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ABSTRACT
In this work, we propose an alternative algorithm for an-
notating simplices of a simplicial complex K with sub-bases
of a basis B of its p-dimensional homology group H1(K).
Such annotations, summed over p-simplices in any p-cycle
z, provide an expression of z in B. This allows us to an-
swer queries of null homology and independence of p-cycles
efficiently and improve the running time of the greedy algo-
rithm to compute a shortest basis of H1(K). The best known
algorithm for the shortest basis problem that does not use
annotations has a time complexity of O(n4), where n is the
size of the 2-skeleton of K. We improve it to O(n3 + n2g2),
where g is the rank of H1(K).

Annotating simplices with a homology basis has been con-
sidered before [1]. The existing approach can preprocess the
simplicial complex and assign annotations in sub-cubic time.
However, this involves computing the LSP-decomposition of
the boundary matrix, which can be computationally cum-
bersome. We present a simple and implementation-friendly
O(n3) approach that fits nicely to the family of matrix re-
duction algorithms such as the persistence algorithm and
the classic Smith normal form reduction. Our analysis also
reveals interesting connections to the persistence algorithm.
Namely, our matrix reduction method computes pairing be-
tween simplices under homomorphisms between homology
groups that are not necessarily induced by inclusions be-
tween the subcomplexes of the filtration of K.

1. INTRODUCTION
The p-dimensional cycles in simplicial complexes, p-cycles
in short, are topological generalizations of cycles in graphs.
These p-cycles play a fundamental role in summarizing the
topological information about the underlying space that a
complex represents. For example, homology groups, which

∗Pleasee refer to the paper ‘Annotating Simplices with a
Homology Basis and Its Applications’ [1] for additional in-
formation on simplex annotations.

are well known algebraic structures capturing topology of a
space, are defined as the sets of equivalence classes on the
space of all cycles. Consequently, questions about topologi-
cal characterizations of input cycles often come up in com-
putations dealing with topology. For example, to compute
a shortest basis of a homology group with greedy approach,
one needs to determine if cycles in a given set are indepen-
dent. To determine the topological complexity of a given
cycle, a first level test could be that if it is null homologous,
or equivalently if it is a boundary.

A number of studies has been done that concern with the
computation of such topological characterization of cycles [2,
3, 5, 4, 11]. However, most of these studies focus on the spe-
cial case of 1-cycles on surfaces. Recently, a preprocessing
technique was proposed [1] that helps answering some of the
basic topological queries about cycles efficiently. Given a
simplicial complex K, the algorithm annotates simplices in
K in such a way that one may derive topological informa-
tion about a given p-cycle z in K quickly. For this purpose,
a basis B of the homology group in question is determined,
and a sub-basis of B is assigned to each p-simplex. The
sub-bases, called annotations, are such that when added for
all p-simplices in a p-cycle z, they form the expression or
coordinates of z in B. The coordinates of z in a basis B re-
veal its topological class, and thus help answering questions
about its topological characterizations.

The algorithm from [1] can compute annotations in O(nω)
matrix multiplication time, where ω < 2.376. However,
this approach is not particularly suitable for implementa-
tion, since computing LSP-decomposition can be inefficient
in practice. We propose a simple alternative that involves
only simple matrix operations such as column additions.
First, we consider a canonical basis of the p-chain group of a
simplicial complex K formed by its p-simplices. Using sim-
ple chain additions and the boundary operator, we change
the basis of the p-chain group so that a basis of all p-cycles
can be identified. We change the basis of p-cycles further,
again with careful chain additions, so that a basis of the p-th
homology group can be identified. In the process, we also
identify the sub-bases that should annotate each p-simplex.
The entire algorithm can be implemented by column ad-
ditions in boundary matrices that represent the boundary
operator. In this respect, the algorithm falls in the class
of well known Smith normal form reduction algorithm that
computes ranks of homology groups [12] and the recent per-
sistence algorithm [10] that computes persistent homology.



However, there are important differences that enable our al-
gorithm to compute annotations which neither of the other
two algorithms does. Incidentally, the persistence algorithm
can be viewed as a special case of our annotation algorithm.
In fact, we obtain a slightly different reduction sequence for
the persistence algorithm which enables it to run faster on
some special input. Furthermore, our results suggest that
simplices can be paired differently while still remaining con-
sistent with a notion of persistent homology which allows
homomorphisms between the homology groups that are not
necessarily induced by inclusions in a filtration.

We show how the annotations of the simplices can be lever-
aged to answer some of the topological queries efficiently.
In particular, with an O(n3) preprocessing time for a sim-
plicial complex of n simplices, we achieve the following. A
p-cycle with m simplices can be checked for null homology
in O(mg) time, where g is the rank of Hp. A set of k p-cycles
with m simplices in total can be verified for independence
in O(m+ kg2) time. Lastly, we can improve the time com-
plexity of the greedy algorithm to compute a shortest basis
for the one-dimensional homology group of a simplicial com-
plex. The greedy approach, first proposed for surfaces [11]
and later extended to simplicial complexes [8], needs inde-
pendence checks. Using annotations, one can carry out the
entire greedy algorithm in O(n3+n2g2) time, improving the
previously known time complexity of O(n4).

2. BACKGROUND AND NOTATIONS
We briefly introduce the notations for chains, cycles, bound-
aries, and homology groups of a simplicial complex; one
may obtain the details from any standard book on algebraic
topology such as [12].

Let K be a simplicial complex. A p-chain in K is a for-
mal sum of p-simplices. The additions are assumed to be
Z2-additions in this work. The set of p-chains forms an
abelian group Cp = Cp(K) under Z2-additions where the
empty chain plays the role of identity.

