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Abstract

We studycircle valued mapsand consider thepersistence of the homology of their fibers. The
outcome is a finite collection of computable invariants which answer the basic questions on persistence
and in addition encode the topology of the source space and its relevant subspaces. Unlike persistence of
real valued maps, circle valued maps enjoy a different classof invariants calledJordan cellsin addition
to bar codes. We establish a relation between the homology ofthe source space and of its relevant
subspaces with these invariants and provide a new algorithmto compute these invariants from an input
matrix that encodes a circle valued map on an input simplicial complex.
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1 Introduction

Data analysis provides plenty of scenarios where one ends up with a nice space, most often a simplicial
complex, a smooth manifold, or a stratified space equipped with a real valued or a circle valued map. The
persistence theory, introduced in [13], provides a great tool for analyzing real valued maps with the help
of homology. Similar theory for circle valued maps has not yet been developed in the literature. The work
in [20] brings the concept of circle valued maps in the context of persistence by deriving a circle valued map
for a given data using the existing persistence theory. In contrast, we develop a persistence theory for circle
valued maps.

One place where circle valued maps appear naturally is the area of dynamicsof vector fields. Many
dynamics are described by vector fields which admit a minimizing action (in mathematical terms a Lyapunov
closed one form). Such actions can be interpreted as1- cocycles which are intimately connected to circle
valued maps as shown in [1]. Consequently, a notion of persistence for circle valued maps also provides
a notion of persistence for1-cocycles which appear in some data analysis problems [21, 22]. In summary,
persistence theory for circle valued maps promises to play the role for some vector fields as does the standard
persistence theory for the scalar fields [5, 6, 13, 19].

One of the main concepts of the persistence theory is the notion ofbar codes[19]–invariants that char-
acterize a real valued map at the homology level. The angle (circle) valued maps, when characterized at
homology level, require a new invariant calledJordan cellsin addition to the refinement of the bar codes
into four types.

The standard persistence [13, 19] which we refer assublevel persistencedeals with the change in the
homology of the sublevel sets which can not make sense for a circle valuedmap. However, the change in the
homology of the level sets can be considered for both real and circle valued maps. The notion of persistence,
when considered for the level sets of a real valued map [9] is referredhere aslevel persistence. It refines the
sublevel persistence. The zigzag persistence introduced in [4] provides complete invariants (bar codes) for
level persistence of (tame) real valued maps. They are defined using representation theory for linear quivers.

The change in homology of the level sets of a (tame) circle valued map is more complicated because
of the return of the level to itself when one goes along the circle. It turns out that representation theory
of cyclic quivers provides the complete invariants for persistence in the homology of the level sets of the
circle valued maps. This notion of persistence is called here thepersistence for circle valued mapsand its
invariants,bar codesandJordan cellsare shown to be effectively computable.

Our results include a derivation of the homology for the source space andits relevant subspaces in terms
of the invariants (Theorem 3.1 and 3.2). The result also applies to real valued maps as they are special cases
of the circle valued maps. This leads to a result (Corollary 3.4) which to our knowledge has not yet appeared
in the literature1. A number of other topological results which can not be derived from any of the previously
defined persistence theories are described in [3] providing additional motivation for this work.

After developing the results on invariants, we propose a new algorithm to compute the bar codes and
Jordan cells. For a simplicial complex, the entire computation can be done by manipulating the original
matrix that encodes the input complex and the map. The algorithm first builds a block matrix from the orig-
inal incidence matrix which encodes linear maps induced in homology among regular and critical level sets,
more precisely the quiver representationsρr described in section 4. Next, it iteratively reduces this new ma-
trix eliminating and hence computing the bar codes. The resulting matrix which is invertible can be further
processed to Jordan canonical form [10] providing Jordan cells. The algorithm for zigzag persistence [4]
when applied to what we refer in section 3 as theinfinite cyclic covering map̃f can compute bar codes
but not Jordan cells. In contrast, our method can compute the bar codes and Jordan cells simultaneously by

1it was brought to our attention by David Cohen-Steiner that the extended persistence proposed in [6] allows similar connections
between homology of source spaces and persistence.
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manipulating matrices and can also be used as an alternative to compute the bar codes in zig-zag persistence.

Notations. We list here some of the notations that are used throughout.

• For rth homology group of a topological spaceX under an a priori fixed fieldκ, we writeHr(X)
instead ofHr(X; κ).

• For a mapf : X → Y andK ⊆ Y we writeXK := f−1(K).

• We useZ≥0 andZ>0 for non-negative and positive integers respectively.

• In our exposition, we need to use open, semi-open, and closed intervals denoted as(a, b), (a, b] or
[a, b), and[a, b] respectively. To denote an interval, in general, we use the notation{a, b} where ”{”
stands for either “[” or “ (”.

• For a linear mapα : V → W between two vector spaces we write :

kerα := {v ∈ V | α(v) = 0}, img α := {w ∈ α(V ) ⊆ W}, coker α := W/α(V ).

• A matrix A is said to be incolumn echelonform if all zero columns, if any, are on the right to nonzero
ones and the leading entry (the first nonzero number from below) of a nonzero column is always
strictly below of the leading entry of the next column. Similarly,A is said to be inrow echelonform
if all zero rows, if any, are below nonzero ones and the leading entry (the first nonzero number from
the right) of a nonzero row is always strictly to the right of the leading entry of the row below it.

If A is anm × n matrix (m rows andn columns), there exist an invertiblen × n matrix R(A) and
an invertiblem × m matrixL(A) so thatA · R(A) is in column echelon form andL(A) · A is in row
echelon form. Algorithms for deriving the column and row echelon form canbe found in standard
books on linear algebra.

2 Definitions and background

We begin with the technical definition of tameness of a map.
For a continuous mapf : X → Y between two topological spacesX andY , let XU = f−1(U) for

U ⊆ Y . WhenU = y is a single point, the setXy is called afiberovery and is also commonly known as the
level set ofy. We call the continuous mapf : X → Y goodif everyy ∈ Y has a contractible neighborhood
U so that the inclusionXy → XU is a homotopy equivalence. The continuous mapf : X → Y is afibration
if eachy ∈ Y has a neighborhoodU so that the mapsf : XU → U andpr : Xy × U → U are fiber wise
homotopy equivalent. This means that there exist continuous mapsl : XU → Xy ×U with pr|U · l|U = f |U
which, when restricted to the fiber for anyz ∈ U , are homotopy equivalences. In particular,f is good.

Definition 2.1 A proper continuous mapf : X → Y is tameif it is good, and for some discrete closed
subsetS ⊂ Y , the restrictionf : X \ f−1(S) → Y \ S is a fibration. The points inS ⊂ Y which preventf
to be a fibration are calledcritical values.

If Y = R andX is compact orY = S
1, 2 then the set of critical values is finite, says1 < s2 < · · · sk.

The fibers above them,Xsi
, are referred to assingular fibers. All other fibers are calledregular. In the case

of S
1, si can be taken as angles and we can assume that0 < si ≤ 2π. Clearly, for the open interval(si−1, si)

the mapf : f−1(si−1, si) → (si−1, si) is a fibration which implies that all fibers over angles in(si−1, si)
are homotopy equivalent with a fixed regular fiber, sayXti , with ti ∈ (si−1, si).

2 since the mapf is proper andS1 compact, so isX
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Xti
ai Xti+1

biXsi

X[si,ti+1]X[ti,si]

In particular, there exist mapsai : Xti → Xsi
andbi : Xti+1

→
Xsi

, unique up to homotopy defined as follows: Ifti and ti+1 are
contained inUi ⊂ Y where the inclusionXsi

⊂ XUi
is a homotopy

equivalence with a homotopy inverseri : XUi
→ Xsi

, thenai andbi

are the restrictions ofri to Xti andXti+1
respectively. If not, in view

of the tameness off, one can findt′i andt′i+1 in Ui so thatXti andXti+1
are homotopy equivalent toXt′

i

andXt′
i+1

respectively and compose the restrictions ofri with these homotopy equivalences. These maps

determine homotopicallyf : X → Y, whenY = R or S
1. For simplicity in writing, whenY = R we put

tk+1 ∈ (sk,∞) andt1 ∈ (−∞, s1) and whenY = S
1 we puttk+1 = t1 ∈ (sk, s1 +2π). All scalar or circle

valued simplicial maps on a simplicial complex, and all smooth maps with generic isolated critical points
on a smooth manifold or stratified space are tame. In particular, Morse maps are tame.

