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Abstract

The distance function to surfaces in three dimensions plays a key role
in many geometric modeling applications such as medial axis approxi-
mations, surface reconstructions, offset computations, feature extractions
among others. In many cases, the distance function induced by the surface
can be approximated by the distance function induced by a discrete sam-
ple of the surface. The critical points of the distance functions are known
to be closely related to the topology of the sets inducing them. However,
no earlier theoretical result has found a link between topological proper-
ties of a geometric object and critical points of the distance to a discrete
sample of it. We provide this link by showing that the critical points of
the distance function induced by a discrete sample of a surface fall into
two disjoint classes: those that lie very close to the surface and those
that are near its medial axis. This closeness is precisely quantified and is
shown to depend on the sampling density. It turns out that critical points
near medial axis can be used to extract topological information about the
sampled surface. With this result, we provide a new flow-complex-based
surface reconstruction algorithm that, given a tight ε-sample of a surface,
approximates the surface geometrically, both in distance and normals, and
captures its topology. Furthermore, we show that the same algorithm can
be used for curve reconstruction.

∗Research partly supported by NSF grants DMS-0138456, DMS-0310642 and ARO grant
DAAD19-02-1-0347.

†Research partially supported by the Swiss National Foundation under the project “Non-
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1



1 Introduction

Given a compact surface Σ smoothly embedded in three dimensional Euclidean
space R3, a distance function

hΣ : R3 → R, x 7→ inf
y∈Σ

‖x− y‖.

can be defined over R3 by assiging to each point in space its distance to Σ. hΣ

carries a great deal of information about Σ and its embedding. The surface Σ
itself is trivially the zero level set h−1

Σ (0). Less trivial is the encoding of the
embedding of Σ in space in the inner and outer components of its medial axis.
For example, the homotopy type of the outer medial axis of an embedded torus
can be used to determine if the the torus is knotted or not. It is well known that
medial axis consists of exactly those points in space where hΣ is not differentiable
except for the points in Σ itself.

In many applications Σ is only known through a finite sample P ⊂ Σ from which
one desires to learn about Σ and its embedding. This is of course a reasonable
goal only if P is a dense enough sample of Σ. There are various models for
specifying the density of a sampling. A uniform ε-sample of a surface Σ is one
that includes a sample point within ε distance from every point of Σ. In other
words, the sample and surface must have Hausdorff distance of ε or less. For
a uniform ε-sample to be capable of capturing the topology of the sampled
surface, ε should be chosen proportional to the size of the smallest feature of
the surface. As a result, a uniform ε-sample can be rather excessive. This has
motivated the introduction of models that allow the sampling density to vary
locally depending on the size of the features and therefore result much smaller
samples.

The well-known ε-sampling theory of Amenta and Bern [1] is one of the most
prominent models for relative sampling of surfaces. An ε-sample of a surface Σ
in this model is one that contains a point within ε times the local feature size of
every point x ∈ Σ. The local feature size of the point x is defined as the distance
between x the medial axis M(Σ) of the surface and appears to be a dependable
measure for the required local density of sampling. The results of the present
paper are based on this sampling model which we describe formally in section
2.

Sampling relative to local feature size has been used successfully to analyze
algorithms that reconstruct Σ from P or approximate M(Σ). Given an ε-sample
of a smooth surface Σ, for a small enough value of ε, the algorithms of Amenta
and Bern [1], Amenta, Choi, Dey and Leekha [3], Amenta, Choi and Kolluri [4],
and Boissonnat and Cazals [5] reconstruct surfaces with the same topology as
Σ that geometrically approximate its in terms of ε. Likewise, progress on the
medial axis approximation problem was made in this model by the algorithm
of Amenta, Choi and Kolluri [4] which succeds to capture the homotopy type
of the medial axis M(Σ) of the sampled surface Σ and the algorithm of Dey
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and Zhao [10] that geometrically approximates M(Σ) in terms of ε when ε
approaches zero.

Considering the wealth of information encoded in hΣ, when a sample P of Σ is
at hand, it is natural to try to approximate hΣ by the function

hP : R3 → R, x 7→ min
p∈P

‖x− p‖,

and try to extract the desired topological information from hP instead of hΣ.
This idea has been used by Edelsbrunner [11], Chaine [6], and Giesen and
John [12] to reconstruct Σ from P . Although all three of these algorithms work
relatively well in practice, none provides a guarantee on the geometry and topol-
ogy of the generated ouput.

The distance functions hΣ and hP are not smooth everywhere. Nevertheless,
there is a well developed theory of critical points of such functions [13]. The
critical points of hΣ are all points in Σ (minima) plus a subset of its medial
axis M(Σ) (consisting of saddle points and maxima). All surface reconstruction
algorithms based on hP make use of its critical points, i.e., its local extrema and
saddle points. These points are easily computable from the Delaunay triangu-
lation of P [12]. A first contribution of our paper is to associate these critical
points for an ε-sampling of Σ to either Σ itself or its medial axis M . We can
show that for an ε-sampling of a surface Σ, for a small enough value of ε, all
critical points of hP either reside very close to Σ or rather very close to M .
That is, we can label the critical points of hP as either surface critical points
if they are close to Σ or medial axis critical points if they are close to M . In-
terestingly, all types of critical points, including local maxima, can be close to
Σ. This is particularly remarkable since the 2-skeleton of the Voronoi complex
of P is exactly the medial axis of P , but its vertices, edges, or facets cannot be
unambiguously assigned to either Σ or M even if ε becomes arbitrarily small.
It is well know that Voronoi vertices can reside almost anywhere in R3 \ P .

This separation of the critical points of hP leads to an algorithm for reconstruc-
tion of Σ from P by considering only medial axis critical points and regarding
the surface critical points as an artifact of the discretization of Σ into P . This is
the second main contribution of our paper. We can show that the reconstructed
surface is homeomorphic to Σ and geometrically close to it both in distance and
deviations of normals provided the input is a tight ε-sample of Σ. Similar results
hold for curves and curve reconstruction.

The structure of the paper is as follows. Section 2 introduces the basic concepts
including flow complex and critical points of the distance function induced by
a point set. In section 3, we state and prove our separation of critical points
lemma. Section 4 describes how it can be algorithmically determined for a criti-
cal point whether it is close to the surface or to the medial axis and uses this to
build a surface reconstruction algorithm. Section 5 analyzes the quality of the
produced reconstruction and establishes its geometric closeness and topological
correctness. Section 6 studies the critical points of a smooth curve in R3 and
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gives algorithms for classification of critical points and reconstruction of the
curve analogous to those for the surface. An example of our experiments and
concluding remarks are given in Section 7. Appendix A quotes necessary back-
ground information about the structure of stable manifolds of index 2 saddle
points from [12].

2 Basic concepts

Throughout this paper Σ is a connected and compact smooth 2-manifold without
boundary embedded in R3. Since it does not have a boundary, Σ separates
R3 into a bounded region and an unbounded region. With a slight abuse of
terminology we refer to the bounded region as the interior of Σ and to the
unbounded region as its exterior. Since Σ is smooth, the normal to Σ at any
point x ∈ Σ is well defined. For x ∈ Σ, we denote by n+

x and n−x , the normal
vectors at x pointing to the exterior and interior of Σ respectively. By nx (with
no “+” or “−” superscript) we denote either of n+

x or n−x , i.e. the direction of
the line normal to Σ at x without a particular orientation. Also, throughout,
P ⊂ Σ is a discrete sample satisfying certain conditions to be specified shortly.
To simplify our exposition we assume that P is in general position.

Any point set S ⊂ R3 induces a distance function

hS : R3 → R, x 7→ inf
p∈S

‖x− p‖,

where ‖ · ‖ denotes the Euclidean norm. It is easy to check that every distance
function in the above sense is 1-Lipschitz, i.e. for all x, y ∈ R3, |hS(x)−hS(y)| ≤
‖x− y‖. In this paper, we work with two major distance functions, one induced
by Σ and the other by P . To simplify our notation, in the sequel, we use s(·)
instead of hΣ(·) and h(·) instead hP (·).

2.1 Surface samples

The medial axis M = M(Σ) of Σ is the set of all points in R3 that have at least
2 distinct closest points in Σ, i.e.

M =
{
x ∈ R3 : |{y ∈ Σ : ‖x− y‖ = hΣ(x)}| ≥ 2

}
.

For a point c ∈ R3 and real number r, the ball with center c and radius r,
denoted Bc,r, is the set of all points x ∈ R3 at distance no more than r from c.
We call a ball empty, if its interior does not contain any point from Σ. A medial
ball is a maximal empty ball, i.e. an empty ball that is not contained in any
other empty ball.
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Medial feature size. For any point x ∈ R3 \ Σ we denote by x̂ the unique
closest surface point to x, i.e.,

x̂ = argmin
y∈Σ

‖x− y‖,

and by x̌ ∈ M we denote the center of the medial ball tangent to Σ at x̂ and at
the same side of Σ as x. The medial feature size is the function

µ : R3 \ (Σ ∪M) → R ∪ {∞}, x 7→ ‖x̂− x̌‖.

Note that for a point x in the unbounded component of R3 \ Σ, x̌ can be at
infinity. This happens exactly when x̂ lies on the boundary of the convex hull
of Σ and the boundary of the medial ball tangent to Σ at x̂ turns into the plane
tangent to Σ at x̂. In such a case we declare that the medial feature size of x is
∞.

Besides the medial feature size we will also use the function

m : R3 \ (Σ ∪M) → R ∪ {∞}, x 7→ ‖x− x̌‖,

which we call the medial projection length. Notice that for every x ∈ R3\(Σ∪M)
we have the identity µ(x) = m(x) + s(x).

Feature size. The function

f : Σ → R, x 7→ inf
y∈M

‖x− y‖,

which assigns to each point in Σ its distance to the medial axis M , is called
the local feature size. Notice that for x ∈ R3 \ (Σ ∪ M) it always holds that
f(x̂) ≤ µ(x). Notice also that f(·), being a distance function, is 1-Lipschitz, i.e.
|f(x)− f(y)| ≤ ‖x− y‖ for all x, y ∈ Σ.

Sampling conditions. For a constant ε > 0, a finite sample P ⊂ Σ is called
an ε-sample if

∀x ∈ Σ ∃p ∈ P such that ‖x− p‖ ≤ εf(x).

An ε-sample P is called an (ε, δ)-sample or a tight ε-sample if it satisfies the
additional condition

∀p, q ∈ P it holds that ‖p− q‖ ≥ δf(p)

for some δ, with 0 < δ < ε.

