
Differentially-Private Remote Software Profiling

Dissertation

Presented in Partial Fulfillment of the Requirements for the Degree Doctor
of Philosophy in the Graduate School of The Ohio State University

By

Hailong Zhang

Graduate Program in Computer Science and Engineering

The Ohio State University

2020

Dissertation Committee:

Atanas Rountev, Advisor

Raef Bassily

Michael Bond

c© Copyright by

Hailong Zhang

2020

Abstract

Remote profiling of deployed software has been studied in many contexts. In remote

profiling, data is collected locally and then sent to a remote server where it is analyzed

by the developers of the software and analysts working with them. There are significant

privacy concerns about the collection and use of such data. For example, this sensitive data

could potentially be misused due to rogue employees, legal proceedings, unethical business

practices, or security breaches. The goal of this dissertation is to introduce principled

privacy protection guarantees in the data collection process, after the profiling data has

been collected locally but before sending it to the remote server. To provide a privacy-by-

design solution with well-defined privacy properties, we employ differential privacy (DP), a

powerful technique that allows meaningful statistics to be collected for a population without

revealing “too much” information about any individual member of the population.

The first contribution of this dissertation is a parameterized randomization approach

for run-time event frequency profiling that achieves DP with respect to event traces. This

approach introduces random noise to the local profile at each user in a way that prevents

any adversary from inferring the actual event trace during data gathering. To compute

useful statistics, software developers post-process the aggregated profile to account for the

randomization. Using program analysis techniques, we extract a priori knowledge about

relationships between events in the run-time profile and incorporate these relationships in the

post-processing step. This produces frequency estimates that are consistent with the structure

ii

of the true event frequencies and reduces the error of the resulting estimates. We perform a

study of method call traces from Android apps and show that well-designed solutions can

achieve both high accuracy and principled privacy-by-design for the fundamental problem

of event frequency profiling.

As another setting for software frequency profiling, the profile at each user could be a

frequency vector instead of an event trace. We propose an approach that reports the user-level

frequency information with the addition of random noise drawn from the Laplace distribution.

This approach achieves significantly higher accuracy of profiling results without reducing

privacy protections in any substantial way, compared to our first approach introduced earlier.

In addition, we propose a novel linear programming formulation to compute the magnitude

of random noise that should be added to achieve meaningful privacy protections under

certain linear constraints. These constraints are due to the intrinsic static structure of the

underlying software and are commonly observed in software systems. To the best of our

knowledge, no prior work has incorporated such domain-derived data constraints in the

design of a DP analysis. Our experimental analysis shows that the privacy protection can be

significantly weakened if the DP design does not take into account these constraints.

The third focus for this dissertation is a profiling problem related to control-flow node

coverage, where the constraints are with respect to control-flow graph (CFG) nodes. In

such data collection, events are represented as nodes in a CFG and the edges in the CFG

represent the transitions between events. Every execution of the software corresponds to a

subgraph of the CFG that is covered at run time. We propose a novel definition of graph

neighbors for a particular run-time covered subgraph, in order to account for the strong

correlations between CFG nodes. We demonstrate that such correlations are captured by

the notion of dominators, which is traditionally used in compiler optimizations. We use

iii

this insight to define the privacy guarantees that need to be achieved by any DP solution

for control-flow node coverage analysis, and then propose an analysis to achieve these

guarantees by randomizing the coverage information. Our experimental results demonstrate

that the proposed analysis can achieve practical accuracy while providing principled DP

guarantees.

Overall, this dissertation presents several approaches targeting various profiling tasks

with the goal of providing principled privacy guarantees for individual user’s profile data,

while still allowing developers to learn useful statistical results across the whole user

population. These approaches are promising advances in the larger landscape of privacy-

preserving software analysis. We believe that applying similar techniques based on DP to

other software analysis problems will be a fruitful direction for future work.

iv

To my family

v

Acknowledgments

I would like to express my sincere gratitude to my advisor, Atanas Rountev, for his

generous help with both my research and life. His dedication in training and guiding me

through the doctorate studies has helped me become an independent researcher. I am

especially thankful for his offer of opportunities for me to attend conferences and workshops

to build connections with other researchers, and his numerous valuable suggestions for my

career development. They strengthened my determination to pursue a career in academia.

I am also grateful to the many professors that I have interacted and collaborated with

at the Ohio State University. Especially, I would like to thank Raef Bassily, Michael

Bond, Feng Qin, and Neelam Soundarajan for serving on my dissertation and candidacy

committees. I have had many fruitful discussions with Raef. He provided a considerable

amount of insightful advice on various projects and paper drafts. Raef, Mike, and Feng have

always been supportive during my job search. I thank them for taking the time preparing

letters of recommendation and giving feedback on my application materials. I also appreciate

the feedback from Yinqian Zhang on paper revisions. His comments and suggestions were

instrumental in publishing the work on analysis of control-flow graphs at the 2020 USENIX

Security Symposium.

My research would not proceed so smoothly without the support and contributions

from members of the PRESTO research group, including Shengqian Yang, Yan Wang,

vi

Haowei Wu, Sufian Latif, and Yu Hao. I am thankful for their timely help and constructive

discussions regarding my research.

Lastly, I want to thank my wife Jingqiu Liao and my parents for their understanding and

unconditional love. Jingqiu is my biggest support during my Ph.D. studies. Her company

and encouragement make me feel not alone in my academic journey. My parents always

believe in me and are supportive to my decisions. I dedicate this dissertation to them.

The material presented in this dissertation is based upon work supported by the National

Science Foundation under Grant CCF-1907715. Any opinions, findings, and conclusions or

recommendations expressed in this material are those of the author(s) and do not necessarily

reflect the views of the National Science Foundation.

vii

Vita

March 2014 . M.E., Computer Technology, Beijing Uni-
versity of Posts and Telecommunications,
China.

June 2011 . B.E., Network Engineering, Beijing Uni-
versity of Posts and Telecommunications,
China.

Publications

Research Publications

Hailong Zhang, Sufian Latif, Raef Bassily, and Atanas Rountev. Differentially-Private
Control-Flow Node Coverage for Software Usage Analysis. In USENIX Security Sympo-
sium, August 2020.

