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Abstract

Given a set of n labeled points on §¢ how many combinatorially different geometric
triangulations for this point set are there? We show that the logarithm of this number is at most

some positive constant times n'¥2/*'. Evidence is provided that for even dimensions d the
bound can be improved to some constant times %%

1. Introduction

In this paper we consider the problem of counting the number of com-
binatorially different geometric triangulations of a fixed set of n labeled points on
8% the d-dimensional sphere. By this we mean a triangulation consisting of
_geometric simplices rather than topological or combinatorial generalizations
thereof. Precise definitions are given in Section 2. Let s,(n) denote the maximum
number of geometric triangulations with any fixed set P of n labeled points in 54,
A more general type of triangulations, often considered in the literature, consists
of topological simplices in S%. Let f,(n) denote the maximum number of
topological triangulations of any fixed set of n labeled points in $% Every
_geometric triangulation of S is also a topological triangulation. Therefore
Sa(n) <ty (n). ~

Using a result of Goodman and Pollack [4], the bounds for a fixed point set can
¢ extended to cover all point sets of some fixed cardinality. More specifically,
hey show that there is a positive constant ¢ = c(d) so that the logarithm of the
number of combinatorially different sets of n points in S is at most cn log n. It
appears that the dominant factor in the total number of triangulations is the
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number of triangulations of 4 sin
point sets. Kalaj [5] proves tha

topological triangulations for 7 |
lower bound of ¢, 12!

Another quantity related to s4(n) is ry(n), the max;
triangulations of » fixed and labeled points in R,
is fairly easy to establish a correspondence betwee
and R that implies ra(n) <s5,(2n), see Section 2.

This paper is organized as follows: Section 2 in
Section 3 presents an observation about intersecti
prove logs,(n) <cnl! when 4 is odd. For ev.

mum number of geometric
the d-dimensional rea] Space. It
I geometric triangulations ip g¢

rue in dimension d = 2 and which
ant even dimensions. Contingent upon this

2. Definitions

Think of $7 as the unit sphere in R9+1

centered at the origin, 0. A hemisphere
of §is the intersection of §¢

with a closed halfspace in [R<+! whose bounding
hyperplane contains o. Any collection V of k points in §¢ is q.i. if v U {0} is

affinely independent in Re+! V defines a unique grear sphere in §%
intersection of S with the affine hull of ¥ U {o}. I Vis a.i. then this great sphere
is a (k—1)-sphere of §< For O0<k=<gq, 4 spherical polytope in §¢ i the
intersection of finitely many hemispheres. It is 3 k-polytope if it contains k£ + 1
a.i. points (vertices of the polytope) but not k + 2. In what follows, we assume

the points in P are in general position. By this we mean that no hemisphere
contains P and any d + 1 points of P are a.i.

A spherical k-simplex in §9 ig the inter

namely the

-simplex defined by any j + 1 of the k + 1
vertices of A. Let A= Ay be a spherical k-simplex and A= Ay, be a spherical

l-simplex. We say that A; and A, intersect improperly if 1i(A;) Nri(A,) # 6 where
1i(X) denotes the relative interior of X, [f the k£ + 7 + 2 vertices in ViUV; are a.i.
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triangulation of P is defined by a collection of spherical d-simplices Ay, so that:
(i) Ay,NP =YV, for each |,

(ii) no two d-simplices intersect improperly, and

(iii) the union of the d-simplices is §°.

Conditions (i) and (ii) require that the collection of spherical d-simplices form a
simplicial cell complex, and (iii) requires that $¢ is the underlying space of the
complex.

Similar definitions are possible in R?. A set of k +1=<d +1 affinely independ-
ent points defines a unique k-simplex, namely the convex hull of the k£ + 1 points.
Alternatively, this k-simplex can be defined as the intersection of all closed
half-spaces that contain the k +1 points. A geometric triangulation of a finite
point set P < R is defined by a collection of d-simplices so that each d-simplex
intersects P in its vertices, no two d-simplices intersect improperly, and the union
of the d-simplices is the convex hull of P. By central projection, such a
triangulation in R? can be mapped to the southern hemisphere of S* where it
forms a partial triangulation of S9. Let P' be the set of vertices of this partial
triangulation. For reasons stated below, we give another transformation to this
projected triangulation. Keeping the southern pole fixed, we grow S¢ until all
circumscribing spheres of the d-simplices with vertices in P’ remain solely within
the southern hemisphere. To make it a unit sphere, we shrink the enlarged sphere
centrally. Let P’ be transformed to P; by this process. The transformed
triangulation with the vertex set P/ still constitutes a partial triangulation of S%
To complete this triangulation we also project the triangulation from R? on the
northern hemisphere and transform it analogously. Let P’ be the corresponding
vertex set. The two partial triangulations can be connected by considering the
convex hull of P/ U P" in R“*'. Any face of the convex hull that has vertices in P;
as well as in P" can now be mapped to a spherical simplex that connects the two
partial triangulations. Due to the above transformations, it is guaranteed that
these faces connect the two partial triangulations properly without piercing any
of their simplices. Given the triangulation in R4, this construction implies a
unique triangulation of S¢. Therefore r,(n) <s4(2n).

