Online Generation of Association Rules

Charu C. Aggarwal and Philip S. Yu
IBM T. J. Watson Research Center
Yorktown Heights, NY 10598

Abstract

We have a large database consisting of sales transactions.
We investigate the problem of online mining of association
rules in this large database. We show how to preprocess
the data effectively in order to make it suitable for re-
peated online queries. The preprocessing algorithm takes
into account the storage space available. We store the pre-
processed data in such a way that online processing may be
done by applying a graph theoretic search algorithm whose
complexity is proportional to the size of the output. This
results in an online algorithm which is practically instanta-
neous in terms of response time. The algorithm also sup-
ports techniques for quickly discovering association rules
from large itemsets. The algorithm is capable of finding
rules with specific items in the antecedent or consequent.
These association rules are presented in a compact form,
eliminating redundancy. We believe that the elimination of
redundancy in online generation of association rules from
large itemsets is interesting in its own right.

1 Introduction

The importance of discovering association rules as a tool for
knowledge discovery in databases has recently been recog-
nized. By using the data from bar code companies or sales
data from catalog companies, it is possible to gain valuable
information about customer buying behavior in the form of
association rules. Such information can be used to make
decisions such as shelving in a supermarket, designing well
targeted marketing programs etc.

Let I = {il,ig, .. .,im} be a set of literals called items.
The database consists of a set of sales transactions 7. Each
transaction T € 7 is a set of items, such that 7 C I. In
this paper, we consider the 0-1 case only; in other words a
0-1 variable indicates whether or not an item was bought.
A transaction T is said to contain the set of items X if and
only if X CT.

An association rule is a condition of the form X = Y
where X C I and Y C I are two sets of attributes. The in-
tuitive implication of the association rule is that a presence
of the set of items X in a transaction set also indicates a
possibility of the presence of the itemset Y. Two notions
for establishing the strength of a rule are those of minimum
support and minimum confidence, which were first intro-

duced in [2].

The support of a rule X = Y is the fraction of transac-
tions which contain both X and Y.

The confidence of a rule X = Y is the fraction of trans-
actions containing X which also contain Y. Thus, if we say
that a rule has 90% confidence then it means that 90% of
the tuples containing X also contain Y.

Starting with pioneering work in Agrawal et. al.[2], a host
of work has been done in this area with a focus on finding
association rules from very large sets of transaction data.
The primary idea proposed in [2] was an itemset approach
in which first all large itemsets are generated, and then
these large itemsets are used in order to determine data
dependencies. Subsequent work has primarily concentrated
on this approach.

The itemset approach is as follows. Generate all com-
binations of items that have fractional transaction support
above a certain user-defined threshold called minsupport.
We call all such combinations large itemsets. Given an
itemset S satisfying the support constraint, we can use it to
generate rules of the type S—X = X for each X C S. Once
these rules have been generated, only those rules above a
certain user defined threshold called meinconfidence need be
retained.

Faster algorithms for mining association rules were pro-
posed in [3], while a hash-based algorithm was established
in [17]. Generalized association rules were presented in [21].
Methods for mining quantitative association rules were es-
tablished in [22]. Other related work may be found in
[9, 11, 19]. An up-to-date survey on some of the work done
in data mining may be found in [6].

In this paper we consider the problem of online mining of
association rules. The idea in online mining is that an end
user ought to be able to query the database for association
rules at differing values of support and confidence without
excessive I/O or computation. In the itemset method, mul-
tiple passes have to be made over the database, for each
differing value of minsupport and minconfidence, starting
from scratch. Some sampling techniques exist which reduce
the number of passes over the database to two [19, 23]. For
very large databases, this may involve a considerable I/O
and in some situations it may lead to unacceptable response
times for online queries.

The problem of mining association rules is especially suit-
able for an online approach. It is hard for a user to guess
apriori how many rules might satisfy a given level of sup-
port and confidence. Typically one may be interested in
only a few rules. This makes the problem all the more diffi-

[Rule] Support [Confidence il
X =>YZ | 5(XUY UZ) S(XUY U Z)/S(X)
XY =Z [S(XuYUuZ) | S(XUYUZ)/S(XUY)
XZ=>Y [S(XuYuZ) | S(XUYUZ)/5(XUZ)
X=Y 5(XUY) S(XUY)/5(X)
X=>72 5(X U Z) S(X U 2)/5(X)

Table 1: Redundancy in rule generation

cult, since a user may need to run the query multiple times
in order to find appropriate levels of minsupport and min-
confidence in order to mine the rules. In other words, the
problem of mining association rules may require consider-
able manual parameter tuning by repeated queries before
useful business information can be gleaned from the trans-
action database.

Another issue is that while mining association rules, a
large percentage of the rules may be redundant. It is useful
to eliminate redundant rules simply from the point of view
of compactness in representation to an online user. For
example, if the rule X = Y Z is true at a given value of
minsupport and minconfidence, then rules such as XY = Z,
XZ=Y,X=Y,and X = Z are redundant. This can be
easily seen from the Table 1 in which one can see that both
the support and confidence values of the rule X = Y Z are
less than the support and confidence values for the rules
X=Y, X=27,XY=27,and XZ = Y. In fact, in most
cases, the number of redundant rules is significantly larger
than the number of essential rules, and having too many
redundant rules defeats the primary purpose of data mining
in the first place. We note that this kind of redundancy
arises when we consider rules which have more than one
item in the consequent.

In recent years, an important application of database sys-
tems has been Online Analytical Processing (OLAP). The
primary idea behind this approach has been the “preprocess
once query many” paradigm. The idea is that it is time con-
suming to compute results from raw transaction data each
time a user makes a query. By preprocessing the data set
Jjust once, a user may be able to query the system efficiently
multiple times at the cost of a single phase of preprocessing.
Considerable work has been done in online analytical pro-
cessing, as applied to the data cube [5, 7, 8, 10, 20]. This
paper also discusses an approach for online mining by using
one phase of preprocessing.

