x,
div(x)|HD, as follows.

div(x)|HD := limHA→0

R

HC < ∇ f ,n > dHC
HA

where HA is the area of the half disk HD, HC is the bound-
ary of HD on M2 as in Figure 3(b). The point x is on the
curve-skeleton if div(x)|HD is negative for all three half
disks in the neighborhood of x. Basically, x is on the curve-
skeleton if the gradient flow of MGF from all three local
neighboring sheets sink into it. Let Sk3 denote such set of
points.

Now consider the rest of the types of points in M. One
type of points form the boundary curves of M where two
contact points of the maximal inscribed ball with the surface
coincide. In case of the rectangular block shown in Figure
2(a), these curves are the twelve edges of the block. The rest
two types of points are the isolated points on the medial axis
where at least two curves meet. We do not explicitly define
the curve-skeleton for these three types of points since they
are either the boundary or the isolated points on the medial
axis. A point of one of these three types is on the curve-
skeleton if it is the limit point of Sk2 or Sk3.

Finally, we define the curve-skeleton of O, SkO as the clo-
sure of Sk2 ∪Sk3. Figure 2(d) shows the curve-skeleton for
a rectangular block.

3. Algorithm Overview
In general it is extremely hard to compute the curve-skeleton
exactly as we defined. It is well known that exact medial
axis computation is hard due to numerical instability asso-
ciated with the computations. Performing an exact compu-
tation based on the analysis of a function defined on the
medial axis would be even harder. We bypass this difficulty
by computing an approximation of the curve-skeleton. Ex-
tensive experiments show that the algorithm is effective in
practice.

Assume that the input is a shape represented by a polygo-
nal surface. Ideally, the approximation algorithm can be de-
scribed in the following three steps. First, compute a polyg-
onal approximation of the medial axis. Second, compute the
gradient of MGF for the center of each medial axis facet

(a) (b) (c) (d)

Figure 4: (a) and (b) two different polygonal approxima-
tion of the medial axis. The small black lines starting from
the centers of the polygons represent the gradient vector of
MGF at these centers. Red line segments are the marked
skeleton edges where the divergence of the gradient of MGF
is negative, (c) eroded medial axis, (d) blue segments are the
skeleton edges collected during erosion.

(polygon), which approximates the gradient for all points in
that facet. Third, mark the edges of the medial axis facets
with negative divergence as skeleton edge. The output curve-
skeleton consists of all marked skeleton edges. Figure 4(a)
illustrates a curve-skeleton computed with this strategy. This
result, however, is an accident. In practice, the polygonal ap-
proximation of the medial axis will most likely be worse and
hence the computation of the gradient of MGF will be less
accurate. As a result, the curve-skeleton computed by the
above three steps will most likely be disconnected as Figure
4(b) illustrates. To overcome this problem caused by dis-
cretization and approximation error, we introduce an addi-
tional step of medial axis erosion to recover the missing part.
The medial geodesic function guides the erosion, which is
the reason why the curve-skeleton is roughly in the middle
of the medial axis. Specifically, the erosion only removes
pieces of the medial axis from the boundary of the subset
that has yet not been eroded. Also, among all erodable ele-
ments, the one with the smallest MGF value is eroded first.
At the same time the edges marked in the third step are never
allowed to be eroded. Figure 4(c) shows a stage where three
facets still need to be eroded. Figure 4(d) shows the extracted
curve-skeleton.

Extraction Algorithm:

step 1: (MA approximation) Compute a polygonal approxi-
mation of the medial axis using the input polygonal surface.

step 2: (MGF approximation) Approximate the medial
geodesic function and its gradient for the points inside each
medial axis facet.

step 3: (Marking) Mark the edges of the medial axis facets
with negative divergence as skeleton edges.

step 4: (Erosion) Erode the medial axis in the increasing or-

c© The Eurographics Association 2006.



T. K. Dey & J. Sun / Defining and Computing Curve-skeletons with Medial Geodesic Function

Dolphin

Genus3Protein

Tyra

Casting

Boy

RockerArm

T−shape

Figure 5: The first row shows the extracted curve-skeletons for surfaces with genus 0. The second row shows the extracted
curve-skeletons for surfaces with genus more than 1. The skeleton edges are colored based on their eccentricity values.

der of its MGF value from the boundary while keeping the
edges marked in the step (3) intact. Output the edges of the
medial axis that survive the erosion as the curve-skeleton.