2.1 Persistence and invariants for real valued maps

Since our goal is to extend the notion of persistence from real valued mapsto circle valued maps, we first
summarize the questions that the persistence answers when applied to real valued maps, and then develop a
notion of persistence for circle valued maps which can answer similar questions and more. We fix a fieldκ
and writeHr(X) to denote the homology vector space ofX in dimensionr with coefficients in a fieldκ.

Sublevel persistence. The persistent homology introduced in [13] and further developed in [19] is con-
cerned with the following questions:

Q1. Does the classx ∈ Hr(X(−∞,t]) originate inHr(X(−∞,t′′]) for t′′ < t? Does the classx ∈
Hr(X(−∞,t]) vanish inHr(X(−∞,t′]) for t < t′?

Q2. What are the smallestt′ and largestt′′ such that this happens?

This information is contained in the inclusion induced linear mapsHr(X(−∞,t]) → Hr(X(−∞,t′]) where
t′ ≥ t and is known as persistence. Since the involved subspaces are sublevel sets, we refer to this persis-
tence assublevel persistence. Whenf is tame, the persistence for eachr = 0, 1, · · ·dim X, is determined by
a finite collection of invariants referred to asbar codes[19]. For sublevel persistence the bar codes are a col-
lection ofclosed intervalsof the form[s, s′] or [s,∞) with s, s′ being the critical values off. From these bar
codes one can derive the Betti numbers ofX(−∞,a], the dimension ofimg(Hr(X(−∞,t]) → Hr(X(−∞,t′]))
and get the answers to questions Q1 and Q2. For example, the number ofr-bar codes which contain the
interval [a, b] is the dimension ofimg(Hr(X(−∞,a]) → Hr(X(−∞,b])). The number ofr-bar codes which
identify to the interval[a, b] is the maximal number of linearly independent homology classes born exactly
in X(−∞,a] but not before and die exactly inHr(X−∞,b]) but not before.

Level persistence. Instead of sublevels, if we use levels, we obtain what we call level persistence. The
level persistence was first considered in [9] but was better understood computationally when the zigzag
persistence was introduced in [4]. Level persistence is concerned withthe homology of the fibersHr(Xt)
and addresses questions of the following type.

Q1. Does the image ofx ∈ Hr(Xt) vanish inHr(X[t,t′]), wheret′ > t or in Hr(X[t′′,t]), wheret′′ < t?

Q2. Canx be detected inHr(Xt′) wheret′ > t or in Hr(Xt′′) wheret′′ < t? The precise meaning of
detectionis explained below.

Q3. What are the smallestt′ and the largestt′′ for the answers to Q1 and Q2 to be affirmative?
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To answer such questions one needs information about the following inclusion induced linear maps:

Hr(Xt) → Hr(X[t,t′]) ← Hr(Xt′).

The level persistenceis the information provided by this collection of vector spaces and linear maps for all
t, t′.

We say thatx ∈ Hr(Xt) is dead inHr(X[t,t′]), t′ > t, if its image byHr(Xt) → Hr(X[t,t′]) vanishes.
Similarly, x is dead inHr(X[t′′,t]), t′′ < t, if its image byHr(Xt) → Hr(X[t′′,t]) vanishes.

We say thatx ∈ Hr(Xt) is detected inHr(Xt′), t′ > t, (resp. t′′ < t), if its image inHr(X[t,t′])
(resp. inHr(X[t′′,t]) is nonzero and is contained in the image ofHr(Xt′) → Hr(X[t,t′]) (resp.Hr(Xt”) →
Hr(X[t”,t])). In Figure 1, the class consisting of the sum of two circles at levelt is not detected on the
right, but is detected at all levels on the left up to (but not including) the level t′. In case of a tame map the
collection of the vector spaces and linear maps is determined up to coherent isomorphisms by a collection of
invariants calledbar codes for level persistencewhich are intervals of the form[s, s′], (s, s′), (s, s′], [s, s′)
with s, s′ critical values as opposed to thebar codes for sublevel persistencewhich are intervals of the
form [s, s′], [s,∞) with s, s′ critical values. These bar codes are calledinvariantsbecause two tame maps
f : X → R andg : Y → R which are fiber wise homotopy equivalent have the same associated bar codes.
In the case of level persistence the open end of an interval signifies the death of a homology class at that
end (left or right) whereas a closed end signifies that a homology class cannot be detected beyond this level
(left or right). In the case of the sublevel persistence the left end signifiesbirth while the rightdeath. Level
persistence provides considerably more information than the sub level persistence. The bar codes of the sub
level persistence can be recovered from the ones of level persistence. Precisely a level bar code[s, s′] gives a
sublevel bar code[s,∞) and a level bar code[s, s′) gives a sublevel bar code[s, s′]; the sublevel persistence
does not see any of the level bar codes(s, s′) or (s, s′]. It turns out that the bar codes of the level persistence
can also be recovered from the bar codes of the sub level persistenceof f and additional maps canonically
associated tof.

In Figure 1, we indicate the bar codes both for sub level and level persistence3 for some simple map
f : X → R in order to illustrate their differences. The spaceX is a tube open on one end andf is the height
function laid horizontally.

} H0

} H1

} H0

} H1
sub-level persistence{

level persistence{

tt′

Figure 1: Bar codes for level and sub-level persistence.

3the white circles indicate open ends and the dark circles indicate closed ends
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3 Persistence for circle valued maps

Let f : X → S
1 be a circle valued map. The sublevel persistence for such a map cannot be defined since

circularity in values prevents defining sub-levels. Even level persistence cannot be defined as per se since
the intervals may repeat over values. To overcome this difficulty we associate the infinite cyclic covering
mapf̃ : X̃ → R for f . It is defined by the commutative diagram:

X̃
f̃

−−−−→ R

ψ





y

p





y

X
f

−−−−→ S
1

The mapp : R → S
1 is the universal covering of the circle (the map which assigns to the numbert ∈ R the

angleθ = t(mod 2π) andψ is the pull back ofp by the mapf which is an infinite cyclic covering. Notice
that if p(t) = θ thenX̃t andXθ are identified byψ. If x ∈ Hr(Xθ) = Hr(X̃t), p(t) = θ, the questions Q1,
Q2, Q3 forf andX can be formulated in terms of the level persistence forf̃ andX̃.

Suppose thatx ∈ Hr(X̃t) = Hr(Xθ) is detected inHr(X̃t′) for somet′ ≥ t + 2π. Then, in some
sense,x returns toHr(Xθ) going along the circleS1 one or more times. When this happens, the classx
may change in some respect . This gives rise to new questions that were not encountered in sublevel or level
persistence.

Q4. Whenx ∈ Hr(Xθ) returns, how does the “returned class” compare with the original classx? It may
disappear after going along the circle a number of times, or it might never disappear and if so how
does this class change after its return.

To answer Q1-Q4 one has to record information aboutHr(Xθ) → Hr(X[θ,θ′]) ← Hr(Xθ′) for any pair of
anglesθ andθ′ which differ by at most2π. This information is referred to as thepersistence for the circle
valued mapf .

Whenf is tame, this is again completely determined up to coherent isomorphisms by a finite collection
of invariants. However, unlike sublevel and level persistence for real valued maps, the invariants include
structures other than bar codes calledJordan cells. Specifically, for anyr = 0, 1, · · · , dim(X) we have two
types of invariants:

• bar codes: intervals with endss, s′ 0 < s ≤ 2π, s ≤ s′ < ∞, that are closed or open ats or s′,
precisely of one of the forms[s, s′], (s, s′], [s, s′), and(s, s′). These intervals can be geometerized as
“spirals” with equations in (1). For any interval{s, s′} the spiral is the plane curve (see Figure 3 in
section 4)

x(θ) = (θ + 1 − s) cos θ
y(θ) = (θ + 1 − s) sin θ

with θ ∈ {s, s′}. (1)

• Jordan cells. A Jordan cell is a pair(λ, k), λ ∈ κ\0, k ∈ Z>0, whereκ denotes the algebraic closure
of the fieldκ. It corresponds to ak × k matrix of the form















λ 1 0 . . . 0
0 λ 1 . . . 0
...
0 . . . λ 1
0 . . . 0 λ















. (2)
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• r-invariants. Given a tame mapf : X → S
1, the collection of bar codes and Jordan cells for each

dimensionr ∈ {0, 1, 2, · · ·dimX} constitute ther-invariantsof the mapf.