1.1 Contributions of this paper

In this paper, we present an intuitive framework for per-
forming online mining of association rules. Past work has
concentrated on a two phase approach:

(1) Large Itemset Generation: Controlling parameter
minsupport.

(2) Rule Generation: Controlling parameter minconfi-
dence.

The bottleneck in this procedure is the first step, since most
algorithms require multiple I/O passes in order to perform
this step. Thus, the natural solution is to prestore as many
itemsets as possible with the least support value possible
given the memory available. This approach however, has

some obvious drawbacks. On the one hand, one might want
to store as many of such itemsets as possible as constrained
by the memory space or preprocessing time available, so
that important information will not be lost. On the other
hand, if too many itemsets are prestored, then the second
phase of rule generation becomes the bottleneck. For ex-
ample, while trying to mine rules containing specific sets
of items, the number of relevant large itemsets may be a
very small fraction of the total number of itemsets pre-
stored. Yet, one may need to look at each and every pre-
stored itemset in order to find the relevant large itemsets.
Consequently, it becomes important to organize the item-
sets along with support information in such a way that the
online time required to mine the rules is small and is de-
pendent on the number of large itemsets corresponding to
a user query, rather than the number of itemsets prestored.
In this paper we shall discuss such a method. From now on,
we shall refer to the prestored itemsets as primary itemsets.
The primary threshold is the minimum level of support for
any prestored itemset. Thus the primary itemsets comprise
all itemsets whose support is at least equal to the value of
the primary threshold. At this stage we would also like to
make a careful distinction between primary itemsets and
large itemsets. A large itemset corresponds to an itemset
for a user query, and is a subset of the primary itemsets.
More specifically, the contributions of this work are as fol-
lows:

(1) We devise a framework for organizing the primary
itemsets in such a way that online rules with very lim-
ited I/O on the prestored data. The online time for
mining the rules is independent of the size of the trans-
action data as well as the number of itemsets prestored.
In fact, we shall see that the time required to process a
query is completely dependent upon the size of the out-
put. This feature is especially suitable for the online
case.

(2) We give a technique which can quickly predict the size
of the output at a given level of user specified parame-
ters. For a given level of user-specified minsupport and
minconfidence, both the number of itemsets as well as
the number of rules can be predicted. A reverse query
such as predicting the level of minsupport for which a
particular number of itemsets exist can also be per-
formed.

(3) We discuss the issue of efficiency in the generation of
the rules. Since we include the possibility of generat-
ing rules with more than one item in the consequent,
it may often be cumbersome (at least from an online
perspective) to look at each of the subsets of the large
itemsets as a possibility for the antecedent. A large
number of possibilities can be pruned by careful order
of examination. It is also possible to efficiently gener-
ate only rules with exactly one item in the consequent.
Such rules are called single-consequent rules.

(4) We discuss the issue of generating rules with specific of
items in them. The items may occur in the antecedent
or consequent.

(5) We discuss the issue of redundancy in the rules gener-
ated from large itemsets. We discuss the level to which
essential rules may often get buried in hordes of redun-
dant rules. Compactness of representation to an online

user is a very useful feature. This segment of the paper
has both theoretical and practical significance.

(6) We present an algorithm for finding the primary item-
sets which automatically decides which itemsets to pre-
store depending upon available memory capacity. For
the sake of high level discussion, we shall fix the maxi-
mum number of itemsets rather than the memory space
occupied by the itemsets. This is a slightly differ-
ent problem from that discussed in Agrawal et. al.
[2], where one needs to find the itemsets with support
above a particular value. The value of the primary
threshold at which the best fit to this maximum num-
ber of itemsets may be found is not known in advance.
One may perform a binary search on the support value
in order to find the value of the primary threshold. We
propose techniques for improving the efficiency beyond
simply performing a simple binary search.

We should note that it is not possible to perform online min-
ing of association rules at support levels less than the pri-
mary threshold. This is not necessarily a severe restriction
since the primary itemsets are obtained within the prepro-
cessing time constraints, which are significantly more liberal
than online time constraints. Thus, most useful itemsets are
typically prestored.

1.2 Kinds of online queries

Assume that the kinds of online queries that such a system
can support are as follows.

(1) Find all association rules above a certain level of min-
support and minconfidence.

(2) At a certain level of minsupport and minconfidence,
find all association rules concerned with the set of items

X.

(3) Find the number of association rules/itemsets in any
of the cases (1), (2) above.

(4) At what level of minsupportdo exactly k itemsets exist
containing the set of items Z.

(5) For a particular level of minconfidence c, at what level
of minsupport do exactly k single-consequent rules ex-
ist, which involve the set of items Z.

1.3 Overview

We introduce the concept of an adjacency lattice of item-
sets. This adjacency lattice is crucial to performing effective
online data mining. The adjacency lattice could be stored
either in main memory or on secondary memory. We shall
discuss more details about how this lattice is actually con-
structed in a later section. The idea of the adjacency lattice
is to prestore a number of large itemsets at a level of sup-
port possible given the available memory. These itemsets
are stored in a special format (called the adjacency lattice)
which reduces the disk I/O required in order to perform
the analysis. In fact, if enough main memory is available
for the entire adjacency lattice, then no I/O may need to
be performed at all.

We shall see that this structure is useful for both finding
the itemsets quickly and also using the itemsets in order to
generate the rules. Redundancy in rules is eliminated, so

[Ttemset [Support]|

A 1%
B 2%
C 2%
D 1%
AB 0.5%
AC 0.7%
BD 0.6%
BC 0.4%
ABC 0.3%
Table 2:
NULL
1%
A B2% % D1%
AB AC C BD
0.5% 0.7%,0.4% 0.6%
ABC
0.3%

Figure 1: The adjacency lattice

that an online user may be presented with the most compact
representation possible.

