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Abstract

Detecting the dimension of a hidden manifold from a point glerhas become an important problem
in the current data-driven era. Indeed, estimating theeskiapension is often the first step in studying
the processes or phenomena associated to the data. Amonmattyedimension detection algorithms
proposed in various fields, a few can provide theoreticatantae on the correctness of the estimated
dimension. However, the correctness usually requiresiceregularity of the input: the input points are
either uniformly randomly sampled in a statistical settioigthey form the so-calleg, §)-sample which
can be neither too dense nor too sparse.

Here, we propose a purely topological technique to detentdsions. Our algorithm is provably
correct and works under a more relaxed sampling conditi@danot require uniformity, and we also
allow Hausdorff noise. Our approach detects dimension bgroéning local homology. The computa-
tion of this topological structure is much less sensitivéhlocal distribution of points, which leads to
the relaxation of the sampling conditions. Furthermoreleygraging various developments in compu-
tational topology, we show that this local homology at a peinan be computedxactlyfor manifolds
using Vietoris-Rips complexes whose vertices are confiniédma local neighborhood of. We imple-
ment our algorithm and demonstrate the accuracy and ragasstf our method using both synthetic and
real data sets.
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1 Introduction

A fundamental problem in the current data-centric era is to estimate vat@lisagjve structures from input
data. Very often, the data is represented as a set of points sampled frioidlem domain. In particular,
recent years have witnessed tremendous interest and progress eldhaf fnanifold learning where the
hidden domain is assumed to be a manifeléémbedded in an ambient Euclidean spite The intrinsic
dimension of the manifolé/ is one of the simplest, yet still very important, quantities that one would like
to infer from input data. Indeed, the dimension\dfreflects the degree of freedom of the dynamic process
that generates the data, and/or the number of variables necessargrtbedé®e hidden domain. Hence, its
estimation is crucial to our understanding of the processes or phenossr@aded to the data.

In this paper, we present an algorithm to estimate the intrinsic dimension of aatdadiffrom a set
of noisy point sample® ¢ IR¢ on and aroundV. Our algorithm is based on the topological concept of
local homology which was first investigated by Bendich et al. in the discettimg [2]. We show that our
estimation is provably correct under appropriate sampling conditions anckcbf parameters.

Related work. The problem of dimension estimation has been studied in various fields inclpdtteyn
recognition, artificial intelligence and machine learning; see e.g., surge28]. If the domain of interest
is linear, then the principal component analysis (PCA) [19] is perhapsitst popular method to estimate
its dimension. However, PCA fails for non-linear domains and the curvatuitee domain tends to cause
PCA to overestimate the dimension. Fukunaga and Olsen pioneered the iggagé local PCA applied
to points within small neighborhoods for the non-linear case [15], anefrakvariants have been developed
along this direction [4, 22]. In particular, Little et al. developed a multi-scaédion of the local PCA idea
[22] that can achieve certain guarantee for points possibly corrupitbdGaussian noise, but uniformly
sampled from a hidden manifold. A different approach estimates the manifolendion based on the
growth rate of the volume (or some analog of it) of an intrinsic ball [6, 14,187,25]. Both types of
approaches above usually work in the statistical setting, where the injmi$ poe assumed to be sampled
from some probabilistic distribution whose support is concentrated on tderithanifold.

In the computational geometry community, Dey et al. [11] provided the fiestginly correct approach to
estimate the dimension of a manifditifrom a so-callede, ¢)-sample ofM, which enforces a regularity of
the point samples by requiring that these points are batbnse and-sparse. Their approach requires con-
structing the Voronoi diagram for input points, the computational costto€lvbecomes prohibitive when
the ambient dimension is high. Requiring the sgmeé)-sampling condition from input points, Giesen and
Wagner [16] introduced the so-called adaptive neighborhood geaqghthen locally fit (approximately) the
best affine subspace under thg, norm to each sample poiptand its neighbors in this graph. The time
complexity of their algorithm is exponential only in the intrinsic dimension and thectkd dimension is
correct for appropriate parameters. Cheng et al. improved this rgsagiilying a local PCA to each sample
point and its neighbors in the adaptive neighborhood graph [9]. Tiseyshowed that a small amount of
Hausdorff noise (of the ordef times the local feature size) and a sparse set of outliers can be tolerated in
the input points. More recently, Cheng et al. [8] proposed an algorithesttmate dimension by detecting
the so-called slivers. This algorithm works in a statistical setting, and asstiraethe input points are
sampled from the hidden manifold using a Poisson process without noise.

In this paper we develop a dimension-detection method based on the topbtmgicapt of local ho-
mology. The idea of using local homology to understand spaces from shpgilgs was first proposed by
Bendich et al. [2]. Specifically, they introduced multi-scale representatidtocal homology to infer on
stratified spaces, and developed algorithms to compute these repressniatianthe weighted Delaunay
triangulation. This line of work was further developed in [3] where theaked local homology transfer
was proposed to cluster points from different strata. In a recent japg Skraba and Wang proposed to
approximate the multi-scale representations of local homology using familiep®tBmplexes. Rips com-



plexes are more suitable than the Delaunay triangulations for points sampieldv dimensional compact
sets embedded imgh dimensional space and have attracted much attention in topology inferec71.

Our results. Given a smoothn-dimensional manifold embedded inR¢, the local homology group
H(M,M — z) at a pointz € M is isomorphic to the reduced homology group ohadimensional sphere,
that isH(M, M — z) = H(S™). Hence, given a set of noisy sample poiftof M, we aim to detect the
dimension ofM by estimatingH(M, M — z) from P. Specifically, we assume th&tis ans—samplg of M

in the sense that the Hausdorff distance betweemdM is at most. Our main result is that by inspecting
two nested neighborhoods around a sample goitP and considering certain relative homology groups
computed from the Rips complexes induced by points within these neighlotshawe can recover the local
homologyexactly see Theorem 5.3. This in turn provides a provably correct dimensiteetion algorithm
for ane-sampleP of a hidden manifoldV whene is small enough.