Poles. For a sample point p ∈ P we denote by Vp the closed Voronoi cell of p.
If Vp is bounded, the positive pole of p, denoted p+, is the Voronoi vertex of Vp

farthest away from p. The positive pole vector ν+
p is the vector p+ − p if Vp is

bounded or is taken as the unit vector in the direction which is the average of
all unbounded Voronoi edges in Vp. In the latter case we informally refer to a
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point at infinity in the direction ν+
p as the positive pole. The negative pole p− of

p is the farthest Voronoi vertex of Vp from p for which the smaller angle between
the vectors ν+

p and ν−p = p− − p is greater than than π/2 (or equivalently the
inner product 〈ν−p , ν+

p 〉 is negative). We call ν−p the negative pole vector at p.

Notation. The angle between two vectors u and v, denoted ∠(u, v) is always
smaller than π. For three points x, y, and z, we denote by ∠xyz the angle
between vectors x − y and z − y, i.e., ∠(x − y, z − y). The angle between two
lines is the nonobtuse angle formed by them. The acute angle between vectors
u and v is the smaller of the two angles made by the lines through u and v.

We will extensively use the following two lemmas due to Amenta and Bern [1]
and the corollary following them.

Lemma 1 Let x and y be points on Σ with ‖x− y‖ ≤ ξf(x) for ξ ≤ 1/3. Then

∠(n+
x , n+

y ) = ∠(n−x , n−y ) ≤ ξ

1− 3ξ
.

Lemma 2 Let p be a sample point in an ε-sample P . Let x be any point in Vp

with ‖x− p‖ ≥ ξf(p) for ξ > 0. Then

∠(x− p, np) ≤ arcsin
ε

1− ε
+ arcsin

ε

ξ(1− ε)
.

Corollary 1 For any point p of an ε-sampling P of a surface Σ, the acute
angle between the normal to surface at p, np, and either of ν+

p and ν−p is at
most 2 arcsin(ε/(1− ε)).

2.2 Induced flows

Critical points. Our results involve the critical points, i.e., its local extrema
and saddle points of the distance function h. For every point x ∈ R3 we define

A(x) = {p ∈ P : ‖x− p‖ = h(x)}

as the set of all sample points closest to x. There is a simple characterization
for critical points of h [12], namely, a point c is a critical point if and only if
c ∈ conv A(c). It turns out that these points are exactly the intersection points of
Voronoi faces and their dual Delaunay simplices. A local maximum is a Voronoi
vertex that is contained in its dual Delaunay tetrahedron. Every sample point
is a minimum and there are no other minima. The remaining critical points are
saddle points. The dimension of the Delaunay simplex that contains a critical
point c is interpreted as the index of c. We call a non-critical point of h a regular
point.
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Flow. Although the gradient of h is not defined everywhere, there is a unique
direction of steepest ascent at every regular point of h. The direction of steepest
ascent at x ∈ R3 is given by the vector x− d(x) where

d(x) = argmin
y∈conv A(x)

‖x− y‖.

We call the point d(x) the driver of x. Assigning to the critical points of h the
zero vector and to every other point in R3 the unique unit vector in the direction
of steepest ascent results a vector field

v : R3 → S2 ∪ {0}

on R3. This vector field is not continuous but nevertheless can be integrated to
give a flow, i.e., a map

φ : [0,∞)× R3 → R3,

such that at every point (t, x) ∈ [0,∞)× R3 the right derivative

lim
t←t′

φ(t′, x)− φ(t, x)
t′ − t

exists and equals v(φ(t, x)). The flow tells how a point would move if it always
followed the direction of steepest ascent of the distance function h. The flow
curve (integral line) that a point x follows is given by φx : R → R3, t 7→ φ(t, x)
and is called the orbit of x. We denote by φ(x), the set {φx(t) : t ∈ [0,+∞)}.

Stable manifolds. Given a critical point c of h the set of all points whose orbit
ends in c, i.e. the set of all points that flow into c, is called the stable manifold of c
and is denoted S(c). The collection of all stable manifolds forms a cell complex
which is known as the flow complex. The dimension of each cell in the flow
complex is the index of its associated critical point. The cells have a recursive
structure, namely, the boundary of the stable manifold of a critical point is made
up of stable manifolds of critical points of lower index. As in [12] we assume
throughout this paper that Voronoi and their dual Delaunay faces intersect in
their interiors if they intersect at all. Other intersections are unstable under
small perturbation of the point set and can therefore be considered degenerate.
Here we summarize the basic facts of the stable manifolds for the different indices
of the critical points.

Index-0. The stable manifold of an index-0 critical point, i.e., a local minimum,
is just the minimum itself.

Index-1. The stable manifold of an index-1 critical point, also called a 1-saddle,
i.e., the intersection point of a Delaunay edge with its dual Voronoi facet, is the
Delaunay edge which in this case is a Gabriel edge.

Index-2. The stable manifolds of an index-2 critical point, also called a 2-
saddle, is a piecewise linear surface patch. See [12] and Appendix A for details
on structure and computation of these patches.
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Index-3. The stable manifolds of index-3 critical points, i.e. local maxima, are
the bounded regions in the complex built by the stable manifolds of critical
points of indices 0, 1 and 2.

3 Separation of critical points

In the following P is always an ε-sample (with ε to be specified) of a smooth
closed surface Σ embedded in R3. Also, h is the distance function associated
with P and φ is the flow induced by P following the vector field v.

Lemma 3 Let x be a point in R3 \ (Σ ∪M) with µ(x) = ∞. Then, x is not a
critical point of h and the angle between the vectors x̌ − x and v(x) is strictly
less than π/2.

Proof. If m(x) = ∞ then x̌ is at infinity and the plane H tangent to Σ at x̂
does not have any point from Σ on the same side as x̂. Therefore, H separates
x from Σ and in particular from conv A(x). Consequently, x cannot be a critical
point of h and for every point y except x̂, on the ray from x̂ through x, the
angle between the vectors v(y) and ŷ − y is strictly less than π/2. 2

The next lemma states that for x ∈ R3 \ (Σ ∪ M) with µ(x),m(x) < ∞ any
critical point of h on the line segment x̂x̌ must be very close to one of the two
ends of this segment.

Lemma 4 Let ε < 1/3 and let x be a point in R3 \ (Σ ∪ M) for which µ(x)
is bounded. Moreover assume that 2εµ(x) < m(x) and ε2f(x̂) < s(x). Then
v(x) 6= 0 and ∠(x̌− x, v(x)) < π/2.

Proof. By the definition of local feature size f(x̂) ≤ µ(x). Thus the closest
sample point in P to x̂ lies inside a ball centered at x̂ with radius at most εf(x̂).
Hence the distance from x to its closest sample point is at most s(x) + εf(x̂).
Consequently, the set A(x) ⊆ P , of sample points at minimum distance from
x, is contained in the ball B centered at x with radius s(x) + εf(x̂). Let B′ be
the open ball centered at x̌ with radius µ(x). Since B′ is empty of any sample
points, every point of A(x) is contained in B \ B′. The driver d(x) of the flow
induced by P at x is by definition in the convex hull of A(x) and is therefore
contained in the convex hull of B \B′.

Consider the disk D = H ∩B′ where H is the plane containing x perpendicular
to the line through x̂ and x̌. Let r be the radius of this disk. If s(x)+εf(x̂) < r,
then x 6∈ conv(B \B′). Consequently, x is not a critical point of h and the angle
between the vectors x̌− x and v(x) is strictly less than π/2, see Figure 1. Thus
for the statement of the lemma to hold, it suffices to show that s(x)+εf(x̂) < r.
By the Pythagorean theorem

r2 = µ(x)2 −m(x)2.
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Therefore, since
s(x) + εf(x̂) = µ(x)−m(x) + εf(x̂),

s(x) + εf(x̂) < r is equivalent to

(µ(x)−m(x) + εf(x̂))2 < µ(x)2 −m(x)2,

which in turn is equivalent to,

m(x)2 −
(
µ(x) + εf(x̂)

)
m(x) + εµ(x)f(x̂) +

ε2

2
f(x̂)2 < 0.

x

x̂

B

B′

x̌

µ(x)

εf(x̂)

s(x
) + εf

(x̂)

r

Figure 1: Flow can escape the center of the medial ball only close to surface or
close to center.

This inequality holds between the two roots of the quadratic function of m(x)
on the left hand side of the inequality, i.e., for

m(x) >
1
2

(
µ(x) + εf(x̂)−√

µ(x)2 − ε2f(x̂)2 − 2εµ(x)f(x̂)
)

m(x) <
1
2

(
µ(x) + εf(x̂) +√

µ(x)2 − ε2f(x̂)2 − 2εµ(x)f(x̂)
)

.

Using f(x̂) < µ(x) the lower bound on m(x) can be weakened as follows

m(x) >
1
2

(
µ(x) + εµ(x)−√

µ(x)2 − ε2µ(x)2 − 2εµ(x)2
)

=
µ(x)

2

(
1 + ε−

√
1− 2ε− ε2

)
.
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Notice that our assumption that ε < 1/3 implies

0 < 1− 2ε− ε2 < 1,

i.e., we have a real lower bound on m(x) and can further weaken this bound,
taking into account that

√
x > x for x ∈ (0, 1), to get

1 + ε−
√

1− 2ε− ε2 < 1 + ε− (1− 2ε− ε2)
= 3ε + ε2 < 4ε,

which implies the weaker lower bound m(x) > 2εµ(x). Next we want to show
that s(x) > ε2f(x̂) implies the upper bound on m(x), i.e., s(x) < ε2f(x̂) is a
weaker form of this upper bound. Assuming s(x) > ε2f(x̂) we get

m(x) = µ(x)− s(x) < µ(x)− ε2f(x̂).

Thus it is enough to show that

µ(x)− ε2f(x̂) <
1
2

(
µ(x) + εf(x̂) +√

µ(x)2 − ε2f(x̂)2 − 2εµ(x)f(x̂)
)

.

The latter inequality is equivalent to

−3
4
µ(x)2 +

(
3
2
ε− ε2

)
µ(x)f(x̂) +(

5
4
ε2 + ε3 + ε4

)
f(x̂)2 < 0.