Figure 5 shows the curve-skeleton extracted by the above
algorithm for a number of shapes.

Before we detail each step of the extraction algorithm
in section 5, we illustrate several properties of the curve-
skeleton extracted by our algorithm.

4. Properties
In a nice survey, N.D. Cornea et al. [CSM05] compiled a list
of desirable properties for the curve-skeletons based on nu-
merous applications. In general, it is desirable for a curve-
skeleton to be homotopy equivalent to the shape, invariant
under isometric transformations, thin, centered, junction de-
tective, stable (robust) and connected. Our curve-skeleton
enjoys all of these properties.

It is obvious that our algorithm guarantees that the ex-
tracted curve-skeleton is invariant under isometric transfor-
mation, connected and thin.

The homotopy equivalence follows from the following ob-
servation. First of all the medial axis is a deformation retract
of the shape. Second, the erosion is implemented with a col-
lapse operation that gives a deformation retract of the medial
axis (see the detailed description in section 5.4). Hence the
curve-skeleton is actually a deformation retract of the shape.
Figure 5 shows that the curve-skeletons have the same num-
ber of loops as the number of tunnels in their corresponding
shapes.

The extracted curve-skeleton is centered because of the
following two reasons. First of all, the curve-skeleton is a
subset of the approximated medial axis and hence is centered
with respect to the distance field defined by the surface. Sec-
ond, by property 3, a point x in M2 is on the curve-skeleton
only if there are multiple shortest geodesic paths between
two touching points, ax and bx. This means that the point
x is in the middle of M2. Different examples given in this
paper also show the centeredness of the curve-skeleton.

A curve-skeleton should remain stable against small
changes in the shape. In particular, small changes intro-
duced by noise should not affect the curve-skeleton signif-
icantly. Although the medial axis based on which we ex-
tract the curve-skeleton is not stable under shape perturba-
tions [Wol92,ACK02,AJDE04], the curve-skeleton remains
stable. The reason is that the unstable parts of the medial axis
do not contribute to our curve-skeleton. Figure 6(a) and (b)
show a noisy Hand (we generate it by perturbing the points
of a smooth Hand shown in Figure 13) and its medial axis
respectively. As we can see the medial axis has a number of
spikes because of noise. However, these spikes are close to
the boundary and hence have small MGF value as the col-
oring of the medial axis shows. The erosion process erodes
these spikes before reaching the “middle” of the medial axis,
where the curve-skeleton is. Figure 6(c) shows the curve-
skeleton of noisy Hand, which is almost the same as the one
of smooth Hand in Figure 8 though it has more wiggles.

The curve-skeleton computed by our algorithm remains
stable under certain deformations where the topology of the
shape does not change and the geodesic distance between
any two points on the surface does not change much. Defor-
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(a) (b) (c)

Figure 6: (a) Noisy Hand, (b) the medial axis of the noisy
Hand colored with MGF values, (c) the curve-skeleton.

mations in animated characters mostly belong to this cate-
gory. Figure 7 shows the curve-skeletons for a series of de-
formed horses generated by Sumner and Popovic [SP04]. As
we can see, the structure of the curve-skeleton remains un-
changed as the horse surface deforms. Although the curve-
skeletons are deformed, the length of each component and
its eccentricity value (the coloring of the curve-skeletons)
almost remain the same.

Figure 7: The curve-skeletons for the animated horses.

A curve-skeleton is junction detective if it encodes the dif-
ferent logical components of the shape. Although the def-
inition of the logical components of a 3D shape is vague
in general, it is often obvious for some classes of shapes.
We observe from various examples that the curve-skeleton
as computed by our algorithm is junction detective. Since
the curve-skeleton is a 1D curve, there are three types of
curve-skeleton points: boundary points that have a half inter-
val neighborhood on the curve-skeleton, regular points that
have an interval neighborhood and the rest called junction
points. The junction points attach different branches of the
curve-skeleton. As shown in Figure 8, the logical compo-
nents of Armadillo, including torso, arms, legs, tail, ears,
mouth, fingers and toes, have a one-to-one correspondence
with the branches (colored differently) of the curve-skeleton.

The curve-skeletons of other models in this paper such as Fe-
male, Boy, Hand and Horse also show their ability to detect
the junctions. Junction detection is a key property of a curve-
skeleton which many applications depend on such as mesh
decomposition and shape matching.