2 The adjacency lattice

Before we consider making a more detailed description,
we shall discuss the concept of an adjacency lattice of item-
sets. For future reference, we shall denote the adjacency
lattice by L.

An itemset X is said to be adjacentto an itemset Y if one
of them can be obtained from the other by adding a single
item. Specifically, an itemset X is said to be a parent of the
itemset Y if Y can be obtained from X by adding a single
item to the set X. Equivalently, ¥ may be considered to be
a child of X. Thus, an itemset may possibly have more than
one parent and more than one child. In fact, the number of
parents of an itemset X is exactly equal to the cardinality
of the set X. This observation follows from the fact that
for each element 7, in an itemset X, X — {i,} is a parent
of X. It is easy to see that if a directed path exists from
the vertex corresponding to Z to the vertex corresponding
to X in the adjacency lattice, then X D Z. In such a case,
X is said to be an ancestor of Z, and Z is said to be a
descendant of X.

The adjacency lattice L is constructed as follows: Con-
struct a graph with a vertex v(I) for each primary itemset
I. Each vertex I has a label corresponding to the value of
its support. This label is denoted by S(I). For any pair
of vertices corresponding to itemsets X and Y, a directed
edge exists from v(X) to v(Y') if and only if X is a parent

Algorithm FindItemsets(ItemSet: I, Support: s)
begin
LIST= v(I); OutputList = ¢;
while LIST # ¢ do
begin
Select a vertex v(R) from LIST;
{ Assume that the children of a vertex are arranged
in decreasing order of support }
while the next child v(T) of v(R)
satisfies S(T') > s do
begin
if v(T) ¢ OutputList do
begin
LIST=LIST U (T);
OutputList = OutputListU (v(T), S(T));
cardinality=cardinality+1;
end
end;
Delete the vertex v(R) from LIST
end;
end;

Figure 2: The search algorithm for generating large itemsets

of Y. We denote the corresponding edge by E(X,Y). The
vertex v(X) is referred to as the tail of the edge E(X,Y),
while the vertex v(Y') is referred to as the head.

Consider for example the group of primary itemsets illus-
trated in Table 2. The corresponding adjacency lattice is
llustrated in Figure 1. Each vertex has a label correspond-
ing to the value of its support. We make the following
simple observations for the adjacency lattice L:

Remark 2.1 The adjacency lattice L is a directed acyclic
graph.

Remark 2.2 For each vertez v(J) in L which is a descen-
dent of v(I), we must have S(J) < S(I).

The truth of Remark 2.2 follows from the fact that for each
vertex v(J) which is a descendent of v(I), the corresponding
itemsets must satisfy J O I. Since the adjacency lattice is
the primary structure which is used to represent the pre-
processed data, it is useful to measure the memory which
such a structure might require. We shall proceed to show
that the space required to store the adjacency lattice is not
the bottleneck, and is almost of the same order as the space
required to hold the itemsets themselves.

Theorem 2.1 The number of edges in the adjacency lattice
15 equal to the sum of the number of items in the primary
itemsets.

Proof: The number of edges may be obtained by summing
the number of parents of each primary itemset. The number
of parents of a primary itemset is equal to the number of
items in it. The result follows. |

3 Online generation of itemsets

In order to find all itemsets which contain a set of items
I and satisfy a level of minsupport s, we need to solve the
following search problem in the adjacency lattice.

Problem 3.1 For a given itemset I (including {}), find
all itemsets J such that v(J) is reachable from v(I) by a
directed path in the lattice L, and satisfies S(J) > s.

Algorithm FindSupport(ItemSet: Z, Cardinality: k)
begin
LIST= v(Z); OutputList = ¢;
cardinality= 0
while (LIST # ¢) and (cardinality< k) do
begin
Select a vertex v(R) from LIST with largest value of S(R);
OutputList = OutputListU (v(R), S(R));
cardinality=cardinality+1;
for each child v(T') of v(R) do
begin
if v(T) ¢ OutputList do
LIST=LIST U (T);
end;
Delete the vertex v(R) from LIST
end;
return (min{S(R): (v(R), S(R)) € OutputList}, OutputList)

end;

Figure 3: Finding the level of support for a fixed number
of itemsets

It is important to understand that the number of vertices
reachable from a given vertex may be quite large, though
the number of vertices which satisfy the level of minsupport
s may be small. The idea is to use the lattice organization to
restrict the number of vertices examined. Thus, when a user
makes multiple queries to the database, this pre-processed
data helps avoid the reading of the entire database from
scratch. We shall now discuss the search algorithm which
given the parameters I and s, finds all the itemsets con-
taining I and having a support level of at least s. This
algorithm is illustrated in Figure 2. The algorithm Find-
Itemsets starts at a given itemset I and LIST= {v(I)}. The
algorithm then adds all of its children »(J) with support
S(J) > s to LIST unless the vertex has been visited before.
The vertex v([) is then deleted from LIST. This process is
repeated until LIST is empty. Thus, all the vertices which
are the unvisited children of a given vertex in LIST are re-
cursively searched unless their support value is less than
s. The itemsets for every vertex which is visited are also
added to the QutputList. At the same time, a count of the
cardinality of QutputListis maintained in order to handle
the feature where a user may wish to find the cardinality of
the itemsets. At termination of the algorithm the Output-
List contains all the itemsets J with support S(J) > s and
satisfying J D I.