A boundary operator ∂p acting on a p-simplex provides a
(p− 1)-chain that is the sum of the (p− 1)-faces of σ. This
boundary operator linearly extends to provide a homomor-
phism ∂p : Cp → Cp−1. The kernel ker∂p is called the p-cycle
group of K, denoted Zp = Zp(K). The image im ∂p is called
the (p− 1)-boundary group of K, denoted Bp−1 = Bp−1(K).
By definitions, Zp and Bp−1 are subgroups of Cp and Cp−1 re-
spectively. Also, since ∂p+1 ◦∂p = 0, we have Bp ⊆ Zp ⊆ Cp.
Therefore, the quotient group Hp = Zp/Bp is well defined,
which is called the p-dimensional homology group of K.

The groups Cp, Zp, and Bp are all free abelian groups gen-
erated finitely. Thus, they have finite bases. The homology
group Hp under Z2 additions becomes a finite vector space.
Consequently, it also admits a finite basis. An element v in a
group with a finite basis B = {v1, . . . , vk} has the coordinate

{α1, . . . , αk} where v =
∑k

i=1 αivi. Letting 〈·, ·〉 denote the
scalar product associated to the basis B, we have αi = 〈v, vi〉
as B becomes orthonormal. The only scalar product we use
here is that associated to the canonical basis of Cp formed
by its p-simplices. Thus, for a p-chain z and a p-simplex b,
〈z, b〉 = 1 if and only if z contains b.

3. BOUNDARY AND CYCLE BASIS
In this section, we describe a so-called pivot operation and
how it can be used to produce a certain basis for the bound-
ary and cycle groups. An example is provided in Section 6
to help illustrating our descriptions.

Let K be a simplicial complex and p be a non-negative inte-
ger not more than the dimension of K. Canonical bases of
the chain groups Cp−1 and Cp are given by the set of (p−1)-
simplices {a1, . . . , an} and the set of p-simplices {b1, . . . , bm}
respectively in K. The boundary group Bp−1 ⊆ Cp−1 is the
image ∂p(Cp) of the boundary homomorphism ∂p : Cp →
Cp−1. Let {ai1 , . . . , aip+1} ⊆ {a1, . . . , an} denote the set of
(p−1)-simplices in the boundary of a p-simplex bi. We drop
the subscript p from ∂p when it is obvious from the context.
Clearly, the boundary group Bp−1 is generated by

{∂bi = ai1 + · · ·+ aip+1 | i = 1, . . . ,m}.

We pivot the boundary cycles {di = ∂bi} in any order which
updates them as follows (see Section 6 for an example). Sup-
pose we are pivoting di now. If di = 0 because of previous
pivoting, no updates occur. Otherwise, we choose any aik

as a sentinel where

di = ai1 + · · ·+ aik + · · ·+ air

and eliminate aik from all other chains by the following se-
quence of reductions:

∀j 6= i : dj ← dj + di if dj contains aik . (R1)

After the application of (R1), aik can exist only in di and no
other dj ’s for j 6= i. Observe also that after any reduction,
a boundary cycle dj remains a sum of the boundaries of
the p-simplices that were added to it for reductions (R1).
Therefore, at any point of the pivot sequence

dj = ∂bj1 + · · ·+ ∂bjk = ∂(bj1 + · · ·+ bjk ),

where {j1, . . . , jk} ⊆ {1, . . . , m}. Let b′j = bj1 + · · · + bjk .
As the (p − 1)-chains {dj} change due to reductions, so do
the p-chains {b′j}. The set {b′j} continues to be a basis of
Cp since a reduction replaces a basis element by a linear
combination of the element itself with other basis elements.
In particular, if d∗i and b∗i are the final chains where d∗i = ∂b∗i
after all pivots are complete, we have a new basis for Cp.

Proposition 1. {b∗1, . . . , b
∗

m} form a basis of Cp.

Recall that the pivot operation may render zero some of the
boundary cycles in {d∗1 , . . . , d

∗

m}. Let U ⊆ {b∗1, . . . , b
∗

m} be
the maximal subset of the new basis where ∂b∗i = 0 (U =
{b∗3, b

∗

5} in the example in Section 6). Let V = {b∗1, . . . , b
∗

m}\

U be the rest of the basis. Recall that 〈,̇〉̇ denotes the scalar
product in the canonical base {b1, . . . , bm} of Cp.

Claim 1. If b∗i ∈ V and aik is the sentinel to pivot di,
then 〈∂b∗j , aik 〉 = 1 if and only if i = j. Similarly, if b∗i ∈ U ,
then 〈b∗j , bi〉 = 1 if and only if i = j.

Proof. Consider b∗i ∈ V . By definition d∗i = ∂b∗i is a
nonzero chain. Then, di must have been pivoted since the
pivot operation skips a chain only if it is zero, and a zero



chain remains to be so throughout the pivot sequence. Ob-
serve that, once a chain di is pivoted, it contains the unique
sentinel aik which does not appear in any other chain dj ,
j 6= i, for the rest of the pivot sequence. Since di = ∂b′i, we
have the first claim.

Next, consider b∗i ∈ U . By definition d∗i = ∂b∗i is a zero
chain. Then, the chain di was never pivoted since otherwise
it would contain a unique aik till the end. The chain b′i is
simply bi at the beginning of the pivot sequence. Since di is
not pivoted, bi is not added to any b′j , j 6= i during the entire
pivot sequence. Therefore, no p-chain b′j , j 6= i, contains bi
at any point of the pivot operation. Hence, 〈b∗j , bi〉 = 0 for
j 6= i. Clearly, the chain b′i cannot lose bi due to reductions
since no other b′j contains bi. Thus, 〈b

∗

i , bi〉 = 1, completing
the proof of the second claim.