Hailong Zhang, Yu Hao, Sufian Latif, Raef Bassily, and Atanas Rountev. A Study of Event
Frequency Profiling with Differential Privacy. In International Conference on Compiler
Construction, February 2020.

Haowei Wu, Hailong Zhang, Yan Wang, and Atanas Rountev. Sentinel: Generating GUI
Tests For Sensor Leaks in Android and Android Wear Apps. In Software Quality Journal,
December 2019. (The two lead authors contributed equally to this work.)

Hailong Zhang, Sufian Latif, Raef Bassily, and Atanas Rountev. Introducing Privacy in
Screen Event Frequency Analysis for Android Apps. In International Working Conference
on Source Code Analysis and Manipulation, September 2019.

Hailong Zhang, Haowei Wu, and Atanas Rountev. Detection of Energy Inefficiencies in
Android Wear Watch Faces. In Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, November 2018.

viii

Hailong Zhang, Sufian Latif, Raef Bassily, and Atanas Rountev. Differentially-Private
Software Analytics for Mobile Apps: Opportunities and Challenges. In International
Workshop on Software Analytics, November 2018.

Shengqian Yang, Haowei Wu, Hailong Zhang, Yan Wang, Chandrasekar Swaminathan,
Dacong Yan, and Atanas Rountev. Static Window Transition Graphs for Android. In
Automated Software Engineering Journal, June 2018.

Yan Wang, Haowei Wu, Hailong Zhang, and Atanas Rountev. Orlis: Obfuscation-
Resilient Library Detection for Android. In International Conference on Mobile Software
Engineering and Systems, May 2018.

Hailong Zhang and Atanas Rountev. Analysis and Testing of Notifications in Android
Wear Applications. In International Conference on Software Engineering, May 2017.

Yan Wang, Hailong Zhang, and Atanas Rountev. On the Unsoundness of Static Analysis
for Android GUIs. In International Workshop on the State Of the Art in Program Analysis,
June 2016.

Hailong Zhang, Haowei Wu, and Atanas Rountev. Automated Test Generation for Detection
of Leaks in Android Applications. In International Workshop on Automation of Software
Test, May 2016.

Shengqian Yang, Hailong Zhang, Haowei Wu, Yan Wang, Dacong Yan, and Atanas Rountev.
Static Window Transition Graphs for Android. In International Conference on Automated
Software Engineering, November 2015.

Fields of Study

Major Field: Computer Science and Engineering

Studies in:

Programming Language and Software Engineering Prof. Atanas Rountev
Software Dependability and Security Prof. Feng Qin
High Performance Computing Prof. P. Sadayappan

ix

Table of Contents

Page

Abstract . ii

Dedication . v

Acknowledgments . vi

Vita . viii

List of Tables . xiii

List of Figures . xiv

1. Introduction . 1

1.1 Overview and Outline . 3
1.2 Contributions and Impact . 6

2. Background and Terminology . 8

2.1 Differential Privacy . 8
2.2 Frequency Oracle . 9
2.3 Differential Privacy Techniques . 11

3. Event Frequency Profiling with Differential Privacy 13

3.1 Problem and Motivation . 14
3.2 The Differential Privacy Guarantee . 16

3.2.1 Example . 17
3.2.2 Privacy for Presence/Absence in Trace 19

3.3 Differentially-Private Event Frequency Profiling 20
3.3.1 Efficient Randomization . 20

x

3.3.2 Server-Side Computation of Estimates 22
3.3.3 Static Analysis of Call Frequencies 24

3.4 Evaluation . 27
3.4.1 Data Collection . 27
3.4.2 Implementation . 28
3.4.3 Accuracy of Estimates . 29
3.4.4 Estimates for Hot Methods . 32
3.4.5 Presence/Absence of Infrequent Methods 34
3.4.6 Importance of Consistency Constraints 35

3.5 Discussion and Limitations . 37
3.6 Summary . 38

4. Differentially-Private Frequency Profiling Under Linear Constraints 39

4.1 Problem and Motivation . 40
4.1.1 Frequency Profiling . 40
4.1.2 Privacy-Preserving Profiling . 41

4.2 Feasible Frequency Vectors Under Linear Constraints 43
4.3 The Differential Privacy Guarantee . 44

4.3.1 Indistinguishability . 45
4.3.2 Defining Neighbors . 46
4.3.3 Randomization Based on Laplace Mechanism 46
4.3.4 Randomization Based on Randomized Response 48
4.3.5 Calibration of Estimates . 52

4.4 Hiding The Presence or Hotness of Individual Events 52
4.4.1 Difficulty of Hiding An Event 54
4.4.2 Computing Difficulty Using Linear Programming 54
4.4.3 Computing Difficulty Using Constraint Graph Analysis 55
4.4.4 Hiding The Hotness of An Event 57
4.4.5 Importance of Constraints in Randomizer Design 58

4.5 Overall Design of Data Collection . 59
4.6 Evaluation . 60

4.6.1 Comparison Between Two Randomizers 62
4.6.2 Hiding The Presence of Events 64
4.6.3 Hiding The Hotness of Events 68
4.6.4 Implications of Enforcing Linear Constraints 70

4.7 Summary . 71

5. Differentially-Private Control-Flow Node Coverage Analysis 73

5.1 Problem and Motivation . 74
5.1.1 Problem Statement . 76

xi

5.1.2 Differentially-Private Node Coverage Analysis 77
5.2 Feasibility and Neighbors . 78
5.3 LDP Analysis . 82

5.3.1 Difficulty of Hiding Graph Nodes 83
5.3.2 Randomizer Definition . 86

5.4 Selection of Sensitivity Bound . 88
5.4.1 Baseline: Global Sensitivity . 89
5.4.2 Tighter Bound Based on Local Sensitivity 91
5.4.3 Tighter Bound via Restricted Sensitivity 92
5.4.4 Relaxed Indistinguishability of Neighbors 94