We will define all of the above items in the next section using quiver representations.
The bar codes forf can be inferred from̃f : X̃[a,b] → R with [a, b] being any large enough interval.

Specifically, the bar codes off : X → S
1 are among the ones of̃f : X̃[a,b] → R for (b − a) being at most

supθ dim Hr(Xθ).
The Jordan cells can not be derived from̃f : X̃ → R or any of its truncations̃f : X̃[a,b] → R unless

additional information, like the deck transformation ofX̃, is provided. The end points of any bar code forf
correspond to critical angles, that is,s ands′ (mod 2π) of a bar code interval{s, s′} are critical angles for
f . One can recover the following information from the bar codes and Jordan cells:

1. The Betti numbers of each fiber,

2. The Betti numbers of the source spaceX, and

3. The dimension of the kernel and the image of the linear map induced in homology by the inclusion
Xθ ⊂ X as well as other additional topological invariants not discussed here [3].

Theorems 3.1 and 3.2 make the above statement precise. LetB be a bar code described by a spiral
in (1) andθ be any angle. Letnθ(B) denote the cardinality of the intersection of the spiral with the ray
originating at the origin and making an angleθ with thex-axis. For the Jordan cellJ = (λ, k), letn(J) = k
andλ(J) = λ. Furthermore, letBr andJr denote the set of bar codes and Jordan cells forr-dimensional
homology. We have the following results.

Theorem 3.1 dimHr(Xθ) =
∑

B∈Br
nθ(B) +

∑

J∈Jr
n(J).

Theorem 3.2 dimHr(X) = #{B ∈ Br|both ends closed} + #{B ∈ Br−1|both ends open} + #{J ∈
Jr|λ(J) = 1} + #{J ∈ Jr−1|λ(J) = 1}.

Using the same arguments as in the proof of the above Theorems one can derive:

Proposition 3.3 dim img(Hr(Xθ) → Hr(X)) = #{B ∈ Br|nθ(B) 6= 0 and both ends closed} + #{J ∈
Jr|λ = 1}

A real valued tame mapf : X → R can be regarded as a circle valued tame mapf ′ : X → S
1

by identifyingR to (0, 2π) with critical valuest1, · · · , tm becoming the critical anglesθ1, · · · , θm where
θi = 2 arctan ti + π. The mapf ′ in this case will not have any Jordan cells and the bar codes will be the
same as level persistence bar codes. We have the following corollary:

Corollary 3.4 dimHr(Xθ) =
∑

B∈Br
nθ(B) and

dimHr(X) = #{B ∈ Br|both ends closed} + #{B ∈ Br−1|both ends open}.

Theorem 3.1 is quite intuitive and is in analogy with the derived results for sublevel and level persis-
tence [4, 19]. Theorem 3.2 is more subtle. Its counterpart for real valued function (Corollary 3.4) has not yet
appeared in the literature though a related result for homology of source space can be derived from extended
persistence [6]. The proofs of these results require the definition of thebar codes and Jordan cells which
appear in the next section. The proofs are sketched in section 5.

The Questions Q1-Q3 can be answered using the bar codes. The question Q4 about returned homology
can be answered using the bar codes and Jordan cells.
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φ

2πθ4θ2θ10

circle 1

circle 3

circle 2

1

2

3

Y0 Y1Y

θ6θ5θ3

mapφ r-invariants

circle 1: 1 times around 1,-3 times around 2, -2 times around 3
circle 2: 1 times around 1, 4 times around 2, 1 time around 3
circle 3: 2 times around 1, 2 times around 2, 2 times around 3

dimension bar codes Jordan cells
0 (1, 1)

(θ6, θ1 + 2π] (3, 2)
1 [θ2, θ3]

(θ4, θ5)

Figure 2: Example ofr-invariants for a circle valued map

Figure 2 indicates a tame mapf : X → S
1 and the corresponding invariants, bar codes, and Jordan

cells. The spaceX is obtained fromY in the figure by identifying its right endY1 (a union of three circles)
to the left endY0 (again a union of three circles ) following the mapφ : Y1 → Y0. The mapf : X → S

1

is induced by the projection ofY on the interval[0, 2π]. We haveH1(Y1) = H1(Y0) = κ ⊕ κ ⊕ κ andφ
induces a linear map in1-homology represented by the matrix4





1 1 2
−3 4 2
−2 1 2



 .

The first generator (circle 1) ofH1(X̃2π) is dead inH1(X̃[θ,2π]) for θ ≤ θ6 but not forθ ∈ (θ6, 2π] and is

detected inH1(X̃2π+θ) for 0 ≤ θ ≤ θ1 but not forθ > θ1. It generates a bar code(θ6, 2π + θ1]. The other
two (circle 2 and 3) never die and provide a Jordan cell(3, 2). In Appendix we show how our algorithm can
be used to compute the bar codes and Jordan cells for the above example.

4 Representation theory and its invariants

The invariants for the circle valued map are derived from the representation theory of quivers. The quivers
are directed graphs. The representation theory of simple quivers suchas paths with directed edges was
described by Gabriel [11] and is at the heart of the derivation of the invariants for zigzag and then level
persistence in [4]. For circle valued maps, one needs representation theory for circle graphs with directed
edges. This theory appears in the work of Nazarova [17], and Donovan and Ruth-Freislich [12].

4Each circle is oriented counterclockwise and represents a1-dimensional homology class; “k times (−k times) around the
circle” means ” going aroundk times counter clockwise (clockwise respectively)”.
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x2

b1
a2

b2

x3

x2m−1

x2m−2

x4

a1

bm

am

x2m

x1

Let G2m be a directed graph with2m vertices,x1, x1, · · ·x2m.
Its underlying undirected graph is a simple cycle. The directed
edges inG2m are of two types:forward ai : x2i−1 → x2i, 1 ≤ i ≤
m, andbackwardbi : x2i+1 → x2i, 1 ≤ i ≤ m−1, bm : x1 → x2m.

We think of this graph as being located on the unit circle cen-
tered at the origino in the plane.

A representationρ on G2m is an assignment of a vector space
Vx to each vertexx and a linear mapℓe : Vx → Vy for each oriented
edgee = {x, y}. Two representationsρ andρ′ are isomorphic if
for each vertexx there exists an isomorphism from the vector space
Vx of ρ to the vector spaceV ′

x of ρ′, and these isomorphisms com-
mute with the linear mapsVx → Vy andV ′

x → V ′
y . A non-trivial

representation assigns at least one vector space which is not zero-dimensional. A representation isindecom-
posableif it is not isomorphic to the sum of two nontrivial representations.

Given two representationsρ andρ′, their sumρ ⊕ ρ′ is a representation whose vector spaces are the
direct sumsVx⊕V ′

x related by linear maps that are the direct sumsℓe⊕ ℓ′e. It is not hard to observe that each
representation has a decomposition as a sum of indecomposable representations unique up to isomorphisms.

We provide a description of indecomposable representations of the quiver G2m. For any triple of integers
{i, j, k}, 1 ≤ i, j ≤ m, k ≥ 0, one may have any of the four representations,ρI([i, j]; k), ρI((i, j]; k),
ρI([i, j); k) , andρI((i, j); k) defined below. For any Jordan cell(λ, k) one has the representationρJ(λ, k)
defined below. The exponentsI andJ indicate that these representations are associated with a bar code
(interval) or a Jordan cell respectively and hence we call them bar code and Jordan cell representations.

• Bar code representationρI({i, j}; k): Suppose that the evenly indexed vertices{x2, x4, · · ·x2m} of
G2m which are the targets of the directed arrows correspond to the angles0 < s1 < s2 < · · · < sm ≤
2π. Draw the spiral curve given by (1) for the interval{si, sj + 2kπ}; refer to Figure 3.