Proposition 2. The chains in ∂V = {∂b∗i | b
∗

i ∈ V }
form a basis of the boundary group Bp−1 whereas the chains
in U form a basis of Zp.

Proof. First, since {b∗i | i = 1, . . . ,m} is a basis of Cp,
{∂b∗i | i = 1, . . . ,m} is a set of cycles that generates Bp−1.
Among these cycles, the ones in ∂U are zero chains. There-
fore, Bp−1 is generated by ∂V . Furthermore, the chains
in ∂V are linearly independent since the chain ∂b∗i for any
b∗i ∈ V has a unique element aik which does not appear in
any other ∂b∗i (Claim 1). Hence ∂V , a generator for Bp−1,
must be its basis.

Now consider U , which is a set of p-cycles as ∂b∗i = 0 for
each b∗i ∈ U . Cycles in U are linearly independent since
each b∗i ∈ U has a unique element bi which does not appear
in any b∗j for j 6= i (Claim 1). Furthermore, it is well-known
that rankCp = rankBp−1 + rankZp. It then follows that
|U | = rankZp since U∪V forms a basis for Cp and cardinality
of V equals that of ∂V which is rank(Bp−1). Hence U forms
a basis of Zp.

Let the index-set I(U) of U denote the set of indices I(U) =
{i | d∗i ∈ U}. The index-set I(V ) is defined similarly. It may
be of independent interest to observe that the index-sets of
U and V remain independent of the choice of the sentinels.
They only depend on the choice of the order by which the
chains {di} are pivoted. Without loss of generality, assume
that the chains {di} have been pivoted in order {d1, . . . , dm}.

Proposition 3. The index-sets of U and V remain in-
dependent of the choice of the sentinels {aik}.

Proof. Assume inductively that the index set of zero
chains Ui−1 ⊂ {d1, . . . , di−1} and hence that of non-zero
chains Vi−1 = {d1, . . . , di−1} \ Vi−1 remain independent of
the choice of the sentinels after pivoting up to the chain di−1.
The assertion is true when i = 2 since d1 is not zero no mat-
ter which sentinel is chosen for it. To continue induction,
consider the chain di. The fact whether di is zero or not does
not depend on the choice of the previous sentinels. To see
this, consider the complex Ki made by p-simplices b1, . . . , bi
and their faces. According to Proposition 2, the cardinality

of Ui determines the rank of cycle group Zp(Ki). Since this
rank and I(Ui−1) remain independent of the choice of sen-
tinels, the nullity of di and hence inclusion of i into the index
set does not depend on them either. We have the claim as
I(U) = I(Um) and I(V ) = I(Vm).

4. ANNOTATION
Consider a simplicial complex K with (p − 1)-, p-, (p + 1)-
simplices {a1, . . . , an}, {b1, . . . , bm}, and {c1, . . . , cℓ} respec-
tively. We now describe the procedure to annotate each p-
simplex in K. We will show in next section that our pivot op-
eration and annotation procedure can be easily implemented
using a simple reduction algorithm.

4.1 Chains to cycles
Consider the chain group Cp with the basis {b∗1, . . . b

∗

m} and,
after re-indexing if necessary, let U = {b∗1 , . . . b

∗

r} and V =
{b∗(r+1), . . . , b

∗

m} be the subbases as defined before. In light
of Proposition 2, U is a basis of Zp. We first observe (also
see the example in Section 6):

Claim 2. For any z ∈ Zp, z =
∑r

i=1〈z, bi〉b
∗

i .

Proof. Since U is a basis of Zp, we can represent z
uniquely as z =

∑r

i=1 αib
∗

i . It then follows from Claim 1
that 〈z, bi〉 = 〈

∑r

j=1 αjb
∗

j , bi〉 =
∑r

j=1〈αjb
∗

j , bi〉 = αi.

4.2 Cycles to homology bases
Our goal is to find a basis for Hp = Zp/Bp, and an anno-
tation of simplices so that the class of any p-cycle can be
coordinatized easily in this precomputed basis. To achieve
this, we will first compute a subbasis of Zp that is a basis of
the boundary group Bp.

Specifically, consider (p+1)-simplices {c1, . . . , cℓ} which form
a basis of Cp+1. The boundary cycles ei := ∂ci = bi1 + · · ·+
bi(p+2)

for i = 1, . . . , ℓ generate the boundary group Bp. We
extract a basis out of these boundary cycles similar to what
we did for Bp−1 using the boundary chains {∂bi | i ∈ [1, m]},
but based on a slightly modified pivot operation as follows.
The pivot operation considers a chain ei if it has not yet
been pivoted and it is not a zero chain. The reductions in
this pivot sequence are distinguished from the ones in (R1)
in that the sentinel for ei, say bik , must be from {b1, . . . , br}
so that b∗ik ∈ U . We claim in Proposition 4 below that such
an element exists in any chain ei chosen for pivot. After
choosing the sentinel bik in ei, we reduce other chains as:

∀j 6= i : ej ← ej + ei if ej contains bik (R2)

Proposition 4. Let ei = bi1 + · · ·+ bis be any non-zero
chain chosen for pivot. There must exist bik ∈ {bi1 , . . . , bis}
such that no ei has been pivoted with bik and bik ∈ {b1, . . . , br}.

Proof. Since ei is a p-cycle, we can write ei =
∑r

j=1 αjb
∗

j .
Since ei is non-zero, at least one coordinate, say αj of ei is 1.
By Claim 2, 〈ei, bj〉 = 〈ei, b

∗

j 〉 = αj = 1, implying that bj is
from {bi1 , . . . , bis} and we can set ik = j. Furthermore, this
bik cannot be a sentinel chosen previously for some chain
since then bik would have been eliminated from ei. The
claim then follows.