5.5 Evaluation . 96
5.5.1 Metrics . 98
5.5.2 GUI Screen Graphs . 99
5.5.3 Call Graphs . 103

5.6 Summary . 107

6. Related Work . 108

7. Conclusions . 112

Bibliography . 114

xii

List of Tables

Table Page

3.1 Benchmarks. 27

4.1 Experimental subjects. 61

4.2 Average RE across all apps for hiding event presence. 65

4.3 Average RE and HMC for hiding the presence of frequently-executed events
given `= 0.25. 67

4.4 Average RE across all apps for hiding event hotness. 68

4.5 Average RE and HMC for hiding the hotness of frequently-executed events
given `= 0.25. 70

5.1 Apps and control-flow graph models. 97

5.2 Average RE across all apps for GUI screen graphs. 102

5.3 Average RE and HNC for hot nodes in GUI screen graphs given `= 0.25. . 102

5.4 Average RE across all apps for call graphs. 105

5.5 Average RE and HNC for hot nodes in call graphs given `= 0.25. 107

xiii

List of Figures

Figure Page

3.1 Relative error of estimates. 30

3.2 Ground-truth FFF and estimates F̄FF and F̂FF of 20 most frequently-executed
methods in the speedlogic app with ε = ln9. 32

3.3 Comparison of RE for all methods (i.e., the full domain V) and for hot
methods with `= 0.25 and ε = ln9. 33

3.4 HMC for `= 0.25. 35

3.5 Full-domain RE of F̄FF and F̂FF with ε = ln9. 36

4.1 Code derived from the mitula app. 49

4.2 Comparison between randomization based on randomized response and
Laplace mechanism, by simulating 100 users using V = {e1,e2,e3} from
Figure 4.1, k = 3, ε = 1, and τ = 1. 51

4.3 Comparison of accuracy using randomization based on randomized response
and on Laplace mechanism with ε = 1. 63

4.4 Error for hiding event presence with varying h and ε 66

4.5 Error for hiding event hotness with varying h and ε 69

5.1 User interactions are reported for data analysis. 75

5.2 Feasible and infeasible coverage. 80

5.3 GUI screen view graph G from the parking app. 85

xiv

5.4 Gccc, coverage vector ccc, and dominator tree for Gccc, from the parking app. . . 86

5.5 Randomization using global sensitivity Sgs and ε = 1 for the parking app,
with 10 users. 90

5.6 Precision and recall for GUI screen graphs. 100

5.7 Relative error for GUI screen graphs. 103

5.8 Precision and recall for call graphs. 104

5.9 Relative error for call graphs. 106

xv

Chapter 1: Introduction

Remote profiling of deployed software has been studied in many contexts. For example,

performance profiling of a user’s execution behavior can be used to guide program optimiza-

tions [2, 43, 63, 66, 87, 90] by considering selective optimization and feedback-directed code

generation [4]. Other related uses of such remote analysis include debugging [48, 57, 75],

failure reproduction [20, 47], facilitating testing [14, 78], and bug isolation [57].

In such scenarios, profiling data is collected locally and then sent to a remote server

where it is analyzed by the developers of the software and analysts working with them.

There are significant privacy concerns about the collection and use of such data. While

data analysis results can be used for enhancement of the software, individuals’ usage data

becomes transparent to software developers, as well as to the analysis service providers such

as Google [39] and Facebook [34]. This sensitive data could potentially be misused due to

rogue employees, legal proceedings, unethical business practices, or security breaches. These

concerns are amplified by growing legislative efforts and societal demands for increased

transparency and well-defined compromises between the utility of personal data gathering

and the corresponding loss of privacy.

The goal of this dissertation is to introduce privacy protection guarantees in the data

collection process, after the profiling data has been collected locally but before sending it to

the remote server. Other researchers have tried to anonymize such software profiling data

1

during collection [21, 31]. However, data anonymization by itself is not enough to provide

strong privacy guarantees, as even anonymized data could be combined with external sources

of information to carry out a number of privacy attacks (e.g., person re-identification; linking

of related data from independent sources) [67, 68]. To provide a privacy-by-design solution

with well-defined privacy properties, we employ differential privacy.

Differential privacy (DP) [28, 30] allows meaningful statistics to be collected for a

population without revealing “too much” information about any individual member of the

population. In the area of software profiling, this machinery allows profiling data from many

users of a deployed software system to be collected and analyzed in a privacy-preserving

manner. Such a solution is appealing to many stakeholders, including software users,

software developers, providers of software analysis infrastructures, as well as government

agencies that enforce consumer protections. This is because DP provides well-defined,

quantifiable privacy guarantees of individual user’s data, even in the presence of unknown

auxiliary data about the user (e.g., from other sources such as public databases), and

regardless of any unanticipated privacy attacks that may be applied to the data (e.g., inference

and linkage attacks [29, 67, 68]).

DP is currently considered as the “gold standard” for privacy-preserving analysis. Both

industry [3, 25, 32, 35, 95] and government [22] have deployed DP solutions. There is a

rich body of work in this area [29, 100] but the use of DP for software profiling has not

been explored sufficiently. The goal of this dissertation is to study the problem of remote

software profiling with differential privacy and to provide feasible solutions for practical

use. In the following sections, we introduce the overview and outline of this dissertation,

followed by its contributions.

2

1.1 Overview and Outline

This dissertation targets both theoretical and practical challenges of designing and

implementing differentially-private software profiling mechanisms. We design various

DP algorithms in this context and conduct extensive experiments to evaluate the proposed

techniques.

Background on DP. Chapter 2 first introduces the background of DP and the two major

models of DP, i.e., centralized model and local model. We argue that the latter is more

suitable for the problem of software profiling, as user profiles are collected and stored on

local machines. We then discuss the frequency oracle problem, a simpler and easier-to-

understand problem than software profiling. This serves as a concrete example to show the

basic concepts and principles of DP. Next, two existing DP mechanisms are described. Our

solutions in the following chapters are built on top of them.

Event Frequency Profiling. Chapter 3 presents a parameterized randomization approach

for traces of run-time events. While prior work considers randomization of a single event

[9, 32, 96], we target quantifiable privacy guarantees for entire event traces that occur in

software run-time event frequency profiling. In addition, using program analysis techniques,

we extract a priori knowledge about relationships between elements of the run-time profile

and incorporate these relationship in the post-processing step of the DP profiling analysis.