4.1. Shape eccentricity

In addition to those mentioned in [CSM05], the curve-
skeleton extracted by our algorithm can be associated with
two other attributes, which make them encode shape infor-
mation more comprehensively. Our definition and algorithm
allow easy computation of these two quantities for each
skeleton edge. Consider the hand in Figure 8. We approx-
imate the medial axis using a subset of the Voronoi diagram
and hence each skeleton edge E is a Voronoi edge, whose
dual Delaunay triangle t has three vertices on the surface
(red points). The geodesic paths between each pair of them
together form a ‘circle’ (red circles), called the geodesic cir-
cle of E. The length of this circle, denoted g(E), captures the
local size of OE ⊂ O where OE corresponds to the skeleton
edge E. Let c(E) denote the length of the circumcircle of the
dual triangle t (blue circles). The ratio g(E)

c(E)
essentially tells

how much OE deviates from a tubular shape. We call this
ratio the eccentricity of E, denoted by e(E). In Figure 8, the
fingers have small eccentricity value and are close to tubu-
lar shape while the palm has a big eccentricity value and is
more flat. In Section 5.6 we detail the algorithm for identi-
fying tubular/flat regions of a shape using eccentricity.

Armadillo Hand

Figure 8: Armadillo: the branches of the curve-skeleton
correspond to logical components of the shape. Hand:
geodesic circles, colors of the curve-skeleton indicate the ec-
centricity values.

5. Algorithm details

In this section we give the detailed description of each step of
the extraction algorithm described in section 3. We assume
that the input surface is a connected triangulated surface, de-
noted by T .
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5.1. Medial axis approximation
In this work we follow the Voronoi diagram filtration of Dey
and Zhao [DZ03] to approximate the medial axis. This ap-
proach filters the Voronoi diagram of a set of vertices on
the surface and retains a set of Voronoi facets to approxi-
mate the medial axis. The main problem with this medial
axis computation is that the filtration, often guided by some
input parameters, leave some unwanted spikes or holes in
the approximate medial axis. However our algorithm is not
affected by this shortcoming as we avoid the filtration and
instead take all the Voronoi facets inside the space bounded
by T as a preliminary approximation of the medial axis, de-
noted by MT . Eventually this superset of the medial axis
gets eroded by our algorithm. Figure 6(b) and Figure 9(a),(b)
show the approximated medial axes of Hand and T-shape re-
spectively.

Note that the medial axis of a trianguled surface can be
computed exactly [CKM04]. However, this exact computa-
tion is expensive. Fortunately, the medial axis approximated
by the Voronoi diagram serves our purpose as long as the
vertices of the trianguled surface form a dense sampling of
the original object.

5.2. MGF Approximation
For a Voronoi facet F on the approximated medial axis, let
aF and bF be two endpoints of the dual Delaunay edge of F ,
as in Figure 9(c). We compute the shortest geodesic distance
f (F) between aF and bF by using the algorithm presented
by V. Surazhsky et. al [SSK∗05]. The black curve in Figure
9(a) shows the shortest geodesic path between aF and bF
computed by their algorithm. We approximate the medial
geodesic function for any point inside F with this quantity
f (F). The medial axis in Figure 9(b) is rendered with differ-
ent colors for different ranges of MGF values.

We approximate the gradient of the MGF for any point
inside a Voronoi facet F as follows. First, we compute the
tangent directions va and vb of the shortest geodesic path at
the two endpoints aF and bF respectively. Next, we project
these two vectors onto the Voronoi facet F and approximate
the gradient ∇ f for any point inside F using the normalized
summation v(F) of these two projected vectors. The white
arrows in Figure 9(e) show the vector v(F) for the Voronoi
facets inside the white circle marked in Figure 9(b).