At the end of pivot sequence with reductions in (R2), the
boundary cycles {e1, . . . , eℓ} are split into two disjoint sets
S and T where S is the set of all zero chains and T is the
rest. Letting T take the role of ∂V in Proposition 2, one can
show that T is a basis of Bp (see the example in Section 6).

To construct a basis for Hp = Zp/Bp we set T , a basis of Bp,
to zero. This means setting ei = 0 for each ei ∈ T . Consider
any ei ∈ T . By Claim 2, we can write ei =

∑r

j=1〈ei, bj〉b
∗

j .

Let {i1, . . . , it} be the set of indices from [1, r] such that
〈ei, biu〉 = 1 for u ∈ [1, t]; that is, ei = b∗i1 + · · · + b∗it with
each iu ∈ [1, r]. Let bj be the sentinel we used to pivot ei. It
follows from Proposition 4 that j ∈ {i1, . . . , it} (as 〈ei, bj〉 =
1 and j ∈ [1, r]) and assume without loss of generality that
j = it. Setting ei = 0 is equivalent to setting

b∗it = b∗i1 + · · ·+ b∗it−1
. (1)

Since the sentinel bit only appears in chain ei after all pivot
operations, none of the chains that are on the righthand
side of the relations in (1) are on the left. Let P = {b∗it}
be the set of chains that are on the left of equations in (1).
By definition of b∗it , we have P ⊆ {b∗1 , . . . , b

∗

r}. Let W =
{b∗1 , . . . , b

∗

r}\P . In the example in Section 6, we have b∗3 = b∗5
by setting e1 = 0 and thus P = {b∗3} and W = {b∗5}.

The group Hp is the image of the homomorphism η : Zp →
Hp where η takes a cycle z ∈ Zp to its equivalence class [z].
Using relations in (1), it can be defined the basis of Zp as:

η(b∗i ) =

{

[b∗i ] if b∗i ∈W
[b∗i1 ] + · · ·+ [b∗it−1

] otherwise

Proposition 5. [W ] = {[b∗i ] | b
∗

i ∈ W } is a basis for Hp.

4.3 Annotation
Finally, we annotate the p-simplices with p-chains that mimic
the map η:

♯bi =







bi if b∗i ∈W ,
bi1 + · · ·+ bit−1 if b∗i = b∗it ∈ P ,
0 otherwise.

(2)

Since [W ] is a basis for Hp, its cardinality is g. By reindexing
if necessary, we assume that W = {b∗1 , . . . , b

∗

g}.

Theorem 1. Given a p-cycle z ∈ Zp with [z] =
∑g

i
αi[b

∗

i ],
we have that αi = 〈

∑m

j=1〈z, bj〉♯bj , bi〉.

Proof. Since {b1, . . . , bm} forms a basis for Cp, we can
write the p-cycle z as

∑m

j=1〈z, bj〉bj . By Claim 2, z =
∑r

j=1〈z, bj〉b
∗

j , where all the simplices with index higher
than r can be safely ignored. The homology class of z ex-
pressed using basis [W ] is η(z) =

∑r

j=1〈z, bj〉η(b
∗

j ). By the
way we define the ♯-operator, this is equivalent to

η(z) =

r
∑

j=1

{

〈z, bj〉

g
∑

i=1

〈♯bj , bi〉[b
∗

i ]

}

=

g
∑

i=1

{

r
∑

j=1

〈z, bj〉 · 〈♯bj , bi〉[b
∗

i ]

}

=

g
∑

i=1

〈
m
∑

j=1

〈z, bj〉♯bj , bi〉[b
∗

i ].

In other words, given any cycle z, its homology class [z]
can be expressed in the basis [W ] as Σg

i=1αi[b
∗

i ] where its
coordinate vector θ = {α1, . . . , αg} is

θ = {〈Σi〈z, bi〉♯bi, b1〉, . . . , 〈Σi〈z, bi〉♯bi, bg〉}.

Once the annotation ♯bi of each simplex bi is given, the coor-
dinate vector of any p-cycle can be computed in O(ng) time
where n is the number of p-simplices and g = rankHp.

Corollary 1. For a set of cycles z1, . . . , zk, we have (i)
z1 + · · · + zk = 0 iff θ1 + · · · + θg = 0 (ii) [z1], . . . , [zk] are
independent if and only if the coordinate vectors θ1, . . . , θk
are independent.

5. ALGORITHM
To compute the annotations for p-simplices, we perform
two pivot sequences, one reducing (p − 1)-chains (R1) and
another reducing p-chains (R2). Let {ai | i = 1, . . . , n},
{bi | i = 1, . . . ,m}, and {ci | i = 1, . . . , ℓ} be arbitrarily or-
dered sets of (p−1)-, p-, and (p+1)-simplices respectively in
a given simplicial complex K. The boundary homomorphism
∂p : Cp → Cp−1 is represented by an n×m boundary matrix,
denoted [∂p], where [∂p][i, j] = 〈ai, ∂bj〉. This means that
the i-th row and j-th column of [∂p] represent the (p − 1)-
simplex ai and the p-simplex bj respectively. Therefore, the
reductions of (R1) can be carried out by column additions
of [∂p]. For reductions of (R2), we consider [∂p+1].