Compared with previous provable results in [8, 9, 11, 14, 16, 22], cewrdtical guarantee on the
estimated dimension is obtained with a more relaxed sampling conditid?. o8pecifically, there is no
uniformity requirement for the sample points which was required by all previous dimension-estimation
algorithms with theoretical guarantees: either in the form of a uniform ransimpling in the statistical
setting [8, 14, 22] or thé=, §)-sampling in the deterministic setting [9, 11, 16]. We also allow larger amount
of noise € vs. 2 as in [8]). Such a relaxation in the sampling condition is primarily made possible by
considering the topological information, which is much less sensitive to thébditstm of points compared
to the approaches based on local fitting.

In Section 6, we provide preliminary experimental results of our algorithrhath synthetic and real
data. For synthetic data our method detects the right dimension robustlyedtatata some of which are
laden with high noise and undersampling, not all points return the colireengdion. But, taking advantage
of the fact that local homology is trivial in all but zero and intrinsic dimensibthe manifold, we can
eliminate most false positives and estimate the correct dimension from ajgpedbpchosen points.

Finally, we remark that similar to the recent work in [27], our computation ddllbomology uses the
Rips complex, which is much easier to construct than the ambient Delaunayuiaéion as was originally
required in [2]. Different from [27], we aim to comput&(M, M — 2) exactlyfor the special case when
M is a manifold, while the work in [27hpproximatesghe multiscale representations of local homology
(the persistence diagram of certain filtration) for more general compgt8/e also note that, unlike [27]
our algorithm operates with Rips complexes that span vertices within a loigcglboehood, thus saving
computations. The goals from these two works are somewhat complemenththeatwo approaches
address different technical issues.

2 Preliminaries and Notations

Manifold and sample. LetM be a compact smooth-dimensional manifold without boundary embedded
in an Euclidean spad®?. Thereachp(M) is the minimum distance of any point M to its medial axis.

A finite point setP ¢ IR? is ane-sampleof M if every pointz € M satisfiesd(z, P) < ¢ and every point

p € P satisfiesi(p, M) < ¢; in other words, thédausdorff distancéetweenP andM is at most.

Balls. An Euclidean closed ball with radiusand centet is denotedB, (z). The open ball with the same
center and radius is denotétj () and its complemerR? \ B,(z) is denotedB" (z).

Homology. We denote theé-th dimensional homology group of a topological spacesH;(X ). We dropi
and writeH(X') when a statement holds for all dimensions. We meaH @Y ) the singular homology iX

"Note that this definition of-sample allows points i to bee distance off the manifoltl. Oure-sampling condition is with
respect to theeachof M while that used in [8, 9, 11, 16] is with respect to local feature size arglatiaptive.



is a manifold or a subset @?, and simplicial homology ifX is a simplicial complex. Both homologies are
assumed to be defined withy coefficients. We make similar assumptions to denote the relative homology
groupsH(X, A) for A C X. Notice that botiH(X') andH(X, A) are vector spaces because they are defined
with Z, coefficients. The following two known results will be used several times inpiyoer.

Proposition 2.1 ([7]) LetH(A) — H(B) — H(C) — H(D) — H(E) — H(F) be a sequence of homo-
morphisms. Ifrank(H(A) — H(F)) = rank(H(C) — H(D)) = k, thenrank(H(B) — H(E)) = k.

Proposition 2.2 (Steenrod-five lemma (Lemma 24.3 in [23])Buppose we have the commutative diagram
of homology groups and homomorphisms:

PO P O P
Hi(B) —H;(Y) ——H;(Y, B) —=H;—1(B) ——H;-1(Y)

where the horizontal sequences are exact; Iffs, f4, and f5 are isomorphisms, so if.

Overview of approach. We are given ars-sampleP = {p;}!" ; of a compact smootim-manifold M
embedded ifR?. However, the intrinsic dimension of M is not known, and our goal is to estimatefrom
the point samplé®. Note that for any point € M, we have thaH(M, M — z) = H(S™) whereH(-) denotes
the reduced homology. Thusnk(H;(M,M — z)) = 1 if and only ifi = m. Hence, if we can compute the
rank of H;(M, M — z) for everyi, then we can recover the dimensionMf This is the approach we will
follow. In Section 4, we first relatel(M, M — z) with the topology of the offset of the point st This
requires us to inspect the deformation retraction from the offsbt tarefully. The relation to the offset,
in turns, allows us to provably recover the rankH{iM, M — =) using the so-called Vietoris Rips complex,
which we detail in Section 5. One key ingredient here is to use only locahbeifoods of a sample point
to obtain the estimate. First, in Section 3, we derive several technical resplespare for the development
of our approach in Section 4 and 5.

3 Local Homology ofM and its Offsets

Local homologyH(M, M — z). In this section, we develop a few results that we use later. First, we relate
the target local homology groupfM, M — z) to some other local homology which becomes useful later
for connecting to the local homology of Rips complexes that are ultimately ugbeé mgorithm. We start

by quoting the following known result:

Proposition 3.1 ([10]) Let B,.(p) be a closed Euclidean ball so that it intersects themanifoldM in more
than one point. If- < p(M), thenM N B,.(p) is a closed topological:-ball.

Proposition 3.2 Let D ¢ M be a closed topologicah-ball from them-manifoldM, andz € M a point
contained in the interio) of D. ThenH(M, M — D) % H(M, M — z) is an isomorphism.