3.1 Finding the level of support for a fixed
number of itemsets

A useful online feature is to find the level of support at
which exactly k itemsets (each of which contains the items
Z = {i1 ...1,}) exist. This can be accomplished by making
a few changes to the search algorithm of Figure 2. The
resulting algorithm is illustrated in Figure 3. The primary
idea is that while selecting a vertex v(R) on LIST which is
to be examined in the current iteration, we always pick the
vertex with the highest value of support. At that time, we
add this vertex to OutputList. The algorithm terminates
when k vertices have been found. It can be proved that at
each stage of this algorithm, OQutputList maintains r < k
itemsets containing Z with the highest support value.

Theorem 3.1 The algorithm FindSupport(Z, k) finds the
k itemsets containing Z and having the highest value of sup-
port. If less than k such itemsets are represented in the

Maximal ancestors of DEFG

Ancestors of
1y Jﬂ ~ DEFG which
o T have support

\ IS at most

S(DEFG)/c

Redundant Rules f

Essentia Rules

E=>DFG DE=>FG, DEF=>G, EF=>DG,
EFG=>D, EG=>DF, DEG=>F

DF=>EG DEF=>G, DFG=>E

FG=>DE DFG=>E , EFG=>D

Figure 4: An illustration of the boundary itemset

adjacency lattice, then the algorithm finds all the itemsets
containing Z .

Proof: The proof of this theorem is by induction. The
induction hypothesis is that the r < k items maintained
in the OutputList are the r itemsets containing Z with the
highest value of support. The induction hypothesis is triv-
ially true when QutputList = ¢. Each time an itemset is
added to QutputList we pick the itemset on LIST with the
highest support value. Any other itemset which we add to
QutputList in the future, is either already on LIST, or is
a descendent of some itemset currently in LIST. From Re-
mark 2.2, the result immediately follows. []

3.2 Finding the level of support for a fixed
number of single-consequent rules

A single consequent rule is one in which the consequent con-
tains only one item. It is also possible to use the algorithm
described above to find the level of support at which a par-
ticular number (say k) of single-consequent rules exist for
a prespecified level of confidence ¢. This can be achieved
by making a minor modification to the procedure FindSup-
port of Figure 3. In this case, each time a vertex v(X) is
selected from LIST, all the single-consequent rules which
can be generated from v(X) at confidence level ¢ are added
to QutputList. The count of the number of rules is main-
tained. The first time the count exceeds k, the procedure
is terminated. The proof of correctness of this method is
exactly analogous to the proof of Theorem 3.1.

4 Online generation of rules from item-
sets

In the previous section, we discussed how large itemsets
may be generated from the adjacency lattice. In this sec-

tion, we discuss how rules may be generated from these
itemsets. To generate the rules, we utilize the following
observation:

For each rule A = B at confidence level ¢, the label
(support) on the vertex v(A U B) is at most 1/c times the
label (support) on the vertex v(A). Thus, the confidence
of a rule may be obtained by comparing the labels on two
vertices which satisfy an ancestor-descendant relationship
in the adjacency lattice.

Conversely, let X = {X1,...Xx} be the itemsets gener-
ated in the first phase of the online processing algorithm.
Let ¢ be the level of menconfidence at which it is desired
to mine the association rules. For each X; € X, rules may
be generated by applying a reverse search algorithm start-
ing from v(X;) and finding all ancestors of v(X;) which
have support at most S(X;)/c. For each such ancestor
v(Y) of v(Xj3), it is possible to generate rules of the form
Y = X; — Y. Thus the problem of finding all rules gen-
erated from a large itemset X is reduced to the following
graph search problem in the adjacency lattice:

Problem 4.1 Find all ancestor vertices of v(X) which
have support at least S(X)/c.

Unfortunately, many of the generated rules will turn out to
be redundant. For example, if a rule X = Y Z is included
in the output, then the rule XY = Z can be regarded as
redundant.

Definition 4.1 Let A= B and C = D be two association
rules. The rule C = D is redundant with respect to the rule
A = B if the support and confidence of the former are both
always at least as large as the support and confidence of the
latter, independent of the nature of the transaction data.

We shall first classify the different kinds of redundancy as
follows:

Theorem 4.1 Simple Redundancy: Let A = B and
C = D be two rules satisfying AUB = CUD = X. The
rule C = D bears simple redundance with respect to the rule
A = B, if C O A. In other words, if the rule A = B 1is
true at a certain level of support and confidence, then so is
C = D, independent of the nature of the transaction data.

Proof: Omitted. See [1].]
Thus, in simple redundancy, the support value for the two
rules is the same, but the confidence value for one is larger
than the confidence value for the other. The support values
for the rules are the same since they are generated from
the same itemset. As an example, the rule AB = C bears
simple redundance with respect to the rule A = BC. We
shall now discuss the case when one rule dominates the
other based upon both support and confidence.

Theorem 4.2 Strict Redundancy: We consider two
rules generated from itemsets X; and X; respectively such
that X; D X;. Let A= B and C = D be rules satisfying
AUB = X;, CUD = X;, and C D A. Then the rule
C = D is redundant with respect to the rule A = B.

Proof: Omitted. See [1].]
Thus, in strict redundancy, one rule dominates the other
based upon both support as well as confidence. As an exam-
ple, the rule X = Y bears strict redundancy with respect
to the rule X = YZ. We shall introduce some additional
definitions and notation here for the sake of future discus-
sion.

Algorithm FindBoundary(ItemSet: X, Con fidence : c)
begin
LIST= v(X); BoundaryList = ¢;
while LIST # ¢ do
begin
Select a vertex v(R) from LIST;
for each parent v(7T') of v(R) do
begin
if v(T) has not yet been visited and S(T) < S(X)/c do
LIST=LIST Uv(T);
end;
Delete the vertex v(R) from LIST
if v(R) is maximal add v(R) to BoundaryList
end;
end;

Figure 5: Finding the boundary itemset

Definition 4.2 A rule is defined to be essential at support
level s and confidence level ¢ if it does not satisfy simple or
strict redundancy with respect to any other rule which has
support at least s and confidence at least c.