Algorithm 1 Pivot(D,m, n)

1: J ← {1, . . . ,m};
2: while J 6= ∅ do
3: choose any j ∈ J ; J ← J \ j;
4: if colD[j] 6= 0 then

5: choose any i such that D[i, j] 6= 0;
6: pivot[j]← i;
7: for all k : D[i, k] 6= 0, k 6= j do

8: colD[k]← colD[k] + colD[j]
9: end for

10: end if

11: end while

12: return (D,pivot);

First, we write the algorithm Pivot for pivoting a general
n ×m matrix D which we call in the two specific contexts
of implementing pivot sequences. Let colD[j] and rowD[j]
denote the column j and row j of D respectively. In all
pseudo-codes we assume that arrays are initialized appropri-
ately. The algorithm Pivot picks any column j to pivot that
has not yet been pivoted (lines 3,4). A sentinel i represent-
ing the (p− 1)-simplex ai is chosen (line 5) and all columns
containing ai other than column j are reduced (lines 7-8).
We record that the chain for column j has been pivoted with
ai by setting the jth entry to i in an array pivot (line 6).
This pivot array is used later as explained below.

The routine Reduce performs two pivot sequences. First, it
reduces [∂p] by calling Pivot (line 1) which returns a pivot
array pivot1. The columns of [∂p] that are reduced to zero
represent the set U after the first pivot sequence (R1). The
rest of the columns represent the set V . This information is
implicitly recorded in pivot1. Assuming that all entries of



Algorithm 2 Reduce([∂p+1], [∂p], ℓ,m, n)

1: ([∂p],pivot1)← Pivot([∂p], m, n);
2: for all i← 1 to m do

3: if pivot1[i] 6= 0 then

4: row[∂p+1][i]← 0;
5: end if

6: end for

7: ([∂p+1],pivot2)← Pivot([∂p+1], ℓ,m);
8: return ([∂p+1], pivot1,pivot2);

pivot1 are initialized to 0, any nonzero entry at location, say
j, indicates that the jth p-chain b∗j is in V . The second pivot
sequence (R2) is performed on the matrix [∂p+1]. In this
sequence, we choose the sentinels whose indices correspond
to the elements in U . Complementary, the p-simplices whose
indices correspond to the chains in V cannot be chosen as
sentinels. We implement this constraint by zeroing out the
row i of [∂p+1] if the column i in the reduced [∂p] is not a
zero column, or equivalently, pivot[i] 6= 0 (lines 2-4). After
modifying [∂p+1] as above, we pass it to Pivot for the second
pivot sequence (line 5). Next, we call the routine Annotate
which completes the annotation using an array A.

Algorithm 3 Annotate([∂p+1], [∂p], ℓ,m,n)

1: ([∂p+1],pivot1,pivot2)← Reduce([∂p+1], [∂p], ℓ,m, n);
2: for j ← 1 to ℓ do

3: if (i← pivot2[j]) 6= 0 then

4: A[i]← {k | [∂p+1][k, j] = 1, k 6= i};
5: end if

6: end for

7: for i← 1 to m do

8: if pivot1[i] 6= 0 then

9: A[i]← 0;
10: else

11: if A[i] = 0 then

12: A[i]← i;
13: end if

14: end if

15: end for

The routine Annotate first pivots the columns of [∂p] and
[∂p+1] and obtains pivot arrays pivot1 and pivot2 (line 1).
At the end of pivoting, the columns of [∂p+1] that are not
zeroed out represent the chains forming the basis T of Bp.
Then, if any such column j was pivoted using the row i, we
annotate bi with the chain bi1 + · · ·+ bis , where [∂p+1][i1, j],
. . . , [∂p+1][is, j] are remaining non-zero entries in the col-
umn col[∂p+1][j]. Specifically, line 3 in the for loop (line
2-4), checks if j-th column is zero. If not, we know j-th col-
umn is pivoted with ith row (correspond to sentinel bi) since
pivot2[j] = i. Therefore, A[i] is set to the list of row indices
(representing b∗ijs) having non-zero entries in the column j.

A simplex bi among the rest of the p-simplices is annotated
with 0 if i is a pivoted column of [∂p], i.e., pivot1[i] 6= 0 (line
6-7). Notice that this assignment does not conflict with the
previous assignments in line 4 since if column i is not zero
in [∂p], it is not chosen as a sentinel row in [∂p+1]. The rest
of the entries in A which are not set in line 4 and 7, are set
to i (bi itself) following the annotation assignments in (2).

5.1 Connection to persistence
It turns out that the matrix based persistence algorithm [9]
can be obtained as a special case of our pivoting algorithm.
Interestingly, we also obtain a new variant of pairing between
simplices.

A filtration of a simplicial complex K is a sequence of nested
sub-complexes: ∅ = K0 ⊂ · · · ⊂ Kn = K. Assume that
the difference between any two consecutive sub-complexes
is a simplex σi = Ki \Ki−1, and let {σ1, . . . , σn} denote the
sequence of simplices in K induced by the filtration. The
persistence algorithm inserts the simplices in the filtration
order, and computes the changes in homology groups de-
fined under Z2 coefficients. Specifically, when a p-simplex
σ is brought in, it either creates a p-dimensional homology
class, or destroys a (p−1)-dimensional homology class. The
persistence algorithm pairs each destroyer σ with a unique
creator that creates a homology class destroyed by σ. This
can be implemented by reducing the boundary matrix [∂]
of K whose columns and rows are sorted according to the
filtration order. The reduction considers the columns from
left to right while performing column Z2-additions to the
right as follows. Let low(j) be the row index of the lowest
1 in column j. When we consider column j, we check if
any column i to the left of column j has low(i) = low(j).
If so, we add column i to column j and thus move low(j)
upward. These column additions continue till either column
j becomes a zero column or low(j) becomes a unique row in-
dex so that low(j) 6= low(j′) for any j′ < j. The simplex σj

pairs with σi if low(j) = i. Notice that if σj is a p-simplex,
σi is necessarily a (p− 1)-simplex.