In particular, we consider domain-specific constraints of the form “the frequency of x will

always be ≤ the frequency of y”. This produces estimates that are consistent with the

structure of the true frequencies and reduces the error of the resulting estimates.

3

To understand the actual performance of these techniques and to provide guidelines

for their deployment in realistic scenarios, we perform a study of method call traces from

Android apps and present the results in Chapter 3. Our conclusion from the analysis of

experimental results is that well-designed solutions can achieve both high accuracy and

principled privacy-by-design for the fundamental problem of event frequency profiling.

Frequency Profiling Under Linear Constraints. Chapter 4 is focused on a different

setting of software frequency profiling where the profile at each user is a frequency vector

instead of an event trace. We propose an approach which reports the user-level frequency

information with the addition of random noise drawn from the Laplace distribution. Our

experimental results show that significantly higher accuracy of profiling results can be

achieved without reducing privacy protections in any substantial way, compared to the

approach from Chapter 3.

In addition to the new randomization, we provide a novel re-definition of the privacy

guarantees and the corresponding privacy mechanisms to account for correlations of the

frequencies of different run-time execution events. Such correlations are due to the intrinsic

static structure of the underlying software system and are commonly observed in software

systems. Specifically, we consider those that can be expressed as linear inequalities, e.g., the

frequencies of several events will always be greater than or equal to the frequency of another

event. We argue that differential privacy protections must account for such relationships;

otherwise, a seemingly-strong privacy guarantee is actually weaker than it appears. In

particular, we propose a novel linear programming formulation to compute the magnitude

of random noise that should be added to achieve meaningful privacy protections under such

linear constraints.

4

Next, we develop an instance of this general machinery for a special but important

subclass of constraints of the form “the frequency of x is greater than or equal to the

frequency of y”, similar to the ones from Chapter 3. We demonstrate that in this case

the magnitude of random noise can be determined efficiently by employing a reachability

analysis of a constraint graph that encodes such constraints. To the best of our knowledge,

no prior work has incorporated such domain-derived data constraints in the design of a

differentially-private analysis. Our experimental analysis shows that the privacy protection

can be significantly weakened if the design does not take into account these constraints.

Control-Flow Node Coverage Analysis. Chapter 5 discusses a profiling problem is re-

lated to control-flow node coverage, where the type of constraints are with respect to

control-flow graph (CFG) nodes. In such data collection, events are represented as graph

nodes in CFGs and the edges correspond to the transitions between events. In CFGs, it is

often the case that the execution of a node n2 is caused by the execution of another node

n1 and, furthermore, n2 is executed only if n1 is executed. When such correlations are in

place, hiding the coverage of n1 independently from any other graph nodes is not enough,

because an adversary could infer information about n1’s coverage from observations about

the coverage of n2.

We first define the space of possible data instances by considering what constitutes

run-time graph coverage observed at any particular deployed copy of the software. Next, we

define the critical notion of neighbors for a particular covered subgraph. We show that the

traditional notion of graph neighbors used in prior DP analyses for graph data is meaningless

for control-flow graphs because nodes in such graphs have strong correlations driven by the

underlying graph structure [16, 53, 54, 60, 106]. We demonstrate that such relationships are

5

captured by the notion of dominators, which is traditionally used in compiler optimizations.

Based on this insight, we propose a new notion of “graph neighbor” and use it to define the

privacy guarantees that need to be achieved by any DP solution for this analysis.

We then propose an analysis to achieve these guarantees by randomizing the coverage

information. Our randomizer is based on the DP notion of sensitivity, which, intuitively,

captures the difference in the output of the analysis performed on two neighboring graphs.

We define a new notion of sensitivity for graph data and demonstrate how to compute it

efficiently using the dominator tree of the dynamic CFG. Based on these techniques, we

introduce four randomizers that achieve DP. First, we describe a baseline randomizer using

the worst-case upper bound for sensitivity that achieves the theoretically-optimal worst-

case analysis error, but does not provide good accuracy on real data. Next, we introduce

stronger bounds on sensitivity by aggregating the local sensitivities from a set of opt-in

users. However, some users may suffer from weakened privacy protection during the actual

subsequent coverage collection. Therefore, we propose to lower the bound by projecting

the covered subgraph of CFG onto a lower-sensitivity representation. Then, we propose to

refine the notion of indistinguishability to account for the distance between graph neighbors.

Our experimental results show significant error reduction for the latter three approaches

compared to the baseline approach.

1.2 Contributions and Impact

This dissertation demonstrates several novel approaches targeting various profiling tasks

that provide principled DP guarantees for individual user’s profile data, while still allowing

developers to learn useful statistical results across the whole user population. We identify

the key challenges for designing effective and practical randomization mechanisms, and

6

propose solutions that advance both the theoretical state of art and provide guidelines for

future development of privacy-preserving software profiling infrastructures.

Specifically, in Chapter 3, we propose the first DP solution that protects run-time event

traces at the user end and allows developers to fine-tune the trade-offs between privacy

and accuracy. This dissertation is also the first to incorporate domain-derived constraints

on event frequencies in the design of a differentially-private analysis. In Chapter 4, we

propose a linear programming formulation to compute the magnitude of noise that should be

added under such constraints. Our experimental results have significant implications for the

design of any infrastructure for differentially-private remote profiling of deployed software,

suggesting that these constraints must be taken into account in the analysis design to provide

expected privacy guarantee. Our DP solution for control-flow graph node coverage analysis

in Chapter 5 is an example showing that existing privacy-preserving techniques may be

unsuited for software analysis problems. It introduces domain-specific knowledge about

correlations between CFG nodes to the solution design and implementation.

In summary, these efforts present novel advances in a broad research agenda for privacy-

preserving software profiling. The need for such analysis is driven by the fundamental

tension between the privacy of software users and the needs of software developers and

researchers. Differential privacy is a rigorous tool for exploring such trade-offs. However,

we are not aware of any prior efforts to apply this tool in the analysis of deployed software.

Ultimately, these and similar efforts contribute to the important area of software user privacy,

in a world where privacy protections are becoming essential.