As we shall see, the number of redundant rules may often be
a significant fraction of the total number of rules. We shall
prove a result which quantifies the number of redundant
rules corresponding to a single rule X = Y. For ease in
notation, we shall denote the number of items in an itemset

X by |X|.

Theorem 4.3 The number of rules bearing simple redun-
dancy with respect to X = Y s 2¥1 _ 2. The number of
rules bearing either simple or strict redundancy with respect
to the rule X = Y s 3/¥1 —2¥1 _ 1.

Proof: Omitted. See [1].]
As an example, consider the rule A = BC. There are 2% —2
simple redundant rules, namely AC = B, and AB = C.
The strict redundant rules are A = B, and A = C. Thus
the total number of redundant rules is 3% — 2% — 1 = 4.
Clearly, as the number of items in the consequent increases,
the number of redundant rules explodes exponentially.

Definition 4.3 A vertez v(Y) is a mazimal ancestor of
v(X) at confidence level c if and only if S(Y)/S(X) < 1/,
and no strict ancestor v(Z) of v(Y) satisfies S(Z)/S(X) <
1/c.

Maximal ancestors are very relevant to the process of find-
ing rules which avoid simple redundancy.

Theorem 4.4 Let v(Y) be a mazimal ancestor of v(X) at
a level of confidence c. Then the rule Y = X — Y cannot
ezhibit simple redundancy with respect to any other rule at
confidence level ¢ and any support level s < S(X). Con-
versely, if the rule Y = Z does not ezhibit simple redun-
dancy with respect to any other rule at confidence level c,
then v(Y') must be a mazimal ancestor of v(Y U Z).

Proof: Omitted. See [1].]
Thus, finding maximal ancestors of large itemsets is nec-
essary and sufficient to generate rules which avoid simple
redundancy. As an illustration, consider the example in
Figure 4. Ounly the relevant segment of the adjacency lat-
tice is illustrated in the figure. Suppose that we wish to
generate all the rules at a particular confidence level ¢ from
an itemset DEFG. Also, assume that the itemsets which
have support at most S(DEFG)/c are DEF, EFG, DFG,

Algorithm GenerateRules(Set of Itemsets: X, c)
begin
RuleSet = ¢
for each X; € X do F(X;,c) = FindBoundary(X;, c)
for each X; € X do
begin
P(Xi,c) = F(Xsyc)
for each child X; € X of X; do
P(Xiyc)=P(Xi,c) — F(Xj,¢)
For each itemset Y € P(X;, c) do
RuleSet = RuleSetUu{Y = X, — Y}
end;
return RuleSet
end;

Figure 6: Generating the rules from the boundary itemsets

DEG, DF, DE, EF, EG, FG, and E. Thus, a total of 10
rules (corresponding to these 10 itemsets) can be generated,
each of which satisfy the confidence level ¢. However, as we
see from Figure 4, only three of these rules are essential,
while the rest bear simple redundancy to one or more of
these rules. These three rules are generated by picking the
three maximal ancestors of DEFG from these 10 itemsets
and generating the corresponding rules. Thus the prob-
lem of generating nonredundant rules with confidence level
¢ from a large itemset X reduces to the following graph
search problem.

Problem 4.2 Find all mazimal ancestors of v(X) with
support at most S(X)/c.

We shall refer to all the maximal ancestors of a vertex as
the boundary ttemsets for the corresponding itemset at the
given level of confidence.

Definition 4.4 The boundary for an itemset X at level of
confidence ¢ s the set of all mazimal ancestors of X at

confidence level ¢, and is denoted by F(X,c).

Finding the boundary for a given itemset X is simple
enough by using a reverse search algorithm on the corre-
sponding adjacency lattice starting at v(X), as illustrated
in Figure 5. This algorithm does not incorporate the con-
straints on having particular items in the antecedent or con-
sequent. We shall discuss this issue in a later subsection.

In order to actually generate rules from the itemsets
X = {Xi,Xs,...Xx}, we apply the following method.
For each itemset X; € X, we find the boundary itemset
F(X;,c) and for each Y € F(Xj, c), we generate the rule
Y = X;-Y. Unfortunately, this may result in strict redun-
dancy while generating rules from two different itemsets X;
and X; which satisfy X; C X;. First, we will discuss some
simple results.

Theorem 4.5 Let X be an itemset, and let X1, X2, ... Xk
be the children of X. Let Y be any itemset in F(X,c) —
UL, F(Xi,c). Then, the rule Y = X —Y cannot bear strict
redundancy with respect to any other rule. Conversely, let
Xi be a child of X such that Y lies in both F(X,c) and
F(Xs,c). Then the rule Y = X — Y is strictly redundant

with respect to one or more rules.

Proof: Omitted. See [1].]
Thus, we have effectively shown in the above theorem that
in order to avoid strict redundancy, it is necessary and suffi-
cient to prune the boundary of an itemset X so that it does

not share any itemsets with the boundary of any itemset
Xk € X which is a child of X. In other words, for each
child X3 € X of X, we remove from F(X,c), all member
itemsets in F(Xp, c). Then these pruned boundaries may be
used in order to generate the rules. The resulting algorithm
is illustrated in Figure 6. This algorithm uses as input the
itemsets X which are generated in the first phase of the
algorithm at the appropriate level of minsupport. The algo-
rithm FindBoundary of Figure 5 may be used as a subrou-
tine in order to generate all the boundary itemsets. These
boundary itemsets are then pruned and the rules are gen-
erated by using each of the itemsets corresponding to the
boundary in the antecedent.

