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Abstract

Detecting the dimension of a hidden manifold from a point sample has become an important problem
in the current data-driven era. Indeed, estimating the shape dimension is often the first step in studying
the processes or phenomena associated to the data. Among themany dimension detection algorithms
proposed in various fields, a few can provide theoretical guarantee on the correctness of the estimated
dimension. However, the correctness usually requires certain regularity of the input: the input points are
either uniformly randomly sampled in a statistical setting, or they form the so-called(ε, δ)-sample which
can be neither too dense nor too sparse.

Here, we propose a purely topological technique to detect dimensions. Our algorithm is provably
correct and works under a more relaxed sampling condition: we do not require uniformity, and we also
allow Hausdorff noise. Our approach detects dimension by determining local homology. The computa-
tion of this topological structure is much less sensitive tothe local distribution of points, which leads to
the relaxation of the sampling conditions. Furthermore, byleveraging various developments in compu-
tational topology, we show that this local homology at a point z can be computedexactlyfor manifolds
using Vietoris-Rips complexes whose vertices are confined within a local neighborhood ofz. We imple-
ment our algorithm and demonstrate the accuracy and robustness of our method using both synthetic and
real data sets.
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1 Introduction

A fundamental problem in the current data-centric era is to estimate various qualitative structures from input
data. Very often, the data is represented as a set of points sampled from ahidden domain. In particular,
recent years have witnessed tremendous interest and progress in the field of manifold learning, where the
hidden domain is assumed to be a manifoldM embedded in an ambient Euclidean spaceIRd. The intrinsic
dimension of the manifoldM is one of the simplest, yet still very important, quantities that one would like
to infer from input data. Indeed, the dimension ofM reflects the degree of freedom of the dynamic process
that generates the data, and/or the number of variables necessary to describe the hidden domain. Hence, its
estimation is crucial to our understanding of the processes or phenomena associated to the data.

In this paper, we present an algorithm to estimate the intrinsic dimension of a manifold M from a set
of noisy point samplesP ⊂ IRd on and aroundM. Our algorithm is based on the topological concept of
local homology which was first investigated by Bendich et al. in the discrete setting [2]. We show that our
estimation is provably correct under appropriate sampling conditions and choice of parameters.

Related work. The problem of dimension estimation has been studied in various fields includingpattern
recognition, artificial intelligence and machine learning; see e.g., surveys [5, 29]. If the domain of interest
is linear, then the principal component analysis (PCA) [19] is perhaps themost popular method to estimate
its dimension. However, PCA fails for non-linear domains and the curvatureof the domain tends to cause
PCA to overestimate the dimension. Fukunaga and Olsen pioneered the idea ofusing a local PCA applied
to points within small neighborhoods for the non-linear case [15], and several variants have been developed
along this direction [4, 22]. In particular, Little et al. developed a multi-scaledversion of the local PCA idea
[22] that can achieve certain guarantee for points possibly corrupted with Gaussian noise, but uniformly
sampled from a hidden manifold. A different approach estimates the manifold dimension based on the
growth rate of the volume (or some analog of it) of an intrinsic ball [6, 14, 17,18, 25]. Both types of
approaches above usually work in the statistical setting, where the input points are assumed to be sampled
from some probabilistic distribution whose support is concentrated on the hidden manifold.

In the computational geometry community, Dey et al. [11] provided the first provably correct approach to
estimate the dimension of a manifoldM from a so-called(ε, δ)-sample ofM, which enforces a regularity of
the point samples by requiring that these points are bothε-dense andδ-sparse. Their approach requires con-
structing the Voronoi diagram for input points, the computational cost of which becomes prohibitive when
the ambient dimension is high. Requiring the same(ε, δ)-sampling condition from input points, Giesen and
Wagner [16] introduced the so-called adaptive neighborhood graph,and then locally fit (approximately) the
best affine subspace under theL∞ norm to each sample pointp and its neighbors in this graph. The time
complexity of their algorithm is exponential only in the intrinsic dimension and the detected dimension is
correct for appropriate parameters. Cheng et al. improved this result by applying a local PCA to each sample
point and its neighbors in the adaptive neighborhood graph [9]. They also showed that a small amount of
Hausdorff noise (of the orderε2 times the local feature size) and a sparse set of outliers can be tolerated in
the input points. More recently, Cheng et al. [8] proposed an algorithm toestimate dimension by detecting
the so-called slivers. This algorithm works in a statistical setting, and assumes that the input points are
sampled from the hidden manifold using a Poisson process without noise.

In this paper we develop a dimension-detection method based on the topological concept of local ho-
mology. The idea of using local homology to understand spaces from sampled points was first proposed by
Bendich et al. [2]. Specifically, they introduced multi-scale representations of local homology to infer on
stratified spaces, and developed algorithms to compute these representations using the weighted Delaunay
triangulation. This line of work was further developed in [3] where the so-called local homology transfer
was proposed to cluster points from different strata. In a recent paper [27], Skraba and Wang proposed to
approximate the multi-scale representations of local homology using families of Rips complexes. Rips com-
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plexes are more suitable than the Delaunay triangulations for points sampled from low dimensional compact
sets embedded inhighdimensional space and have attracted much attention in topology inference [1, 7, 27].

Our results. Given a smoothm-dimensional manifoldM embedded inIRd, the local homology group
H(M, M − z) at a pointz ∈ M is isomorphic to the reduced homology group of am-dimensional sphere,
that isH(M, M − z) ∼= H̃(Sm). Hence, given a set of noisy sample pointsP of M, we aim to detect the
dimension ofM by estimatingH(M, M − z) from P . Specifically, we assume thatP is anε-sample1 of M

in the sense that the Hausdorff distance betweenP andM is at mostε. Our main result is that by inspecting
two nested neighborhoods around a sample pointp ∈ P and considering certain relative homology groups
computed from the Rips complexes induced by points within these neighborhoods, one can recover the local
homologyexactly; see Theorem 5.3. This in turn provides a provably correct dimension-detection algorithm
for anε-sampleP of a hidden manifoldM whenε is small enough.

Compared with previous provable results in [8, 9, 11, 14, 16, 22], our theoretical guarantee on the
estimated dimension is obtained with a more relaxed sampling condition onP . Specifically, there is no
uniformity requirement for the sample pointsP , which was required by all previous dimension-estimation
algorithms with theoretical guarantees: either in the form of a uniform random sampling in the statistical
setting [8, 14, 22] or the(ε, δ)-sampling in the deterministic setting [9, 11, 16]. We also allow larger amount
of noise (ε vs. ε2 as in [8]). Such a relaxation in the sampling condition is primarily made possible by
considering the topological information, which is much less sensitive to the distribution of points compared
to the approaches based on local fitting.

In Section 6, we provide preliminary experimental results of our algorithm onboth synthetic and real
data. For synthetic data our method detects the right dimension robustly. For real data some of which are
laden with high noise and undersampling, not all points return the correct dimension. But, taking advantage
of the fact that local homology is trivial in all but zero and intrinsic dimension of the manifold, we can
eliminate most false positives and estimate the correct dimension from appropriately chosen points.