Plugging in f(x̂) ≤ µ(x) we get the stronger inequality

−3
4

+
3
2
ε +

1
4
ε2 + ε3 + ε4 < 0,

which in turn gives by summarizing

1
4
ε2 + ε3 + ε4 into

9
4
ε2

the even stronger inequality

−1 + 2ε + 3ε2 < 0

which is satisfied through our assumption that ε < 1/3. Thus s(x) > ε2f(x̂)
implies the upper bound on m(x). 2

η-tubular neighborhoods. For a constant η ≤ 1, define the η-neighborhood
of the medial axis, denoted Mη as

Mη = {x ∈ R3 \ (Σ ∪M) : m(x) < ηµ(x)} ∪M.

Similarly let

Ση = {x ∈ R3 \ (Σ ∪M) : s(x) < ηf(x̂)} ∪ Σ.
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Corollary 2 Every critical point of the distance function h either belongs to
Σε2 or M2ε provided ε < 1/3.

Surface and medial axis critical points. Let ε < 1/3. We call a critical
point of h a surface critical point if it is contained in Σε2 and we call it a medial
axis critical point if it is contained in M2ε.

4 Algorithms

4.1 Separating the critical points

Our goal here is to devise an algorithm that can separate the surface critical
points from the medial axis critical points. To prove the correctness of our
algorithm we will frequently make use of the following definition.

Associating critical point to sample points. A critical point c is said to be
associated with a sample point p ∈ P if ‖p− c‖ = h(c), i.e., if c is contained in
the closed Voronoi cell of p.

At first we want to deal with surface critical points. The following two lemmas
turn out to be useful to this end.

Lemma 5 For any sample point p ∈ P the ball B with diameter pp+ does
not contain any critical point associated with p in its interior. The analogous
statement holds for the negative pole p−.

Proof. If p+ lies at infinity then the ball B becomes a half-space with normal
ν+

p . The boundary of this half-space is a plane that supports the convex hull of
P . Since any critical point of h must be contained in the convex hull of P it
follows that the the interior of B, i.e., the open half space, cannot contain any
critical point of h. Thus we can assume that p+ is finite. Let c be a critical point
associated with p. If c is a minimum, then c = p and there is nothing to prove.
Otherwise, |A(c)| > 1. All points in A(c) lie on the boundary of the ball B′ of
radius ‖c−p‖ centered at c. Let B′′ be the open ball of radius ‖p−p+‖ centered
at p+. By construction there can be no points of P in B′′. Thus all points of
A(c) must belong to ∂B′ \ B′′. On the other hand, for c to be a critical point,
it must be in the convex hull of A(c). This happens only if the angle ∠pcp+ is
smaller than π/2. The latter condition is in turn identical to c being outside the
ball B, see Figure 2. The proof of the analogous statement for p− follows along
the same lines. 2

Lemma 6 Let c be a surface critical point associated with sample point p ∈ P .
If ε < 0.1 then

‖c− p‖ ≤ 1.1ε

1− 1.2ε
‖p− p−‖ ≤ 1.1ε

1− 1.2ε
‖p− p+‖.
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p

p+

c

B

B′

B′′

Figure 2: The ball with diameter pp+ contains no critical point associated with
p.

Proof. Let q ∈ P be the closest sample point to ĉ. By the sampling condition it
holds that ‖ĉ− q‖ ≤ εf(ĉ). Using the triangle inequality we obtain

‖c− p‖ ≤ ‖c− q‖ ≤ s(c) + ‖ĉ− q‖
≤ ε2f(ĉ) + εf(ĉ) = ε(1 + ε)f(ĉ). (1)

Since the local feature size f is 1-Lipschitz we can write

f(ĉ) ≤ f(p) + ‖ĉ− p‖
≤ f(p) + s(c) + ‖c− p‖
< f(p) + ε2f(ĉ) + ε(1 + ε)f(ĉ)
= f(p) + ε(1 + 2ε)f(ĉ)
< f(p) + 1.2εf(ĉ).

Rearranging, we obtain

f(ĉ) <
1

1− 1.2ε
f(p). (2)

Combining (1) and (2) we finally get

‖c− p‖ ≤ ε(1 + ε)f(ĉ) <
ε(1 + ε)
1− 1.2ε

f(p)

<
1.1ε

1− 1.2ε
f(p) ≤ 1.1ε

1− 1.2ε
‖p− p−‖

≤ 1.1ε

1− 1.2ε
‖p− p+‖. 2

From Lemmas 5 and 6 we derive the following corollary.

Corollary 3 Let c be a surface critical point associated with sample point p ∈ P .
If ε < 0.1 then then the acute angle between the vector c − p and each of the
vectors ν−p and ν+

p is at least 75.5 degrees.
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Proof. By Lemma 5 neither of the two balls with diameters pp+ and pp−

respectively contain any critical points associated with p. Thus we get from
using Lemma 6 and Thales theorem that

cos ∠(c− p, ν+
p ) ≤ 1.1ε

1− 1.2ε
.

The same bound holds for cos ∠(c−p, ν−p ). Thus for ε < 0.1, the resulting angles
are between 82.5 and 180 degrees. By Corollary 1,

∠(ν+
p , ν−p ) ≥ π − 4 arcsin

ε

1− ε
.

Since ε < 0.1 this angle is at least 173 degrees. Thus

∠(c− p, ν+
p ) ≤ 360− 173− 82.5 = 104.5 degrees,

with the same bound holding for ∠(c− p, ν−p ). From this, both ∠(c− p, ν+
p ) and

∠(c− p, ν−p ) and their complements are at least 180− 104.5 = 75.5 degrees. 2

Next we deal with medial axis critical points.

Lemma 7 Let c be a medial axis critical point associated with p ∈ P . If ε < 1/3
then ‖p− c‖ ≥ (1− 2ε)f(p).

Proof. We have s(c) ≤ ‖c − p‖ since s(c) is the distance from c to Σ and we
have m(c), µ(c) < ∞ by Lemma 3. From the definition of a medial axis critical
point we have

m(c) ≤ 2εµ(c) = 2ε(m(c) + s(c)).

Combining these inequalities we obtain

m(c) ≤ 2ε

1− 2ε
s(c) ≤ 2ε

1− 2ε
‖c− p‖,

which gives

f(p) ≤ ‖č− p‖ ≤ m(c) + ‖c− p‖

≤
(

2ε

1− 2ε
+ 1
)
‖c− p‖ =

1
1− 2ε

‖c− p‖

and thus ‖p− c‖ ≥ (1− 2ε)f(p). 2

Corollary 4 Let c be a medial axis critical point associated with p ∈ P . If
ε < 0.1 then the acute angle between the vector c− p and each of the vectors ν−p
and ν+

p is at most 28 degrees.

Proof. Using Lemma 7 we can plug in 1− 2ε for ξ in Lemma 2 to obtain that
the acute angle between c− p and np is at most

arcsin
ε

1− ε
+ arcsin

ε

(1− 2ε)(1− ε)
.
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Reconstruct(P )
1 C := set of the critical points of h.
2 (CM , CΣ) := Separate(P,C).
3 for each c ∈ CM do
4 U.make(c).
5 for each c ∈ CM do
6 for all c′ ∈ ∂S(c) ∩ CM

7 U.union(c, c′).
8 O := union of all stable manifolds in one component of U .
9 T := ∂O.

10 return T

Figure 3: The surface-reconstruction algorithm.

By Corollary 1, the acute angle between np and each of ν+
p or ν−p is at most

2 arcsin(ε/(1 − ε)). Thus the acute between c − p and each of ν+
p or ν−p is at

most
3 arcsin

ε

1− ε
+ arcsin

ε

(1− 2ε)(1− ε)
,

which amounts to less than 28 degrees when ε < 0.1. 2

Corollary 3 and Corollary 4 show that for a critical point c associated with a
sample point p, the angle between c− p and a pole of p falls into one of the two
disjoint ranges of 0 to 45 degrees or 75.5 to 90 degrees, depending on whether
c is a surface or a medial axis critical point, respectively. Thus the two types of
critical points can be distinguished by simply measuring this angle.

4.2 Reconstruction

The algorithmic classification of the critical points of h as either surface or
medial axis critical points suggests the algorithm of Figure 3 for reconstruction
of Σ from P . By Separate(P,C) we refer the to the algorithm described above
that partitions the input set of critical points C into two sets CM , of medial axis
critical points, and CΣ, of surface critical points, and returns the pair (CM , CΣ).

The algorithm Reconstruct maintains a Union-Find data structure U on the
set of medial axis critical points. In line 4, U.make(c) adds a singleton set {c} to
U and in line 7, U.union(c, c′) combines the sets containing c and c′ into a single
set. The Union-Find data structure is used to find all connected components of
stable manifolds S(c) of medial axis critical points c ∈ CM . In the end the
boundary of one arbitrary component is returned. Notice that this boundary is
made of stable manifolds of surface critical points.

14



Figure 4: A sink cone (left) and enclosing of the surface with sink cone envelopes
(right).

5 Reconstruction Properties

In this section, we give geometric and topological guarantees for the output of
the algorithm Reconstruct under (ε, δ)-sampling. We summarize the results
in the following Theorem.

Theorem 1 For any 0 < ρ < 1 there exists ε0 such that given an (ε, δ)-sample
P from a smooth closed surface Σ, where ε < ε0 and δ/ε = ρ, the algorithm Re-
construct outputs a sub-complex T of the flow complex of P with the following
properties:

(i) T is contained in the tubular neighborhood Σ3ε2 .

(ii) The normal to every triangle pqr in T, with p ∈ P , forms an angle of O(ε)
with the normal to Σ at p, np.

(iii) T is homeomorphic (in fact, isotopic) to Σ.

In particular these claims hold for ρ ≥ 1/3 and ε0 ≤ 0.01.

5.1 Closeness

To analyze local geometry of the flow near the surface, we place at sample points
p ∈ P cones that open along inner and outer normal directions at p. We show
that, under certain conditions, such cones are sinks, i.e., on their surfaces and
sufficiently close to Σ, the flow is either tangential or points to the inside of
the cones. By overlapping together these close-reaching cones (see Figure 4),
we obtain inner and outer envelopes that enclose the surface and are in a sense
“one-way” for the flow. This means that flow cannot escape from these envelopes
leading to properties of the flow complex central to the analysis of the output
of our algorithm.