4.1 Rules with constraints in the antecedent
and consequent

It is easy enough to adapt the above rule generation method
so that particular items occur in the antecedent and/or con-
sequent. Consider for example the case when we are gener-
ating rules from a large itemset X. Suppose that we desire
the antecedent to contain the set of items P and the con-
sequent to contain the set of items Q. (We assume that
PUQ C X.) We shall refer to P as the antecedent inclu-
sion set, and @ as the consequent inclusion set. In this case,
we need to redefine the notion of maximality and bound-
ary itemsets. A vertex v(Y) is defined to be a maximal
ancestor of v(X) at confidence level ¢, antecedent inclu-
sion set P, and consequent inclusion set @ if and only if
PCY, QCX-Y,S(Y)/S(X)<1/c, and no strict an-
cestor of Y satisfies all of these constraints. Equivalently,
the boundary set contains all the itemsets corresponding to
maximal ancestors of X. It is easy to modify the algorithm
discussed in Figure 5, so that it takes the antecedent and
consequent constraints into account. The only difference is
that we add an unvisited vertex v(T") to LIST if and only if
S(T) < S(X)/c, and T D P. Also, a vertex v(R) is added
to BoundaryList, only if it satisfies the modified definition
of maximality.

5 Generation of the adjacency lattice

In this section we discuss the construction of the adjacency
lattice. The process of constructing the adjacency lattice
requires us to first find the primary itemsets. There are
two main constraints involved in choosing the number of
itemsets to prestore:

(1) Memory Limits: In order to avoid I/O one may wish
to store the primary itemsets and corresponding adja-
cency lattice in main memory.! Recall that Theorem
2.1 characterizes the size required by the adjacency lat-
tice for this purpose. Assume that we desire to find N
itemsets. Note that because of ties in the support val-
ues of the primary itemsets, support values may not
exist for which there are exactly N itemsets. Thus,
we assume that for some slack value N,, we wish to

!Storing the adjacency lattice on disk is not such a bad option
after all. The total I/O is still proportional to the size of the output,
rather than the number of itemsets prestored. Recall that the graph
search algorithms used in order to find the large itemsets and associ-
ation rules visit only a small fraction of the vertices in the adjacency
lattice.

Function NaiveFindThreshold(NumberofItemsets: N, Slack: N,)
begin
High = max;{Support of item i}
Low = 0; Generated = 0;
while (Generated ¢ (N — N,, N))
begin
Mid = (High + Low)/2;
Generated = DHP(Mid);
end;
return(Mzid);
end

Algorithm ConstructLattice(Numberofltemsets: N, Slack: N,)
begin
p =NaiveFindThreshold(N, N,)
For each itemset X = {¢1,...4,.} with S(X) > p do
Add the vertex v(X) to the adjacency lattice with label S(X)
Add the edge E(X — {ix}, X) for each k € {1,...,7}
end

Figure 7: Constructing the adjacency lattice

find a primary threshold value for which the number
of itemsets is between N — N, and N.

(2) Preprocessing Time: There may be some practical
limits as to how much time one is willing to spend in
preprocessing. Consequently, even if it is not possible
to find N itemsets within the preprocessing time, it
ought to be able to terminate the algorithm with some
value of the primary threshold for which all itemsets
with support above that value have been found.

A simple way of finding the primary itemsets is by using a
binary search algorithm on the value of the primary thresh-
old, using the DHP method discussed in Chen et. al. [17] as
a subroutine. This method is somewhat naive and simplis-
tic, and is not necessarily efficient, since it requires multiple
executions of the DHP method. This method of finding the
primary threshold is discussed in the algorithm NaiveFind-
Threshold of Figure 7. The time complexity of the proce-
dure can be improved considerably by utilizing a few simple
1deas:

(1) It is not necessary to execute the DHP subroutine to
completion in each and every iteration. For estimates
which are lower bounds on the correct value(s) of the
primary threshold, it is sufficient to terminate the pro-
cedure as soon as N or more large itemsets have been
generated at the level of support being considered.

(2) It is not necessary to start the DHP procedure from
scratch in each iteration of the binary search proce-
dure. It is possible to reuse information between iter-
ations. Let Z(s) denote the itemsets which have sup-
port at least s. It is possible to speed up the prepro-
cessing algorithm by reusing the information available
in Z(Low). Generating k-itemsets in Z(Mid) is only
a matter of picking those k-itemsets in Z(Low) which
have support at least Low. This does not mean that
every itemset in Z(M1id) can be immediately generated
using this method. Recall (from (1) above) that the
DHP algorithm is often terminated before completion,
if more than N itemsets have been generated in that
iteration. Consequently, not all itemsets in Z(Low)
may be available, but only those k-itemsets for which
k < ko, for some ko are available. Thus, we have all

0.016

0.014

T10.14.D100K
T10.16.D100K

T20.16.D100K

0.012 1

e
o
2

0.008 [

Primary threshold

0.006

————

00041

0.002- ~\

Figure 8: Threshold varation with itemsets prestored

4

Number of itemsets prestored

I DataSet [Conf. | Sup. | DHP] Online i
T10.142.D100K 90% 0.3% 100 sec. | instantaneous
T10.16.D100K 90% 0.3% | 130 sec. | instantaneous
T10.16.D100K 90% 0.2% | 240 sec. 2 seconds
T20.16.D100K 90% 0.5% | 100 sec. | instantaneous

Table 3: Sample illustrations
advantage of online processing

of the order of magnitude

6

those k-itemsets in Z(Mid) available for which k < ko.
These itemsets need not be generated again.