We claim that same pairing can be obtained by two simple
changes in Pivot. First, we pivot the columns in increasing
order of their indices. So, replace lines 2-3 of Pivot with

for j ← 1 to m.

Second, instead of choosing any sentinel, choose low(j) as
the sentinel row and make the column additions only for
columns to the right of j, that is, replace line 5 by

choose i← low(j)

and line 7 by

for k ← j + 1 to m such that D[i, k] 6= 0.

Actually, the change in line 7 is not required though it saves
time. First, we assume the change in line 7 and later argue
why it can be dropped. The following result from [7] is the
key in establishing that the pairing of simplices with the
proposed changes in Pivot is same as that of the standard
persistence algorithm.

Proposition 6 ([7]). Let [∂] be a boundary matrix of
a simplicial complex K whose rows and columns are sorted
according to a filtration of K. If [∂] is reduced by column
additions where the column on right is replaced by the ad-
dition result, and each non-zero column contains a unique
low(j) after reduction, then (low(j), j) is the same as the
pair obtained by the standard persistence algorithm.

Now, observe that the changes in Pivot precisely achieve
the conditions above. Column j is added to columns on its



right. Also, since low(j) disappears from all such columns
because of Z2-additions, it is never chosen as sentinel later.
It follows that low(j) remains unique for each non-zero col-
umn. The algorithm is different from the standard persis-
tence algorithm [7, 9] in that it considers columns on right
when reducing a column j rather than the columns on its
left. Interestingly, this strategy runs faster in some special
cases. Consider a p-dimensional simplicial manifold, having
each of its n (p− 1)-simplices incident to at most two of its
m p-simplices. The algorithm computes all p- and (p − 1)-
simplex pairings in time O(mn) instead of O(m2n) that the
persistence algorithm would require. Observe that each row
in this case has 1 in at most two of the columns which are
on the right of the column being reduced. This invariant
is true at the beginning and is maintained throughout col-
umn reductions. As a result, only one column addition is
necessary per column reduction giving us an O(mn) time.

Now, we argue why the change in line 7 can be dropped.
After reducing with all proposed changes, the simplices pair
as in the standard persistence algorithm. Think of adding
a column j to any column on its left that has 1 in the row
low(j). Since low(j) is unique, these additions cannot dis-
turb low(j) for any column j, i.e. pairing remains the same.
However, these additions have the same effect as adding a
column j to all columns that have 1 in the row low(j). This
is equivalent to keeping line 7 of Pivot unchanged.

Next, we examine changing only lines 2-3 to choose the
columns from left to right for pivot. By Proposition 3, the
classification of simplices as creators/destroyers is exactly
the same as that obtained by persistence algorithm. How-
ever, since we choose sentinels arbitrarily, we have a different
pairing between simplices. Each set of such simplex pairings
actually captures a persistent homology that is not necessar-
ily defined by inclusions implied by a filtration of the input
complex K. To elaborate, consider a filtration and the ho-
momorphisms it induces between the homology groups:

Hp(K1)
ι1→ Hp(K2)

ι2→ · · ·
ιn−1
→ Hp(Kn),

where ιjs are induced by inclusions Kj ⊂ Kj+1. For j ≥ i,

let βi,j = rank (Hp(Ki)
ι
→ Hp(Kj)) where ι = ιi ◦ · · · ◦ ιj .

Following [6] define the persistence number µi,j = βi,j −
βi−1,j + βi,j+1 − βi−1,j+1. The persistence algorithm pairs
(σi, σj) iff µi,j = 1. If we replace ιi : Hp(Ki)→ Hp(Ki+1) by
another homomorphism hi : Hp(Ki) → Hp(Ki+1) such that
rank ιi = rankhi then we get different values for µi,j which
dictates a different pairing. The algorithm Pivot with only
lines 2-3 changed, implements different homomorphisms his
with different choices of sentinels. In particular, when low(·)
is chosen, hi equates ιi and hence we get the standard persis-
tence pairs. In general, it spews out pairs that are consistent
with the persistent homology connecting homology groups
with homomorphisms hi which need not be ιi.

To summarize, the pivoting algorithm we presented bears
similarity with the persistence algorithm and the Smith nor-
mal form reduction algorithm. However, unlike the other
two, our algorithm obtains a meaningful annotation for each
simplex and our analysis gives insights into the reduction
procedure. By different choice of sentinels, the algorithm
outputs a persistence pairing with respect to a different se-
quence of homomorphisms for the filtered space.

6. ANNOTATION EXAMPLE

a1

a2a3

a4

b1 b2

b3

b4 b5

c1

b3

b5

0 0

0

Figure 1: Left: a simplicial complex. Right: the

same complex with annotations assigned.

Figure 1 illustrates the annotation process for a simplicial
complex with a single nontrivial 1-homology class. Below,
we elaborate on both reduction sequences. The sentinel sim-
plices are shown in bold.

d1 : ∂(b1) = a1 + a3

→

∂(b1) = a1 + a3

→

d2 : ∂(b2) = a1 + a2 ∂(b1 + b2) = a2 + a3

d3 : ∂(b3) = a2 + a3 ∂(b3) = a2 + a3

d4 : ∂(b4) = a3 + a4 ∂(b4) = a3 + a4

d5 : ∂(b5) = a2 + a4 ∂(b5) = a2 + a4

∂(b1) = a1 + a3

→

∂(b1 + b4) = a1 + a4

∂(b1 + b2) = a2 + a3 ∂(b1 + b2 + b4) = a2 + a4

∂(b1 + b2 + b3) = 0 ∂(b1 + b2 + b3) = 0
∂(b4) = a3 + a4 ∂(b4) = a3 + a4

∂(b1 + e2 + e5) = a3 + a4 ∂(b1 + b2 + b4 + b5) = 0

R1 reductions: After all pivots, b∗1 = b1+b4, b
∗

2 = b1+b2+b4,
b∗3 = b1+b2+b3, b

∗

4 = b4, and b∗5 = b1+b2+b4+b5. We have
U = {b∗3, b

∗

5} and V = {b∗1, b
∗

2, b
∗

4} (note that, we haven’t re-
indexed which was done for convenience in the text).