A topological triangulation of S? is the geometric realization of an abstract
simplicial complex on S¢. The simplices in such triangulation are curved
arbitrarily and are not necessarily spherical according to our definitions. Obvio-
usly, every geometric triangulation of S is also a topological triangulation. Thus,
ra(n) <s,(2n) <t;(2n). Kalai [5] proved that c;n'* <logt.(n)<c,n 142} 1og n.
Any asymptotic upper bound on ,(n) also applies to r,(rn) and s4(n). However,
the same is not true for lower bounds. In this paper, we improve the asymptotic
upper bound on s,(n) and hence also on r,(n). It remains open to prove
nontrivial lower bounds on ry(n) and f,(n). We suspect that the current
asymptotic lower bound on t,(n) also applies to r,(n) and s4(n), and it is tight.
This is known to be true for d =2 [1].
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3. Simplex crossings in ¢

Given two spherical simplices that intersect improperly, we prove that there is
a lower dimensional face of one that crosses a higher dimensional face of the
other. In what follows, by a simplex we mean a spherical simplex and by a
triangulation we means a geometric triangulation in §¢.

Lemma 3.1. For k;+k,=d, let A, be a ki~simplex that intersects improperly a
ky-simplex A, in S°. There must be a |d/2] ~face of one simplex that crosses the
other simplex.

Proof. Actually we prove a stronger statement. Let ki+ k,=d. Then there is an
[-face of A, that crosses an I,-face of Ay, with [; + I, = d. This clearly implies that
one of /; and 1, is less than or equal to [d/2].

Let V; be the vertex set of A,, for i = 1,2, and define m =k, + k, — d. First
note that [V;NV,<m. Otherwise, ViUV = (ki +k,+2)— [ViN Volsd+1,
and by general position assumption A, and A, cannot have an improper
intersection.

Again by general position assumption the great spheres defined by V; and V,
intersect in an m-sphere. By definition of improper intersection, Q = A, N A, is
therefore a spherical m-polytope. It has at least one vertex u g¢Viny,, for
otherwise Q would be contained in the simplex defined by the shared vertices.
This simplex is disjoint from the relative interiors of A; and A,, or else m=d
which can be the case only if V;=V,. But this possibility is excluded in the
definition of improper intersection. Let /, and /, be minimal so that u belongs to
the intersection of an [-face A} of A, and an l,-face A; of A,. Since the
dimension of u is 0, we have (k; — I))+(ka—1L,)=m, and thus [, + [, = ki+k,—
m = d. Furthermore, A} and A} are vertex disjoint because they have altogether
only d +2 vertices and if some are shared then A]N A; would be the simplex
"defined by the shared vertices. This contradicts u eViny, O

From the above Lemma we have the following simple observation about
triangulations in S?”. We observe that all higher dimensional faces of a
triangulation can be completely determined from its |d/2]-faces as follows. To
enumerate all k-faces of the triangulation, k > [d/2], from all possible k-faces
out of given |d/2|-faces. Retain only those k-faces that do not intersect any given
|d/2]-face. These are the k-faces of the triangulation. This is true because any
k-face of the triangulation must have |d/2|-faces from the given set of
[d/2]-faces and any k-face that is not in the triangulation must intersect another
k-face of the triangulation and hence a |d/2]-face of the triangulation due to
Lemma 3.1. This observation should be compared with the result of Dancis [2],
who shows that triangulated d-manifolds are completely determined by their
[d/2] + 1-faces.
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Lemma 3.2. logs,(n) = O(n'?*").

Proof. By above observation, any triangulation of » fixed labeled points in $¢ can
be completely determined by the set of |d/2]|-faces of the triangulation. There
can be at most 2°¢***" different such sets. [

Note that combining Lemma 3.2 with the result of Kalai [5], we get
log s54(r) = O(n'*) for odd dimensions and logsa(n) = O(n [42] jog n) for even
dimensions. The log n factor in the bound for even dimensions seems unnatural.
We show that logs,(n)=0(n"?) for even d, if we assume the following
conjecture. In what follows we assume dis even and u =d/2.

Conjecture 3.1. Let T be a set of crossing free u-simplices with n vertices in S7.
Then |T| = O(n").

Clearly, |T|=0(n**"), and it is known that |T|= O(n*) if T forms a
subcomplex of a topological triangulation of 54 [6]. Furthermore, a recent result
of Zivaljevié [7] implies that |T|=O(u“*'"¢) where &= (3)". These results
suggest that it is unlikely that the above conjecture is false.