Empirical Results

We ran the simulation on an IBM RS/6000 530H work-
station with a CPU clock rate of 33MHz, 64 MB of main
memory and running AIX 4.1.4. We tested the algorithm
empirically for the following objectives:

(1)

(2)

(3)

6.1

Preprocessing sensitivity: The preprocessing tech-
nique is sensitive to the available storage space. The
larger the available space, the lower the value of the
primary threshold. We tested how the primary thresh-
old value varied with the storage space availability. We
also tested how the running time of the preprocessing
algorithm scaled with the storage space.

Onmnline processing time: We tested how the online
processing times scaled with the size of the output. We
also made an order of magnitude comparison between
using an online approach and a more direct approach.

Level of redundancy: We tested how the level of re-
dundancy in the generated output set varied with user
specified levels of support and confidence. We showed
that the level of redundancy in the rules is quite high.
Thus redundancy elimination is an important issue for
an online user looking for compactness in representa-
tion of the rules.

Generating the synthetic data sets

The synthetic data sets were generated using a method sim-
ilar to that discussed in Agrawal et. al. [3]. Generating the
data sets was a two stage process:

Relative Computational Effort for preprocessing

Figure

iy
R

=
S

®

>

~

~

T10.14.D100K
T10.16.D100K
T20.16.D100K

4 5
Number of itemsets prestored

9: Computation variation with itemsets prestored

60

50

&

T10.14.D100K
T10.16.D100K

T20.16.D100K

0

Response Time in seconds
w
8
T

. .
5000 10000
Number of rules generated

15000

Figure 10: Online response time variation with rules gener-

ated

,_.
o ® S
T T T

(Total Rules Generated)/(Essential Rules)
N
T

- = T10.14.D100K

Support fixed at 0.15%

T10.16.D100K

Figure 11:

L
30 40 50 60 70
Confidence

Redundancy level variation

80 90 100

with confidence

90 T

\ —-—-- T10.4.D100K
\ - T10.16.D100K |

@
3
T
L

@
3
T

Confidence fixed at 90% 1

IS
3
T
L

(Total Rules Generated)/(Essential Rules)
8
T
.

Support

Figure 12: Redundancy level variation with support

(1) Generating maximal potentially large itemsets:
The first step was to generate L = 2000 maximal “po-
tentially large itemsets”. These potentially large item-
sets capture the consumer tendencies of buying certain
items together. We first picked the size of a maximal
potentially large itemset as a random variable from a
poisson distribution with mean pr. Each successive
itemset was generated by picking half of its items from
the current itemset, and generating the other half ran-
domly. This method ensures that large itemsets often
have common items. Each itemset I has a weight wr
associated with it, which is chosen from an exponential
distribution with unit mean.

(2) Generating the transaction data: The large item-
sets were then used in order to generate the transaction
data. First, the size St of a transaction was chosen as
a poisson random variable with mean pr. Each trans-
action was generated by assigning maximal potentially
large itemsets to it in succession. The itemset to be as-
signed to a transaction was chosen by rolling an L sided
weighted die depending upon the weight wr assigned
to the corresponding itemset 7. If an itemset did not fit
exactly, it was assigned to the current transaction half
the time, and moved to the next transaction the rest of
the time. In order to capture the fact that customers
may not often buy all the items in a potentially large
itemset together, we added some noise to the process
by corrupting some of the added itemsets. For each
itemset I, we decide a noise level n; € (0,1). We gen-
erated a geometric random variable G with parameter
nz. While adding a potentially large itemset to a trans-
action, we dropped min{G, |I|} random items from the
transaction. The noise level ny for each itemset I was
chosen from a normal distribution with mean 0.5 and
variance 0.1.

We shall also briefly describe the symbols that we have used
in order to annotate the data. The three primary factors
which vary are the average transaction size ur, the size
of an average maximal potentially large itemset pr, and
the number of transactions being considered. A data set
having p7 = 10, pz = 4, and 100K transactions is denoted
by T10.14.D100K.

We tested how the primary threshold varied with the
number of itemsets prestored. This result is illustrated in

Figure 8. The figure shows that the primary threshold ini-
tially drops considerably as the number of primary itemsets
increases, but it bottoms out after a while. We also illus-
trate the variation of the computational effort required with
the available storage space in Figure 9. We note that for the
itemset T10.I4.D100K, the computational effort required in
order to find additional large itemsets after finding 20000
itemsets increases considerably with the number of itemsets
prestored. This is because for this particular data set, the
average size of a maximal potentially large itemset (or bas-
ket) is only 4. Consequently, the total number of possible
large itemsets is relatively limited. On the other hand, the
computational effort for preprocessing required by the data
sets T20.I16.D100K and T10.16.D100K is relatively similar.
This shows that the computational effort required to find a
specific number of primary itemsets is more sensitive to the
size of a typical basket in the data, rather than to the size
of a transaction.

We also tested the variation in the online running time
of the algorithm with the number of rules generated. We
ran the online queries for varying levels of input parameters
in order to test the correlation between the running time
and the number of rules generated. This is illustrated in
Figure 10. This result is significant in that it shows that
the running time of the algorithm increases linearly with
the number of rules generated for all the data sets used.
The absolute magnitude of time required in order to gen-
erate the rules was an order of magnitude smaller than the
time required using a direct itemset generation approach
like DHP. A brief summary of some sample relative find-
ings is illustrated in Table 3.

We also discuss the level of redundancy present in the rule
generation procedure. Figures 11 and 12 illustrate that the
number of redundant rules is often much larger than the
number of essential rules. The benchmark for measuring
the level of redundancy is referred to as the redundancy
ratio, and is defined as follows:

Total Rules Generated
Essential Rules

(1)

Redundancy Ratio =

Thus, when the redundancy ratio is K, then the number
of redundant rules is K — 1 times the number of essential
rules. The redundancy ratio has been plotted on the Y-axis
in Figures 11 and 12. We see that in most cases the number
of redundant rules is significantly larger than the number
of essential rules. This illustrates the level to which useful
rules often get buried in large numbers of redundant rules.
Also, the redundancy level is much more sensitive to the
support rather than the confidence. The lower the level of
support, the higher the redundancy level.