Sink Cones. For a point p, and a direction vector n, let C = cone(p, n, θ, r) be
the cone-patch consisting of points x for which ‖x− p‖ ≤ r and ∠(n, x− p) = θ.
We call θ, and r, the angle and the reach of C, respectively. A cone-patch is
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Figure 5: Sink cone for a sample point p.

essentially part of the surface of an infinite cone. With a slight abuse of notation
we refer to a cone-patch also as a cone. The boundary of C consists of points
x ∈ C for which ‖x − p‖ = r. We say that C is a sink if at every point in
the relative interior of C (thus excluding the boundary of C) the flow is either
tangential or directed toward the interior of the convex hull of C.

Lemma 8 For any point p ∈ P , the two cones C+
p = cone(p, n+

p , θ, r) and C−p =
cone(p, n−p , θ, r) are sinks for any 0 < θ < π

2 and r = f(p) cos θ. Furthermore,
the interior of the convex hulls of C+

p and C−p do not contain any critical points.

Proof. We only prove that C+
p is a sink. The proof for C−p is similar. Let c be

the point on the ray in direction n+
p at distance f(p) from p. Let B′ be the

ball with radius f(p) = ‖p− c‖ centered at c. Note that B′ cannot contain any
points from Σ in its interior since it is contained in a medial ball. Let B be the
ball centered at c with radius f(p) sin θ. Then C+

p is the cone tangent to B with
apex p (see Figure 5). For every x ∈ C+

p , the set A(x) of closest sample points to
x are inside the ball B′′ of radius ‖x−p‖ centered at x but outside B′. Let H be
the plane tangent to C+

p at x. Since r = f(p) cos θ we have that conv(B′′ \B′) is
entirely on the opposite side of H with respect to B and therefore, v(x) points
toward the interior of C+

p . Thus C+
p is a sink and no point in the relative interior

of C+
p is a critical point. Every point in the interior of the convex hull of C+

p

is on a cone cone(p, n+
p , θ′, r) for some θ′ < θ or in the relative interior of the

line segment pc. As we have seen the points on the cones cannot be critical. But
neither can be any point y in the relative interior of the line segment pc since
for such a point A(y) = {p} and y 6= p. 2

Fixing cone angles. Notice that the above lemma puts at every sample point
two sink cones with the same apex, angle, reach, and axis but in opposite di-
rection. For the rest of the paper, we shall consider only such cones with a
fixed cone angle that depends only on the density of sampling. Indeed, we fix
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θ = θ(ε) = π
2 − 1.1ε and we respectively denote the outer and inner cones at a

vertex p by C−p = cone(p, n−p , θ, f(p) cos θ) and C+
p = cone(p, n+

p , θ, f(p) cos θ).
We also denote by Cp the union of the two cones C+

p and C−p .

Lemma 9 For any point x ∈ Vp∩Σ, the ray shot in direction n+
x (n−x ) hits C+

p

(C−p ) provided that ε ≤ 0.05.

Proof. Let β be the angle between n+
x and n+

p . Since x ∈ Vp ∩ Σ, we have
‖x − p‖ ≤ εf(x) and therefore β ≤ ε

1−3ε < θ. Therefore, the ray shot from x

in direction of n+
x hits cone(p, n+

p , θ,∞), the infinite extension of C+
p , at some

point x′. Let η = ‖x′ − p‖/f(p). If η ≤ cos θ, then x′ ∈ C+
p and there is nothing

to prove. Otherwise ‖x′ − p‖ > f(p) cos θ. It can be easily observed that the
closest point to p on the line through x′ and x is at distance no less than

‖x′ − p‖ sin(θ − β) > cos θ sin(θ − β)f(p)

from p. On the other hand, since x ∈ Vp ∩ Σ, ‖x− p‖ ≤ ε
1−εf(p). This implies

ε

1− ε
f(p) ≥ ‖x− p‖

> cos θ sin(θ − β)f(p)
= sin(1.1ε) cos(1.1ε + β)f(p)

≥ sin(1.1ε) cos
(

1.1ε +
ε

1− 3ε

)
f(p)

which is a contradiction for ε ≤ 0.05. 2

Lemma 10 Let x be a point on Cp. Then ‖x− x̂‖ ≤ 3ε2f(x̂) when ε ≤ 0.05.

Proof. Without loss of generality assume that x ∈ C+
p (the proof for the case

where x ∈ C−p is similar). Shoot a ray from x, parallel to n−p until it hits C−p at a
point x′. Since each of C+

p and C−p is completely contained in its corresponding
medial ball tangent to Σ at p, the line segment xx′ intersects Σ. Therefore

‖x− x̂‖ ≤ ‖x− x′‖ = 2‖x− p‖ cos θ ≤ 2f(p) cos2 θ. (3)

On the other hand, by the triangle inequality,

‖x̂− p‖ ≤ ‖x− x̂‖+ ‖x− p‖
≤ 2f(p) cos2 θ + f(p) cos θ

≤ 3f(p) cos θ.

Since f(·) is 1-Lipschitz

f(x̂) ≥ f(p)− ‖x̂− p‖
≥ f(p)− 3f(p) cos θ,
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which gives us

f(p) ≤ f(x̂)
1− 3 cos θ

.

Plugging this into (3) we get

‖x− x̂‖ ≤ 2 cos2 θ

1− 3 cos θ
· f(x̂) ≤ 3ε2

for ε ≤ 0.05 and θ = π/2− 1.1ε.

2

Cone envelopes. Let C+ =
⋃

p∈P C+
p and let Σ+ be the set of points x ∈ C+

for which the segment xx̂ has no point of C+ in its relative interior. We call Σ+

the outer cone envelope of Σ. The inner cone envelope Σ− is defined analogously.

Lemma 11 The surface Σ is homeomorphic to both Σ− and Σ+. Both cone
envelopes divide R3 into a bounded and an unbounded component. The bounded
component of the inner cone envelope and the unbounded component of the outer
cone envelope are closed under the flow φ.

Proof. We only present the proof for the outer cone envelope. The proof for the
inner cone envelope follows the same lines.

Let π : R3 \M → Σ project into Σ, i.e. π maps every point to its closest point
in Σ. It is well known that this map is continuous. Let π+ be the restriction of
π to Σ+. Since Σ+ ∩M = ∅ (because Σ+ ⊂ Σ3ε2 by Lemma 10), π+ is defined
and continuous on Σ+. By definition of Σ+, π+ is injective and by Lemma 9,
π+ is surjective. This along with the compactness of Σ+ (inferred from the
compactness of Σ and the continuous one to one mapping given by π+) implies
that π+ is a homeomorphism.

Since we assumed that Σ is a manifold without boundary, so is Σ+. Thus Σ+

divides R3 into a bounded and an unbounded component. By Lemma 8 the
bounded component has to be closed under the flow φ. 2

Cone neighborhood. We call the closed volume sandwiched between Σ− and
Σ+ the cone neighborhood of Σ and denote it by Σ̃.

Theorem 2 The output of the algorithm Reconstruct lies in Σ̃ and the latter
itself is contained in Σ3ε2 .

Proof. By Lemmas 8 and 11, the stable manifold S(c) of any surface critical
point c has to be contained in Σ̃. Thus the output of Reconstruct completely
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lies in Σ̃. By Lemma 10, Σ+ and Σ− are contained in Σ3ε2 . This implies that Σ̃
is also contained in Σ3ε2 . 2

The following Corollary will be needed later.

Corollary 5 For every x ∈ Σξ, i.e., for every x satisfying ‖x − x̂‖ ≤ ξf(x̂),
and for every p ∈ A(x), ‖x − p‖ ≤ ε+ξ

1−ε−2ξ f(p). In particular, when ε ≤ 0.05,
for every point x ∈ Σ̃, and every p ∈ A(x), ‖x− p‖ ≤ 1.23εf(p), and for every
surface critical point c, and every p ∈ A(c), ‖c− p‖ ≤ 1.12εf(p).

Proof. Let x be a point in Σξ. From the definition of ε-sampling, ‖x̂−q‖ ≤ εf(x̂),
where q ∈ A(x̂), i.e. q is a closest sample point to x̂. For any sample point
p ∈ A(x), by the triangle inequality

‖x− p‖ ≤ ‖x− q‖ ≤ ‖x− x̂‖+ ‖x̂− q‖ ≤ (ε + ξ)f(x̂). (4)

Thus we get

‖p− x̂‖ ≤ ‖x− p‖+ ‖x− x̂‖ ≤ (ε + ξ)f(x̂) + ξf(x̂) ≤ (ε + 2ξ)f(x̂),

and from this and because the local feature size is 1-Lipschitz,

f(p) ≥ f(x̂)− ‖x̂− p‖ ≥ f(x̂)− (ε + 2ξ)f(x̂). (5)

Combining (4) and (5) we get

‖x− p‖ ≤ ε + ξ

1− ε− 2ξ
f(p).

Using ε ≤ 0.05 along with Theorem 2 implies the bounds for the case where
x ∈ Σ̃. In the case of x being a surface critical point we invoke Corollary 2,
instead. 2

5.2 Convergence of Normals

The output T produced by the algorithm Reconstruct consists of stable man-
ifolds of index-2 saddle points that lie in a small tubular neighborhood of the
surface. We refer to these stable manifolds as surface patches. We want to show
that under (ε, δ)-sampling, with a fixed ρ = δ/ε, the normal of triangles in these
surface patches is within O(ε) from the normal to surface at a nearby point, for
sufficiently small ε. We use the following two lemmas from [3].

Lemma 12 For any two points p, q ∈ Σ, the angle between segment pq and
either of n+

p and n−p is greater than π
2 − arcsin ‖p−q‖

2f(p) .
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Figure 6: A generic patch triangle on the stable manifold of a surface 2-saddle.

Lemma 13 For points p, q, r ∈ Σ, let p be a vertex of the triangle pqr with the
largest angle and let r be its circumradius. If r = λf(p), then the acute angle
between the normal to pqr and the normal to surface at p is at most β(λ) where

β(λ) = arcsin(λ) + arcsin
(

2√
3

sin(2 arcsin λ))
)
≤ 4λ,

for λ ≤ 1
4 .

The stable manifold S(c) of every 2-saddle is a piece-wise linear surface made of
a finite number of triangles, which we call patch triangles. Each patch triangle
t has exactly one vertex in P . Note that for every point x in a patch triangle
t, the vertex of t that belongs to P is a closest sample point to x (refer to [12]
for details on the structure of stable manifolds of critical points). If x is on the
boundary of t, it can have more than one closest sample point as it belongs
to more than one patch triangle. The following lemma shows that under tight
sampling, each patch triangle must have a normal close to surface normal at its
vertex in P .