Proof: Consider the following diagram where the two horizontal sequencesact &d all vertical maps
are induced by inclusions:

H;(M — D) — Hi(M) — H;(M,M — D) —H,; (M — D) —= H;_1(M)

N

Hl(M — Z) —— HZ(M) —— HZ‘(M7 M — Z) —_— Hi_l(M — Z) —— Hi_l(M)

1R
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As all vertical homomorphisms are induced by |ncIu5|ons the above diagwenmutes, see Theorem 5.8

in Rotman [26]. Consider the inclusig¢ivl — D) < (M — 2). SinceD is a closed topological bal\ — =
deformation retracts tb! — D. The inclusion’ is a homotopy inverse of the retractiodl — z) — (M — D)
and hence’, is an isomorphism. Since the first, second, fourth and fifth vertical homdrisong in the
above diagram are isomorphisnisjs also an isomorphism by Proposition 2.2. [

We can extend Proposition 3.2 a little further. See Appendix A for the proof.

Proposition 3.3 Let Dy and D, be two closed topological balls containingin the interior whereD; C
Dy C M. The inclusion-induced homomorphlsmsandz* in the following sequence are isomorphisms:

HM,M — DQ) N HM,M — Dl) (M,M — 2).
Local homology of the offset.Later we wish to relate the local homologlfM, M — z) at a pointz to the
local homology of arx-offset of ans-sampleP = {p;}?_,, defined as
Xo = U Ba(pi), the union of balls centered at everywith radiusa.
For this, we will need a map to connect the two spaces, which is providedlgltbwing projection map:
To : Xo — M given byz — argmin,cyd(z, 2).

Choosex < p(M) — . SinceP is ane-sample, no point oK, is p(M) or more away fronmM. This means
that no point of the medial axis ®f is included inX,,. Therefore, the map is well defined. Furthermore,
by the following result of [24];r is a deformation retraction for appropriate choices of parameters. tin fac
under this projection map, the pre-image of a point has a nice structurslistaed).

Proposition 3.4 (pp.22,[24]) If P is ans-sample oM with reachp = p(M) where0 < ¢ < (3 — /8)p
anda e (E2=V 22“2765”, (Eto)+ ;2“2*6”), then, for anyr € 7, (), the segmentz lies inw, ().

For convenience denotg = 2=V E;J”’Q_GE" andg, — o+ §2+p2_6€p and observe that < 6,
andfy < p(M) — e fore, p > 0. We have:

Proposition 3.5 Let0 < ¢ < (3 — v8)p(M) andf; < a < 6. LetA, = 7, }(N) whereN C M may be
either an open or a closed subset. Then: A, — N is a retraction and\ is a deformation retract of\,,.

Proof: Notice that due to Proposition 3.4, ! (z) is star shaped meaning that every pairg 7 !(z) has the
segment:z lying in ! (z). It follows thatN C A, and there exists a straight line deformation retraction
F:A, xI— A, defined ag'(z,t) = (1 — t)z + tn(z). The proposition then follows. |

Based on the above observation, the map (X, A,) — (M, N) seen as a map on the pairs provides
an isomorphism at the homology level.

Proposition 3.6 Let0 < ¢ < (3 — v8)p andf; < a < #y. The homomorphism,, : H(X,,A,) —
H(M, N) is an isomorphism.

Proof: The mapr,, provides the following commutative diagram (Theorem 5.8, Rotman [26]):

—H;(Ay) — Hi(Xy) — Hi(Xo, Ay) —Hi—1(Ay) —Hi1 (X)) —

\Lﬂ'a* lﬂ'a* \Lﬂa* iﬂa* \Lﬂ’a*

— H;(N) ——H;(M) —— H;(M, N) Hi-i(N) ——H;,_1 (M) ——
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The first, second, fourth, and fifth vertical maps are restrictions,Qfand thus are all isomorphisms by
Proposition 3.5. It follows from Proposition 2.2 that the third vertical map isamorphism as well. =

Proposition 3.7 Let0 < € < (3 — v/8)p, andf; < a < o/ < 6. LetN c N’ be two closed (or open) sets
of M, andA,, = 7, }(N) and A, = n;,l(N’). Denoting byim(-) the image of a map, we have

im (H(Xa, Aa) = H(Xar, Agr)) 2 im (H(M, N) — H(M,N")) .

Proof: The projection maps, andn, (both being maps of pairs) result in the following commutative
diagram of pairs.
(Xaa Aa)c—) (Xo/a Aa’)

O

(Mv N)(—> (M> N/)

This diagram induces a commutative diagram at homology level, whgrandr, ., are isomorphisms by
Proposition 3.6. The claim now is immediate by the Persistence Equivalenoeehfl2], page 159. m

4 Local Interleaving of Offsets

Letp € P be any sample point. We show how to obtain the local homology of the projeotetixip) on

M from pairs ofp’s local neighborhoods iX,,. The results from the previous section already allow us to
relate the local homology of the projected pairip) with the local homology of some local neighborhoods
in X, (which are the pre-image of some setdMi We now use interleaving to relate them further to local
neighborhoods that are intersectiorXof with Euclidean balls. Since(p) plays an important role here, we
use a special symbgl= = (p) for it. For convenience, we introduce notations (see Figure 1):

M, 5 = 75 H(Bs(p) NM), M*P =X, — M, 3, andB, s = Bs(p) N X4, B*P =X, — Bags.

Figure 1: The space¥,, 3 shown in cyan (left) an®dI*” shown in pink (right).

The following simple observation follows from Propositions 3.2} 3.1,/and 3.5.

Proposition 4.1 Let Dg = Bg(p) " M. For0 < e < (3 — V8)p,e < B < p(M)andd; < a < 6, the
mapsn,. andi, are isomorphisms in the sequen¢t(X,, M*#) ™ H(M,M — Dg) 5 H(M, M — p).

Now sets = a + 3. Consider any € M. Since any point € 7, '(z) resides within a balB, (p;) for
somep; € P, we have that

d(x, 2) = d(z,m(x)) < d(x,7(p;)) < d(x,pi) + d(pi, 7(pi)) < a+e=06—2e (1)



It follows that for any\ € (e, p(M) — §) we get the following inclusions(see Appendix B for details):
Mo x C Barts C Mo 125 C Baag3s C Mo at4s.
Taking the complements, a new filtration in the reverse direction is generated:
MOATS — BaA+38 — (A28 — BaAHS — e
Considering each space as a topological pair, the nested sequeonebec
(X, MOAT) © (X0, BOAM3) © (X, MO € (X, BEM) © (Ko, MO )

Inclusion between topological pairs induces a homomorphism between detive homology groups.
Therefore, the following relative homology sequence holds.