For eachxi, let {e1
i , e

2
i , · · · } denote the ordered set (possibly empty) of intersection points of the ray

oxi with the spiral. While considering these intersections, it is important to realize that the point
(x(si), y(si)) (resp.(x(sj + 2kπ), y(sj + 2kπ))) does not belong to the spiral (1) if{i, j} is open at
i (resp.j). For example, in Figure 3, the last circle on the rayox2j is not on the spiral since[i, j) in
ρI([i, j); 2) is open at right.

Let Vxi
denote the vector space generated by the base{e1

i , e
2
i , · · · }. Furthermore, letαi : Vx2i−1

→
Vx2i

andβi : Vx2i+1
→ Vx2i

be the linear maps defined on bases and extended by linearity as follows:
assign the vectoreh

2i ∈ Vxi
to eℓ

2i±1 if eh
2i is an adjacent intersection point to the pointseℓ

2i±1 on the
spiral. If eh

2i does not exist, assign zero toeℓ
2i±1. If eℓ

2i±1 do not go to zero,h has to bel, l − 1, or
l + 1. The construction above provides a representation onG2m which is indecomposable. Once the
anglessi are associated to the verticesx2i one can also think of these representationsρI({i, j}; k) as
the bar codes[si, sj + 2kπ], (si, sj + 2kπ], [si, sj + 2kπ), and(si, sj + 2kπ).

• Jordan cell representationρJ(λ, k): Assign the vector space with the base{e1, e2, · · · , ek} to eachxi

and take all linear mapsαi but one (sayα1) andβi the identity. The linear mapα1 is given by the
Jordan matrix defined by(λ, k) in (2). Again this representation is indecomposable.

It follows from the work of [12, 17] that whenκ is algebraically closed5, the bar code and Jordan cell
representations are all and only indecomposable representations of the quiverG2m. The collection of all bar
code and Jordan cell representations of a representationρ constitutes itsinvariants.

5whenκ is not algebraically closed Jordan cells have to be replaced by conjugate classes of indecomposable (not conjugated to
a direct sum of matrices) matrices with entries inκ.
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o

sj

ox2i
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Figure 3: The spiral for[si, sj + 4π).

Now, consider the representationρ on the graphG2m given by the vector spacesV2i−1 := Vx2i−1
, V2i :=

Vx2i
and the linear mapsαi andβi. To such a representationρ, we associate a mapMρ :

⊕

1≤i≤m V2i−1 →
⊕

1≤i≤m V2i which is represented by a block matrix also denoted asMρ:















α1 −β1 0 . . . . . . 0
0 α2 −β2 . . . . . . 0
...

...
...

...
...

0 . . . . . . . . . . . . αm−1 −βm−1

−βm . . . . . . . . . . . . αm















For this representation we define its dimension characteristic as the2m-tuple of positive integers

dim ρ = (n1, r1 · · ·nm, rm)

with ni = dimVx2i−1
andri = dim Vx2i

and denote byker ρ := kerMρ andcoker ρ = coker Mρ. For the
sum of two such representationsρ = ρ1 ⊕ ρ2 we have:

Proposition 4.1

1. dim(ρ1 ⊕ ρ2) = dim ρ1 + dim ρ2,

2. dim ker(ρ1 ⊕ ρ2) = dim ker ρ1 + dim ker ρ2,

3. dim coker (ρ1 ⊕ ρ2) = dim coker ρ1 + dim coker ρ2.

The description of a bar code representation permits explicit calculations.

Proposition 4.2

1. If i ≤ j then
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(a) dim ρI([i, j]; k) is given by:

nl = k + 1 if (i + 1) ≤ l ≤ j andk otherwise,

rl = k + 1 if i ≤ l ≤ j andk otherwise

(b) dim ρI((i, j]; k) is given by:

nl = k + 1 if (i + 1) ≤ l ≤ j andk otherwise,

rl = k + 1 if (i + 1) ≤ l ≤ j andk otherwise,

(c) dim ρI([i, j); k) is given by:

nl = k + 1 if (i + 1) ≤ l ≤ j andk otherwise,

rl = k + 1 if i ≤ l ≤ (j − 1) andk otherwise,

(d) dim ρI((i, j); k) is given by:

nl = k + 1 if (i + 1) ≤ l ≤ j andk otherwise,

rl = k + 1 if (i + 1) ≤ l ≤ (j − 1) andk otherwise

2. If i > j then similar statements hold.

(a) dim ρI([i, j]; k) is given by:

nl = k if (j + 1) ≤ l ≤ i andk + 1 otherwise;

rl = k if (j + 1) ≤ l ≤ (i − 1)j andk + 1 otherwise

(b) dim ρI((i, j]; k) is given by:

nl = k if (j + 1) ≤ l ≤ i andk + 1 otherwise.

rl = k if (j + 1) ≤ l ≤ i andk + 1 otherwise,

(c) dim ρI([i, j); k) is given by:

nl = k if (j + 1) ≤ l ≤ i andk + 1 otherwise;

rl = k if j ≤ l ≤ (i − 1) andk + 1 otherwise,

(d) dim ρI((i, j); k) is given by:

nl = k if (j + 1) ≤ l ≤ i andk + 1 otherwise;

rl = k if j ≤ l ≤ i andk + 1 otherwise.

3. dim ρJ(λ, k) is given byni = ri = k

Proposition 4.3

1. dim ker ρI([i, j]; k) = 0, dim coker ρI([i, j]; k) = 1,

2. dim ker ρI([i, j); k) = 0, dim coker ρI([i, j); k) = 0,

3. dim ker ρI((i, j]; k) = 0, dim coker ρI((i, j]; k) = 0,

4. dim ker ρI((i, j); k) = 1, dim coker ρI((i, j); k) = 0,

5. dim ker ρJ(λ, k) = 0 (resp. 1) ifλ 6= 1 (resp. 1),

6. dim coker ρJ(λ, k) = 0 (resp. 1) ifλ 6= 1 (resp. 1).
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Observation 4.4 A representationρ has no indecomposable components of typeρI in its decomposition iff
all linear mapsα′

is andβ′
is are isomorphisms. For such a representation, starting with an indexi, consider

the linear isomorphism

Ti = β−1
i · αi · β

−1
i−1 · αi−1 · · ·β

−1
2 · α2 · β

−1
1 · α1 · β

−1
m · αm · β−1

m−1 · αm−1 · · ·β
−1
i+1 · αi+1.

The Jordan canonical form [10] of the isomorphismTi is independent ofi and is a block diagonal matrix
with the diagonal consisting of Jordan cells(λ, k)s. Clearly,ρ is the direct sum ofρJ(λ, k)s, the Jordan cell
representations ofρ.

Definition 4.5 (r-invariants.) Let f be a circle valued tame map defined on a topological spaceX. For f
with m critical angles0 < s1 < s2, · · · sm ≤ 2π, consider the quiverG2m with the verticesx2i identified
with the anglessi and the verticesx2i−1 identified with the anglesti that satisfy0 < t1 < s1 < t2 <
s2, · · · tm < sm.

For anyr, consider the representationρr of G2m with Vxi
= Hr(Xxi

) and the linear mapsαis andβis
induced in ther-homology by mapsai : Xx2i−1

→ Xx2i
and bi : Xx2i+1

→ Xx2i
described in section 2.

The bar code and Jordan cell representations ofρr are independent of the choice oftis and are collectively
referred as ther-invariants off.

5 Proof of the main results

The Figure 2 and the bar codes listed below suggest why a semi-closed (one end open and the other closed)
bar code does not contribute to the homology of the total spaceX and why a closed bar code (both ends
closed) inBr contributes one unit while an open (both end open) bar code inBr−1 contributes one unit to the
Hr(X). Indeed, in our example, a semi-closed bar code inB1 adds to the total space a cone overS

1, which
is a contractible space. It gets glued to the total space along a generator ofthe cone (a segment connecting
the apex toS1), again a contractible space. A closed bar code inB1 adds a cylinder ofS1 whoseH1 has
dimension1. It gets glued to the total space along a generator of the cylinder (a segment connecting the
same point on the two copies ofS

1), again a contractible space. An open bar code inB1 adds the suspension
overS1, topologically a2-sphere which gets glued along a meridian, a contractible space. This contributes
a dimension toH2.