5.3. Marking
Because of the erosion process, we do not need to mark all
skeleton edges in this step. In fact, the actual purpose of the
marking step is to find those skeleton edges which form the
boundary of the curve-skeleton. Consider a Voronoi edge E
and let F be any Voronoi facet incident on it as shown in
Figure 9(d). The dot product dE(F) of v(F) and the inward
normal n of the edge E towards F , approximates the flux

vb

va

v (F)v (F)

F

Fa

bF

n
E F

(c) (d)

(a) (b)

(e)

Figure 9: (a) T-shape: the medial axis, marking step marked
the red skeleton edges, (b) the medial axis rendered with the
MGF values, cyan skeleton edges collected during erosion,
(c) illustration for the MGF gradient computation for each
Voronoi facet, (d) illustration for the divergence computation
for each Voronoi edge, (e) zoomed area of the white circle in
(b).

flowing into any point on E from the neighborhood in F . We
mark the Voronoi edge E as a skeleton edge if dE(F) < θ for
any incident Voronoi facet F where θ is an input parameter.
Actually θ is the only input parameter for the entire curve-
skeleton extraction algorithm. We will show its effect later in
this section. In addition, to avoid small branches in the final
curve-skeleton, at most one edge is allowed to be marked as
skeleton edge for a Voronoi facet in this step. Also we do not
mark edges on the boundary of MT . Notice that, whenever
an edge is marked, its two endpoints are also marked. Figure
9(a) shows the skeleton edges (red) marked after this step.
As we can see they are in the ‘middle’ of the medial axis but
are disconnected. Since MGF has no local minimum in M2
as Property 2 claims, the skeleton edges marked in this step
can not form a loop.

5.4. Erosion
The erosion proceeds by collapsing facets, edges and ver-
tices from MT gradually. Consider MT as a cell complex
consisting of three types of cells: Voronoi facets, Voronoi
edges and Voronoi vertices. A cell τ is a face of another cell
σ if τ is on the boundary of σ. We also say σ is a coface of
τ. A pair (τ,σ) is a face-coface pair if τ is a face of σ. In our
case, there are three types of such pairs: (edge, facet), (ver-
tex,facet) and (vertex,edge). The erosion actually proceeds
by collapsing face-coface pairs. One way to think of collaps-
ing a pair (τ,σ) is to push every point on σ and τ onto the
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Model #V MA MGF Erosion Total
Genus3 6652 0:03 1:13 0:0 1:17
Female 8904 0:08 4:44 0:0 4:52
Horse 15563 0:18 8:31 0:0 8:51

Armadillo 25001 0:18 10:04 0:01 10:25
RockerArm 40171 0:34 36:19 0:01 36:56

Table 1: Computation times (minutes:seconds) on a 2.8 GHz
PC with 1GHz RAM.

other boundary of σ, see Figure 10. It is the same as σ and
τ being eroded. A face-coface pair (τ,σ) is collapsible if σ
is the only coface of τ that has not been collapsed so far. If
we only collapse the collapsible pairs, the spaces before and
after the collapse remain homotopy equivalent.

The MGF value guides the erosion. The assignment of
MGF value to every facet in MT is described in section 5.2.
An edge and a vertex is assigned an MGF value equal to
the maximal of the MGF values of the facets incident to it.
The erosion removes a pair (τ,σ) where τ is not a marked
skeleton edge or a vertex in the marking phase and f (τ) is
the least among all such collapsible pairs.

step 1: Initialize a priority queue Q with all the initial col-
lapsible pairs, the one having the smallest f (τ) being at the
top. These pairs are the edges on the boundary of MT and
their cofaces.

step 2: Pop the top element (τ,σ) out of Q and erode σ and τ.
The erosion of these two cells may make some adjacent pairs
collapsible. If neither of the two cells in a new collapsible
pair has been marked in the marking step, push the pair into
Q. Repeat step 2 until Q is empty.

τ σ

(a) (b)
collapse

Figure 10: (a) Collapsing (τ,σ), (b) a series of collapses,
red edges and vertices are marked in the marking step.

Table 5.4 shows the timing of the algorithm for some
models.

5.5. Effect of θ

Finally we describe the effect of the only user parameter
θ, which is used in the marking step to identify the points
with certain negative divergence of the gradient field of
MGF. As θ decreases, the condition for points being on the
curve-skeleton becomes more strict and the resulting curve-
skeleton becomes less detailed. Formally, let SKθ

O be the
curve-skeleton of a shape O extracted with parameter θ. We

have SKθ1
O ⊆ SKθ2

O if θ1 < θ2. Figure 11 shows a series of
curve-skeletons of Protein with different θ values. As θ de-
creases, the curve-skeleton corresponding to the less promi-
nent features go away. When θ reaches a value a little less
than −1, no edge and point is marked in the marking step
since the condition dE(F) < θ is not satisfied for any edge E
and any of its incident facet F and the curve-skeleton reaches
its simplest form consisting of loops only. Different θ can be
chosen for different applications of the curve-skeleton.