e1 : ∂(c1) = b3 + b4 + b5 → ∂(c1) = b3 + b4 + b5

R2 reductions: There is only one chain e1 which generates
the boundary group B1. To pivot e1, either b3 or b5 can be
chosen as the sentinel since both b∗3 and b∗5 are in U after
R1 reductions. Here T = {e1}. Notice that e1 = b∗3 + b∗5 as
suggested by our argument in the text after Proposition 4.
We choose b3 as the sentinel and thus P = {b∗3} and W =
{b∗5}. The annotations in this case assigns the edge b5 the
chain b5, the edge b3 the chain b5, and all other edges the
chain 0. The class [b∗5 ] = [b1+b2+b4+b5] constitutes a basis
for H1. The expression (coordinates) of the class of any cycle
in this basis can be obtained by adding the annotations of
its edges. For example, the sum of annotations for the cycle
b3+ b4+ b5 gives 0 which confirms that it is a trivial cycle in
H1. Similarly, the sum of annotations for cycle b1+b2+b4+b5
gives b5 which should be the case as the expression of its class
in the basis [b∗5] is indeed [b∗5].



7. APPLICATIONS
Our annotation algorithm can be used to address some of
the computational problems involving cycles.

7.1 Null homology
A p-cycle z in a complex K is called null homologous if [z] =
0. A cycle is null homologous if and only if it has zero
coordinates in any basis of Hp(K) (Corollary 1). Consider
the problem:

Question 1. Given a p-cycle z in a simplicial complex
K, decide if z is null homologous.

This problem can be solved by the persistence algorithm as
follows. First, run the persistence algorithm on any filtra-
tion of K. Then, think of inserting an open (p+1)-cell whose
boundary is z into K treating it as a cell complex. If z is
already null homologous in K, the inserted (p + 1)-cell cre-
ates a (p+ 1)-cycle in the cellular homology of K. This can
be detected by inserting a column, say d, for the dummy
(p+1)-cell at the right end of the reduced boundary matrix
[∂p+1] of K. We set [∂p+1][i, d] ← 〈z, σi〉 for each p-simplex
σi ∈ K and reduce the new column d by column additions as
in the persistence algorithm. The cycle z is null homologous
if and only if column d is reduced to a zero column. After
the initial persistence algorithm which runs in O(n3) time,
this algorithm takes O(m2) query time where K contains
n simplices and m p-simplices. This is because reduction
of a column involves O(m2) additions (O(m) column addi-
tions of O(m) Z2-additions each). Hence, Question 1 can
be answered in O(m2) query time with O(n3) preprocessing
time.

With annotations whose computations take O(n3) time, we
can improve the query time for Question 1 to O(mg) where
g is the rank of Hp(K). For this we simply add the annota-
tions of the p-simplices in z and check if the result is zero
(Corollary 1). The annotations of the p-simplices in z can
be added in time linear in the total length of all annotations
in z which is O(mg). For adding the annotations, one can
simply use an array of length n and index the annotations
which are integer values between 1 and n while toggling an
entry between 0 and 1 each time it is hit to simulate Z2-
additions. At the end we check if all entries that have been
toggled are reduced to 0 or not, which again takes at most
O(mg) time.

Given two cycles in K, the question of whether they belong
to the same equivalence class motivates the following deci-
sion problem:

Question 2. Given two cycles p-cycle z1 and z2 in a sim-
plicial complex K, decide if z1 and z2 are homologous.

Question 2 reduces to Question 1 because z1 and z2 are
homologous if and only if z1+z2 is null homologous. There-
fore, Question 2 can be answered in O((m1 + m2)g) time
after O(n3) time preprocessing where m1 and m2 are the
number of p-simplices in z1 and z2 respectively.

7.2 Independence
An analogous problem to testing null homology is the prob-
lem of testing independence. A set of p-cycles z1, . . . , zk is
called independent if Σk

i=1αi[zi] = 0 implies that αi = 0 for
each i ∈ [1, k]. Consider the following problem of indepen-
dence;

Question 3. Find a maximally independent subset of a
given set of p-cycles z1, . . . , zk in a simplicial complex K.

Since we are considering Z2-homology, the homology group
Hp(K) is a vector space. As a result, a maximal independent
subset of a given set of p-cycles can be found with a greedy
approach [11]. Assume that {z′1, . . . , z

′

i} ⊆ {z1, . . . , zj−1}, j ≤
k, have been determined to be a maximal independent subset
of the first j − 1 cycles. Next, we check if zj is independent
of the chosen subset so far. If so, it is included into the sub-
set. It is easy to show that the new subset is a maximally
independent subset of z1, . . . , zj .