The lack of contribution of a Jordan cell withλ 6= 1 as well as the contribution of one unit of a Jordan
cell in Jr with λ = 1 to bothr andr + 1 dimensional homology of the total space should not be a surprise
for the reader familiar with the calculation of the homology of mapping torus.

Below we explain rigorously but schematically the arguments for the proof ofTheorems 3.1, 3.2, and
Corollary 3.4.

The proof of Theorem 3.1 is a consequence of Propositions 4.1 and 4.2.The proof of Theorem 3.2
proceeds along the following lines.

First observe that, up to homotopy, the spaceX can be regarded as the iterated mapping torusT de-
scribed below. Consider the collection of spaces and continuous maps:

Xm = X0
b0=bm←− R1

a1−→ X1
b1←− R2

a2−→ X2 · · ·Xm−1
bm−1
←− Rm

am−→ Xm

with Ri := Xti andXi := Xsi
and denote byT = T (α1 · · ·αm; β1 · · ·βm) the space obtained from the

disjoint union
(

⊔

1≤i≤m

Ri × [0, 1]) ⊔ (
⊔

1≤i≤m

Xi)

by identifyingRi × {1} to Xi by αi andRi × {0} to Xi−1 by βi−1. Denote byfT : T → [0, m] where
fT : Ri × [0, 1] → [i − 1, i] is the projection on[0, 1] followed by the translation of[0, 1] to [i − 1, i]. This
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map is a homotopical reconstruction off : X → S
1 provided that, with the choice of anglesti, si and maps

ai bi described in section 2,Xi := f−1(si), Ri := f−1(ti).
LetP ′ denote the space obtained from the disjoint union

(
⊔

1≤i≤m

Ri × (ǫ, 1]) ⊔ (
⊔

1≤i≤m

Xi)

by identifyingRi × {1} to Xi by αi, andP ′′ denote the space obtained from the disjoint union

(
⊔

1≤i≤m

Ri × [0, 1 − ǫ) ⊔ (
⊔

1≤i≤m

Xi)

by identifyingRi × {0} to Xi−1 by βi−1.
LetR =

⊔

1≤i≤m Ri andX =
⊔

1≤i≤m Xi. Then, one has:

1. T = P ′ ∪ P ′′,

2. P ′ ∩ P ′′ = (
⊔

1≤i≤m Ri × (ǫ, 1 − ǫ)) ⊔ X , and

3. the inclusions(
⊔

1≤i≤m Ri×{1/2})⊔X ⊂ P ′∩P ′′ as well as the obvious inclusionsX ⊂ P ′andX ⊂
P ′′ are homotopy equivalences.

The Mayer-Vietoris long exact sequence leads to the diagram

Hr(R)
Mρr // Hr(X )

''OOOOOOOOOOO

· · · // Hr+1(T )

66nnnnnnnnnnnn ∂r+1// Hr(R) ⊕ Hr(X )

pr1

OO

N // Hr(X ) ⊕ Hr(X )

(Id,−Id)

OO

(ir,−ir) // Hr(T ) //

Hr(X )

in2

OO

Id // Hr(X )

∆

OO

Here∆ denotes the diagonal,in2 the inclusion on the second component,pr1 the projection on the first
component,ir the linear map induced in homology by the inclusionX ⊂ T , andMρr

the map given by the
matrix















αr
1 −βr

1 0 . . . . . . 0
0 αr

2 −βr
2 . . . . . . 0

...
...

...
...

...
0 . . . . . . . . . . . . αr

m−1 −βr
m−1

−βr
m . . . . . . . . . . . . αr

m















(3)

with αr
i : Hr(Ri) → Hr(Xi) andβr

i : Hr(Ri+1) → Hr(Xi) induced by the mapsαi andβi, andN defined
by

(

αr Id
−βr Id

)

whereαr andβr are the matrices










αr
1 0 . . . . . . 0

0 αr
2 . . . . . . 0

...
...

...
...

...
0 0 . . . 0 αr

m−1











12

















0 βr
1 0 . . . 0

0 0 βr
2 . . . 0

...
...

...
...

...
0 . . . . . . 0 βr

m−1

βr
m 0 . . . 0 0















.

From the diagram above we retain only the long exact sequence

· · · → Hr(R)
Mρr−−−→ Hr(X ) → Hr(T ) → Hr−1(R)

Mρr−1
−−−−→ Hr−1(X ) → · · · (4)

from which we derive the short exact sequence

0 → coker ρr → Hr(T ) → ker ρr−1 → 0 (5)

and then
Hr(T ) = coker ρr ⊕ ker ρr−1 (6)

Theorem 3.2 follows from Propositions 4.1, 4.3 and the equation (6) above. A specified decomposition
of ρr andρr−1 into indecomposable representations and a splitting in the sequence (5) provide specified
elements inHr(Xθ) andHr(T ) which can be compared. This leads to the verification of Proposition 3.3.

6 Algorithm

Given a circle valued tame mapf : X → S
1, we now present an algorithm to compute the bar codes and the

Jordan cells whenX is a finite simplicial complex, andf is generic and linear. This makes the map tame.
Genericity means thatf is injective on vertices. To explain linearity we recall that, for any simplexσ ∈ X,
the restrictionf |σ admits liftingsf̂ : σ → R, i.e. f̂ is a continuous map which satisfiesp · f̂ = f |σ. The map
f : X → S

1 is calledlinear if for any simplexσ, at least one of the liftings (and then any other) is linear.
Our algorithm takes the simplicial complexX equipped with the mapf as input and, for anyr,

computes the matrixMρr
of the representationρr for f . This requires recognizing the critical values

s1, s2, · · · sm ∈ S
1 of f , and for conveniently chosen regular valuest1, t2, · · · tm ∈ S

1, determining the
vector spacesV2i−1 = Hr(Xti), V2i = Hr(Xsi

) with the linear mapsαi andβi as matrices. We consider
the block matrixMρr

:
⊕

1≤i≤m V2i−1 →
⊕

1≤i≤m V2i described in the previous section.
We compute the bar codes from the block matrixMρr

first, and then the Jordan cells. The algorithm
consists of three steps. We describe the first and second steps in sufficient details. The third step is a routine
application of Observation 4.1 and is accomplished by standard algorithms in linear algebra (reduction of
the matrix to the canonical Jordan form).

• Step 1.Compute the matricesαi, βi that constitute the matrixMρr
of the representationρr.

• Step 2. Process the matrix ofMρr
to derive the bar codes ending up with a representationρ′r whose

all α′
is andβ′

is are invertible matrices.

• Step 3Compute the Jordan cells ofρr from the representationρ′r.
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Step 1. In Step 1 we begin with the incidence matrix of the input simplicial complexX equipped with the
mapf : X → S

1. Let the angles0 ≤ s1 < s2 · · · sm ≤ 2π be the critical values off . Choose a collection
of regular angles0 < t1 < t2 · · · tm < 2π with ti < si < ti+1 < si+1. Consider a canonical subdivision
of X into a cell complex so thatX[ti,ti+1], andXti are subdivided into subcomplexesRi andXi as follows.
For any open simplexσ we associate the open cells :

1. σ(i) := σ ∩ Xti with dim(σ(i)) = dimσ − 1 if the intersection is nonempty

2. σ〈i〉 := σ ∩ X(ti,ti+1) with dimσ〈i〉 = dim σ if the intersection is nonempty.

The cells ofXi are exactly of the formσ(i) and their incidences are given asI(σ(i), τ(i)) = I(σ, τ)
whereI(σ, τ) = 0, +1, or − 1 depending on whetherτ is a coface ofσ and whether their orientations
match or not. The cells ofRi consist of cells ofXi, Xi+1, and all cells of the formσ〈i〉. The incidences
are given asI(σ〈i〉, τ〈i〉) = I(σ, τ), I(σ(i), σ〈i〉) = 1, andI(σ(i + 1), σ〈i〉) = −1. All other incidences
are zero. Assume that we are given a total order for the simplices ofX that is compatible withf and
also the incidence relations. This induces a total order for the cells inXi andXi+1 and also the cells in
R′

i = Ri \Xi ⊔Xi+1 for any1 ≤ i ≤ m with Xm+1 := X1. Impose a total order onRi by juxtaposing the
total orders ofXi, Xi+1, andR′

i in this sequence. Clearly, the incidence matrix forRi can be derived from
the incidence matrix ofX.