Finally, we remark that similar to the recent work in [27], our computation of local homology uses the
Rips complex, which is much easier to construct than the ambient Delaunay triangulation as was originally
required in [2]. Different from [27], we aim to computeH(M, M − z) exactlyfor the special case when
M is a manifold, while the work in [27]approximatesthe multiscale representations of local homology
(the persistence diagram of certain filtration) for more general compact sets. We also note that, unlike [27]
our algorithm operates with Rips complexes that span vertices within a local neighborhood, thus saving
computations. The goals from these two works are somewhat complementary and the two approaches
address different technical issues.

2 Preliminaries and Notations

Manifold and sample. Let M be a compact smoothm-dimensional manifold without boundary embedded
in an Euclidean spaceIRd. The reachρ(M) is the minimum distance of any point inM to its medial axis.
A finite point setP ⊂ IRd is anε-sampleof M if every pointz ∈ M satisfiesd(z, P ) ≤ ε and every point
p ∈ P satisfiesd(p, M) ≤ ε; in other words, theHausdorff distancebetweenP andM is at mostε.

Balls. An Euclidean closed ball with radiusr and centerz is denotedBr(z). The open ball with the same
center and radius is denoted̊Br(z) and its complementIRd \ B̊r(z) is denotedBr(z).

Homology. We denote thei-th dimensional homology group of a topological spaceX asHi(X). We dropi
and writeH(X) when a statement holds for all dimensions. We mean byH(X) the singular homology ifX

1Note that this definition ofε-sample allows points inP to beε distance off the manifoldM. Ourε-sampling condition is with
respect to thereachof M while that used in [8, 9, 11, 16] is with respect to local feature size and thus adaptive.
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is a manifold or a subset ofIRd, and simplicial homology ifX is a simplicial complex. Both homologies are
assumed to be defined withZ2 coefficients. We make similar assumptions to denote the relative homology
groupsH(X, A) for A ⊆ X. Notice that bothH(X) andH(X, A) are vector spaces because they are defined
with Z2 coefficients. The following two known results will be used several times in thispaper.

Proposition 2.1 ([7]) Let H(A) → H(B) → H(C) → H(D) → H(E) → H(F ) be a sequence of homo-
morphisms. Ifrank(H(A) → H(F )) = rank(H(C) → H(D)) = k, thenrank(H(B) → H(E)) = k.

Proposition 2.2 (Steenrod-five lemma (Lemma 24.3 in [23]))Suppose we have the commutative diagram
of homology groups and homomorphisms:

Hi(A) //

f1

²²

Hi(X) //

f2

²²

Hi(X, A) //

f3

²²

Hi−1(A) //

f4

²²

Hi−1(X)

f5

²²
Hi(B) // Hi(Y ) // Hi(Y, B) // Hi−1(B) // Hi−1(Y )

where the horizontal sequences are exact. Iff1, f2, f4, andf5 are isomorphisms, so isf3.

Overview of approach. We are given anε-sampleP = {pi}n
i=1 of a compact smoothm-manifoldM

embedded inIRd. However, the intrinsic dimensionm of M is not known, and our goal is to estimatem from
the point sampleP . Note that for any pointz ∈ M, we have thatH(M, M−z) ∼= H̃(Sm) whereH̃(·) denotes
the reduced homology. Thusrank(Hi(M, M − z)) = 1 if and only if i = m. Hence, if we can compute the
rank ofHi(M, M − z) for everyi, then we can recover the dimension ofM. This is the approach we will
follow. In Section 4, we first relateH(M, M − z) with the topology of the offset of the point setP . This
requires us to inspect the deformation retraction from the offset toM carefully. The relation to the offset,
in turns, allows us to provably recover the rank ofH(M, M − z) using the so-called Vietoris Rips complex,
which we detail in Section 5. One key ingredient here is to use only local neighborhoods of a sample point
to obtain the estimate. First, in Section 3, we derive several technical resultsto prepare for the development
of our approach in Section 4 and 5.

3 Local Homology ofM and its Offsets

Local homologyH(M, M − z). In this section, we develop a few results that we use later. First, we relate
the target local homology groupsH(M, M − z) to some other local homology which becomes useful later
for connecting to the local homology of Rips complexes that are ultimately used inthe algorithm. We start
by quoting the following known result:

Proposition 3.1 ([10]) LetBr(p) be a closed Euclidean ball so that it intersects them-manifoldM in more
than one point. Ifr < ρ(M), thenM ∩ Br(p) is a closed topologicalm-ball.

Proposition 3.2 Let D ⊂ M be a closed topologicalm-ball from them-manifoldM, andz ∈ M a point

contained in the interior̊D of D. ThenH(M, M − D̊)
i∗→ H(M, M − z) is an isomorphism.

Proof: Consider the following diagram where the two horizontal sequences are exact and all vertical maps
are induced by inclusions:

Hi(M − D̊) //

i′∗
²²

Hi(M) //

∼=
²²

Hi(M, M − D̊) //

i∗

²²

Hi−1(M − D̊) //

i′∗
²²

Hi−1(M)

∼=
²²

Hi(M − z) // Hi(M) // Hi(M, M − z) // Hi−1(M − z) // Hi−1(M)
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As all vertical homomorphisms are induced by inclusions, the above diagramcommutes, see Theorem 5.8

in Rotman [26]. Consider the inclusion(M − D̊)
i′→֒ (M − z). SinceD is a closed topological ball,M − z

deformation retracts toM− D̊. The inclusioni′ is a homotopy inverse of the retraction(M−z) → (M− D̊)
and hencei′∗ is an isomorphism. Since the first, second, fourth and fifth vertical homomorphisms in the
above diagram are isomorphisms,i∗ is also an isomorphism by Proposition 2.2.

We can extend Proposition 3.2 a little further. See Appendix A for the proof.

Proposition 3.3 Let D1 andD2 be two closed topological balls containingz in the interior whereD1 ⊆
D2 ⊆ M. The inclusion-induced homomorphismsi′∗ andi∗ in the following sequence are isomorphisms:

H(M, M − D̊2)
i′∗→ H(M, M − D̊1)

i∗→ (M, M − z).

Local homology of the offset.Later we wish to relate the local homologyH(M, M − z) at a pointz to the
local homology of anα-offset of anε-sampleP = {pi}n

i=1, defined as

Xα = ∪n
i=1Bα(pi), the union of balls centered at everypi with radiusα.

For this, we will need a map to connect the two spaces, which is provided by the following projection map:

πα : Xα → M given byx 7→ argminz∈Md(x, z).

Chooseα < ρ(M) − ε. SinceP is anε-sample, no point ofXα is ρ(M) or more away fromM. This means
that no point of the medial axis ofM is included inXα. Therefore, the mapπ is well defined. Furthermore,
by the following result of [24],π is a deformation retraction for appropriate choices of parameters. In fact,
under this projection map, the pre-image of a point has a nice structure (star-shaped).