H(XQ’Ma,)\—&-éM) _ H(XQ’Ba,)\—I—&S) N H(Xa’Ma,)\—FQ&) N H(XQ’EQ,A—&-(S) _ H(XQ,M(X’A) (3)
Lete < o/ < p(M) —eandd’ = o + 3z. Similar to sequence (2), for any € (e, p(M) — 44") we have:
(XQI’MQ,,/\/+45/) C (Xa/7Ba/,)\/+35/) C (Xa,,Ma/,/\/+25/> C (XQI,B(X(7)\I+6/) C (XQI’MC/,/\/) (4)

The stated range of, \ is valid if o, o/ < M

o (M) _ p(M)—13
are satisfied for < 257, Letd, = 2=—=.

. We also need; < «,a’. These two conditions

Proposition 4.2 Let0 < ¢ < %, andd; < a <o <0 Setd = a+3candd’ = o + 3¢. For

e< N <p(M)—4§and) > X +2(a’ — a), we have,
im (H(XO”B%M&S) — H(Xa/,Ba’:XH’)) ~ H(M,M — p). (5)

In particular, im (H(Xg, B¥*3) — H(X,, BY*0)) 2 H(M,M — p).

Proof: Due to our choice of parameters, we have that 26 > X + 2§’. From Eqnl[(2) and (4), we obtain
the following sequence of homomorphisms induced by inclusions:

H(Xa, Ma,/\+45) _ H(Xa, BQ’A—FS(S) —H (ch Ma,)\+25) N
H(Xa/, Ma’,k’-ﬁ-%’) - H(Xa/, Ba’,k’ﬁ-(s’) N H(Xo/» Ma',k’)‘

We first show
im (H(XQ,MO"M‘M) - H(Xa,,Ma"’\/)> & im (H(XQ,M"”\”‘S) - (Xa,,MaW”é’)) >~ H(M,M — j). (6)
Consider the following commutative diagram wheteandr,. are seen as maps on pairs:

(X, MO (X, MY

-

(M,M — Dy y45)—> (M,M — Dy))
whereDg = Bs(p) N M. By Proposition 3.3, we have

im (H(M, M — Dy.5) = H(M,M = Dy)) = H(M,M - p).
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Hence,im (H(X,, M®**40) — H(X,, M®*)) 2 H(M, M — j) by Proposition 3.7. The same argument
) p) by p g

implies thatim (H(Xa, MeAt20) (X, Ma’,)\’+25’)> >~ H(M, M — ) which establishes the claim in (6).
Eqgn (5) then follows from Proposition 2.1. In particularpif= o, we have

im (H(Xq, B %) = H(Xa, B**)) 2 H(M, M — ).

|

Finally, we intersect each set with a sufficiently large al(p) so that we only need to inspect within
the neighborhood, (p) of p. Specifically, denot&,, , = X, N B, (p) andXQT = XN B?(p). We obtain
the next proposition by applying the Excision theorem (details in Appendix B)

Proposition 4.3 Let all the parameters satisfy the same conditions as in Proposition 4.2., Tdren >
A+ 54, we have:
im (H(Xa, X05%) = H(Xor,, XU4)) 2 HM,M = ).

In particular, im (H(Xa,r, X)1%) — H(X,,, X319)) = H(M,M — p).

In fact, one can relax the parameters, and the image homﬁlméyl(xa,r, Xffr) — H(Xy Xg},r)) cap-

tures (that is, is isomorphic to) the local homoldgyM, M—p) as long ash > o' +4e, B2 > B1+a+a’+6¢
andr > s + 2« + 6e.

5 Interleaving Nerves and Rips complexes

We now relate the relative homology of pairs as in Proposition 4.3 to the rekaiivelogy of pairs in Rips
complexes. Our algorithm works on these pairs of Rips complexes to dkeévecal homology at a point
on M. As before, lep € P be a point from the sample.

Nerves of spacesConsider the spacg, , = X, N B,(p). The connection of such spaces with simplicial
complexes (Vietoris-Rips complex in particular) is made through the so-cae of a cover. In general,
let/ be a finite collection of sets. Theerve N/ of U is a simplicial complex whose simplices are given by
all subsets of/ whose members have a non-empty common intersection. That is,

NU:={ACU|NA#D}.

The set{ forms agood coverof the union| J/ if the intersection of any subsets &fis either empty or
contractible. The Nerve Lemma states that/ifs a good cover of JU/, then N/ is homotopic td U,
denoted byVi/ ~ (JU.

Now consider the set of sefy,, = {B.(pi) N B.(p) | pi € P}; note thatX,,, = |J&,,,. Since
each set int, , is convex,X, , forms a good cover ak,, , and thusV' X, , ~ X, , by the Nerve Lemma.
Furthermore, it follows from Lemma A.5 of [27] that for> 3 + 2, the set¥y, = {B,(p;) N B:(p) N
Bﬁ(p)}ie[m] also form a good cover QUXO[ZT(: Xg,,); see Appendix C.1 for details. Thus, we have
N’Xﬁr ~ Xgr. We can now convert the relative homology betw&er). andxg,r to the homology of their
nerves. In particular, we have the following result. The proof is in Agipe€.2, and it relies heavily on the
proof of Lemma 3.4 of [7] which gives a crucial commutative result for {hece and its nerve.

Lemma 5.1 Let all the parameters satisfy the same conditions as in Proposition 4.2, fidien> \ + 54:

im (H(NXQJ,NX(;\;T?"S) N H(NXQ/J,NXQ’?’)) ~ H(M,M — ).