The incidence matrix ofA = Xi ⊔ Xi+1 appears in the upper left corner of the matrix forR := Ri.
We obtain the matrices for the linear mapsαi : Hr(Xti) → Hr(Xsi

) andβi : Hr(Xti+1
) → Hr(Xsi

) by
using the persistence algorithm [7, 19] onR andA as follows. First, we run the persistence algorithm on
the incidence matrix forA to compute a base of the homology groupHr(A). We continue the procedure
by adding the columns and rows of the matrix forR to obtain a base ofHr(R). It is straightforward to
compute a matrix representation of the inclusion induced linear mapHr(A) → Hr(R) with respect to the
bases computed by the persistence algorithm.

Step 2. Step 2 takes the matrix representationMρr
constructed out of matricesαi, βi computed in step

1, and uses four elementary transformationsT1(i), T2(i), T3(i), andT4(i) defined below to transformMρr

to Mρ′r
= T···(· · · )Mρr

, whose total number of rows and columns is strictly smaller than that ofMρr
. For

convenience, let us writeρ = ρr andρ′ = ρ′r. Each elementary transformationT modifies the representation
ρ to the representationρ′ while keeping indecomposable Jordan cell representations unaffected but possibly
changing the bar code representations. Some of these bar code representations remain the same, some are
eliminated, and some are shortened by one unit as described below. For each elementary transformation we
record the changes to reconstruct the original bar codes. The elementary transformations are applied as long
as the linear mapsαi or βi satisfy some injectivity and surjectivity property. When no such transformation
is applicable, the algorithm terminates with allαi andβi being necessarily invertible matrices. At this point
the bar codes can be reconstructed reading backwards the eliminations/modifications performed. The Jordan
cells then can be obtained as detailed in Step 3.

The elementary transformations modify the bar codes as follows:

• T1(i) shortens the bar codes(i − 1, k} to (i, k} if i ≥ 2 and shortens the bar codes(m, k}, m < k, to
(1, k − m} if i = 1.

• T2(i) shortens the bar codes{l, i + km] to {l, i − 1 + km] for k ≥ 0.

• T3(i) shortens the bar codes[i, k} to [i + 1, k} for i < m and to[1, k − m} if i = m.

• T4(i) shortens the bar codes{l, (i + 1) + km) to {l, i + km) for k ≥ 0.
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It is understood that if an elementary transformation applied to a bar code provides an interval which is not a
bar code, then the bar code is eliminated. ConsequentlyT1(i) eliminates the bar codes(i− 1, i), (i− 1, i]6,
T2(i) eliminates the bar codes[i, i], (i − 1, i], T3(i) eliminates the bar codes[i, i + 1), [i, i], andT4(i)
eliminates the bar codes(i, i + 1), [i, i + 1).

To decide how many bar codes are eliminated one uses Proposition 6.1 below.Let #{i, j}ρ denote the
number of bar codes of type{i, j}.

Proposition 6.1

1. #(i, i + 1)ρ = dim(kerβi ∩ ker αi+1)

2. #[i, i]ρ = dim(V2i/((βi(V2i+1) + αi(V2i−1))

3. #(i, i + 1]ρ = dim(βi(V2i+1) + αi(ker βi−1)) − dim(βi(V2i+1))

4. #[i, i + 1)ρ = dim(αi(V2i−1) + βi(ker αi+1)) − dim(αi(V2i−1))

The following diagrams define the elementary transformations and indicate the relation between the rep-
resentationρ = {Vi, αi, βi} and the representationρ′ = {V ′

i , α′
i, β

′
i} obtained after applying an elementary

transformation.

• TransformationT1(i):

· · · V2i+1
αi+1oo

β′
i ""DD

DD
DD

DD

βi // V2i

²²

V2i−1
αioo

²²

βi−1 // V2i−2 · · ·oo

V ′
2i V ′

2i−1
α′

i

oo
β′

i−1

;;wwwwwwwww

V ′
2i−1 = V2i−1/ kerβi−1, V ′

2i = V2i/αi(ker βi−1), Vk = V ′
k, k 6= 2i, 2i − 1

• TransformationT2(i):

· · · V2i+1
αi+1oo

β′
i ""DD

DD
DD

DD

βi // V2i V2i−1
αioo βi−1 // V2i−2 · · ·oo

V ′
2i

OO

V ′
2i−1

α′
ioo

OO

β′
i−1

;;wwwwwwwww

V ′
2i = βi(V2i+1), V ′

2i−1 = α−1
i (βi(V2i+1)), Vk = V ′

k, k 6= 2i − 1, 2i

• TransformationT3(i):

· · ·
βi+1 // V2i+2 V2i+1

αi+1oo βi // V2i V2i−1

α′
i||zz

zz
zz

zz

αioo βi−1 // · · ·

V ′
2i+1

α′
i+1

ccGGGGGGGGG

OO

β′
i // V ′

2i

OO

V ′
2i = αi(V2i−1), V ′

2i+1 = β−1
i (αi(V2i−1)), Vk = V ′

k, k 6= 2i, 2i + 1

6if i = 1 eliminates the bar codes(m, m + 1) and(m, m + 1]

15



• TransformationT4(i):

· · ·
βi+1 // V2i+2 V2i+1

αi+1oo

²²

βi // V2i

²²

V2i−1
αioo

α′
i||zz

zz
zz

zz

βi−1 // · · ·

V ′
2i+1

β′
i //

α′
i+1

ccGGGGGGGGG

V ′
2i

V ′
2i+1 = V2i+1/ kerαi+1, V ′

2i = V2i/βi(ker αi+1), Vk = V ′
k, k 6= 2i, 2i + 1.

The verification of the properties stated above and the proof of Proposition 6.1 are straightforward for
indecomposable representations described in section 4 and therefore for arbitrary representations.

As one can see from the diagrams above, whenβi−1 is injective, the representationsρ andρ′ are the
same and we say thatT1(i) is not applicable. Similarly, whenβi is surjective,T2(i) is not applicable, when
αi is surjective,T3(i) is not applicable, and whenαi+1 is injective,T4(i) is not applicable. When allαi, βi

are invertible, no elementary transformation is applicable and at this stage the algorithm (Step 2) terminates.
To explain how the algorithm works, it is convenient to consider the followingblock matricesB2i−1 and

B2i, i = 1, · · · , m, which become the sub-matrices ofMρr
in ( 3) when the entriesβi are replaced with

−βi. Let

B2i−1 =

(

αi βi

0 αi+1

)

, B2i =

(

βi 0
αi+1 βi+1

)

(7)

for i = 1, 2, · · · (m − 1) and

B2m−1 =

(

αm βm

0 α1

)

, B2m =

(

βm 0
α1 β1

)

. (8)

We modify Mρ by modifying successively each blockBk. Whenm > 1 the algorithm iterates over the
blocks in multiple passes. In a single pass, it processes the blocksB1, B2, . . . , B2m in this order.

WhenB2(i−1) =

(

βi−1 0
αi, βi

)

is processed then:

1. If βi−1 is not injective, we applyT1(i). This boils down to changing the bases ofV2i−1 andV2i so that
the matrixB2(i−1) becomes







βi−1,1 0 0

α1
i,1 α1

i,2 β1
i

α2
i,1 0 β2

i







with
(

βi−1,1 0
)

in column echelon form and

(

α1
i,2

0

)

in row echelon form.

In this block matrix the first and third columns correspond toV ′
2i−1 andV2i+1 respectively, and the

first and third rows toV2(i−1) andV ′
2i respectively. The second column and row become “irrelevant”

as a result of which the modified block matrixB2(i−1) becomes

(

β′
i−1 0
α′

i β′
i

)

=

(

βi−1,1 0
α2

i,1 β2
i

)

.

2. If βi is not surjective, we applyT2(i). This boils down to changing the bases ofV2i−1 andV2i so that
the matrixB2(i−1) becomes







βi−1,1 βi−1,2 0

α1
i,1 α1

i,2 β1
i

α2
i,1 0 0
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with

(

β1
i

0

)

in row echelon form and
(

α2
i,1 0

)

in column echelon form.