Proposition 3.4 (pp.22, [24]) If P is anε-sample ofM with reachρ = ρ(M) where0 < ε < (3 −
√

8)ρ

andα ∈ (
(ε+ρ)−

√
ε2+ρ2−6ερ

2 ,
(ε+ρ)+

√
ε2+ρ2−6ερ

2 ), then, for anyx ∈ π−1
α (z), the segmentxz lies inπ−1

α (z).

For convenience denoteθ1 =
(ε+ρ)−

√
ε2+ρ2−6ερ

2 andθ2 =
(ε+ρ)+

√
ε2+ρ2−6ερ

2 and observe thatε ≤ θ1

andθ2 ≤ ρ(M) − ε for ε, ρ > 0. We have:

Proposition 3.5 Let 0 < ε < (3 −
√

8)ρ(M) andθ1 ≤ α ≤ θ2. LetAα = π−1
α (N) whereN ⊆ M may be

either an open or a closed subset. Thenπα : Aα → N is a retraction andN is a deformation retract ofAα.

Proof: Notice that due to Proposition 3.4,π−1
α (z) is star shaped meaning that every pointx ∈ π−1

α (z) has the
segmentxz lying in π−1

α (z). It follows thatN ⊆ Aα and there exists a straight line deformation retraction
F : Aα × I → Aα defined asF (x, t) = (1 − t)x + tπ(x). The proposition then follows.

Based on the above observation, the mapπα : (Xα, Aα) → (M, N) seen as a map on the pairs provides
an isomorphism at the homology level.

Proposition 3.6 Let 0 < ε < (3 −
√

8)ρ and θ1 ≤ α ≤ θ2. The homomorphismπα∗ : H(Xα, Aα) →
H(M, N) is an isomorphism.

Proof: The mapπα provides the following commutative diagram (Theorem 5.8, Rotman [26]):

// Hi(Aα) //

πα∗

²²

Hi(Xα) //

πα∗

²²

Hi(Xα, Aα) //

πα∗

²²

Hi−1(Aα) //

πα∗

²²

Hi−1(Xα) //

πα∗

²²
// Hi(N) // Hi(M) // Hi(M, N) // Hi−1(N) // Hi−1(M) //
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The first, second, fourth, and fifth vertical maps are restrictions ofπα∗ and thus are all isomorphisms by
Proposition 3.5. It follows from Proposition 2.2 that the third vertical map is anisomorphism as well.

Proposition 3.7 Let0 < ε < (3 −
√

8)ρ, andθ1 ≤ α < α′ ≤ θ2. LetN ⊂ N′ be two closed (or open) sets
of M, andAα = π−1

α (N) andAα′ = π−1
α′ (N′). Denoting byim(·) the image of a map, we have

im (H(Xα, Aα) → H(Xα′ , Aα′)) ∼= im
(
H(M, N) → H(M, N′)

)
.

Proof: The projection mapsπα andπα′ (both being maps of pairs) result in the following commutative
diagram of pairs.

(Xα, Aα)

πα

²²

Â

Ä // (Xα′ , Aα′)

πα′

²²
(M, N) Â

Ä // (M, N′)

This diagram induces a commutative diagram at homology level, whereπα∗ andπα′∗ are isomorphisms by
Proposition 3.6. The claim now is immediate by the Persistence Equivalence Theorem [12], page 159.

4 Local Interleaving of Offsets

Let p ∈ P be any sample point. We show how to obtain the local homology of the projected point π(p) on
M from pairs ofp’s local neighborhoods inXα. The results from the previous section already allow us to
relate the local homology of the projected pointπ(p) with the local homology of some local neighborhoods
in Xα (which are the pre-image of some sets inM). We now use interleaving to relate them further to local
neighborhoods that are intersection ofXα with Euclidean balls. Sinceπ(p) plays an important role here, we
use a special symbol̄p = π(p) for it. For convenience, we introduce notations (see Figure 1):

Mα,β = π−1
α (B̊β(p) ∩ M), M

α,β = Xα − Mα,β , andBα,β = B̊β(p) ∩ Xα, B
α,β = Xα − Bα,β .

Bβ(p)Bβ(p)

p̄

p

p̄

p

Mα,β

M
M

M
α,β

M
α,β

Figure 1: The spacesMα,β shown in cyan (left) andMα,β shown in pink (right).

The following simple observation follows from Propositions 3.2, 3.1, and 3.5.

Proposition 4.1 Let Dβ = Bβ(p) ∩ M. For 0 < ε < (3 −
√

8)ρ , ε < β < ρ(M) andθ1 ≤ α ≤ θ2, the

mapsπα∗ andi∗ are isomorphisms in the sequence:H(Xα, Mα,β)
πα∗→ H(M, M − D̊β)

i∗→ H(M, M − p̄).

Now setδ = α + 3ε. Consider anyz ∈ M. Since any pointx ∈ π−1
α (z) resides within a ballBα(pi) for

somepi ∈ P , we have that

d(x, z) = d(x, π(x)) ≤ d(x, π(pi)) ≤ d(x, pi) + d(pi, π(pi)) ≤ α + ε = δ − 2ε. (1)

5



It follows that for anyλ ∈ (ε, ρ(M) − δ) we get the following inclusions(see Appendix B for details):

Mα,λ ⊂ Bα,λ+δ ⊂ Mα,λ+2δ ⊂ Bα,λ+3δ ⊂ Mα,λ+4δ.

Taking the complements, a new filtration in the reverse direction is generated:

M
α,λ+4δ ⊂ B

α,λ+3δ ⊂ M
α,λ+2δ ⊂ B

α,λ+δ ⊂ M
α,λ.

Considering each space as a topological pair, the nested sequence becomes

(Xα, Mα,λ+4δ) ⊂ (Xα, Bα,λ+3δ) ⊂ (Xα, Mα,λ+2δ) ⊂ (Xα, Bα,λ+δ) ⊂ (Xα, Mα,λ) (2)

Inclusion between topological pairs induces a homomorphism between their relative homology groups.
Therefore, the following relative homology sequence holds.

H(Xα, Mα,λ+4δ) → H(Xα, Bα,λ+3δ) → H(Xα, Mα,λ+2δ) → H(Xα, Bα,λ+δ) → H(Xα, Mα,λ) (3)

Let ǫ ≤ α′ ≤ ρ(M) − ǫ andδ′ = α′ + 3ε. Similar to sequence (2), for anyλ′ ∈ (ε, ρ(M) − 4δ′) we have:

(Xα′ , Mα′,λ′+4δ′) ⊂ (Xα′ , Bα′,λ′+3δ′) ⊂ (Xα′ , Mα′,λ′+2δ′) ⊂ (Xα′ , Bα′,λ′+δ′) ⊂ (Xα′ , Mα′,λ′

) (4)

The stated range ofλ, λ′ is valid if α, α′ < ρ(M)−13ε
4 . We also needθ1 ≤ α, α′. These two conditions

are satisfied forε < ρ(M)
22 . Let θ′2 = ρ(M)−13ε

4 .