7

Chapter 2: Background and Terminology

2.1 Differential Privacy

Differential privacy (DP) [28, 29] is a general approach for protection against a wide

range of privacy attacks. In such scenarios, there is release of some data and an adversary

attempts to learn private individual information from the data. Anonymizing or removing

personally-identifiable information cannot guarantee privacy, as demonstrated in prior

work [26, 67, 68, 91], because additional data sources can be combined with the anonymized

data to uncover sensitive information. A prominent example is work [67] that identified

individual records from Netflix’s collection of anonymized viewing histories by linking

with another movie database. Practical applications have also been demonstrated. DP

solutions have been deployed by several companies (e.g., Google [32, 35], Apple [3, 94],

and Uber [95]). The U.S. Census Bureau will use DP to protect the results from the 2020

census [22]. Given the rapid emergence of large-scale data analysis and its detrimental

effects on privacy, the importance and urgency of such privacy solutions (including DP) will

continue to increase in the foreseeable future.

The DP protection is of the following form: by observing the results of a DP analysis,

an adversarial entity will not be able to distinguish between the real data that was included

in the analysis input, and any “neighboring” data in the universe of possible input data. This

8

is achieved by introducing random noise, and thus the indistinguishability is probabilistic.

DP is attractive because it provides a comprehensive and quantifiable notion of privacy.

Furthermore, DP analyses may be able to guarantee that they are in compliance with legal

requirements for privacy protection [100]. It is important to note that the indistinguishability

protection holds even when a privacy adversary has access to additional information outside

the scope of the analysis being considered. Intuitively, regardless of how much an adversary

can learn from other sources of information, she still cannot determine (with high confidence)

the specific private data that was used as input to the DP analysis.

There are two major models for defining DP problems: centralized model and local

model. In the centralized model, the data curator (also referred to as “server”) is trusted

for collection of data. In the local model, the server is not trusted: raw data that reaches it

can be observed by an adversary. For such locally-differentially-private (LDP) problems,

each user performs local data perturbation via a local randomizer before releasing any

information to the server. The LDP model is particularly well suited for remote software

profiling. This model provides privacy guarantees to the software user regardless of the

unpredictable actions from the software analysis infrastructure and its clients and adversaries.

The server maintainers themselves are protected: even if there are malicious employees,

security attacks, or subpoenas by law enforcement, the data on the server cannot be used to

reliably infer the private data of the software user.

2.2 Frequency Oracle

For a concrete example of a classic DP analysis, we describe the frequency oracle

problem [9, 32]. The problems considered in this dissertation in the following chapters are

generalizations of this exemplar DP analysis.

9

Consider a finite domain of data items V . In our context this domain contains some

program code entities—for example, V is the set of all methods/functions defined in the

program’s source code. Suppose there are n individuals participating in the data collection.

For convenience of notation, these individuals are identified via integers i ∈ {1, . . . ,n}. Each

individual has a single data item vi ∈ V . The goal of the data collection is to determine, for

each element v of the data domain, the frequency of v—that is, the number of individuals i

with vi = v. A frequency oracle is an algorithm that provides an estimate of the frequency of

v for any v ∈ V .

A locally-differentially-private (LDP) frequency oracle employs a randomization algo-

rithm R : V → Z , often referred to as the local randomizer. The role of R is to introduce

random noise to the local information of individual i. Specifically, instead of reporting vi

to the analysis server, the DP frequency oracle algorithm reports R(vi). The server collects

all such randomized reports over the n individuals and uses them to compute the frequency

estimates for all v.

Randomizer R must ensure the indistinguishability property, parameterized by the so-

called privacy loss parameter ε ≥ 0. Higher values of ε imply higher risk to an individual’s

privacy. Consider any value z ∈ Z that could be produced by R. For any v ∈ V and v′ ∈ V ,

from the observation of z it should be impossible to determine, with high confidence, whether

the input of R was v or v′. Specifically, Pr[R(v) = z] and Pr[R(v′) = z] should not differ by

more than a factor of eε where Pr[. . .] denotes the probability of an event. We formally

define this essential property as follows:

10

Definition 2.1 (ε-indistinguishability). Randomizer R :V→Z achieves ε-indistinguishability

if for any v,v′ ∈ V and for any z ∈ Z , we have

Pr[R(v) = z]
Pr[R(v′) = z]

≤ eε

This property should be interpreted as follows: even if an outside entity knows the

complete details of how R is defined, by observing the output z of R this entity is not able

to conclude, with high probability, that the real data of individual i was a particular vi as

opposed to any other element of V . The strength of this protection depends on ε: small

values result in strong protection, but also necessitate the introduction of more noise, which

affects the accuracy of the frequency estimates.

More generally, in various LDP analyses, the indistinguishability is between “neighbors”

in the data space. In this dissertation we apply this notion to event traces (Chapter 3),

frequency vectors (Chapter 4), and control-flow graphs (Chapter 5).

2.3 Differential Privacy Techniques

There exist many designs and implementations of the local randomizer that achieves

differential privacy under various situations [3, 8, 9, 17, 27, 29, 30, 32, 81, 96]. Here we

introduce two well-studied techniques, upon which the approaches proposed in the following

chapters are built.

Randomized Response. Randomized response is a classic technique that has been used

in social sciences to eliminate evasive answer bias and to gather sensitive data [99] (e.g.,

about illegal or embarrassing behaviors). In its simplest manifestation, for a single bit input,

the local randomizer at each user reports the true value with some probability q (derived

from ε) and the flip of the true value with probability 1−q. After the collection over all

11

individuals is completed, a post-processing step scales back the population-wide frequencies

to account for the randomization effects. This simple randomizer satisfies local differential

privacy with ε = ln q
1−q .

The Laplace Mechanism. The Laplace mechanism [29, 30] is designed to protect nu-

meric values by applying noise drawn from the Laplace distribution to the output of numeric

functions. The Laplace probability distribution Lap(b), parameterized by a scale parameter

b > 0 and centered at 0, is defined by the probability density function p(y|b) = 1
2b exp(− |y|b).