7



Relating nerves and Rips complexesFirst, we recall that for: > 0, theCech complex’®(Q) of a point
set( is the nerve of the covefB,(q;) : ¢; € Q} of UB,(¢;) = X,. The Vietoris-Rips(Rips in short)
complexR“(Q) is the maximal complex induced by the edge §et;, i) | d(pj,pr) < a}. Itis well
known that for any point s&b, the following holds:

C*(Q) € R*(Q) € C*(Q).

DefineP,, = {pi € P | Ba(pi) N By(p) # 0}. Obvi-
ously, P, , forms the vertex set for the nervéX,, .. Similarly,
let PY, = {p; € Pa, | Ba(pi) N B®(p) # 0} denote the vertex
set ofJ\/Xf,r. See the figure on right for an example, where the
union of solid and empty dots forms the set of poifts,, while
Pf,r consists the set of empty dots. Note that from the definitios;
it follows that P2, ¢ P, andP’, c PZ, for 3 < 3. Further-
more, as the offseX,, grows, it is immediate thab, , C P, ,
andPy, C Py, fora <d.

Each element in the good cov&, orz’\fﬁT is in the form of B, (p;) N B,-(p) or B (p;)NB,.(p) N B?(p).
Since theCech complex of a set is the nerve of the set of b&Jl$p; ), it follows easily that

Ny C C(Pay) C R**(Pay) andNXé?,r C Ca(Pg,r) C RQOC(Pg,r)- (7)

Claim 5.2 (i) R2*(Py,) C NXs,,, and (i) R**(PL,) € NXy, .

Proof: To prove (i), consider an arbitrary simplex= [pop: ...p/] € R**(P,,). By definition of
Rips complexd(p;, p;) < 2afor0 < 4,5 < ¢. Then, for any point: € B, (po) N B:(p), we have that
d(z,p;) < d(z,po) + d(po, pi) < 3acimplyingz € N{_yBsa(pi) and(Nt_yBsa(pi)) N B (p) # 0. In other
words,o € N Xs,, -, thus proving Claim (i). Claim (ii) can be shown by a similar argument. [ ]

Setn; = A + 9a + 3 andrn, > 01 + 12a + 6¢ for any A > . Combining Eqn(7) and Claim 5.2, we
get three nested sequences

NX,, CR*(Par) CNXsar CR(Psar) CNXoor

NXIL C RP(PIL) C N, CROPL ) C N,

3a,r
NXP. C R*(PP) C NXJ2, C RO(PR,) C NXT

3a,r

These give rise to the following sequence of pairs
(Ka, K&?) = (Ra, RY) — (Ksa, K3) = (K3a, K3,) = (Rsa, R3p,) — (Koa, Kgy)

whereK, = N X, KB = /\/Xf,r, Ry = R*¥(P,,) andR® = RQO‘(PO?,T). From Proposition 4.3 and
Lemma 5.1, it is immediate thai (iy,) = im(izq,) = H(M, M — p) wherei,, andis,, are induced from
o @ (Ko K&) — (Koo, Kgb) andis, : (Kso, K92) — (Ksq, K3%) . It follows from Proposition 21
thatim(j,,) = H(M,M — p) wherej,, is induced fromj, : (Ra, R¥) — (Rsa, R1.). To apply Propo-
sition[4.3, we need the condition required by Eq. 6, whichsist « + 3¢ < p(M) here. This condition
together withn, > 1y + 12a 4 6¢ require thain < %. We also need; < «. Both conditions are

satisfied whei) < € < %. Thus, we have our main result:

(M)—13¢
22 '

Theorem 5.3 Let0) < ¢ < % andf; < a < £ Furthermore, lety; and n» be such that

e <m,n2 < p(M),n > 9a+ 4e, andny > n1 + 12a + 6e. The inclusion
Jo: (R?*(Payr), R**(P)) = (R (P3ar), R (Psh )
satisfiedm(j,,) = H(M,M — p) for anyr > 1y + ns.



Algorithm.  Given a sample point = p;, our algorithm first constructs the necessary Rips complexes as
specified in Theorem 5.3 for some parameters 7, < 72 < r. For simplicity, rewritej,, : (A1, By) —

(Ag, By) whereB; € Ay C As and By C By C As. After obtaining the necessary Rips complexes,
one possible method for computing(j,.) would be to cone the subcomplexBs and B, with a dummy
vertexw to obtain an inclusion : A; U(w#* B;) — AU (w* By) wherew« B; = B;U{w=xo|o € B;}is

the cone omB; (j = 1,2). Itis easy to see thain(j..) = im(¢,). Then, the standard persistent homology
algorithm can be applied. However, the cone operations may add mangessaey simplices slowing
down the computation. Instead, we order the simpliceddmproperly to build a filtration so that the rank

of im(j,,) can be read off from the reduced boundary matrix built from the filtratibime details of this
algorithm can be found in Appendix D.

6 Experimental results

We present some preliminary experimental results on several synthesidectal data. Recall that our
method only needs points in the neighborhood of a base point. While the tibabresult guarantees
the correct detection of dimension for correct choices of parametefgattice, the choice of the base
point plays an important role. If the points sample only a patch of a manifold, ttree local homology
of points near the boundary of that patch will be trivial, which results intglef base points with trivial
local homology. Furthermore, noise and inadequate density make the dimessioation difficult. To
overcome these hurdles, we explore some practical strategies.

) (/) INopnoo o

(a)Head (b) D1 (c)DO

Figure 2: Image data : rotating hedddad), handwritten oned1) and zeros[O0).

For the synthesized data, which is uniform and dense, we take a sparsmiform subsample from
the input as a set of base points. At each base point, the local homologtynseed by our program. We
discard the result in which the computed homology is trivial or does not iclEngith H(S”) for anyn,
as these are obviously not correct. The remaining base points returorti@dyy of ann-sphere, that is
rank(H;) = 1iff < = n for somen. These are calledalid base pointsThese points are grouped according
to whichn-sphere homology they have, and we return the dimensiofhthe group with most members as
the detected dimension.