Lemma 14 For any 0 < ρ < 1, there exists ε0 such that if P is an (ε, δ)-sample
of Σ with ε ≤ ε0 and δ = ρε, then for any x ∈ S(c), the stable manifold of a
surface 2-saddle c, the acute angle between np, where p is a closest sample point
to x, and nt, the normal direction of the patch triangle t ⊂ S(c) that contains
x and has p as a vertex, is at most

arcsin

(
sin(1.23ε)

2 sin
(

1
2 arcsin (ρ/2.46)

)) = O(ε/ρ).

Proof. Let P be an ε-sample of Σ for ε ≤ ε0. By Corollary 5, ‖x−p‖ ≤ 1.23εf(p)
for every closest sample point p to x. Every point x on S(c) is on a patch triangle
t = pou of S(c) with the following structure (see Figure 6): t has exactly one
vertex p in P . The edge uo of t opposite to p is on the Voronoi facet dual to a

20



Delaunay edge pq and ends on the dual Voronoi edge e of a Delaunay triangle pqr
in which ‖r− p‖ > ‖q− p‖. The mid-point d of pq is the driver of the points on
uo. Furthermore, the line containing e does not intersect the triangle pqr except
when o is the critical point c in which case the patch triangle t is coplanar with
(an in fact contained in) the Delaunay triangle tc containing c. We postpone
the study of this special case for later. Let s be the circumcenter of pqr and let
p′ be a point on the circumcircle of pqr opposite to p with respect to s. Then
∠p′qp = π/2 and that ‖d − s‖ = 1

2‖q − p′‖. Furthermore, ‖q − p′‖ > ‖q − r‖.
Therefore we get ‖d − s‖ ≥ 1

2δf(r). On the other hand, since r ∈ A(o), by
Corollary 5, ‖s− p‖ = ‖s− r‖ < ‖r − o‖ ≤ 1.23εf(r). Combining these we get
for the angle α = ∠qps:

sinα ≥ ‖d− s‖
‖p− s‖

≥ δ

2.46ε
=

ρ

2.46
.

On the other hand, π/2 > ∠qpo > ∠qps ≥ α. Also, o ∈ S(c) and S(c) is
contained in Σ̃ and therefore, po makes an angle of at least θ = π

2 − 1.1ε with
np. Moreover, ‖p − q‖ ≤ 2.46εf(p) and therefore by Lemma 12, q − p makes
an angle of at least π

2 − 1.23ε < θ with np. Thus, the three points p, q, and
o, make a triangle t′ = pqo with an angle of at least α at vertex p satisfying
arcsin(ρ/2.46) < α < π

2 , and with both of the edges incident to p making an
angle of at least π/2 − 1.23ε with np. It can be shown through elementary
calculations that under these conditions, nt′ , the normal to t′, and np, make an
angle of at most

arcsin
(

cos(π/2− 1.23ε)
2 sin(α/2)

)
,

which matches the bound in the statement of the lemma. We now consider
the special case when o coincides with c. This happens when the Voronoi edge
e intersects its dual Delaunay triangle pqr at c and the patch triangle t in
question becomes coplanar with the Delaunay triangle tc = pqr. Notice that
A(c) = {p, q, r} and by Corollary 5, ‖p − c‖ ≤ 1.12εf(p). Similar inequalities
hold for q and r. As in the previous case, let p′ be the point on the circumcircle
of pqr opposite to p with respect to circumcenter c. We denote the angles ∠qpp′

and ∠rpp′ by β and γ respectively, and their sum by α. Since the angles ∠pqp′

and ∠prp′ are each 90 degrees, we have sinβ = 1
2‖q − p′‖/‖p − c‖ and sin γ =

1
2‖r − p′‖/‖p − c‖. In order for c to be a critical point, all the angles of the
triangle tc must be acute. Since the sine function is concave for acute angles we
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have

sin
α

2
≥ sinβ + sin γ

2

=
‖r − p′‖+ ‖q − p′‖

4 · ‖p− c‖

≥ ‖r − q‖
4 · ‖p− c‖

≥ δf(r)
4 · 1.12εf(r)

=
ρ

4.48
.

On the other hand ‖p − q‖ ≤ ‖p − c‖ + ‖q − c‖ ≤ 2.24εf(r) by Lemma 12.
Thus pq makes an angle of at most π/2 − 1.12ε with np. A similar argument
establishes the same bound for the angle between pr and np. Similar to the
previous case, We have shown for the triangle pqr that the angle α at p is at
least 2 arcsin(ρ/4.48) and that the edges pq and pr make an angle of at least
π/2 − 1.12ε with np. This implies that the angle between the normal to the
plane of this triangle and the normal to Σ at p is at most

arcsin
(

cos(π/2− 1.12ε)
2ρ/4.48

)
.

It can be verified that the this bound results a smaller angle than the one
obtained above (matching the bound in the statement of the lemma) for the
general case, whenever the two bounds are defined for any 0 < ε ≤ 0.05 and
0 < ρ < 1. 2

Corollary 6 For ε ≤ 0.05 and ρ ≥ 1/2, we have for every point x on the stable
manifold of a surface 2-saddle c that the acute angle between normal nt to any
patch triangle t of S(c) that contains x, and the normal nx̂ to Σ at x̂ is at most
23 degrees.

Proof. Plugging ε ≤ 0.05 and ρ ≥ 1/2 in Lemma 14, gives an upper bound of
18 degrees for the angle between nt and np, where np is the normal to Σ at
a closest sample point p to x. Since by Theorem 2, S(c) is contained in Σ3ε2 ,
we have ‖x− x̂‖ ≤ 3ε2f(x̂). Let q be a closest sample point to x̂. By sampling
condition, ‖x̂− q‖ ≤ εf(x̂) and therefore

‖x̂− p‖ ≤ ‖x̂− x‖+ ‖x− p‖.

On the other hand ‖x− p‖ ≤ ‖x− x̂‖+ ‖x̂− q‖. Therefore we get

‖x̂− p‖ ≤ 2‖x− x̂‖+ ‖x̂− q‖ ≤ (6ε2 + ε)f(x̂) ≤ 1.3εf(x̂),

for ε ≤ 0.05. Therefore by Lemma 1 the angle between n+
p and n+

x̂ is at most
1.3ε/(1− 3 · 1.3ε) ≤ 5◦. 2
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The following proposition is directly based on the structure of the stable mani-
folds of 2-saddles [12] and the fact that flow lines never bend by more than 90
degrees.

Proposition 1 If t1 and t2 are patch triangles of S(c) for a surface 2-saddle c
such that t1 and t2 have one edge in common, then the dihedral angle between
t1 and t2 is no less than π/2.

Lemma 15 Let c be a surface 2-saddle. Suppose we orient the patch triangles
in S(c) arbitrarily but consistently so that for any patch triangle t, n+

t and n−t
are respectively the outer and inner normal directions on t with respect to the
applied orientation. Then, under the assumptions of Corollary 6 exactly one of
the following cases holds.

1. ∠(n+
t , n+

x̂ ) ≤ 23◦, for every patch triangle t of S(c) and for every x ∈ t.

2. ∠(n+
t , n−x̂ ) ≤ 23◦, for every patch triangle t of S(c) and for every x ∈ t.

Proof. First notice that as was shown in the proof of Corollary 6, for any point
x ∈ t, where t is a patch triangle of S(c), ∠(n+

x̂ , n+
p ) ≤ 5◦, where p is the vertex

of t that is a sample point. Thus, if for the arbitrary orientation of t and for a
point x ∈ t, ∠(n+

t , n+
x̂ ) = α, the same holds for every other point y in t, modulo

changing α by 5 degree.

Let tc be the Delaunay triangle that contains c. All patch triangles t ⊂ tc of
S(c), have the same n+

t which agrees with one of the two orientations of the
direction normal to tc. By Corollary 6, the normal direction of tc makes an angle
of at most 23◦ with either n+

ĉ or n−ĉ . Assume without loss of generality that the
first case holds, i.e. ∠(n+

t , n+
ĉ ) ≤ 23◦. We show now that this will imply that

that for every patch triangle t of S(c) and every x ∈ t, ∠(n+
t , n+

x̂ ) ≤ 23◦. We
prove this by extending the result for the triangles we already have this property
for to their neighboring patch triangles. Thus, assume t and t′ are two patch
triangles with an edge e in common. Let z be a point on e. Since t and t′ are
oriented consistently, the dihedral angle between t and t′ is π − ∠(n+

t , n+
t′ ). By

Proposition 1 this angle is at least π/2 and therefore ∠(n+
t , n+

t′ ) ≤ π/2. Therefore
using triangle inequality for angles we get ∠(n+

ẑ , n+
t′ ) ≤ ∠(n+

t , n+
ẑ )+∠(n+

t , n+
t′ ) ≤

90 + 23 = 113◦. But by Corollary 6, ∠(n+
ẑ , n+

t′ ) is either less than 23◦ or more
than 180◦ − 23◦ and we have just shown that the latter case does not hold. 2

5.3 Orientation of surface patches

The output the algorithm Reconstruct is a collection of stable manifolds of
surface 2-saddles (patches) that are attached to each other at Gabriel edges (sta-
ble manifolds of surface 1-saddles). In order to establish that this reconstruction
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has the same topology as the original surface Σ, we shall provide a homeomor-
phism between the two surfaces. We have shown in the previous section that,
roughly speaking, each patch is almost flat and lies almost orthogonal to the
normal to Σ at the 2-saddle into which the patch points flow. In order to achieve
the desired homeomorphism we need to show that neighboring patches do not
fold over each other. Our way of showing this can be summarized as follows: we
observe that the normal to a patch induced by a 2-saddle c at c itself is close to
the normal to Σ at a near surface point to c. This gives a natural orientation of
the patch. We prove afterward that the side of the patch that faces the union
of stable manifolds O of the critical points in the component computed by the
algorithm Reconstruct is consistently determined by the given orientation.

We will need the following two technical lemmas.

Lemma 16 Let C1 and C2 be two infinite cones with cone angle θ, with the
same apex p and same axis, extended in opposite directions. Let x be a point
not in the interior of either of the convex hulls of C1 or C2. Consider a line `
passing through x, making an angle of α < θ with the common axis of C1 and
C2, and hitting C1 and C2 in points x1 and x2, respectively. Then

‖x1 − x2‖ ≤ 2 · ‖x− p‖ · cos θ

sin(θ − α)
.