Consider any numeric query function Q that maps its input to m real numbers. A ran-

domizer R for Q based on the Laplace mechanism draws independently random noise

Yj ∼ Lap(∆Q
ε
) for each j ∈ {1, . . . ,m} and adds

(
Y1 . . . Ym

)
to the output of Q. Here

∆Q = maxx,y:‖x−y‖1≤1 ‖Q(x)−Q(y)‖1 is the sensitivity of Q, where ‖. . .‖1 denotes the L1

norm. This definition of R achieves ε-differential privacy.

12

Chapter 3: Event Frequency Profiling with Differential Privacy

In this chapter, we utilize differential privacy to realize privacy-preserving event fre-

quency profiling. In particular, we define a parameterized randomization approach for

traces of run-time events. First, we define a notion of distance between event traces and the

corresponding distance-based privacy properties, which enables tunable trade-offs between

privacy and accuracy. To achieve such properties, we propose new randomization which, un-

like prior expensive event-by-event randomization [32, 103], applies efficient randomization

on the total trace frequencies. We also incorporate additional consistency constraints that

reflect domain-specific considerations. For example, the (normalized) estimated frequencies

are non-negative and add up to 1. In addition, we consider constraints of the form “the

frequency of x will always be ≤ the frequency of y in any run-time event trace”. Such

run-time constraints often exist due to the static properties of program code. We embed both

categories of constraints in a quadratic programming optimization problem, which we then

use to produce more accurate frequency estimates.

To provide insights into such trade-offs, we perform a study of method call traces

from Android apps. Our results clearly quantify the inherent tension between privacy and

accuracy. Specifically, they point out that privacy protections for traces that are “far apart”

come at the expense of significantly reduced accuracy. However, a more detailed analysis of

these results reveals that for high-frequency events—in our studies, for “hot” methods—the

13

accuracy of frequency estimates is actually quite good. Overall, the results suggest that

well-designed solutions can achieve both high accuracy and principled privacy-by-design

for the fundamental problem of event frequency profiling.

3.1 Problem and Motivation

Consider a software system deployed locally on the machines of n users. We will use

i ∈ {1, . . . ,n} to denote these users. Suppose that software developers are interested in the

execution frequency of certain run-time events—for example, events of the form “v was

executed”, where v is a method/function in the software code. Let V denote the set of all such

events. In our setup V is decided by the software developers before the software is deployed,

and some run-time mechanism (e.g., instrumentation) is used to observe occurrences of

such events while the deployed software is running. For each software user i, the execution

of that user’s deployed software instance produces a trace of events ti = vi
1, . . . ,v

i
k that are

observed and recorded by the analysis infrastructure. Denote the frequency of each v ∈ V in

this trace as fi(v). Without DP, these local frequencies are simply reported to the remote

analysis server, which computes and reports to the software developers a global frequency

F(v) = ∑i fi(v) for each v.

This general problem statement captures a wide range of classic profiling problems, for

example, node/edge profiling at various levels of granularity. However, the collection and

reporting of this “raw” data raises concerns about the privacy of software users. First, the

events themselves may convey sensitive information: for example, the frequency of calls

to functions to log into a remote server, to connect to a VPN, or to change a password.

Second, such information can be used to classify user’s interest and habits, which could

later be (mis)used for behavior analytics or targeted advertisement [101]. Finally, and very

14

importantly, the rapidly increasing power of data mining and machine learning, together

with the dramatic increase of user-specific data available from various sources, makes it

possible to make increasingly-powerful inferences about an individual from the various

data streams she produces in her daily life. Even if certain categories of data gathering

appear to be harmless on their own, it is hard to predict how they would interact with future

unanticipated additional data sources and analyses. Not surprisingly, both society in general

and legislative bodies in particular are paying close attention to these privacy issues. From

the technical perspective, designing privacy-preserving analyses and “future-proofing” them

against unpredictable privacy attacks is an important and challenging problem.

As discussed earlier, differential privacy (DP) is a principled framework to address such

privacy concerns and to provide privacy guarantees against both known and unknown (i.e.,

future) data analyses. For our problem, rather than reporting local frequencies fi(v) to the

remote server, the analysis reports a randomized version of it, derived in a way that ensures

DP properties. While per-user information is now noisy, the global frequency estimates

inferred by the analysis server are accurate estimates of the true global frequencies F(v).

Problem Statement. Consider a software user i and her trace of events ti = vi
1, . . . ,v

i
k.

Without loss of generality, assume that k is decided before software deployment and is

the same for all i. A way to represent the local frequency information is as vector fff i of

|V | integers—that is, as a histogram with |V | bins, where each bin is the frequency of

some v, and the sum of bin values is k. Given the local trace ti and its frequency vector

fff i, a non-private solution reports fff i to the server, where a vector FFF = ∑i fff i of true global

frequencies is reported to the developers/analysts.

15

A DP solution applies a randomized algorithm R to the local trace ti, as described in

Section 3.3.1. We will use R(fff i) as shorthand for the frequency vector of this randomized

trace. R(fff i) is a vector of |V | integers, but they do not have to add up to k. This noisy vector

is reported to the server and used, together with similar vectors from all other software

users, to compute a vector F̂FF of global frequency estimates (described in Section 3.3.2).

The randomizer R is the same for all software users and is fully designed by the developer

before software deployment. It is assumed that the details of R are known by any potentially-

adversarial entities. Broadly, such entities include anyone who could observe the vector R(fff i)

reported to the server (and, in the extreme, the server is also considered to be potentially

adversarial).

3.2 The Differential Privacy Guarantee

The privacy guarantees we define are based on the notion of indistinguishability outlined

earlier in Chapter 2. Specifically, given some privacy loss parameter ε , consider a pair of

traces t and t ′ and their frequency vectors fff and fff ′. Then for any vector zzz, we want to ensure

that the probabilities Pr[R(fff) = zzz] and Pr[R(fff ′) = zzz] do not differ by more than a factor of

eε . As we demonstrate in our experiments, it is essential to decide for which pairs of t and

t ′ such protection should be achieved. In particular, we show that if indistinguishability is

desired for all possible pairs of traces, too much noise needs to be added and the resulting

accuracy of estimates is very low.