7 Conclusions and Summary

In this paper we investigated the issue of online mining
of association rules. The two primary issues involved in
online processing are the running time and compactness in
representation of the rules. We discussed an OLAP-like
approach for online mining association rules which avoids
redundancy.

Acknowledgements

We would like to thank V. S. Jaychandran and Joel Wolf

for their extensive comments and suggestions.

References

[1]

(2]

[10]

(11]

Aggarwal C. C., and Yu P. S. Online Generation of
Association Rules. IBM Research Report RC 20899.

Agrawal R., Imielinski T., and Swami A. Mining asso-
ciation rules between sets of items in very large data-
bases. Proceedings of the ACM SIGMOD Conference
on Management of data, pages 207-216, Washington
D. C., May 1993.

Agrawal R., and Srikant R. Fast Algorithms for Mining
Association Rules in Large Databases. Proceedings of

the 20th International Conference on Very Large Data
Bases, pages 478-499, September 1994.

Agrawal R., and Srikant R. Mining Sequential Pat-
terns. Proceedings of the 11th International Conference
on Data Engineering, pages 3-14, March 1995.

Agrawal S., Agrawal R., Deshpande P. M., Gupta A,
Naughton J. F., Ramakrishnan R., and Sarawagi S.
On the Computation of Multidimensional Aggregates.
Proceedings of the 22nd International Conference on
Very Large Databases. pages 506-521.

Chen M. S., Han J., and Yu P. S. Data Mining: An
Overview from Database Perspective. IEEE Transac-
tions on Knowledge and Data Engineering. Volume 8,

Number 6, December 1996. pages 866-883.

Dyreson C. Information Retreival from an Incomplete
Data Cube. Proceedings of the 22nd International Con-
ference on Very Large Databases. pages 532-543, Mum-
bai, India, 1996.

Gupta A., Harinarayan V., and Quass D. Aggregate-
query processing in data warehousing environments.
Proceedings of the 21st Conference on Very Large
Databases, Zurich, Switzerland, September 1995.

Han J. and Fu Y. Discovery of Multiple-Level Asso-
caition Rules from Large Databases. Proceedings of
the 21st International Conference on Very Large Data
Bases. Zurich, Switzerland, 1995, pages 420-431.

Harinarayan V., Rajaraman A., and Ullman J. Im-
plementing Data Cubes Efficiently. Proceedings of the
1996 ACM SIGMOD conference on Management of
Data. Montreal, Canada, June 1996, pages 205-227.

Houtsma M., and Swami A. Set-oriented Mining for
Association Rules in Relational Databases. Proceedings
of the 11th International Conference on Data Engi-
neering. March 1995, pages 25-33.

Kaufman L., and Rousseeuw P. J. Finding Groups in
Data - An Introduction to Cluster Analysis. Wiley Se-
ries in Probability and Mathematical Statistics, 1990.

(13]

[14]

[15]

[16]

(17]

(21]

[22]

(24]

Klementtinen M., Mannila H., Ronkainen P., Toivo-
nen H., and Verkamo A. I. Finding interesting rules
from large sets of discovered association rules. Proceed-
ings of the Conference on Information and Knowledge
Managements. Gaithersburg, MD, USA 28 Nov. 2 Dec.
1994.

Lent B., Swami A., and Widom J. Clustering Associa-
tion Rules. Proceedings of the Thirteenth International

Conference on Data Engineering. pages 220-231, Birm-
ingham, UK, April 1997.

Mannila H., Toivonen H., and Verkamo A. I. Ef-
ficient algorithms for discovering association rules.
AAAT Workshop on Knowledge Discovery in Data-
bases, pages 181-192, Seattle, Washington, July 1994.

Ng R. T., and Han J. Efficient and Effective Cluster-
ing Methods for Spatial Data Mining. Proceedings of
the 20th International Conference on Very Large Data
Bases. Santiago, Chile, 1994, pages 144-155.

Park J. S., Chen M. S., and Yu P. S. An Effective
Hash Based Algorithm for Mining Association Rules.
Proceedings of the 1995 ACM SIGMOD International
Conference on Management of Data. pages 175-186,
May 1995.

Piatetsky-Shapiro G. Discovery, Analysis and Presen-
tation of Strong Rules. Knowledge Discovery in Data-
bases, 1991.

Savasere A., Omiecinski E., and Navathe S. An Effi-
cient Algorithm for Mining Association Rules in Large
Data Bases. Proceedings of the 21st International Con-
ference on Very Large Data Bases. Zurich, Switzer-

land, 1995, pages 432-444.
Shukla A., Deshpande P. M., Naughton J. F. and Ra-

masamy K. Storage Estimation for Multidimensional
Aggregates in the Presence of Hierarchies. Proceedings

of the 22nd International Conference on Very Large
Databases. pages 522-531, Mumbai, India, 1996.

Srikant R., and Agrawal R. Mining Generalized As-
sociation Rules. Proceedings of the 21st International
Conference on Very Large Data Bases, pages 407-419,
September 1995.

Srikant R., and Agrawal R. Mining quantitative asso-
ciation rules in large relational tables. Proceedings of
the 1996 ACM SIGMOD Conference on Management
of Data. Montreal, Canada, June 1996.

Toivonen H. Sampling Large Databases for Association
Rules. Proceedings of the 22nd International Confer-
ence on Very Large Databases. pages 134-145, Mum-
bai, India, 1996.

Ziarko W. The Discovery, Analysis, and Representa-
tion of Data Dependencies in Databases. Knowledge
Discovery in Databases, 1991.