Proof. Without loss of generality assume that p is the origin and that the com-
mon axis of C1 and C2 is the z-axis. By the assumptions of the lemma, x1 and
x2 are in opposite sides of x on `. Consider the vertical plane H containing
x and the z axis. When x is fixed, if we consider an arbitrary line ` through
x making an angle of α with the z-axis, it is easy to observe that ‖x − x1‖
is maximized when ` is contained in H, in which case by the law of sines
‖x − x1‖ = ‖x − y1‖ · sin θ/ sin(θ − α), where y1 is the vertical projection of
x to C1. Thus in general

‖x− x1‖ ≤ ‖x− y1‖ · sin θ/ sin(θ − α). (6)

Similarly we get for the distance between x and x2

‖x− x2‖ ≤ ‖x− y2‖ · sin θ/ sin(θ − α), (7)

where y2 is the vertical projection of x to C2. On the hand, when ‖x − p‖ is
fixed, ‖y1 − y2‖ is maximized when x is in the plane z = 0, in which case
‖y1 − y2‖ = 2 · ‖x− p‖ · cot θ. So, in general

‖y1 − y2‖ ≤ 2 · ‖x− p‖ · cot θ. (8)

Combining (6), (7), and (8) we get

‖x1 − x2‖ = ‖x− x1‖+ ‖x− x2‖
≤ (‖x− y1‖+ ‖x− y2‖) · sin θ/ sin(θ − α)
= ‖y1 − y2‖ · sin θ/ sin(θ − α)
≤ 2 · ‖x− p‖ · cos θ/ sin(θ − α). 2
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Lemma 17 Assume ε ≤ 0.01. Let x be a point in Σ̃ with {p, q, r} ⊂ A(x).
Then the acute angle between normal to the Delaunay triangle pqr and each of
the normals np, nq, and nr is at most 8ε.

Proof. Assume without loss of generality that p is the vertex of pqr with the
largest face angle. Since x ∈ Σ̃ ⊂ Σ3ε2 , by Corollary 5, ‖x − p‖ = ‖x − q‖ =
‖x − r‖ ≤ 1.23εf(p). On the other hand, ‖x − p‖ is an upper bound for the
circumradius of pqr. Thus using Lemma 13, the acute angle between np and
normal to pqr is at most β(1.23ε) ≤ 5ε. On the other hand, ‖p− q‖ ≤ ‖p−x‖+
‖x − q‖ ≤ 2 · 1.23f(p). Therefore by Lemma 1, ∠(n+

p , n+
q ) ≤ 2.46ε

1−3·2.46ε ≤ 3ε for
ε ≤ 0.01. The same argument can be repeated with r instead q. 2

We say that a triangle t = pqr with p, q, r ∈ P lies flat to surface or simply is
flat if the normal of t is within 8ε from one of np, nq, or nr. For such a triangle,
it is meaningful to distinguish between the side that faces the interior of Σ and
the one that faces its exterior. We refer to these sides as inner and outer sides,
respectively.

Let c be a surface 2-saddle. By definition, c is the intersection point of a Delaunay
triangle tc and its dual Voronoi edge ec. Thus |A(c)| = 3 and by Lemma 17,
the normal to tc makes an angle of 8ε or less with the surface normal at any of
the vertices of tc. Thus, tc lies flat to surface. Since tc intersects ec in a point
of its relative interior (by our non-degeneracy assumption), we can distinguish
between the two endpoints of ec as its inner and outer vertices and refer to
them as v−c and v+

c , respectively. We denote the the segment cv+
c excluding c

by e+
c , and define e−c similarly. Notice that c is the driver for points on ec and

therefore the flow direction on ec \ {c} is toward its endpoints at each side of
c. Therefore, every point of ec between c and v+

c flows to the same maximum
that v+

c flows into. A similar statement holds for the points between c and
v−c . We define U+

c = e+
c ∪ φ(v+

c ) and U−c = e−c ∪ φ(v−c ). In fact, U+
c and U−c

together constitute the unstable manifold of c [12]. Thus, if U+
c intersects Σ+

then the flow originated at any point of e+
c , arbitrarily close to c must end up

in an exterior medial axis maximum m implying that S(c) is incident to S(m)
through the outer side of tc. Similar statements can be made by replacing U+

c

with U−c and Σ+ with Σ−.

Lemma 18 For any 0 < ρ < 1, there exists ε0 small enough such that if P
is an (ε, δ)-sampling of Σ for ε ≤ ε0 and δ = ρε, then for any x ∈ U+

c ∩ Σ̃,
∠(v(x), n+

p ) ≤ 8ε, and for every point x ∈ U−c ∩ Σ̃, ∠(v(x), n−p ) ≤ 8ε, where p
is any point in A(x). In particular, for ρ = δ/ε ≥ 1/3, ε0 ≤ 0.01 suffices.

Proof. We only prove the lemma for points in U+
c ∩ Σ̃. The proof for points in

U−c ∩Σ̃ is analogous. For simplicity we enforce ε0 ≤ 0.01 although the statement
of the lemma may hold for larger values of ε0. Let P be an (ε, δ)-sampling of Σ
with ε ≤ ε0 ≤ 0.01 and δ = ρε.

Since x ∈ Σ̃ ⊂ Σ3ε2 , by Corollary 5, ‖x − p‖ ≤ 1.23εf(p) for every p ∈ A(x).
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Notice that it suffices to prove that ∠(v(x), n+
p ) ≤ 5ε for only one point p ∈ A(x).

This is because for any other point q ∈ A(x), ‖p − q‖ ≤ ‖p − x‖ + ‖q − x‖ ≤
2 ·1.23ε max{f(p), f(q)} and therefore by Lemma 1, ∠(n+

p , n+
q ) ≤ 2.46ε

1−3·2.46ε ≤ 3ε
for ε ≤ 0.01.

As above, let tc and ec be the Delaunay triangle and its dual Voronoi edge for
which {c} = tc∩ec. Notice that U+

c is a piece-wise linear curve. Let u0, u1, . . . , uk

be the vertices of this curve with u0 = c, u1 = v+
c , and uk = m, where m, the

maximum at which U+
c ends. Notice of course that u0 itself does not belong

to U+
c as v(u0) = v(c) = 0. We prove the lemma inductively starting from the

segment u0u1 and going up to ui−1ui for the smallest i for which ui−1 ∈ Σ̃ but
ui−1ui has a point outside Σ̃. For this last line segment ui−1ui, the argument we
provide will be true only for the initial part ui−1u

∗, where u∗ is the first point
of U+

c (starting from ui−1) not in Σ̃. Since no flow enters Σ̃, no point of U+
c

past u∗ will be in Σ̃. From the structure of flow complex [12], it is easy to see
that every vertex in {u1, . . . , uk} is either a Voronoi vertex or lies on a Voronoi
edge. Furthermore, the relative interior of every segments ui−1ui, i = 1, . . . , k,
falls entirely inside a Voronoi edge or facet.

For the base case of our induction we observe that the lemma holds for points
x ∈ u0u1 (excluding u0). To see this, notice that the direction of v(x) for such
points agrees with the vector v+

c − c. Let p be the vertex of tc with the largest
angle in tc. Using Lemma 17, and taking into account that x is on the outer
side of t, implies that the angle between n+(p) and v+

c − c is at most 8ε.

In fact, by Lemma 17, for any point x ∈ U+
c ∩ Σ̃ that flows on a Voronoi

edge e, the Delaunay triangle t dual to e must lie flat to surface and thus
we can distinguish between its side facing outward and the one facing inward.
Informally, we will say that in such a case x is above t if x is on the side of t
facing outward, or below t otherwise.

For the induction step, we assume that the statement of the lemma holds for
points on a segment ui−1ui of U+

c ∩ Σ̃ and show that this entails the same for
the point on the segment uiui+1. Let f1 be the Voronoi face of dimension d1

that contains the relative interior of ui−1ui, and let f2 be the Voronoi face of
dimension d2 containing ui. Finally let f3 be the Voronoi face that contains the
relative interior of uiui+1 and let d3 be its dimension. Notice that f1 and f3 are
cofaces of f2 and therefore d1 and d3 are both greater than d2. We prove the
induction step by going over all possible combinations of f1, f2, and f3.

1. Edge-vertex-edge. First we study the case in which the flow on a Voronoi edge
e, reaches a Voronoi vertex v and enters another Voronoi edge e′. We assume
that the statement of the lemma holds for points on e and show that it remains
true as the flow moves on to e′. To see this, let t = pqr be the Delaunay triangle
dual to e and let t′ = qrs be the one dual to e′ (See Figure 7 (left)). The Voronoi
vertex v must be dual to the Delaunay tetrahedron ∆ with vertex set {p, q, r, s}.
Since the flow through v continues on e′, the driver of points in e′ must lie in the
interior of the triangle t′ or in other words, the line through e′ must intersect
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Figure 8: Proof of Lemma 18, cases 3 (left) and 5 (right).

t′. As discussed above both t and t′ are flat and v is above t. It is easy to see
that extending the statement of the Lemma to e′, is identical to showing that v
is also above e′. By Lemma 17, the outward normal direction for both t and t′

are within 8ε from n+
q . If v is not above t′, it must be in ∆. But in that case v

is a maximum and the flow does not leave it to enter e′.

2. Facet-vertex-edge. Next, we consider the case where the flow through a Voronoi
facet f dual to Delaunay edge pq reaches a Voronoi vertex v dual to tetrahedron
∆ = pqrs and continues on a Voronoi edge e dual to Delaunay triangle t = qrs
(See Figure 7 (right)). We assume that the lemma holds for the points x on
U+

c ∩ f and show that this extends to the points on e. As in the previous case
t is flat and we only need to show that v is above t. By induction hypothesis,
∠(v − d, n+

q ) ≤ 8ε where d = 1
2 (p + q) is the driver of the points on f . It can

be verified that if v is not above t, it must be that v ∈ ∆ making v a local
maximum, a contradiction.
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3. Edge-vertex-facet. Consider now the case where the flow through a Voronoi
edge e reaches a Voronoi vertex v and enters a Voronoi facet f incident to v. Let
pqr be the Delaunay triangle dual to e and let rs be the Delaunay edge dual to
f . Note that v is the circumcenter of the Delaunay tetrahedron ∆ = pqrs. We
assume that the lemma holds for points on e which is identical to assuming that
v is above t. Since the flow through v continues on f , the closest point of ∆ to
v is the midpoint m = 1

2 (r + s) of the edge rs (see Figure 8, left). For this to
happen, v must be in the wedge made by two half-planes π1 and π2 both having
the line through rs as boundary and respectively being orthogonal to triangles
t1 = prs and t2 = qrs. Since A(v) = {p, q, r, s}, by Lemma 17, the normals to
both t1 and t2 make an angle of at most 8ε with nr. Since v is above t but not
contained in ∆, it must be above both t1 and t2. If we base at m, two vectors
v1 and v2, respectively normal to t1 and t2 in their outward directions, v1 will
lie in π1 and v2 in π2. The segment vm is on the plane bisecting rs and so are
v1 and v2. It follows from the triangle inequality for angles that v −m = v(x),
for x ∈ f ∩ U+

c , also makes and angle of at most 8ε with n+
r . Notice that with

exactly the same argument but with using s instead of r, we get the same bound
with respect to n+

s .