SAMPLE POINTS | AVG. NEIGHB. | NOT n-SPHERE | TRIVIAL n-SPHERE | CORRECTRATIO
CE 4096 19 0/60 38/60 n=3 | 22/60 100%(22/22)
St 4097 34 0/46 40/46 n=4| 6/46 100%(6/6)
CE 32769 52 0/74 69/74 n=5| 5/74 100%(5/5)
S6 262145 74 0/220 213/220 | n=6 | 7/220 100%(7/7)
Shift 2240 37 0/67 15/67 n=2 | 52/67 100%(52/52)
M3 2796 316 0/54 40/54 ::é 113//5544 92.8%(13/14)

Table 1: Results for synthetic data



For the real data, which mostly comes from a small part of a manifold, we udeeedt strategy
because these data are non-uniform and contain high noise and oullleee dataHead, D1, andDO
(some samples shown in Figure 2) are considered. We first identify sanpdespoints called centers away
from the boundary and undersampled regions using a graph baseddngetharibed in the Appendix| E.
Then, we estimate the local homology at these points. Table 2 in the Appendbvigigs the results on
estimated dimensions.

Our synthetic data consists of points sampled from spherical capsspheresS™ for n = 3,4, 5, 6;

a 3-manifold M® ¢ R with boundary (computed from a parametric equation); ag®dranslation of
a smaller image within a black image with resolutiéh x 84(Shift) (see [8]). The input for eacB” is
a uniform0.0125-sample of a spherical cap (thus is a manifalith boundary) with no noise. Th8hift
data is also noiseless. The sample pointd/©fis noisy with a0.05 unit Hausdorff noise. The results on
the synthetic data are summarized in Table ¥tGANEIGHB. column gives the average number of points
in the local neighborhood of each base point used to estimate local hom@&@@RRECT RATIO column
shows the ratio of correct dimension detection over all valid base points.ndmlbvalid base points, our
algorithm produces no false positives for all $fedata sets. For the noisy sampleMf, we have only one
false positive out of 14 valid points. The high number of points that retiviatthomology (5th column) is
mainly due to points near the boundary of the manifold. FoSthi& data, our method detects its dimension
2 with high confidence. Th&hift was used and compared in [8].

In the table on left, we show comparisons with other

Shift | Head | D1 DO methods. AlthougIshift is uniform and noise free, only

Ours 2 3 4 3 ISOMAP and ours get the correct dimension. The real
SLIVER 3 4 3 2 data containg98 images of a rotating hea¢i¢ad, Fig.
MLE 427 | 4.31 | 11.47 | 14.86 2(a)),6742 images of handwritten oneB{, Fig.[2(b))

MA 3.35 | 4.47 | 10.77 | 13.93 and 5923 images of handwritten zero®Q, Fig. [2(c))

PN 3.62 | 3.98 | 6.22 | 8.86 from MNIST database. These three data were also ex-
LPCA 3 3 5 8.86 plored and compared in [8], where Cheng and Chiu [8]
ISOMAP | 2 3 5 3, 6] compared their dimension detection method via sliver

(SLIVER) with other methods: the maximum likeli-
hood estimation (MLE) [21], the manifold adaptive method (MA) [14], thekirag number method (PN)
[20], the local PCA (LPCA) [9], and the isomap method (ISOMAP) [28hc® we test our method on the
same data, we include the comparison results on these three data alo&diftithata from|[8] in the table
where all rows except the first row are from [8]. Details and statistiasuofexperiments on real data are
presented in the Appendix E.

7 Conclusions

In this paper, we present a topological method to estimate the dimension of @it &mifm its point samples
with a theoretical guarantee. The use of local topological structures teefileviate the dependency of our
method on the regularity of point samples, and the use of persistent honfotaggair of homology groups
(instead of a single homology group) helps to increase its robustness.

It will be interesting to investigate other data analysis problems where topalog&thods, especially
those based on local topological information (yields to efficient computdtiomsy be useful. Currently,
we have conducted some preliminary experiments to demonstrate the peideraiaur algorithm. It will
be interesting to conduct large-scale experiments under a broad rapigetical scenarios, so as to better
understand data in those contexts.
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A Proof for Proposition 3.3

We only need to show that is an isomorphism as Proposition 3.2 proves it#ar Since the inclusion
induced homomorphismg : H(M,M — Dy) — H(M,M — z) andi, : HM,M — D;) — HM,M — z) are
isomorphisms by Proposition 3.2 afnd= i, o i, we have that/ is an isomorphism as well.

B Missing Details in Section 4

Proof of Proposition/4.1. By Proposition 3.5, the map.,.. is an isomorphism. By Proposition 8.1 is
a closed topological ball a8 < p(M). Hence(M, M — Dg) — (M, M — p) induces the isomorphism at
the homology level, see Proposition 3.2. The observation then follows.

Missing details for interleaving in section 4. From Eq! 1, it follows that for any € (¢, p(M) — §):
Map = 75 (Ba(p) N1 M) € 75 (Base(B) N M) € Bags—c(p) N Xa C Bass(p) N Xa = Bapis.  (8)
Now take a pointz € By (p) N X,. Thend(n(z),p) < d(n(z),x) + d(z,p) < (a+ €) + A. Therefore,
Bax = Ba(p) NXo C 75  (Bars—2:(p) N M) = My ats-2: C My aps- 9)
Eq.[8 and Ed. 9 provide the required nesting:

Max € Bo s © Mg r426-

Proof of Proposition[4.3. Recall that by definitioB*" = X, — BT(p). Then, for sufficient large >
B+ a+ 3¢, the closure ofnt B is a subset ofnt (M®?) orint (B*#). By the excision theorem, it follows
that

H(Xq, M¥?) = H(X, — int BY", M*? — int B4")

and
H(Xa, B*%) 2 H(X, — int B*",B*? — int B*") = H(Xq,, X3 ),

where the isomorphisms are induced from canonical inclusions. Thedreegiaence of pairs involves only
inclusion maps. If we repeat the arguments for Proposition 4.2 for setsecterg the balB,.(z) and use
Persistence Equivalence Theorem [12], we get the claim of this pitmposTo make sure that is large
enough, we need that> \ + 46 + a + 3¢, as well ag" > X + 26 + o’ + 3e. We choose > \ + 56 to
guarantee that.