Proposition 4.2 Let 0 < ε < ρ(M)
22 , andθ1 ≤ α ≤ α′ ≤ θ′2. Setδ = α + 3ε and δ′ = α′ + 3ε. For

ε < λ′ < ρ(M) − 4δ′ andλ ≥ λ′ + 2(α′ − α), we have,

im
(
H(Xα, Bα,λ+3δ) → H(Xα′ , Bα′,λ′+δ′)

)
∼= H(M, M − p̄). (5)

In particular, im
(
H(Xα, Bα,λ+3δ) → H(Xα, Bα,λ+δ)

) ∼= H(M, M − p̄).

Proof: Due to our choice of parameters, we have thatλ + 2δ ≥ λ′ + 2δ′. From Eqn (2) and (4), we obtain
the following sequence of homomorphisms induced by inclusions:

H(Xα, Mα,λ+4δ) → H(Xα, Bα,λ+3δ) → H(Xα, Mα,λ+2δ) →
H(Xα′ , Mα′,λ′+2δ′) → H(Xα′ , Bα′,λ′+δ′) → H(Xα′ , Mα′,λ′

).

We first show

im
(
H(Xα, Mα,λ+4δ) → H(Xα′ , Mα′,λ′

)
)
∼= im

(
H(Xα, Mα,λ+2δ) → (Xα′ , Mα′,λ′+2δ′)

)
∼= H(M, M − p̄). (6)

Consider the following commutative diagram whereπα andπα′ are seen as maps on pairs:

(Xα, Mα,λ+4δ)

πα

²²

Â

Ä // (Xα′ , Mα′,λ′
)

πα′

²²

(M, M − D̊λ+4δ)
Â

Ä // (M, M − D̊λ′))

whereDβ = Bβ(p) ∩ M. By Proposition 3.3, we have

im
(
H(M, M − D̊λ+4δ) → H(M, M − D̊λ′)

)
∼= H(M, M − p̄).
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Hence,im
(
H(Xα, Mα,λ+4δ) → H(Xα′ , Mα′,λ′

)
)
∼= H(M, M − p̄) by Proposition 3.7. The same argument

implies thatim
(
H(Xα, Mα,λ+2δ) → (Xα′ , Mα′,λ′+2δ′)

)
∼= H(M, M− p̄) which establishes the claim in (6).

Eqn (5) then follows from Proposition 2.1. In particular, ifα′ = α, we have

im
(
H(Xα, Bα,λ+3δ) → H(Xα, Bα,λ+δ)

)
∼= H(M, M − p̄).

Finally, we intersect each set with a sufficiently large ballBr(p) so that we only need to inspect within
the neighborhoodBr(p) of p. Specifically, denoteXα,r = Xα∩Br(p) andX

β
α,r = Xα,r ∩Bβ(p). We obtain

the next proposition by applying the Excision theorem (details in Appendix B).

Proposition 4.3 Let all the parameters satisfy the same conditions as in Proposition 4.2. Then, for r >
λ + 5δ, we have:

im
(
H(Xα,r, X

λ+3δ
α,r ) → H(Xα′,r, X

λ′+δ′

α′,r )
)
∼= H(M, M − p̄).

In particular, im
(
H(Xα,r, X

λ+3δ
α,r ) → H(Xα,r, X

λ+δ
α,r )

) ∼= H(M, M − p̄).

In fact, one can relax the parameters, and the image homologyim
(
H(Xα,r, X

β2
α,r) → H(Xα′,r, X

β1

α′,r)
)

cap-

tures (that is, is isomorphic to) the local homologyH(M, M−p̄) as long asβ1 ≥ α′+4ε, β2 ≥ β1+α+α′+6ε
andr > β2 + 2α + 6ε.

5 Interleaving Nerves and Rips complexes

We now relate the relative homology of pairs as in Proposition 4.3 to the relativehomology of pairs in Rips
complexes. Our algorithm works on these pairs of Rips complexes to derivethe local homology at a point
onM. As before, letp ∈ P be a point from the sample.

Nerves of spaces.Consider the spaceXα,r = Xα ∩ Br(p). The connection of such spaces with simplicial
complexes (Vietoris-Rips complex in particular) is made through the so-called nerve of a cover. In general,
letU be a finite collection of sets. ThenerveNU ofU is a simplicial complex whose simplices are given by
all subsets ofU whose members have a non-empty common intersection. That is,

NU := {A ⊆ U | ∩A 6= ∅}.

The setU forms agood coverof the union
⋃U if the intersection of any subsets ofU is either empty or

contractible. The Nerve Lemma states that ifU is a good cover of
⋃U , thenNU is homotopic to

⋃U ,
denoted byNU ≈ ⋃U .

Now consider the set of setsXα,r = {Bα(pi) ∩ Br(p) | pi ∈ P}; note thatXα,r =
⋃Xα,r. Since

each set inXα,r is convex,Xα,r forms a good cover ofXα,r and thusNXα,r ≈ Xα,r by the Nerve Lemma.
Furthermore, it follows from Lemma A.5 of [27] that forr > β + 2α, the setX β

α,r = {Bα(pi) ∩ Br(p) ∩
Bβ(p)}i∈[1,n] also form a good cover of

⋃X β
α,r(= X

β
α,r); see Appendix C.1 for details. Thus, we have

NX β
α,r ≈ X

β
α,r. We can now convert the relative homology betweenXα,r andX

β
α,r to the homology of their

nerves. In particular, we have the following result. The proof is in Appendix C.2, and it relies heavily on the
proof of Lemma 3.4 of [7] which gives a crucial commutative result for the space and its nerve.

Lemma 5.1 Let all the parameters satisfy the same conditions as in Proposition 4.2. Then, for r > λ + 5δ:

im
(
H(NXα,r,NX λ+3δ

α,r ) → H(NXα′,r,NX λ′+δ′

α′,r )
)
∼= H(M, M − p̄).
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Relating nerves and Rips complexes.First, we recall that forα ≥ 0, theČech complexCα(Q) of a point
setQ is the nerve of the cover{Bα(qi) : qi ∈ Q} of ∪Bα(qi) = Xα. TheVietoris-Rips(Rips in short)
complexRα(Q) is the maximal complex induced by the edge set{(pj , pk) | d(pj , pk) ≤ α}. It is well
known that for any point setQ, the following holds:

Cα(Q) ⊂ R2α(Q) ⊂ C2α(Q).

Bβ(p)

p

Br(p)

M

Define Pα,r = {pi ∈ P | Bα(pi) ∩ Br(p) 6= ∅}. Obvi-
ously,Pα,r forms the vertex set for the nerveNXα,r. Similarly,
let P β

α,r = {pi ∈ Pα,r | Bα(pi) ∩ Bβ(p) 6= ∅} denote the vertex
set ofNX β

α,r. See the figure on right for an example, where the
union of solid and empty dots forms the set of pointsPα,r, while
P β

α,r consists the set of empty dots. Note that from the definition,

it follows thatP β
α,r ⊂ Pα,r andP β

α,r ⊂ P β′

α,r for β′ < β. Further-
more, as the offsetXα grows, it is immediate thatPα,r ⊂ Pα′,r

andP β
α,r ⊂ P β

α′,r for α < α′.