This greedy approach can be implemented by maintaining a
reduced boundary matrix [∂p+1] as is done by the persistence
algorithm when run on a filtration of K. As in the case of
null homology testing, we modify (implicitly) K with the
test of each cycle zj . Insert an open ‘dummy’ (p + 1)-cell
with the boundary zj into K. The cycle zj is independent
of the cycles {z′1, . . . , z

′

i} if and only if the (p + 1)-cell of
zj does not make a (p+ 1)-cycle in the modified complex K
that already have the dummy (p+1)-cells of the independent
cycles {z′1, . . . , z

′

i}. We carry out the implicit modification of
K with each test cycle by running the persistence algorithm.
First, we run the persistence algorithm on the boundary
matrix [∂p+1] of K. Then, we insert a column dj for each
cycle zj ∈ {z1, . . . , zk} where [∂p+1][i, dj ] ← 〈zj , σi〉 where
σi is a p-simplex. We reduce the column dj till it becomes a
zero column or low(dj) becomes unique. In the former case,
we delete the column dj , and in the latter we add zj into
the independent set.

Each column reduction takes O(m2) time and thus each test
in the above greedy algorithm takes O(m2) time. Assuming
a preprocessing time O(n3) for building the initial reduc-
tion of [∂p+1], the above algorithm answers Question 3 with
O(km2) query time. We can improve this to O(tg+kg2) us-
ing annotations, where t is the total number of p-simplices
in the given k cycles and g is the rank of Hp(K). The pre-
processing time for our algorithm remains O(n3). First, we
compute the expression of each zi in a chosen basis by sum-
ming annotations of all p-simplices in zi. This takes O(tig)
time if zi has ti p-simplices giving a total of O(tg) time over
all given cycles. Next, to test if a cycle zj is independent of
the previously chosen independent cycles, we test its anno-
tations of O(g) length against others. This means we carry
out the previous column reduction algorithm, but with a
matrix M of size g × O(g). When a cycle zj is tested, the
column dj of M is set so that M [i, dj ] ← 1 if zj has 1 for
the basis i and 0 otherwise. We delete the column dj if zj
is tested to be dependent on the previously determined in-
dependent cycles. Since there can be at most g independent
cycles, the total number of columns of M remains at most
g giving an O(g2) testing time.



7.3 Shortest 1-homology basis
Given a simplicial complex K, we assume that each 1-cycle
(a loop) is assigned a non-negative weight. We are to find
a set of g = rankH1(K) loops with minimal total weight
whose homology classes form a basis of H1(K).

Question 4. Compute a set of g independent loops whose
total weight is minimal among all such sets.

Dey, Sun, and Wang [8] gave an O(n4) time algorithm for
this problem, where n is the size of the 2-skeleton of K. The
algorithm runs as follows. For every vertex v ∈ K, a shortest
path tree Tv rooted at this vertex is computed. For every
edge e /∈ Tv, we form a loop ce by concatenating e with two
shortest paths from v to the endpoints of e. Let the set of
such loops be denoted Lv. The algorithm runs a persistence
algorithm to determine a shortest basis Gv out of all loops
in Lv . Dey et al. show that ∪vGv contains a shortest basis
of H1(K) and thus a greedy algorithm can find such a basis
from the loops in ∪vGv sorted in non-decreasing sequence
of their weights. This greedy approach uses the persistence
algorithm to test cycles for independence. Since there are
O(ng) loops in ∪vGv, the greedy algorithm runs in O(n3g)
time. The complexity of O(n4) is incurred due to running
the persistence algorithm on K with different filtration for
each of O(n) vertices.

Our algorithm eliminates the need for running the persis-
tence algorithm for each vertex. Instead, O(n3) time is
spent to obtain annotations for simplices in K first and then
independence checks are carried out as we described. We
collect loop sets Lv over all vertices. We run the greedy
algorithm on the set ∪vLv. Using annotations, the greedy
algorithm takes O(tg + kg2) time. Here k = O(n2) since
each Lv may contain at most O(n) loops for any v, thus
giving | ∪v Lv| = O(n2). Here, t, the total number of edges
in ∪vLv is O(n3) since each of the O(n2) loops may con-
tain O(n) edges. Therefore, with this approach we run the
greedy algorithm in O(n3g + n2g2) time. It turns out that
we can improve this time to O(n2g2) as follows.

The loops in Lv are constructed out of the shortest path
tree Tv. We traverse Tv in a depth first order and each time
we reach a new vertex w, we augment it with the sum of
annotations on the unique path from v to w in Tv. This can
be computed incrementally. Assume that we have reached
w from the vertex u through the edge uw. At this point, the
annotation au for the vertex u is already available. We add
the annotation for the edge uw with au to obtain aw. Com-
pleting the annotations for all vertices takes O(ng) time.
The expression for a loop ce can be computed by adding the
annotation of e with those of its endpoints. Therefore, co-
ordinates for each cycle can be obtained in O(g) time after
O(ng) preprocessing. Summing over all loops in Lv, we get
an O(ng) time complexity. Summing over all vertices, we get
O(n2g) time complexity to complete the expressions for all
loops in ∪vLv. After obtaining the coordinates, the greedy
algorithm runs in O(n2g2) time giving an overall O(n2g2)
time complexity for the greedy algorithm. Since computing
shortest path trees, and all other computations are domi-
nated by theO(n3) preprocessing time, we haveO(n3+n2g2)
time for the shortest basis computation as claimed.

8. CONCLUSIONS
In this work, we present an algorithm to annotate simplices
with sub-bases of the homology groups. We have shown
its applications to some problems that concern with the
topological characterizations of the cycles. Actually, the im-
provement in running time for the shortest homology basis
computation with our approach has been quite phenome-
nal in practice. We have released the ShortLoop software
based on this new algorithm. It would be interesting to find
other applications of simplex annotations.

The connection to persistence raises some interesting ques-
tions. Since our approach allows different pairings among
simplices, it associates different persistence diagrams [6] for
these pairings. It might be interesting to explore the con-
nections between these various persistence diagrams.
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