Note that, for even d two u-simplices in S¢ can intersect only in a point. This
implies that improper intersection and crossing mean the same thing when d is
even. The following Lemma establishes an important fact about the number of
u-simplex crossings in a set of ¢ u-simplices with n vertices. Let Pbe asetofn
points in $¢ and x“’(P, T) denote the maximum number of u-simplex crossings in
a set T of ¢ u-simplices with vertices in P. Define x(n, ) = minp,—p,;7={P, T)-
The next lemma which implies

tY
(d) = -
xn, t)= Q(n(y——Z)(u+1))
is a generalization of a similar result in three dimensions [3].

Lemma 3.3. If the maximum size of any set of crossing free u-simplices with n
vertices is c,n" 172 (for some constant 0 < 8 <1) then there exists a constant ¢; SO
that

t Y
D(p )= < n >___
¥ D=y, 1) (n)
u+1

where t = csn*t%, y=1+ W +1)/6, and c3=c, + 1.

Proof. Let T be a set of ¢ u-simplices with n vertices in S that realizes x“*(n, ).
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We show by induction that there is a small enough constant c, so that
(d)(n HN=c ( " ) ! ! (1)
R VWD) ( n ) '

Let o =u +1— 6. From our assumption, there can be at most c;n“ u-simplices
with n vertices in S that are crossing free. We assume that ¢=c;n® where
cs=c;+1. Certainly, there are at least t — c;n® pairwise intersections occurring
between u-simplices that are vertex disjoint. This is because for each extra
element over ¢;n% we have at least one crossing. The fact of vertex disjointness
is important for the inductive step.

Base cases

Case 1: n<ny for some fixed ny>2u + 2.
By assumption, x“)(n, t)=t — c,n*>1. We can make

n t ¥
Cz<2u + 2) < n > <1 2)
u+1

by choosing ¢, sufficiently small since for <ny, t<cis a constant.
Case 2: c;n“<t<(c;+ 1)n® and n> 7
We have to prove that

( n ) t ”<r w 3
“\ou+2 ( n ) ShTan ®)
u+1

Since n>2u +2, (,%,)=c,n**! for some constant Cq.
Thus L.H.S. of 3 is less than or equal to
n**2(c3+ 1)"n®
2 cin@+Dm

=csn®

" where cs=c,(c;+1)"/c}, a constant. R.H.S. of 3 is greater than or equal to
csn®—cin®=n% Thus we have to show that csn®<n® which is true if ¢, is
chosen sufficiently small. ‘

Inductive step: t > (c3+ 1)n®, and n > n,.

Let T(w) represent the set of u-simplices in 7 that are not incident on the
vertex w and let {(w)=|T(w)|. For each crossing between two vertex disjoint
u-simplices A; and A,, we count all vertices except the ones of A; and A,.
Alternatively, we can think of this count as the sum of all nontrivial intersections
between u-simplices in T(w) for each vertex w. Thus we have

(n=2u=2)xn, )= > xD(n-1, t(w))

weV
n—1 > Lwevt(w)”

= c2<2u 42 (n — 1>Y by induction.
u+l




ey

simplices
1% where
occurring
ich extra
jointness

)

3)

equal to
e if ¢, is

it on the
x disjoint

and A,.
rsections

on.
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Now ey t(w) = (n —u — L)t. Thus

weV

This gives

xD(n, 1) =c

> t(w)"?n(

(n—u- 1)t>”‘

n

n <n—1> (n—u—1Dt\"
n—2u—2\2u+2 (;1—1)
7
u+1

C(n) t ¥ 0
2\2u+2 (n) )

u+1

Applying the pigeon-hole principle on the lower bound of x“(n, t) we infer

that there is at |

east one u-simplex that intersects many other u-simplices. This is

stated in the following lemma.

Lemma 3.4. Let T be a set of u-simplices in S9. There exists a u-simplex that

intersects

y—2)(u+l))

!
o
nt

other u-simplices where |T|=1> c;n" 7%, and n is the size of the vertex set.

4. Crossing free simplices

Conjecture 3.1 implies that 6 = 1. Using this in Lemma 3.4 we establish that
there exists a u-simplex in T that intersects

Q <nu(u+ 1)

u-simplices. Using this fact, we deduce that for even d there are at most

tu+1

)

20("“)

crossing free sets of u-simplices with n fixed vertices in S?. Define F(r) as the
largest number of crossing free subsets of u-simplices that can be chosen from ¢
u-simplices in § d with n fixed vertices. Since the set of u-simplices of a
triangulation completely determines it, an upper bound on F(¢) for £ = (%) also
gives an upper bound on the number of triangulations with n vertices in S%

Lemma 4.1. Assuming Conjecture 3.1, F(1) = 200 for any even d.