θ=−0.5 θ=−0.8 θ=−1.01θ=−0.99

Figure 11: A series of curve-skeletons of Protein with dif-
ferent θs.

5.6. Computing tubular regions
Many shapes have pronounced features which are perceived
to be tubular and flat. This shape information should be read-
able from the medial axis which encodes the shape com-
pactly. A recent work of Goswami et.al [GDB06] points
toward this direction. As a subset of the medial axis, the
curve-skeleton together with the eccentricity value can indi-
cate how much the shape differs locally from a tubular one.

First, all skeleton edges are classified into two types, ones
with eccentricity values less than a“threshold” and the rest.
Second, we compute the geodesic circle for each skeleton
edge E and attach the mesh triangles intersected with the
geodesic circle with an id number (say 1) if e(E) is less than
the threshold and another id number (say 0) otherwise. Fig-
ure 12(a) shows the result after this step where the mesh tri-
angles with only one id number are rendered with blue if id
number is 1 or white if it is 0, those with no id number are
rendered with grey color, and those with two id numbers are
rendered with red color. To compute a component we carry
out a depth first search starting from a mesh triangle with
only one id number and walk to the adjacent triangles until a
triangle with a different id number is reached. Figure 12(b)
shows the tubular part (in blue) for Genus3 with a threshold
1.41.

Figure 13 shows the identification of tubular parts for two
other models.

6. Comparisons
In this section, we make a brief comparison between our al-
gorithm and some existing ones. Our algorithm extracts the
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Figure 12: Genus3: the upper three legs are flat.

Hand Mechpart

Figure 13: The tubular part (in blue) of Hand and Mechpart
with threshold 1.3.

curve-skeleton by eroding the medial axis. Unlike other me-
dial axis based algorithms, the extracted curve-skeleton by
our algorithm remains stable against the noise even though
the medial axis may not. Distance field based methods works
nicely and efficiently for the tubular objects, see [HF05] for
recent results. Since the points with the same distances from
the boundary of some shapes may form surface patches,
the distance field based methods may face difficulty in ex-
tracting curve-skeletons for those shapes. The potential field
based method is proposed to fix this problem by taking into
account the surface area, see for example [CSYB05]. How-
ever, in practice, the potential field based method still may
fail for the shapes containing thin flat parts. Imagine a very
thin flat plate. The variation of the potential field can be very
subtle in the middle of this shape since the surface area on
the sides (the only place producing different potentials) are
relatively small and far away from the middle. Figure 14
shows the comparison results between our method and the
potential field based method of [CSYB05]. Notice that the
ears of Dog are thin and flat. The surfaces shown in Figure
14(a),(c) are the extracted isosurfaces of the volume data. We
choose the parameter ’Potential field strength’ to be 8 and 6
and the parameter ’highest divergence points’ to be 65 and
20 for (a) and (c) respectively, which give the best results.
The curve-skeleton extracted using potential field may not
be connected (a) or may not be centered (ears in (c)). One
more advantage of our method is that our algorithm needs
only one user supplied parameter as opposed to many for
the existing algorithms.

7. Discussions and Future work
In this paper, we introduce a mathematical definition of
curve-skeletons for 3D shapes with connected manifold
boundary. We present an algorithm to approximate these
curve-skeletons. Extensive experiments show that the ap-
proximation algorithm is effective in practice. We also show
that the extracted curve-skeletons enjoy many nice proper-
ties. It is appropriate to mention that our definition only
works for shapes with connected boundary. For otherwise
the geodesic distances are undefined between points on dif-
ferent connected components of the boundary.

There are pathological cases where our algorithm fails to
extract a curve-skeleton though our definition provides a 1D
curve. In these cases, although the boundary of the shape is
connected, its medial axis contains a closed surface prevent-
ing the erosion process to proceed. One such example can be
derived from the famous “house with two rooms” [Hat02],
which is a contractible two dimensional subspace of R

3. A
small thickening of this “house with two rooms” creates a
shape whose medial axis contains a closed surface.

It would be interesting to apply the curve-skeletons ex-
tracted by our algorithm in various applications such as
shape matching, mesh decomposition, and animation. We
plan to address this issue in future work.
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