C Missing Details in Section 5

C.1 Good Cover

Here we prove that the set of set’f,,« .= {Bu(p;) N B,(p) N B%(p) | p; € P} is a good cover for
U Xo?,r = Xg,r-

For convenience, denofé = B, (p;) N B,(p) N B”(p). Note that since > 3 + 2a, we have that any
ball B,,(p;) may intersect the bounda83,(p) of B, (p), or the boundary B (p) of Bs(p), (or none of the
two boundaries,) but not both. In other words, the/Setan be of three types: (i) a complete ba&ll(p;);
(if) a convex set which is the intersection betweBg(p;) and B, (p), but not intersecting the boundary
0Bg(p); and (iii) a potentially non-convex set which is the differedgg(p;) — ég(p), but not intersecting
the boundary) B, (p).
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Now consider any subset dfﬁr with non-empty intersection: Sindg, (p;) cannot intersecd B, (p)
andoBj(p) simultaneously, such a subset either only consists of balls from type ({jigrat from type (i)
and (iii). Since type (i) and (ii) are both convex, their intersection must b&adtible. If the subset consists
of type (i) and (iii), then the result from Lemma A.5 of [27] shows that it is alentractible. Hence, the
intersection of any subset fo, » IS contractible, and as suehfm forms a good cover fng,r. By Nerve
Lemma, this implies that/ X%, is homotopic taX ,; that is N XY, ~ X3 ,.

C.2 Proof of Lemma 5.1

First, we quote the following result shown in [7], which states that the isomsmpinduced by the homotopy
equivalence between a nerve and its space commute with the canonicaloingloa the spaces at the
homology level. To be consistent with the notations of [7] & denote the nerve on a good covér

Proposition C.1 (Lemma 3.4 in[7]) Let X C X' be two paracompact spaces, and ket {U,},c, and
U = {U]}ic.s be two good open covers &f and X' respectively, based on a same finite parametetr/set
such that/; C U/ for all i € J. Then, there exist homotopy equivalenté&s — X and N/’ — X’ which
commute with the canonical inclusiofs— X’ and N/ — NU’ at homology and homotopy levels.

Extending the arguments in the proof of this lemma, we have the following relaivelogy version.
We first give the proof of this result here, after which we explain howmi 5.1 follows from this result.

Proposition C.2 Let LetX C X’ C X" be two paracompact spaces, and let= {U;}ics, U = {U/}ics
andU” = {U!'},c; be three good open covers &f, X’ and X" respectively, based on a same finite
parameter se¥/, such that/; C U/ c U/ for all i € J. There exist commutative diagrams,

H(X', X) H(X", X) H(X", X) H(X", X')

| l l |

HNU, NU) —= HNU NU)  HNU, NU) — HNU N

where horizontal maps are induced from canonical inclusiofs, X) — (X", X), (NU'NU) —
WNU" NU), (X", X) — (X", X), NU", and NU) — (NU",NU'); while vertical maps are iso-
morphisms.

Proof: From the good cover& of X, one can construct a topological spak& as in [7] such that the
following diagram commutes

X( X/( X//

-k

AX—— AX'—— AX"

wherep andyp’ are restrictions of”” to AX and AX' respectively, ang,p’ andp” are homotopy equiva-
lences. Therefore, we have a map of pairs (AX’,AX) — (X', X). Considering the two long exact
sequences of paifA X', AX) and(X’, X') and using the same arguments in Proposition 3.6, it follows that
P, HHAX',AX) — H(X', X) is an isomorphism. Similarly,” is also a map of pairs, and the induced
homomorphismg : HLAX” AX) — H(X"”, X) is also an isomorphism. Given that bgthandp” are
maps of pairs, we have the following commutative diagram of pairs:

(X' X)— (X", X)

b

(AX', AX)—> (AX", AX)
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It induces the following commutative diagram at homology level where véntiegos are isomorphisms,
and horizontal maps are induced from canonical inclusions.

H(X', X) H(X", X)

Tpi Tpi’

H(AX',AX) —= H(AX", AX)

Next, letT" be the first barycentric subdivision 8f¢/, andI” for N’ andT"” for NU”, respectively. It is
shown in[[7] that the following diagram commutes

AX—= AX'—— AX"

Tk

1"( 1'\/( F/l

whereq andq’ are the restrictions of” to AX and AX’, respectively. Following the same arguments as
above, one obtains the following commutative diagram at homology level witltakeisomorphisms and
horizontal maps induced from canonical inclusions.

H(AX',AX) —= H(AX", AX)

iqi lqi!

H(I",T) H({T”,T)

It is known that simplicial approximatiog’ : T — NU" of the identity mapd : |[T| — |[NU| commutes
with canonical inclusions and induces an isomorphism between homololyy T2@refore, we have the
following commutative diagram
F( P/( I
bk
Nu( Nul( Nz/{//
whereg and g’ are the restriction of” to I" andI” respectively. As before, there exists following com-

mutative diagram at homology level with vertical isomorphisms and horizontasimauced by canonical
inclusions,

H(I",T) ————H(I",T)
igi J{gi’
HWNU , NU) —=HNU" ,NU)

Combining these three commutative diagrams at homology level, the first comrautiéiyram in the
proposition follows immediately. A similar argument shows that the second comwueuthsigram in the
proposition holds as well. ]

Using this proposition, one can easily obtain that
i (HOV M) — MV NEST0)) 2 HM,M — )

because
im (H(Xa, X05%) = H(Xor,, XU4)) 2 HM,M - ).
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. ! !
Indeed, for convenience, sé = X, ,, B1 = X213, Ay = X, and By = Xi,j;é ;and setd; = X, ,,

o,r !
B = )@j% Ao = Xy andBy = Xof,'j 7 We apply the above proposition twice, once to the three spaces
By C Ay C A, and once to the three spadés C By C As. This provides the following diagram, where
the commutativity of each square follows from Proposition C.2.