Proof. Let ¢ be large enough so that there is a u-simplex that crosses at least

(u + 1)tu+1

cn

w(u+1)
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other u-simplices if £ > cn“ = c;n“. Assuming conjecture 3.1, we can always find

T.K. Dey

such a u-simplex due to Lemma 3.4.

Case 1: r<cn*

In this case we have F(¢) <2’ < 2"

Case 2: t>cn".

In this case we prove that F(¢) < C"'f(¢) where

C= (zc)(ﬁc%') and f(r)= <”_tu> )

We show later that f(r)<1 for n*<t=<(,%,) implying F(f) =2°"", We use

induction.

Base Case: cn* <

t<2cn*.

In this case we have

cntu+)

" i t e
F(l‘) $22cn < (zc)cn (’7> I f(t)

cpttlutl)

< (2c)™(2c) <= f(1)

1

= @) F= ) s )

cnilut1)

i

provided ¢ >2

1
< C"f(f), where C= (2c)(”c"_-').

Inductive step: t=2cn*.
Since there is a u-simplex that crosses at least

(u+ 1)+?

Cnu(u-*—l)

other u-simplices, we have

FysF@t—-1)+ F(t -

(u + 1)e*!
Cnu(u+1)

Let t = kn" where 2c < k <n.

. (u+ 1)t

u(u+1)

cn

(u + 1)ku+1nu(u+1)

= kn" Cnu(u+l)
ku+1
= e (DR
C
+ 113
= kn"(l —L ?k )
cn
+
> kn”(l U 1)
(54

>cn® if ¢ >2(u +1).




s find

Counting triangulations 323

So we can apply the inductive assumption and get

(u+ l)t"“)

Cnu(u+1)

FO)sF(t—-1)+ F(t -

C(u+ 1)t“+1>

nu(u+1)

<C"f@t-1)+ C™f (t .

< C™f(t) by the property (5) of f(t) where ¢ >9“*'n*.
Taking c to be sufficiently large, this proves that F(t)= 200" for all t=0. O

Now we show that the function f indeed has the properties used in the previous
Lemma. Let

Cnu(u+1)

X\
f@=(2)
for n* <sx=(,%,) and ¢ >0 is a sufficiently large constant.
1) fx)<s1 forx=n"

cn

® 1= e n(2) -u},

Hence

u(u+1)
fl(x)> e f(x) ifx>e“*'n*

3 fx)—-fx-1=f(y) forsomex—1<sy=<x
because of the mean value theorem. Therefore

u(u+1)

)=l = 1) > e = 1)

provided x — 1> e“*'n* and hence

u+1

u(u+1)f(x)'

x4 cn

f-1)<

(u + 1)xu+1 ,nu(u+1)
4) f(x _W)—) ¢ fx)

where ¢’ = (e**!)* is a constant assuming ¢ >2(u +1). We sketch the proof
below.

For 0<m <1, f(x(1 —m)) = a(x, m)b(x, m) where

Cnu(u-}-l)

X\ "X < m)
a(x,m)=<;> x*(1 —m)
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and cntlu+1)
b(x,m)=(1—-m) =a-—my
Since 1/(1—m)>1+m, we have

(1 + )t tut1y
X\~ m
a(x, m)< <—u> *
n
B C(] + m)n"“”'l)

x g
<()

ann“("*”

<f(x) <ni“> o for x > n*

Also 14y <e’. We have

cpttlu+l)

b(x, I’I’Z) < (e'n) (1~ )

f (x (u+ 1)x“+1) _y (x’ (u + 1)x"> b (x (u + 1)x”>

Cﬂu(u+1) cnu(u+l) Cnu(u+l)

(Ll + l)xu nu(u+1)
a( J cnu(u+1) = xu+] f(x)

(1 +1)x" ﬁ (u+1x* u+1
b 4 Cnu(u-l—l) se m= Cnu(u+1) c

< (eu+l)<z‘$_1)“

<"y =c¢', aconstantif c> 2(u+1)

O R s e

for x > kn" where k is some constant determined as follows. By (3) and (4) we

have to show that
xu+1 C”’l
xu+l+cnu(u+l) xu+l

u(u+1)
<]

Let x = kn“, where 2¢ </ < n. We show that the above relation is satisfied for
k>9“"! We must have
CICHZu(zH—l) -+ c/xu+1nu(u+1)scxu+lnu(u+1)
C’C + Clku+l SCku+l
C’C $k"+1(c _ C')
' 1
k > ( cc >u+1
c—c'
1
<Zc*t if >0
1
< 2u + lez"

< 9u+1
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Combining the results of Lemma 3.2 and Lemma 4.1 we get the following

result.

Theorem 4.2. log s, (n) = O(n'“*") when d is odd. Further, assuming Conjecture
3.1, log s,(n) = O(n*?) when d is even.
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