Each element in the good coverXα,r orX β
α,r is in the form ofBα(pi)∩Br(p) orBα(pi)∩Br(p)∩Bβ(p).

Since theČech complex of a set is the nerve of the set of ballsBα(pi), it follows easily that

NXα,r ⊂ Cα(Pα,r) ⊂ R2α(Pα,r) andNX β
α,r ⊂ Cα(P β

α,r) ⊂ R2α(P β
α,r). (7)

Claim 5.2 (i) R2α(Pα,r) ⊂ NX3α,r, and (ii)R2α(P β
α,r) ⊂ NX β

3α,r.

Proof: To prove (i), consider an arbitrary simplexσ = [p0p1 . . . pℓ] ∈ R2α(Pα,r). By definition of
Rips complex,d(pi, pj) ≤ 2α for 0 ≤ i, j ≤ ℓ. Then, for any pointx ∈ Bα(p0) ∩ Br(p), we have that
d(x, pi) < d(x, p0) + d(p0, pi) < 3α implying x ∈ ∩ℓ

i=0B3α(pi) and(∩ℓ
i=0B3α(pi))∩Br(p) 6= ∅. In other

words,σ ∈ NX3α,r, thus proving Claim (i). Claim (ii) can be shown by a similar argument.
Setη1 = λ + 9α + 3ε andη2 ≥ η1 + 12α + 6ε for anyλ > ε. Combining Eqn (7) and Claim 5.2, we

get three nested sequences

NXα,r ⊂ R2α(Pα,r) ⊂ NX3α,r ⊂ R6α(P3α,r) ⊂ NX9α,r

NX η1
α,r ⊂ R2α(P η1

α,r) ⊂ NX η1
3α,r ⊂ R6α(P η1

3α,r) ⊂ NX η1
9α,r

NX η2
α,r ⊂ R2α(P η2

α,r) ⊂ NX η2
3α,r ⊂ R6α(P η2

3α,r) ⊂ NX η2
9α,r

These give rise to the following sequence of pairs

(Kα, Kη2
α ) →֒ (Rα, Rη2

α ) →֒ (K3α, Kη2
3α) →֒ (K3α, Kη1

3α) →֒ (R3α, Rη1
3α) →֒ (K9α, Kη1

9α)

whereKα = NXα,r, Kβ
α = NX β

α,r, Rα = R2α(Pα,r) andRβ
α = R2α(P β

α,r). From Proposition 4.3 and
Lemma 5.1, it is immediate thatim(iα∗) ∼= im(i3α∗) ∼= H(M, M − p̄) whereiα∗ andi3α∗ are induced from
iα : (Kα, Kη2

α ) →֒ (K9α, Kη1
9α) andi3α : (K3α, Kη2

3α) →֒ (K3α, Kη1
3α) . It follows from Proposition 2.1

that im(jα∗)
∼= H(M, M − p̄) wherejα∗ is induced fromjα : (Rα, Rη2

α ) →֒ (R3α, Rη1
3α). To apply Propo-

sition 4.3, we need the condition required by Eq. 6, which isη2 + α + 3ε < ρ(M) here. This condition
together withη2 ≥ η1 + 12α + 6ε require thatα < ρ(M)−13ε

22 . We also needθ1 ≤ α. Both conditions are

satisfied when0 < ε < ρ(M)
58 . Thus, we have our main result:

Theorem 5.3 Let 0 < ε < ρ(M)
58 and θ1 ≤ α ≤ ρ(M)−13ε

22 . Furthermore, letη1 and η2 be such that
ε < η1, η2 < ρ(M), η1 ≥ 9α + 4ε, andη2 ≥ η1 + 12α + 6ε. The inclusion

jα : (R2α(Pα,r),R2α(P η2
α,r)) →֒ (R6α(P3α,r),R6α(P η1

3α,r))

satisfiesim(jα∗)
∼= H(M, M − p̄) for anyr ≥ η1 + η2.
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Algorithm. Given a sample pointp = pi, our algorithm first constructs the necessary Rips complexes as
specified in Theorem 5.3 for some parametersα < η1 < η2 < r. For simplicity, rewritejα : (A1, B1) →֒
(A2, B2) whereB1 ⊂ A1 ⊂ A2 andB1 ⊂ B2 ⊂ A2. After obtaining the necessary Rips complexes,
one possible method for computingim(jα∗) would be to cone the subcomplexesB1 andB2 with a dummy
vertexw to obtain an inclusionι : A1∪ (w ∗B1) →֒ A2∪ (w ∗B2) wherew ∗Bj = Bj ∪{w ∗σ|σ ∈ Bj} is
the cone onBj (j = 1, 2). It is easy to see thatim(jα∗) ∼= im(ι∗). Then, the standard persistent homology
algorithm can be applied. However, the cone operations may add many unnecessary simplices slowing
down the computation. Instead, we order the simplices inA2 properly to build a filtration so that the rank
of im(jα∗) can be read off from the reduced boundary matrix built from the filtration.The details of this
algorithm can be found in Appendix D.

6 Experimental results

We present some preliminary experimental results on several synthesizedand real data. Recall that our
method only needs points in the neighborhood of a base point. While the theoretical result guarantees
the correct detection of dimension for correct choices of parameters, inpractice, the choice of the base
point plays an important role. If the points sample only a patch of a manifold, then the local homology
of points near the boundary of that patch will be trivial, which results in plenty of base points with trivial
local homology. Furthermore, noise and inadequate density make the dimensionestimation difficult. To
overcome these hurdles, we explore some practical strategies.

(a)Head (b) D1 (c) D0

Figure 2: Image data : rotating head (Head), handwritten ones (D1) and zeros (D0).

For the synthesized data, which is uniform and dense, we take a sparse and uniform subsample from
the input as a set of base points. At each base point, the local homology is estimated by our program. We
discard the result in which the computed homology is trivial or does not coincide with H̃(Sn) for any n,
as these are obviously not correct. The remaining base points return the homology of ann-sphere, that is
rank(Hi) = 1 iff i = n for somen. These are calledvalid base points. These points are grouped according
to whichn-sphere homology they have, and we return the dimensionn of the group with most members as
the detected dimension.