In this block matrix the second and third columns correspond toV ′
2i−1 andV2i+1 respectively, and the

first and second rows toV2(i−1) andV ′
2i respectively. We make the first column and third row“irrelevant”

as a result of which the modified block matrixB2(i−1) becomes

(

β′
i−1 0
α′

i β′
i

)

=

(

βi−1,2 0
α1

i,2 β1
i

)

.

WhenB2i−1 is processed then:

3. If αi is not surjective, we applyT3(i). This boils down to changing the bases ofV2i+1 andV2i so that
the matrixB2i−1 becomes







α1
i β1

i,1 β1
i,2

0 β2
i,1 0

0 αi+1,1 αi+1,2







with

(

α1
i

0

)

in row echelon form and
(

β2
i,1 0

)

in column echelon form.

In this block matrix the first and third columns correspond toV2i−1 andV ′
2i+1 respectively, and the first

and third rows toV ′
2i andV2i+2 respectively. We make the second column and second row “irrelevant”

as a result of which the modified block matrixB2i−1 becomes

(

α′
i β′

i

0 α′
i+1

)

=

(

α1
i β1

i,2

0 αi+1,2

)

.

4. If αi+1 is not injective, we applyT4(i). This boils down to changing the bases ofV2i+1 andV2i so
that the matrixB2i−1 becomes







α1
i β1

i,1 β1
i,2

α2
i β2

i,1 0

0 αi+1,1 0







with
(

αi+1,1 0
)

in column echelon form and

(

β1
i,2

0

)

in row echelon form.

In this block matrix first and second columns correspond toV2i−1 and V ′
2i+1 respectively, and second

and third rows toV ′
2i andV2(i+1) respectively. We make the third column and first row “irrelevant” as

a result of which the modified block matrixB2i−1 becomes

(

α′
i β′

i

0 α′
i+1

)

=

(

α2
i β2

i,1

0 αi+1,1

)

.

Explicit formulae forα′s andβ′s are given at the end of this section. At each pass the algorithm may
eliminate or change bar codes, and if this happens, the matrix has less columnsor rows. If this does not
happen, the algorithm terminates, and indicates that there is no more bar codeleft. At termination, allαi

andβi become isomorphisms. The bar codes can be recovered by keeping trackof all eliminations of the
bar codes after each elementary transformation. A bar code which is not eliminated in a pass gets shrunk by
exactly two units, during that pass, that is, a bar code{i, j} shrinks to{i + 1, j − 1} by exactly two distinct
elementary transformations. by elementary transformations. For example ifm = 5 the bar code(1, 5]
during the pass became(2, 4] as result of applyingT1(1) when inspectingB1 andT2(5) when inspecting
B9.

When a bar code[i, i] is eliminated, say, in thekth pass, we know that it corresponds to a bar code
[i − k + 1, i + k − 1] in the original representation. Similarly, other bar codes of type{i, i + 1} eliminated
at thekth pass correspond to the bar code{i− k + 1, i + k}. In both cases, the multiplicity of the bar codes
can be determined from the multiplicity of the eliminated bar codes thanks to Proposition 6.1.
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Whenm = 1, the operations on above minors are not well defined. In this case we extend the quiver
G2 to G4 (m = 2) by adding fake levelst2, s2 whereHr(Xt2) = Hr(Xs2

) = Hr(Xs1
) andα2, β2 are

identities7.
A high level pseudocode for the step 2 can be written as follows:

Algorithm BARCODE(Mρ)

Consider the block sub-matricesB1, . . . , Bm of Mρ;

Repeat

for j := 1 to 2m do

1. if j = 2i − 1 is odd

A. if αi+1 is not injective, updateB2i−1 := T4(i)(B2i−1).

B. if αi is not surjective, updateB2i−1 := T3(i)(B2i−1).

C. delete any rows and columns rendered irrelevant.

2. if j = 2i is even

A. if βi+1 is not surjective, updateB2i := T2(i)(B2i).

B. if βi is not injective, updateB2i := T1(i)(B2i).

C. delete any rows and columns rendered irrelevant.

endfor

until Mρ is not empty or has not been updated.
OutputMρ.

Example. To illustrate how step 2 works, we consider a representation given by

α1 =





1 1 2
−3 4 2
−2 1 2



 ; α2 =

(

1 0
0 1

)

; α3 =

(

1 0 0
0 1 0

)

; α4 =

(

1 0
0 1

)

β1 =





1 0
0 1
0 0



 ; β2 =

(

1 0 0
0 1 0

)

; β3 =

(

1 0
0 1

)

; β4 =

(

1 0 0
0 1 0

)

(9)

The reader can notice that this is the representationρ1 for a simplified version of the example provided in
Fig 2 with the cylinder between the critical valuesθ2 andθ3 removed.

• InspectB1 andB2. No changes are necessary.

• InspectB3. Sinceα3 is not injective , one modifies the block by applyingT4(2) which makes bothα3

andβ2 equal to

(

1 0
0 1

)

.

• Inspect the blocksB4, B5, B6, B7. No changes are necessary.

• InspectB8. Sinceβ4 is not injective, one modifies the block by applyingT1(1) which leads toα1 =
(

−4 3
−3 0

)

andβ1 =

(

−1 1
−1 0

)

.

7Other easier methods can also be used in this case
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Indeed the blockB8 is given by

(

β4 0

α1 β1

)

=













1 0 0 0 0
0 1 0 0 0

1 1 2 1 0
−3 4 2 0 1
−2 1 2 0 0













Sinceβ4 is already in column echelon form one only has to change the base ofV2 to bring the last
column ofα1 in row echelon form which ends up with













1 0 0 0 0
0 1 0 0 0

1 1 2 1 0
−4 3 0 −1 1
−3 0 0 −1 0













Thereforeα′
1 =

(

−4 3
−3 0

)

, β′
1 =

(

1 0
0 1

)

, β′
4 =

(

−1 1
−1 0

)

.

The algorithm stops as allα′
is andβ′

is are at this time invertible. The last transformationT1(1) has elim-
inated only the bar code(4, 5], and the previous, which was the first transformation,T4(2), has eliminated
only the bar code(2, 3). This can be concluded from Proposition 6.1. In view of the properties of these two
transformations, one concludes that these were the only two bar codes.

Step 3. At termination, allαi andβi become isomorphisms because otherwise one of the transformations
would be applicable. The Jordan cells can be recovered from the Jordan decomposition of the matrix

T = β−1
i−1 · αi−1 · β

−1
i−2 · · ·β

−1
1 · α1 · β

−1
m · αm · · ·β−1

i+1 · αı+1 · β
−1
i · αi for anyi.

Standard linear algebra routines permit the calculation of the Jordan cells for familiar algebraic closed fields.
Note that ifκ is not algebraically closed, Step 1 and Step 2 can still be performed and the matrix T can be
obtained. In this case it may not be possible to decompose the matrixT in Jordan cells unless we consider
the algebraic closure ofκ. It is however possible to decompose the matrixT up to conjugacy as a sum of
indecomposable invertible matrices while remaining in the class of matrices with coefficients in the fieldκ.
This is the case for the fieldκ = Z2.

In theExampleaboveT =

(

3 1
0 3

)

provides the Jordan cell(λ = 3, k = 2).

6.1 Implementation ofT1(i), T2(i), T3(i) and T4(i).

1. T1(i) acts on the block matrixB2(i−1) =

(

βi−1 0
αi βi

)

. First we modifyB2(i−1) to the block matrix
(

βi−1,1 0 0
αi,2 αi,2 βi

)

where
(

βi−1,1 0
)

= βi−1 · R(βi−1) and
(

αi,1 αi,2

)

= αi · R(βi−1). Recall

the definition ofR(·) andL(·) given under notations in the introduction. Then, one passes to the block
matrix




βi−1,1 0 0
α1

i,2 α1
i,2 β1

i

α2
i,2 0 β2

i



 with

(

α1
i,2

0

)

= L(αi,2)·αi,2,

(

α1
i,1

α2
i,2

)

= L(αi,2)·αi,1 and

(

β1
i

β2
i

)

= L(αi,2)βi.
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The modified block matrix is

(

βi−1,1 0
α2

i,1 β2
i

)

.