To capture this essential trade-off between privacy and accuracy, we define restricted

indistinguishability which applies to pairs of traces that are “close” to each other. This

technique is motivated by existing work on the theoretical properties of distance-based

indistinguishability [15]. Consider two traces t and t ′, each containing k events. Our

16

definition is based on a threshold τ of the difference between the traces: specifically, the

number of trace positions 1 ≤ j ≤ k such that event t[j] is different from event t ′[j]. We

define a distance between traces d(t, t ′) as the number of such j.

Definition 3.1 (ε-τ-differentially private). Randomizer R is ε-τ-differentially private if

∀t, t ′,zzz, it is true that d(t, t ′)≤ τ implies

Pr[R(fff) = zzz]
Pr[R(fff ′) = zzz]

≤ eε

If a pair’s difference exceeds the threshold τ , the randomization still provides privacy

protection, but with a weakened (i.e., larger) value of ε , scaled by the ratio between the

trace distance and τ . When τ = k, indistinguishability holds for all possible pairs of traces.

By varying the value of τ , we can explore trade-offs between privacy and accuracy. For

real-world deployment of DP solutions in remote software profiling, such trade-offs are

essential. Later we also discuss the practical considerations for choosing the threshold τ .

Note that the above definition also implies a form of indistinguishability for individual

events in a trace: for any v, if the real frequency is f (v), an observer cannot distinguish with

high probability f (v) from f (v)− τ and f (v)+ τ . Though she can still draw conclusions

about v, the strength of these conclusions will be weakened based on the threshold τ . Still,

an adversary can make various inferences from the randomized data: e.g., “with high

probability, event v was more frequent than event v′”. In future work, it would be interesting

to consider other notions of distance and indistinguishability that provide protection against

such inferences.

3.2.1 Example

To illustrate the meaning behind this definition, we use a simple example. Suppose

V = {a,b} and k = 5. There are 25 = 32 possible traces and six unique frequency vectors:

17

(
5 0

)
,
(
4 1

)
, . . . ,

(
0 5

)
where the first element is the frequency of a and the second one

is the frequency of b.

Next, we outline a possible definition of the randomizer; a detailed description will be

provided later in Section 3.3.1. Suppose we choose ε = ln9, as done in prior work [32], and

τ = 1. The randomizer uses a probability p = e
ε

2τ /(1+ e
ε

2τ) to randomize each event in the

trace. In this example, e
ε

2τ = 3 and thus p = 0.75. For this R, when event a is observed, the

following two rules are applied. First, with probability p = 0.75, a’s count is incremented

(and thus, with probability 0.25 this observation of a does not modify the count of a). In

addition, for this observation of a, b’s count is incremented with probability 1− p = 0.25

(and, with probability 0.75, this observation of a does not modify the count for b). Similar

processing would be applied when event b is observed. As a result, the final noisy histogram

could contain anywhere between 0 and 2× k = 10 counts.

Suppose that
(
4 2

)
is produced by R and is observed by a potentially-adversarial entity.

What information can be inferred from this observation, assuming that this entity knows

the details of R (including ε and τ)? The table below summarizes the probabilities for the 6

possible frequency vectors fff , for τ = 1 as well as for τ = 2. Note that each value of fff could

be produced by several different traces t; the shown probabilities for that fff apply for each

such trace.

fff Pr[R(fff) =
(
4 2

)
]

τ = 1 τ = 2(
5 0

)
0.1043 0.1009(

4 1
)

0.1265 0.0848(
3 2

)
0.0746 0.0606(

2 3
)

0.0247 0.0378(
1 4

)
0.0061 0.0214(

0 5
)

0.0013 0.0112

A way to carry out the calculation of these probabilities is the following: if there were x

real occurrences of a, the probability that they contributed exactly y increases to the count

18

for a is
(x

y

)
py(1− p)x−y, since this is a binomial experiment with x independent trials, each

with success probability p. The probabilities in the table are determined by considering all

possible values for x and y, as well as the possible contributions of the k− x events where b

was observed.

When τ = 1, for any traces t and t ′ with d(t, t ′)≤ 1, the corresponding frequency vectors

fff and fff ′ can differ by at most one count—e.g., they could be
(
5 0

)
and

(
4 1

)
. For

any such pair, the ratio of the corresponding probabilities is bounded by eε . In this sense,

differential privacy makes it difficult to distinguish between these possible traces for anyone

who has observed output
(
4 2

)
. However, this does not hold for all possible pairs of inputs.

For example, the ratio between the highest and the lowest probability shown in the table for

τ = 1 is 98.28 (while for τ = 2 this ratio is 9, as discussed below).

When τ = 2, the privacy protection is stronger: for any pair of traces with d(t, t ′)≤ 2,

the ratio of the corresponding probabilities is bounded by eε . There are benefits even for

traces that are “further apart” than τ—e.g., traces with frequency vectors
(
5 0

)
and

(
0 5

)
.

In our example, the largest ratio of probabilities shown in the table for τ = 2 is 9.

3.2.2 Privacy for Presence/Absence in Trace

One important implication of Definition 3.1 is the following. Suppose that for some v

we have ≤ τ occurrences in a trace t. There are many possible traces t ′ in which v does

not occur at all and d(t, t ′)≤ τ . If we employ an ε-τ-DP scheme, an adversary will not be

able to distinguish between t and t ′. In other words, she will not be able to conclude that v

occurred at all, since it will not be possible to distinguish, with high probability, the case

when v occurred f (v) times from the case when v occurred 0 times. Such privacy protection

may be important for infrequently-executed but sensitive software components: e.g., code

19

to change a password. In general, the mere presence/absence of any v with f (v)≤ τ in the

run-time trace is obfuscated, in a probabilistic sense as defined by the ratio bound eε . For

the example from above, when τ = 2, the presence/absence of any a events is obfuscated

when the actual trace has frequencies
(
0 5

)
,
(
1 4

)
, or

(
2 3

)
regardless of what is the

output of the randomizer.

One extreme case of such obfuscation is to zero out the frequency when f (v) ≤ τ .

However, by removing this local information, aggregate information about v is also discarded.

Instead, an ε-τ-DP scheme preserves v’s frequency distribution across the entire population,

in addition to providing strong protection for its presence/absence.