SAMPLE POINTS AVG. NEIGHB. NOT n-SPHERE TRIVIAL n-SPHERE CORRECTRATIO

S
3 4096 19 0/60 38/60 n=3 22/60 100%(22/22)

S
4 4097 34 0/46 40/46 n=4 6/46 100%(6/6)

S
5 32769 52 0/74 69/74 n=5 5/74 100%(5/5)

S
6 262145 74 0/220 213/220 n=6 7/220 100%(7/7)

Shift 2240 37 0/67 15/67 n=2 52/67 100%(52/52)

M3 2796 316 0/54 40/54
n=2 1/54

92.8%(13/14)
n=3 13/54

Table 1: Results for synthetic data
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For the real data, which mostly comes from a small part of a manifold, we use a different strategy
because these data are non-uniform and contain high noise and outliers.Three dataHead, D1, andD0
(some samples shown in Figure 2) are considered. We first identify some sample points called centers away
from the boundary and undersampled regions using a graph based method described in the Appendix E.
Then, we estimate the local homology at these points. Table 2 in the Appendix E provides the results on
estimated dimensions.

Our synthetic data consists of points sampled from spherical caps ofn-spheresSn for n = 3, 4, 5, 6;
a 3-manifoldM3 ⊂ IR50 with boundary (computed from a parametric equation); and a2D translation of
a smaller image within a black image with resolution60 × 84(Shift) (see [8]). The input for eachSn is
a uniform0.0125-sample of a spherical cap (thus is a manifoldwith boundary) with no noise. TheShift
data is also noiseless. The sample points ofM3 is noisy with a0.05 unit Hausdorff noise. The results on
the synthetic data are summarized in Table 1. AVG. NEIGHB. column gives the average number of points
in the local neighborhood of each base point used to estimate local homology. CORRECT RATIO column
shows the ratio of correct dimension detection over all valid base points. Among all valid base points, our
algorithm produces no false positives for all theS

n data sets. For the noisy sample ofM3, we have only one
false positive out of 14 valid points. The high number of points that return trivial homology (5th column) is
mainly due to points near the boundary of the manifold. For theShift data, our method detects its dimension
2 with high confidence. TheShift was used and compared in [8].

Shift Head D1 D0
Ours 2 3 4 3
SLIVER 3 4 3 2
MLE 4.27 4.31 11.47 14.86
MA 3.35 4.47 10.77 13.93
PN 3.62 3.98 6.22 8.86
LPCA 3 3 5 8.86
ISOMAP 2 3 5 [3, 6]

In the table on left, we show comparisons with other
methods. AlthoughShift is uniform and noise free, only
ISOMAP and ours get the correct dimension. The real
data contains698 images of a rotating head (Head, Fig.
2(a)),6742 images of handwritten ones (D1, Fig. 2(b))
and5923 images of handwritten zeros (D0, Fig. 2(c))
from MNIST database. These three data were also ex-
plored and compared in [8], where Cheng and Chiu [8]
compared their dimension detection method via sliver
(SLIVER) with other methods: the maximum likeli-

hood estimation (MLE) [21], the manifold adaptive method (MA) [14], the packing number method (PN)
[20], the local PCA (LPCA) [9], and the isomap method (ISOMAP) [28]. Since we test our method on the
same data, we include the comparison results on these three data along withShift data from [8] in the table
where all rows except the first row are from [8]. Details and statistics ofour experiments on real data are
presented in the Appendix E.

7 Conclusions

In this paper, we present a topological method to estimate the dimension of a manifold from its point samples
with a theoretical guarantee. The use of local topological structures helps to alleviate the dependency of our
method on the regularity of point samples, and the use of persistent homologyfor a pair of homology groups
(instead of a single homology group) helps to increase its robustness.

It will be interesting to investigate other data analysis problems where topological methods, especially
those based on local topological information (yields to efficient computations), may be useful. Currently,
we have conducted some preliminary experiments to demonstrate the performance of our algorithm. It will
be interesting to conduct large-scale experiments under a broad range of practical scenarios, so as to better
understand data in those contexts.
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[14] A. M. Farahmand, C. Szepesvári, and J.-Y. Audibert. Manifold-adaptive dimension estimation. In
Proc. 24th Conf. Machine Learning (ICML)., pages 265–272, 2007.

[15] K. Fukunaga and D. R. Olsen. An algorithm for finding intrinsic dimensionality of data.IEEE Trans.
Computers, C-20(2):176–183, 1971.

11



[16] J. Giesen and U. Wagner. Shape dimension and intrinsic metric from samples of manifolds with high
co-dimension. InProc. 19th Ann. Sympos. Comput. Geom., pages 329–337, 2003.

[17] P. Grassberger and I. Procaccia. Measuring the strangenessof strange attractors.Physica D, 9:189–
208, 1983.

[18] M. Hein and J.-Y. Audibert. Intrinsic dimensionality estimation of submanifolds inRd. In Proc. 22nd
Conf. Machine Learning (ICML), pages 289–296, 2005.

[19] I. T. Jollife. Principal Component Analysis. Springer series in statistics. Springer, NY, 2002.
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A Proof for Proposition 3.3

We only need to show thati′∗ is an isomorphism as Proposition 3.2 proves it fori∗. Since the inclusion
induced homomorphismsj∗ : H(M, M− D̊2) → H(M, M− z) andi∗ : H(M, M− D̊1) → H(M, M− z) are
isomorphisms by Proposition 3.2 andj∗ = i∗ ◦ i′∗, we have thati′∗ is an isomorphism as well.

B Missing Details in Section 4

Proof of Proposition 4.1. By Proposition 3.5, the mapπα∗ is an isomorphism. By Proposition 3.1,Dβ is
a closed topological ball asβ < ρ(M). Hence,(M, M − D̊β) →֒ (M, M − p̄) induces the isomorphismi∗ at
the homology level, see Proposition 3.2. The observation then follows.

Missing details for interleaving in section 4. From Eq. 1, it follows that for anyλ ∈ (ε, ρ(M) − δ):

Mα,λ = π−1
α (B̊λ(p) ∩ M) ⊂ π−1

α (B̊λ+ε(p̄) ∩ M) ⊂ B̊λ+δ−ε(p̄) ∩ Xα ⊂ B̊λ+δ(p) ∩ Xα = Bα,λ+δ. (8)

Now take a pointx ∈ Bλ(p) ∩ Xα. Thend(π(x), p) ≤ d(π(x), x) + d(x, p) ≤ (α + ε) + λ. Therefore,

Bα,λ = Bλ(p) ∩ Xα ⊂ π−1
α (Bλ+δ−2ε(p) ∩ M) = Mα,λ+δ−2ε ⊂ Mα,λ+δ. (9)

Eq. 8 and Eq. 9 provide the required nesting:

Mα,λ ⊆ Bα,λ+δ ⊆ Mα,λ+2δ.

Proof of Proposition 4.3. Recall that by definitionBα,r = Xα − B̊r(p). Then, for sufficient larger >
β+α+3ε, the closure ofint B

α,r is a subset ofint (Mα,β) or int (Bα,β). By the excision theorem, it follows
that

H(Xα, Mα,β) ∼= H(Xα − int B
α,r, Mα,β − int B

α,r)

and
H(Xα, Bα,β) ∼= H(Xα − int B

α,r, Bα,β − int B
α,r) = H(Xα,r, X

β
α,r),

where the isomorphisms are induced from canonical inclusions. The nested sequence of pairs involves only
inclusion maps. If we repeat the arguments for Proposition 4.2 for sets intersecting the ballBr(z) and use
Persistence Equivalence Theorem [12], we get the claim of this proposition. To make sure thatr is large
enough, we need thatr > λ + 4δ + α + 3ε, as well asr > λ′ + 2δ + α′ + 3ε. We chooser > λ + 5δ to
guarantee that.