H(A, By) H(As, By) H(As, Bs)

l l |

HWN A, NBy) —=HWN Ay, NB1) —= H(N Az, N By)

Since all vertical homomorphisms are isomorphisms, we have that
im (H(Al, Bl) — H(AQ, B2)> = im (H(NAl,NBl), H(N.AQ,NBQ)) .

This finishes the proof of Lemma 5.1.

D The Algorithm to Compute im(j,,)

Recall thatj,, is the inclusion of pairg, : (A1, B1) — (As, Bs), whereB; C A; C As andB; C By C
As. To computem(j,, ), we order the simplices ofl, in a proper way to build a filtration such that the
rank ofim(j,,) can be read off from the reduced boundary matrix built from the filtratfrecisely, the
filtration adds the simplices of; as follows. The simplices ifB; \ A; appear first. Then the simplices in
By, (B \ B1) N Ay, A1\ BaandAs \ (41 U By) follow sequentially. This order is illustrated in Figure 3.
For simplicity, letR(x, y) denote submatrix occupying the rectangle region wis its top left corner point
andy as its bottom right corner point in Figure 3. It is known [13] that the raffd (@4, B ) (or H(As, Bs))

A
I B 1
B\ A+ B+ (B \ B)) N A+ A1\ By Ay \ (BoU A
Bz\Al
B - C
Lol 3
(B\ By) N A4 D1
,,,,,,,,,,,,,,,, bl
A\ By R
A\ (BaU Ay)

Figure 3: The order of the simplices in the filtration fds.
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can be computed by reducing the submabdx = R(a, ¢) (or My = R(b,d)) in Figure 3. For our purpose,
the submatrix\/ = R(a, d) in Figure 3, which contains both/; and M/, will be reduced in the same way
as the classical persistent homology algorithm d@b/[\B]J\/Eeienote the matrix reduced frofd . It will
be shown that the rank afn(j,,) can be read off frond/.

Recall that theém(j,, ) in dimensionk contains the:-cycles ofH; (A, B1) which are nontrivial in both
Hi (A1, B1) andHg (A2, Bs). In particular, eactk-simplex in the collection of simpliced; \ B2 whose
column in the reduced matrix/ is a zero column (i.e., a zero column corresponding fesamplex in
the light blue column regioR of Figure 3) represents/acycle in bothH (A1, B1) andHy (A, Bs). Let
#Zeroy, denote the number of such zero column€idf one suchk-simplex is paired by & + 1)-simplex
in As \ Bs (i.e., the row inM corresponding to this simplex which is in the light blue row regiof
Figure 3 has a uniquk), its corresponding-cycle is ak-boundary inH; (Az, B). Let# Bdry;, denote the
number of sucl-simplices. Since thg-cycles inHy (A4, By) corresponding to zero columns which appear
before the columns i@ contain only simplices fronB,, they all have trivial image il (A2, Be). Itis then
immediate that the rank ofn(j,, ) in dimensionk equals#Zeroy, — # Bdryx, namely the number of zero
columns inC which correspond to unpairédsimplices. Once the matriX/ is reduced, it is straightforward
to compute# Zeroy, — # Bdryy,.. If there aren simplices indy \ Bo, this algorithm runs irfQ(n?) time due
to the reduction of\/.

E Graph Based Central Points and Experimental Details on Real Data

A graph on sample points is built by connecting two points within certain distafaeevery vertex of
each component of this graph, the shortest path tree withur@tomputed and then the largest distance
from v to leaves of this shortest path tree is recorded. The vertex whose distelraves of its shortest path
tree is the minimum among those vertices in the component containing it, is cowsiddre the center of
its component. Intuitively, these centers are away from the boundarieasitlkely to be outliers. We then
discard the centers of components with few points. For remaining centexsmpute the local homology
and report the intrinsic dimension of the manifold as that ofrtkephere whose homology is the same as
the most common local homology of these centers. To accelerate the compufai@omponent has a
significantly large number of vertices, we generate a uniform sparsasydbe from the points within some
radius of its center and then compute local homology on the subsample points.

n-SPHERE EST. DIM PERCENTAGE

Head | n=3] 53/53 3 100%(53/53)
n=3| 4/37

D1 | n=4|31/37 4 83.7%(31/37)
n=5| 2/37

DO 2:?, %3 3 77.7%(7/9)

Table 2: Estimated dimension for real data

We applied this strategy oHead, D1 andDO. All of them have only one major component in the
graph which connects two points within a distance that is several times thecdistbtine closest pair in the
sample points. Faread, a subsample of arourid8 points was taken frorfi05 points in the neighborhood
of the center of the major component. We took a subsample of arbtthgoints from943 points in the
neighborhood of oD1's center, and arounth2 points from3494 points in the neighborhood @0’s center.
Since the uniform subsamples were taken randomly, one will be biased taktamsult from one particular
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subsample. Therefore, we repeated the local homology computation atiiee with fixed parametei$0
times. Note that the points in the subsamples changed each time due to randdimgsahmpong thesd 00
computations, we only counted the valid ones which returned the local hoynoliét(S™) for somen. The
distribution of valid computations is shown in Table 2. ThesPHEREcolumn shows the number of valid
computations with the reduced homology#fS™) for eachn. The total number of valid computations
is also included in this column. ThesT. DIM column gives the estimated dimension. THERCENTAGE
column shows the percentage of computations with the estimated dimension in attoralitations. For
theHead data, the detected dimension from our method matches the ground truth whichlisough the
ground truth dimensions fdd1 andDO are unknown, ours along with SLIVER, PN, LPCA and ISOMAP
report dimension in rang@, 7] for D1 and in rangd2, 9] for DO.
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