4. Facet-vertex-facet. The proof of this case is a simple combination of the proofs
of cases 2 and 3.

5. Facet-edge-facet. We show now that under tight enough sampling, i.e. by
choosing ρ large enough, if the flow through a Voronoi facet f arrives at a
Voronoi edge e of f , it will continue on e and does not enter another facet f ′

incident to e, given that the statement of lemma holds for the points of U+
c ∩ f .

Suppose to the contrary that this is not the case, i.e. (see Figure 8, right) the
flow crosses e and enters another facet f ′ incident to e. Let rs be the Delaunay
edge dual to f . The driver of the flow on f is m = 1

2 (r + s). Let y be the point
where the flow reaches e. The dual Delaunay triangle t to e has r and s for
vertices plus another vertex s′. For the flow to cross e and enter f ′, f ′ must
be dual to the Delaunay edge ss′. Furthermore, the line of e must not intersect
t. Let o be the circumcenter of t. By our assumption, the flow direction on f ,
which coincides with y − m makes an angle of no more than 8ε with n+

r . On
the other hand, y ∈ Σ̃ and thus t lies flat to surface and since the largest angle
in t is at r, the normal to t, i.e. direction of e, makes an acute angle of at most
5ε with nr (See proof of Lemma 17). This in particular implies that y is above
t. Therefore, ∠myo is at most 13ε. In order for the line of e not to intersect t,
it must hold that ∠mss′ < ∠mso. The two triangles mso and myo both share
the edge mo and both have a right angle on one of the end-points of this edge.
We will show below that ‖m− y‖ < ‖m− s‖. Since ‖m− s‖ < ‖o− y‖, this will
imply that ∠mso < ∠myo. Using exactly the same argument as in the proof of
Lemma 14, we get ∠mso ≥ arcsin(ρ/2.46), and therefore since ∠myo ≤ 13ε, we
must have

13ε > arcsin
( ρ

2.46

)
.

This inequality is violated for ε ≤ ε0 for ε0 ≤ 1
13 arcsin(ρ/2.46) (in particular
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for ε0 ≤ 0.01 when ρ ≥ 1/3) giving us the desired contradiction.

Now we prove that ‖m−y‖ ≤ ‖m−s‖. Notice that s is a closest sample point to
y and by our assumption y ∈ Σ̃. Therefore, y is between the cones C+

s and C−s .
On the other hand by Corollary 5, ‖r−s‖ = 2‖m−s‖ ≤ 2‖y−s‖ ≤ 2 ·1.23εf(s)
and therefore using Lemma 12, ms makes an angle of at least π

2 − 1.23ε > θ
with the normal to Σ at s. This implies that m is also between C+

s and C−s . By
our inductive hypothesis, my makes an angle of at most 8ε with n+

s . Lemma 16
can now be used to get

‖m− y‖ ≤ 2 · 1.23ε · f(s)
sin(1.1ε)
cos(9.1ε)

<
1
2
δf(s) ≤ ‖m− s‖,

where the middle inequality holds for ε ≤ 0.01 and ρ ≥ 1/3. In fact for any
constant 0 < ρ < 1 the above inequality holds (and the desired contradiction
is achieved) for any ε ≤ ε0 for small enough ε0 since the left hand side has a
quadratic dependence on ε.

Thus we have proved that whenever the flow on U+
c moves to a Voronoi facet

f , it leaves f by either hitting a Voronoi edge e and continuing on e, or by
hitting a vertex v. Thus we have covered all cases in the inductive step and this
completes the proof of the lemma. 2

In the following Lemma we show that if S(c) is incident to the stable manifold
S(m) of an interior (exterior) medial axis maximum m, then the part of S(c)
that is contained in tc is incident to S(m) at the inner (outer) side of tc.

Lemma 19 For any surface 2-saddle c, U+
c does not intersect Σ− and U−c does

not intersect Σ+.

Proof. We prove the claim for U+
c . The other claim is proved analogously.

Suppose to the contrary that U+
c intersects Σ− at x. Let v be the last turning

point of U+
c before reaching x. Let q be a sample point for which x ∈ C−q and

let p be a closest sample point to x. Then ‖x − p‖ ≤ ‖x − q‖ ≤ f(q) cos θ =
f(q) sin(1.1ε). Therefore, ‖p− q‖ ≤ 2f(q) sin(1.1ε) and therefore by Lemma 1,

∠(n+
p , n+

q ) ≤ 2 sin(1.1ε)
1− 3 · 2 sin(1.1ε)

= O(ε).

On the other hand, by Lemma 18, the vector x− v makes an angle of O(ε) with
n+

p . It is easy to observe that this contradicts the assumption that the flow hits
C−q . 2

The following lemma is a direct consequence of Lemma 18 and Lemma 15.

Lemma 20 Let c1 and c2 be two surface critical points with S(c1) and S(c2)
put by Reconstruct into T, such that boundaries of S(c1) and S(c2) have a
Gabriel edge e in common. Let t1 and t2 be the patch triangles incident to e
in S(c1) and S(c2), respectively. Then, the dihedral angle between t1 and t2 is
larger than π/2.
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Proof. Orient patch triangles of S(c1) by taking for every patch triangle t of
S(c1), the normal to t pointing to the side of t incident to the interior of the
reconstruction. Denote this normal by n−t . Lemma 18 implies that in this case
for every point x ∈ t where t is a patch triangle of S(c1), ∠(n+

x̂ , n+
t ) < 23◦.

In particular, by letting t = t1 and choosing x to be a point on e, we get
∠(n+

x̂ , n+
t1) < 23◦

If we do a similar orientation on S(c2), we get ∠(n+
x̂ , n+

t2) < 23◦. Thus, the
dihedral angle between t1 and t2 is at least 180◦ − 46◦ = 134◦. 2

5.4 Homeomorphism

Theorem 3 Under assumptions of Theorem 1, the output T produced by the
algorithm Reconstruct is a 2-manifold without boundary homeomorphic to
Σ.

Proof. First we observe that the complex T produced by Reconstruct is the
boundary of the union of stable manifolds of either the inner or outer medial
axis critical points. Let m1 and m2 be medial axis maxima such that S(m1)
and S(m2) are neighboring 3-cells in the flow complex, i.e. they both have S(c)
contained in their boundaries, where c is a 2-saddle. If m1 is an inner medial
axis maximum and m2 an outer one, then c must be a surface critical point
as the common boundary of S(m1) and S(m2) must lie in Σ̃ ⊂ Σ3ε2 . On the
other hand, if m1 and m2 are both inner (outer) medial axis maxima then S(c)
cannot be a surface critical point since otherwise both U+

c and U−c arrive at
inner (outer) medial axis maxima and therefore both must have crossed Σ−

(Σ+) and this violates Lemma 19. This in particular implies that the algorithm
Reconstruct in fact partitions the medial axis critical points into two subsets.

We consider in this proof the case where T is the boundary of the union of
stable manifolds of the inner medial axis critical points (the outer case being
analogous). We argue that T and Σ are homeomorphic. Consider the restriction
ζ : T → Σ of the closest point map x 7→ x̂. We prove that ζ is a homeomorphism.
Since both T and Σ are compact, it is sufficient to show that ζ is continuous,
one-to-one and onto.

First, we argue that ζ is one-to-one. Orient the normal to each patch triangle
t so that it makes an angle less than π

2 with the oriented normal n+
p at the

vertex p of t which is a sample point. Because of Lemma 15 and Lemma 20, the
triangles of T can be oriented consistently satisfying this condition. We denote
this oriented normal for a patch triangle t by nt. Notice that although Lemmas
15 and 20 are stated for the special case where ρ ≥ 1/3 and ε ≤ 0.01, they
can effectively be reproduced for any smaller ρ provided that ε is chosen small
enough accordingly.

By Lemma 14, for every point x in a patch triangle t the oriented triangle normal
nt makes an angle of O(ε/ρ) with n+

x̂ . In particular when ε ≤ 0.01 and ρ ≥ 1/3,
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this angle is at least 23◦. Suppose ζ is not one-to-one. Then, there are two points
x and x′ in T that are both mapped to the same point x̂ by ζ. Consider the line
` normal to Σ at x̂. This line passes through both x and x′. Assume without loss
of generality that x and x′ are consecutive intersection points of ` and T. Then,
at one of x and x′ the line ` enters and at the other exits the interior bounded
by T. In other words, if we orient ` along n+

x̂ , it makes an angle at least π
2 with

one of the oriented normals of T at x or x′, an impossibility.

Next, we argue that T is a manifold. For this we first observe that each edge
in T is incident to at least two triangles. This of course holds by definition for
the interior edges of each surface patch. If a Gabriel edge on the boundary of
a surface patch is incident only to that patch, the patch must be incident to
the stable manifold of the same inner (or outer) medial axis maximum on both
sides. This contradicts Lemma 19. We show now that the triangles incident to
each vertex v of T form a topological disk and hence T is a 2-manifold. If not,
there are two triangles incident to v so that a normal line stabs both of them
at points arbitrarily close to v since they lie almost parallel to Σ. This is in
contradiction with ζ being one-to-one.

We are left to show that ζ is continuous and onto. The continuity of ζ follows
from the fact that the original closest point function x 7→ x̂ is continuous ev-
erywhere except at the medial axis. To show that ζ is onto, consider ζ(T) ⊆ Σ.
We claim that ζ(T) = Σ. Since T is a 2-manifold without boundary and ζ maps
it homeomorphically to ζ(T), we have ζ(T) as a compact 2-manifold without
boundary and ζ(T) ⊆ Σ. This is only possible if ζ(T) = Σ as both ζ(T) and Σ
are compact 2-manifolds without boundary. 2

6 Curves in R3

The separation of critical points and the resulting surface reconstruction al-
gorithm both have analogues when we consider the distance function to an
ε-sample of a smooth curve Γ in R3, instead of that of a surface.