C Missing Details in Section 5

C.1 Good Cover

Here we prove that the set of setsX β
α,r := {Bα(pi) ∩ Br(p) ∩ Bβ(p) | pi ∈ P} is a good cover for⋃X β

α,r = X
β
α,r.

For convenience, denoteFj = Bα(pi) ∩ Br(p) ∩ Bβ(p). Note that sincer > β + 2α, we have that any
ball Bα(pi) may intersect the boundary∂Br(p) of Br(p), or the boundary∂Bβ(p) of Bβ(p), (or none of the
two boundaries,) but not both. In other words, the setFj can be of three types: (i) a complete ballBα(pi);
(ii) a convex set which is the intersection betweenBα(pi) andBr(p), but not intersecting the boundary
∂Bβ(p); and (iii) a potentially non-convex set which is the differenceBα(pi) − B̊β(p), but not intersecting
the boundary∂Br(p).
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Now consider any subset ofX β
α,r with non-empty intersection: SinceBα(pi) cannot intersect∂Br(p)

and∂Bβ(p) simultaneously, such a subset either only consists of balls from type (i) and(ii), or from type (i)
and (iii). Since type (i) and (ii) are both convex, their intersection must be contractible. If the subset consists
of type (i) and (iii), then the result from Lemma A.5 of [27] shows that it is alsocontractible. Hence, the
intersection of any subset ofX β

α,r is contractible, and as suchX β
α,r forms a good cover forXβ

α,r. By Nerve
Lemma, this implies thatNX β

α,r is homotopic toXβ
α,r; that is,NX β

α,r ≈ X
β
α,r.

C.2 Proof of Lemma 5.1

First, we quote the following result shown in [7], which states that the isomorphism induced by the homotopy
equivalence between a nerve and its space commute with the canonical inclusions on the spaces at the
homology level. To be consistent with the notations of [7], letNU denote the nerve on a good coverU .

Proposition C.1 (Lemma 3.4 in [7]) Let X ⊂ X ′ be two paracompact spaces, and LetU = {Ui}i∈J and
U ′ = {U ′

i}i∈J be two good open covers ofX andX ′ respectively, based on a same finite parameter setJ ,
such thatUi ⊂ U ′

i for all i ∈ J . Then, there exist homotopy equivalencesNU → X andNU ′ → X ′ which
commute with the canonical inclusionsX →֒ X ′ andNU →֒ NU ′ at homology and homotopy levels.

Extending the arguments in the proof of this lemma, we have the following relativehomology version.
We first give the proof of this result here, after which we explain how Lemma 5.1 follows from this result.

Proposition C.2 Let LetX ⊂ X ′ ⊂ X ′′ be two paracompact spaces, and LetU = {Ui}i∈J , U ′ = {U ′
i}i∈J

and U ′′ = {U ′′
i }i∈J be three good open covers ofX, X ′ and X ′′ respectively, based on a same finite

parameter setJ , such thatUi ⊂ U ′
i ⊂ U ′′

i for all i ∈ J . There exist commutative diagrams,

H(X ′, X)

²²

// H(X ′′, X)

²²
H(NU ′,NU) // H(NU ′′,NU)

H(X ′′, X)

²²

// H(X ′′, X ′)

²²
H(NU ′′,NU) // H(NU ′′,NU ′)

where horizontal maps are induced from canonical inclusions(X ′, X) →֒ (X ′′, X), (NU ′,NU) →֒
(NU ′′,NU), (X ′′, X) →֒ (X ′′, X ′), (NU ′′, andNU) →֒ (NU ′′,NU ′); while vertical maps are iso-
morphisms.

Proof: From the good coversU of X, one can construct a topological space∆X as in [7] such that the
following diagram commutes

X
Â

Ä // X ′ Â
Ä // X ′′

∆X

p

OO

Â

Ä // ∆X ′

p′

OO

Â

Ä // ∆X ′′

p′′

OO

wherep andp′ are restrictions ofp′′ to ∆X and∆X ′ respectively, andp,p′ andp′′ are homotopy equiva-
lences. Therefore, we have a map of pairsp′ : (∆X ′, ∆X) → (X ′, X). Considering the two long exact
sequences of pairs(∆X ′, ∆X) and(X ′, X) and using the same arguments in Proposition 3.6, it follows that
p′∗ : H(∆X ′, ∆X) → H(X ′, X) is an isomorphism. Similarly,p′′ is also a map of pairs, and the induced
homomorphismsp′′∗ : H(∆X ′′, ∆X) → H(X ′′, X) is also an isomorphism. Given that bothp′ andp′′ are
maps of pairs, we have the following commutative diagram of pairs:

(X ′, X) Â

Ä // (X ′′, X)

(∆X ′, ∆X)

p′

OO

Â

Ä // (∆X ′′, ∆X)

p′′

OO
.
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It induces the following commutative diagram at homology level where vertical maps are isomorphisms,
and horizontal maps are induced from canonical inclusions.

H(X ′, X) // H(X ′′, X)

H(∆X ′, ∆X)

p′∗

OO

// H(∆X ′′, ∆X)

p′′∗

OO
.

Next, letΓ be the first barycentric subdivision ofNU , andΓ′ for NU ′ andΓ′′ for NU ′′, respectively. It is
shown in [7] that the following diagram commutes

∆X

q

²²

Â

Ä // ∆X ′

q′

²²

Â

Ä // ∆X ′′

q′′

²²
Γ

Â

Ä // Γ′ Â
Ä // Γ′′

whereq andq′ are the restrictions ofq′′ to ∆X and∆X ′, respectively. Following the same arguments as
above, one obtains the following commutative diagram at homology level with vertical isomorphisms and
horizontal maps induced from canonical inclusions.

H(∆X ′, ∆X)

q′∗
²²

// H(∆X ′′, ∆X)

q′′∗
²²

H(Γ′, Γ) // H(Γ′′, Γ)

It is known that simplicial approximationg′′ : Γ′′ → NU ′′ of the identity mapid : |Γ′′| → |NU| commutes
with canonical inclusions and induces an isomorphism between homology [23]. Therefore, we have the
following commutative diagram

Γ

g

²²

Â

Ä // Γ′

g′

²²

Â

Ä // Γ′′

g′′

²²
NU Â

Ä // NU ′ Â
Ä // NU ′′

whereg andg′ are the restriction ofg′′ to Γ andΓ′ respectively. As before, there exists following com-
mutative diagram at homology level with vertical isomorphisms and horizontal maps induced by canonical
inclusions,

H(Γ′, Γ)

g′∗
²²

// H(Γ′′, Γ)

g′′∗
²²

H(NU ′,NU) // H(NU ′′,NU)

Combining these three commutative diagrams at homology level, the first commutative diagram in the
proposition follows immediately. A similar argument shows that the second commutative diagram in the
proposition holds as well.