2. T2(i) acts on the block matrixB2(i−1) =

(

βi−1 0
αi βi

)

. First we modifyB2(i−1) to the block matrix




βi−1 0
α1

i β1
i

α2
i 0



 where

(

β1
i

0

)

= L(βi) · βi and

(

α1
i

α2
i

)

= L(βi) · αi

Then, one passes to the block matrix





βi−1,1 βi−1,2 0
α1

i,1 α1
i,2 β1

i

α2
i,1 0 0



 with

(

α2
i,1

0

)

= α2
i,1·R(α2

i,1),

(

α1
i,1

α1
i,2

)

= αi,1R(α2
i,1), and

(

βi−1,1

βi−1,2

)

= βi−1R(αi,1).

The modified block matrix is

(

βi−1,2 0
α1

i,2 β1
i

)

.

3. T3(i) acts on the block matrixB2i−1 =

(

αi βi

0 αi+1

)

. First we modifyB2i−1 to the block matrix





α1
i β1

i

0 β2
i

0 αi+1



 where

(

α1
i

0

)

= αi · R(αi) and

(

β1
i

β2
i

)

= βi · R(αi).

Then, one passes to the block matrix





α1
i β1

i,1 β1
i,2

0 β2
i,1 0

0 αi+1,1 αi+1,2



 with
(

β2
i,1 0

)

= β2
i · R(β2

i ),
(

β1
i,1 β1

i,2

)

= β1
i · R(β2

i )

and
(

αi+1,1 αi+1,2

)

= αi+1 · R(β2
i ). The modified block matrix is

(

α1
i β1

i,2

0 αi+1,2

)

.

4. T4(i) acts on the block matrixB2i−1 =

(

αi βi

0 αi1

)

. First one modifiesB2i−1 to the block matrix

(

αi βi,1 βi,2

0 αi+1,1 0

)

where
(

αi+1,1 0
)

= αi+1 · R(αi+1) and
(

βi,1 βi,2

)

= βi · R(αi+1).

Then, one passes to the block matrix





α1
i β1

i,1 β1
i,2

α2
i β2

i,1 0

0 α2
i+1,1 0



 with

(

β1
i,2

0

)

= L(βi,2)·βi,2,

(

β1
i,1

β2
i,1

)

= L(βi,2)·βi,1 and

(

α1
i

α2
i

)

= L(βi,2)·αi.

The modified block matrix is

(

α2
i β2

i,1

0 αi+1,1

)

.
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6.2 Time complexity

Let the input complexX haven simplices in total on which the circle-valued mapf is defined which hasm
critical values.

Then, step 1 takesO(nd) time to detect all the critical values whered ≤ n is the maximum degree of
any vertex. The critical values can be computed by looking at the simplices adjacent to each of the vertices.
To compute the matricesαi andβi, we set up the matrices of sizeO(n)×O(n) and run persistence on them.
Using the algorithm of [16], this can be achieved inO(M(n)) time whereM(n) is the time complexity of
multiplying two n × n matrices8. Since we perform this operations for each of the critical levels and the
spaces between them, we haveO(mM(n)) total time complexity for step 1.

In step 2, we process the matrixMρr
iteratively until all BarCode representations are removed. In each

pass except the last one, we are guaranteed to shrink a bar code by atleast one unit. Therefore, the total
number of passes is bounded from above by the total length of all bar codes. Theorem 3.1 implies that a
bar code cannot come back to the same level more thanmaxsi

dimHr(Xsi
) times which can be at most

O(n). Therefore, any bar code has a length of at mostO(nm) giving a total length ofO(n2m) over all bar
codes. Hence, the repeat loop in the algorithm BARCODE cannot have more thatO(n2m) iterations. In each
iteration, we reduce the block matrices each of which can be done withO(M(n)) matrix multiplication time
[15]. Since there are at mostO(m) block matrices to be considered, we haveO(mM(n)) time per iteration
giving a total ofO(n2m2M(n)) time for step 2.

Step 3 is performed on the resulting matrix from step 2 which hasO(mn)×O(mn) size. This can again
be performed by matrix multiplication which takesO(M(mn)) time.

Therefore, the entire algorithm has time complexity ofO(m2n2M(n) + M(mn)).

7 Conclusions

We have analyzed circle valued maps from the perspective of topologicalpersistence. We show that the
notion of persistence for such maps incorporate an invariant that is not encountered in persistence studied
erstwhile. Our results also shed lights on computing homology vector spaces and other topological invari-
ants from bar codes and Jordan cells (Theorems 3.1 and 3.2). We have given an algorithm to compute the
bar codes and the Jordan cells; the algorithms can also be adapted to computezigzag persistence. In a
subsequent work, Burghelea and Haller have derived more subtle topological invariants like Novikov ho-
mology, monodromy [3], Reidemeister torsion, and others from bar codes and Jordan cells confirming their
mathematical relevance. We have not treated in this paper the stability of the invariants; see [3] for partial
answer.

The standard persistence is related to Morse theory. In a similar vein, the persistence for circle valued
map is related to Morse Novikov theory [18]. The work of Burghelea and Haller applies Morse Novikov
theory to instantons and closed trajectories for vector field with Lyapunov closed one form [2]. The results
in this paper will very likely provide additional insight on the dynamics of thesevector fields and have
implications in computational topology in particular and algebraic topology in general.
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Appendix

In this Appendix we explain the calculation of ther-invariants for the example depicted in Fig 2. The
representationρ0 has vector spaces that are all one dimensional and mapsαi = βi that are all identity.
Hence, there is no bar code, but one Jordan cellλ = 1, k = 1.

It is not hard to recognize from Fig 2 that the maps for the representationρ1 are given by:

α1 =





1 1 2
−3 4 2
−2 1 2



 ; α2 =





1 0
0 1
0 0



 ; α3 =





1 0 0
0 1 0
0 0 1



 ; α4 =

(

1 0
0 1

)

α5 =

(

1 0 0
0 1 0

)

; α6 =

(

1 0
0 1

)

;

β1 =





1 0
0 1
0 0



 ; β2 =





1 0 0
0 1 0
0 0 1



 ; β3 =





1 0
0 1
0 0



 ; β4 =

(

1 0 0
0 1 0

)

β5 =

(

1 0
0 1

)

; β6 =

(

1 0 0
0 1 0

)

.

We proceed with the step 2 of the algorithm.

• inspectB1 - no change forρ = ρ1; inspectB2- no change.

• inspectB3, - sinceα2 is not surjective applyT3(2). This changesα2, β2, α3 into α′
2 =

(

1 0
0 1

)

,

β′
2 =

(

1 0
0 1

)

, α′
3 =





1 0
0 1
0 0



 . Update and continue.

• inspectB4- no changes.

• inspectB5 - sinceα3 is not surjective, applyT3(3). This changesα3 andβ3 into α′
3 =

(

1 0
0 1

)

and

β′
3 =

(

1 0
0 1

)

. Update and continue.

• inspectB6- no changes.
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• inspectB7 - sinceα5 is not injective, applyT4(4). This changesβ4 andα5 into α′
5 =

(

1 0
0 1

)

and

β′
4 =

(

1 0
0 1

)

. Update and continue.

• inspectB8 - no change; inspectB9- no change; inspectB10- no change; inspectB11- no change.

• inspectB12 - sinceβ6 is not injective, applyT1(1). This changesβ6, α1, β1 to β′
6 =

(

1 0
0 1

)

,

α′
1 =

(

−4 3
−3 0

)

, andβ′
1 =

(

−1 1
−1 0

)

. Update.

Since at this time allα′
is andβ′

is are invertible, step 2 terminates.

Book keeping. The last transformationT1(1) has eliminated the bar code(θ6, θ1 + 2π] (by Proposition
6.1) and nothing else. This bar code was not the modification of any other bar code by the previous elemen-
tary transformations. The previous transformationT4(4) has eliminated the bar code(θ4, θ5) and nothing
else (by Proposition 6.1). This bar code was not the modification of any other bar code by the previous
transformations. The transformationT3(3)has eliminated the bar code[θ3, θ3] (by Proposition 6.1) which
was the modification of[θ2, θ3] by T3(2). These are all bar codes as listed in the table in section 3. To

calculate the Jordan cells we use step 3. We calculate the Jordan cells of

(

−4 3
−3 0

)

· (

(

−1 1
−1 0

)

)−1 which

is (λ = 3, k = 2) as listed in the table in section 3.
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