6.1 Separation of critical points

Let P be an ε-sample of a smooth closed curve Γ ⊂ R3. We analyze the critical
points of the distance function h induced by P .

Lemma 4 still holds, i.e., all critical points of h are either near the curve (called
the curve critical points), or near the medial axis (called the medial axis critical
points). However, unlike surfaces, not all types of critical points can be near the
curve.

Lemma 21 If the boundary of a ball B intersects Γ in three or more points,
then it contains a medial axis point.
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Proof. Shrink B centrally until its boundary becomes tangent to a point, say x of
Γ. Then keeping x fixed on the boundary shrink it further by moving its center
toward x. Stop when the interior of B becomes empty of Γ. At this moment B
is tangent to Γ. If x is the only point of tangency, B is a curvature ball and
its center is on the medial axis. If it is tangent to two or more points of Γ, its
center is again a medial axis point. In both cases the medial axis point is in the
original ball B. 2

Lemma 22 Let c be a critical point of h. If c ∈ Γε2 , then c is either an index-0
or an index-1 critical point provided that ε < 0.3.

Proof. If c is an index-2 or index-3 critical point, we have a ball B centered at
c whose boundary intersects Γ in three or more points. Let r be the radius of
B. By Lemma 21, B contains a medial axis point and hence r > 1

2f(p) for any
point p ∈ P ∩ B. Therefore, c is at least f(p) distance away from its closest
point in P . We claim that c is also at least ε2f(ĉ) distance away from ĉ proving
that c 6∈ Γε2 .

To reach a contradiction assume that s(c) = ‖c − ĉ‖ is no more than ε2f(ĉ).
The closest sample point, say p, to ĉ is within εf(ĉ) distance from it. This point
p is within (ε + ε2)f(ĉ) distance from c. Applying the Lipschitz property of the
feature size f as in the proof of Corollary 5, we get that ‖p− c‖ ≤ ε+ε2

1−ε−2ε2 f(p).
On the other hand we know ‖p− c‖ > 1

2f(p). Thus we reach a contradiction if
ε < 0.3. 2

6.2 Reconstruction

We will state some more results regarding the critical points of the distance from
a curve. These results lead straightforwardly to a reconstruction algorithm. The
edges that connect two consecutive points on Γ are called correct edges. All
other edges are incorrect. It is known that all correct edges are Delaunay edges
if ε < 1/3. Also, it is easy to show that they intersect their dual Voronoi facets,
i.e., they contain index-1 critical points. It is further known that the length of
any correct edge pq is at most 2ε

1−εf(p) [9]. This means the index-1 critical point
which is the midpoint of pq is at most ε

1−εf(p) distance away from its closest
sample point which suggests that this critical point cannot lie in M2ε and hence
resides in Γε2 . On the other hand, as the next lemma shows, the incorrect edges
containing index-1 critical points are longer.

Lemma 23 Let pq be a Delaunay edge containing an index-1 critical point c.

(i) If pq is correct then the distance of c from p is at at most ε
1−εf(p).

(ii) If pq is incorrect then the distance of c from p is at least f(p)/2.
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Proof. If pq is correct, its length is at most 2ε
1−εf(p) by Lemma 3.4 of [9]. So, its

midpoint c has distance at most ε
1−εf(p) from p proving (i).

Now assume that pq is incorrect. If the boundary of the ball B centered at c
with radius ‖c− p‖ intersects Γ only in p and q then B is a medial ball and the
distance of c from p is at least f(p). Otherwise the boundary of B intersects Γ in
more than two points and hence B contains a medial axis point by Lemma 21.
Therefore, the diameter of B is at least f(p) and the distance of c from p is at
least f(p)/2 proving (ii). 2

The curve critical points can be separated from the medial critical points using
an algorithm similar to the one given for surfaces. For a sample point p we
determine the nearest critical point. By Lemma 22 and Lemma 23 this critical
point has index 1 and is the midpoint of a correct edge. A result of Amenta et
al. [2] implies that a correct edge makes an angle of at most arcsin(ε/2) with
the tangent tp at p. Thus the vector from p to its nearest critical point makes an
angle no larger than arcsin(ε/2) with tp. On the other hand any index-1 critical
point in M2ε is at least f(p)/2 distance away from p as a result of Lemma 23.
This fact along with the following result due to Dey et al. [8] give the required
critical point separation. For a point p ∈ Γ, the space spanned by the vectors
normal to tp is called its normal space.

Lemma 24 [8] Let x be a point in Vp where ‖p− x‖ ≥ ξf(p). Then there is a
vector vp in the normal space of p so that ∠(vp, x−p) ≤ arcsin ε

ξ(1−ε)+arcsin ε
1−ε .

Combining the results of [2], Lemma 23 and Lemma 24 we get the following
corollary.

Corollary 7 Let c be any index-1 critical point on an edge pq. Let c′ be the
nearest index-1 critical point of p. Then, for ε < 0.3

(i) ∠(c′ − p, c− p) < 3π/4 if pq is incorrect, and

(ii) ∠(c′ − p, c− p) > 3π/4 if pq is correct.

We get an immediate separation algorithm for index-1 critical points which also
gives a curve reconstruction algorithm: For every point p determine the shortest
Gabriel edge pq incident to p. Choose the other Gabriel edge pr incident to p
satisfying ∠(q − p, r − p) > 3π/4. These are the two correct edges for p. Note
the similarity between this algorithm and that of [9].

7 Experiments and conclusion

We provide the first theoretical results that link the critical points of the distance
function to a tight ε-sampling of a curve or surface embedded in R3 to either

33



Figure 9: Form left to right: the 2-skeleton of the flow complex; the segmentation
of the index-2 stable manifolds into surface (green) and medial axis critical
points (red); the stable manifolds of surface critical points only.

the surface (curve) or its medial axis. This allows us to derive reconstruction
algorithms for curves and surfaces embedded in R3 that come with topologi-
cal and geometric reconstruction guarantees. Although our proofs for normal
convergence and orientation of surface patches and, because of those, our proof
of homeomorphism depend on the assumption that the given ε-sample is tight,
we believe that these guarantees can be strengthened to the case of general
ε-sampling.

The output of our algorithm is not a Delaunay sub-complex, a property some-
times desired in practice. However, this output can be easily modified to satisfy
this requirement. A natural way is to replace the stable manifold of a surface
2-saddle with the union of Delaunay triangles corresponding to its flow complex
triangles (See Appendix A). Notice that doing this, we replace each patch with
a patch made of the Delaunay triangles which shares the same boundary of
Gabriel edges with the original patch. Furthermore, these triangles are asymp-
totically as close to the surface as our reconstruction. For a related heuristic
method for approximating stable manifolds of maxima with collections of De-
launay tetrahedra see [7].

We experimented with the separation of the critical points for surface samples
using an implementation that computes the 2-skeleton of the flow complex, i.e.,
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the union of the stable manifolds of index-2 saddle points. It turned out that
the union of the stable manifolds of surface critical points (see Figure 9) already
gives a good reconstruction. However, this reconstruction is not guaranteed to
be (in fact, due to slivers, it is rather unlikely to be) a manifold.
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Appendix A. Stable manifolds of index-2 critical
points

An index-2 critical point, i.e., a saddle point s, is the intersection point of a
Delaunay triangle t with its dual Voronoi edge e. Under a mild non-degeneracy
condition, the stable manifold of s is a surface patch that can be constructed
explicitly, see [12]. The degeneracy condition is that the inflow of s does not
contain a Voronoi vertex which can be always achieved by an arbitrarily small
perturbation of the sample points. We start by constructing a polygon P whose
interior points all flow into s. This polygon contains s and is contained in t.
To simplify our exposition assume that there are three Voronoi facets incident
to every Voronoi edge. We are going to construct a polyline for each of the
three Voronoi facets incident to e. These three polylines together make up the
boundary of the polygon P . The drivers of the Voronoi facets incident to e
are points on their dual Delaunay edges. These Delaunay edges are all in the
boundary of t. Note that it is possible that such a driver is a index-1 critical
point. First, consider a driver d which is not an index-1 critical point. The line
segment that connects d with s is contained in t and intersects the boundary
of the corresponding Voronoi facet in two points, namely in s and in a second
point s′. We get a polyline from the two segments that connect s′ to the two
Delaunay vertices incident to the Delaunay edge that contains d. Second, if the
driver of the Voronoi facet is a saddle of index-1 we take its dual Delaunay edge
as the polyline. That is, we get three polylines all contained in t, one for each
Voronoi facet incident to e. Let P be the polygon whose boundary is given by
these polylines. P is contained in t and all its interior points flow into s. It can
be triangulated by connecting s with the points s′ and the Delaunay vertices
incident to t. Figure 10 shows two examples of two such polygons P .

Let s′ be a point as constructed above for a Voronoi facet that is not driven
by an index-1 critical point. By construction s′ is contained in a Voronoi edge
e′. Furthermore, by our assumption it has to be an interior point of e′. We
can assume again that e′ is incident to three Voronoi facets. For one of these
Voronoi facets we have already computed a polyline. For the remaining two we
do it exactly the same way we did it above for P . Thus we have again three
polylines, one for each Voronoi facet incident to e′. Two of these polylines always
intersect in a common Delaunay vertex. That is, the three polylines together
form a polyline which is homeomorphic to S1. The latter polyline need not be
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Figure 10: Two examples of polygons that are contained in a Delaunay triangle
that is intersected by its dual Voronoi edge in s. The interior points of these
polygons flow into s. The polygon in the figure on the right has one index-1
critical point on its boundary.

s

Figure 11: In this example the stable manifold of s is made up from five surface
patches. Note that the surface patches need not be planar.

contained in a hyperplane but it can be triangulated by connecting the point
s′ with newly computed points s′ and to the Delaunay vertices incident to the
Delaunay facet dual to e′. This gives us a new triangulated surface patch whose
interior points all flow into s.

We continue with the above construction until there are no more points s′

left for which we have not already constructed a surface patch. The surface of
points that flow into the index-2 saddle s is made up from all the patches. By
construction the boundary of this surface consists of Gabriel edges, i.e. Delaunay
edges. Figure 11 shows an example of the stable manifold of some index-2 critical
point.
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