Using this proposition, one can easily obtain that

im
(
H(NXα,r,NX λ+3δ

α,r ) → H(NXα′,r,NX λ′+δ′

α′,r )
)
∼= H(M, M − p̄)

because
im

(
H(Xα,r, X

λ+3δ
α,r ) → H(Xα′,r, X

λ′+δ′

α′,r )
)
∼= H(M, M − p̄).
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Indeed, for convenience, setA1 = Xα,r, B1 = X
λ+3δ
α,r , A2 = Xα′,r andB2 = X

λ′+δ′

α′,r ; and setA1 = Xα,r,

B1 = X λ+3δ
α,r , A2 = Xα′,r andB2 = X λ′+δ′

α′,r . We apply the above proposition twice, once to the three spaces
B1 ⊂ A1 ⊂ A2, and once to the three spacesB1 ⊂ B2 ⊂ A2. This provides the following diagram, where
the commutativity of each square follows from Proposition C.2.

H(A1, B1)

²²

// H(A2, B1)

²²

// H(A2, B2)

²²
H(NA1,NB1) // H(NA2,NB1) // H(NA2,NB2)

Since all vertical homomorphisms are isomorphisms, we have that

im (H(A1, B1) → H(A2, B2)) ∼= im (H(NA1,NB1), H(NA2,NB2)) .

This finishes the proof of Lemma 5.1.

D The Algorithm to Compute im(jα∗)

Recall thatjα is the inclusion of pairsjα : (A1, B1) →֒ (A2, B2), whereB1 ⊂ A1 ⊂ A2 andB1 ⊂ B2 ⊂
A2. To computeim(jα∗), we order the simplices ofA2 in a proper way to build a filtration such that the
rank of im(jα∗) can be read off from the reduced boundary matrix built from the filtration.Precisely, the
filtration adds the simplices ofA2 as follows. The simplices inB2 \ A1 appear first. Then the simplices in
B1, (B2 \ B1) ∩ A1, A1 \ B2 andA2 \ (A1 ∪ B2) follow sequentially. This order is illustrated in Figure 3.
For simplicity, letR(x, y) denote submatrix occupying the rectangle region withx as its top left corner point
andy as its bottom right corner point in Figure 3. It is known [13] that the rank of H(A1, B1) (or H(A2, B2))

B2 \ A1

B2 \ A1

B1

B1

(B2 \B1) ∩ A1 A1 \B2 A2 \ (B2 ∪ A1)

(B2 \B1) ∩ A1

A1 \B2

A1

B2

A2 \ (B2 ∪ A1)

D1

C

R

D2

a

b

c

d

Figure 3: The order of the simplices in the filtration forA2.
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can be computed by reducing the submatrixM1 = R(a, c) (or M2 = R(b, d)) in Figure 3. For our purpose,
the submatrixM = R(a, d) in Figure 3, which contains bothM1 andM2, will be reduced in the same way
as the classical persistent homology algorithm does [13]. LetM̂ denote the matrix reduced fromM . It will
be shown that the rank ofim(jα∗) can be read off from̂M .

Recall that theim(jα∗) in dimensionk contains thek-cycles ofHk(A1, B1) which are nontrivial in both
Hk(A1, B1) andHk(A2, B2). In particular, eachk-simplex in the collection of simplicesA1 \ B2 whose
column in the reduced matrix̂M is a zero column (i.e., a zero column corresponding to ak-simplex in
the light blue column regionC of Figure 3) represents ak-cycle in bothHk(A1, B1) andHk(A2, B2). Let
#Zerok denote the number of such zero columns inC. If one suchk-simplex is paired by a(k+1)-simplex
in A2 \ B2 (i.e., the row inM̂ corresponding to this simplex which is in the light blue row regionR of
Figure 3 has a unique1 ), its correspondingk-cycle is ak-boundary inHk(A2, B2). Let#Bdryk denote the
number of suchk-simplices. Since thek-cycles inHk(A1, B1) corresponding to zero columns which appear
before the columns inC contain only simplices fromB2, they all have trivial image inHk(A2, B2). It is then
immediate that the rank ofim(jα∗) in dimensionk equals#Zerok − #Bdryk, namely the number of zero
columns inC which correspond to unpairedk-simplices. Once the matrixM is reduced, it is straightforward
to compute#Zerok −#Bdryk. If there aren simplices inA2 \B2, this algorithm runs inO(n3) time due
to the reduction ofM .

E Graph Based Central Points and Experimental Details on Real Data

A graph on sample points is built by connecting two points within certain distance.For every vertexv of
each component of this graph, the shortest path tree with rootv is computed and then the largest distance
from v to leaves of this shortest path tree is recorded. The vertex whose distance to leaves of its shortest path
tree is the minimum among those vertices in the component containing it, is considered to be the center of
its component. Intuitively, these centers are away from the boundary andless likely to be outliers. We then
discard the centers of components with few points. For remaining centers, we compute the local homology
and report the intrinsic dimension of the manifold as that of then-sphere whose homology is the same as
the most common local homology of these centers. To accelerate the computation,if a component has a
significantly large number of vertices, we generate a uniform sparse subsample from the points within some
radius of its center and then compute local homology on the subsample points.

n-SPHERE EST. DIM PERCENTAGE

Head n=3 53/53 3 100%(53/53)

D1
n=3 4/37

4 83.7%(31/37)n=4 31/37
n=5 2/37

D0
n=2 2/9

3 77.7%(7/9)
n=3 7/9

Table 2: Estimated dimension for real data

We applied this strategy onHead, D1 and D0. All of them have only one major component in the
graph which connects two points within a distance that is several times the distance of the closest pair in the
sample points. ForHead, a subsample of around138 points was taken from505 points in the neighborhood
of the center of the major component. We took a subsample of around148 points from943 points in the
neighborhood of ofD1’s center, and around102 points from3494 points in the neighborhood ofD0’s center.
Since the uniform subsamples were taken randomly, one will be biased to claimthe result from one particular
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subsample. Therefore, we repeated the local homology computation at the center with fixed parameters100
times. Note that the points in the subsamples changed each time due to random sampling. Among these100
computations, we only counted the valid ones which returned the local homology of H̃(Sn) for somen. The
distribution of valid computations is shown in Table 2. Then-SPHEREcolumn shows the number of valid
computations with the reduced homology ofH̃(Sn) for eachn. The total number of valid computations
is also included in this column. TheEST. DIM column gives the estimated dimension. ThePERCENTAGE

column shows the percentage of computations with the estimated dimension in all validcomputations. For
theHead data, the detected dimension from our method matches the ground truth which is3. Although the
ground truth dimensions forD1 andD0 are unknown, ours along with SLIVER, PN, LPCA and ISOMAP
report dimension in range[3, 7] for D1 and in range[2, 9] for D0.
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