3.3 Differentially-Private Event Frequency Profiling

3.3.1 Efficient Randomization

To design an ε-τ-DP randomizer, we use an approach that is a generalization of existing

techniques for the frequency oracle problem introduced in Chapter 2. Specifically, we define

a probability

p =
e

ε

2τ

1+ e
ε

2τ

(3.1)

For each event vi
j in the trace vi

1, . . . ,v
i
k of user i, the randomizer will increment the count for

vi
j with probability p (and will keep it the same with probability 1− p). In addition, when

vi
j is observed, each v′ ∈ V \{vi

j} is subjected to the following processing: the randomizer

increments the count for v′ with probability 1− p and keeps it the same with probability p.

To achieve such randomization, an instrumentation layer in the software can observe each

run-time occurrence of an event v and immediately generate the corresponding contributions

to the collected profile. It can be shown that the cumulative result of these contributions

indeed satisfies the property from Definition 3.1. The proof is presented as follows:

20

Proof. Given any two traces t and t ′ such that d(t, t ′)≤ τ and their corresponding frequency

vectors fff and fff ′. The ratio between Pr[R(fff) = zzz] and Pr[R(fff ′) = zzz] is bounded from above

by (e
ε

2τ

1+ e
ε

2τ

)(
e

ε

2τ

1+ e
ε

2τ

)|V |−1
τ/(1

1+ e
ε

2τ

)2
(

e
ε

2τ

1+ e
ε

2τ

)|V |−2
τ

= eε

Similarly, this ratio is bounded by e−ε from below. Thus R satisfies ε-τ-DP.

The randomization outlined above has a significant limitation: the cost of applying the

randomizer could be high. For each of the k events in the trace, each element of V has to be

randomized independently. In practical scenarios, k could contain many thousands of events,

and V could also contains many thousands of elements. For example, in our experiments V

contained all methods in the code of a given Android app, and its size was typically several

thousand methods. In fact, several of our experiments with this naive randomizer could

not complete within a reasonable time period. To address this limitation, we redefine the

randomizer as operating over the entire local frequency vector rather than on individual

events in the trace. This allows us to reduce the cost of R from O(k|V |) to O(|V |).

This efficient approach works as follows: during run-time execution, the true frequency

vector fff is constructed but randomization is not applied. After the counts for all k events

are accumulated, the resulting vector is randomized independently for each v to obtain

a new vector R(fff). Consider some v and the number of its occurrences f (v). Each of

those occurrences would have contributed to v’s count in R(fff) with probability p. The

number of such contributions is a random variable with binomial distribution. Recall that

binomial distribution gives the probability of getting exactly m successes in n independent

trials, where each trial succeeds with probability p. The probability mass function is

q(n,m, p) =
(n

m

)
pm(1− p)n−m. Given n = f (v) and p, we can draw a random value m1

21

based on this distribution. We also need to account for contributions to v’s count in R(fff) that

are due to the k− f (v) events in which v was not observed. We can draw another random

value m2 from the binomial distribution q(k− f (v),m,1− p). Then the frequency of v in

R(fff) is set to be m1 +m2.

For efficiency, instead of using the (discrete) binomial distribution, we use the (continu-

ous) normal distribution. It is well known that the binomial distribution can be approximated

using the normal distribution. To draw a random value from the binomial distribution for

a given n and p, we draw a random value from the normal distribution with mean np and

variance np(1− p). The resulting real number is then rounded to the nearest integer in the

range [0,n].

3.3.2 Server-Side Computation of Estimates

Given the reported local randomized frequencies R(fff i) from each user i, the remote

software analysis server first computes a vector ĤHH = ∑i R(fff i). Due to the randomization, the

value Ĥ(v) cannot directly be used as an estimate of the true global frequency F(v)=∑i fi(v).

To compute such an estimate F̂(v), one can consider the expected value of Ĥ(v). This

expected value has two components: (1) each of the F(v) instances of v across all users have

been included in Ĥ(v) with probability p; (2) each of the nk−F(v) instances of other events

have contributed to Ĥ(v) with probability 1− p. Given this observation, one can define the

estimate

F̂(v) =
(e

ε

2τ +1)Ĥ(v)−nk

e
ε

2τ −1
(3.2)

The expected value of F̂(v) is F(v). After this computation, F̂(v) are normalized by the

total number of events nk.

22

After this processing, we have an estimate F̂(v) for each v. However, these estimates

do not satisfy two categories of consistency constraints. First, there is no guarantee that

F̂(v) ≥ 0 and ∑v F̂(v) = 1. Second, it is often the case that the structure of the software

imposes additional constraints on any run-time set of frequencies. One extremely simplified

example is the following: suppose that the body of a method m contains only a single

if statement, inside which there is call to another method m′, and, further, this is the

only call to m′ in the entire program. We can assert that for the true global frequencies,

F(m′)≤ F(m). However, it is not necessarily the case that in the computed estimates we

have F̂(m′)≤ F̂(m). More generally, we would like to consider static code structures that

imply inequality constraints of the form F(v)≤ F(v′) for some pairs of events v and v′, and

to make the final reported estimates consistent with such constraints. The next subsection

provides details on the particular code properties we consider and on the static program

analysis used to infer them.

We would like to compute estimates that satisfy these two categories of consistency

constraints. Some prior work [97] has also considered the consistency constraint that esti-

mates are non-negative and add up to 1. Unlike this prior work, we also target consistency

constraints derived via static analysis, and employ a novel quadratic programming formula-

tion. Our goal is to minimize the squares of the differences between F̂(v) and (unknown)

estimates x(v) that satisfy the consistency constraints. The specific optimization problem

23

we define has the following form:

min
x(v)∈R

∑v
(
x(v)− F̂(v)

)2

subject to x(v)≥ 0

∑v x(v) = 1

x(v)≤ x(v′)

The last component represents a set of constraints that are based on the relationships

inferred by the static analysis described in the next subsection. This is an instance of a

linearly constrained quadratic optimization problem. A variety of solvers are available for

such problems; our implementation uses the solver available in MATLAB. Let F̄(v) denote

the value for x(v) computed by the solver. This value F̄(v) is reported by the server as the

final estimate of the (normalized) global frequency of event v.

One relevant observation is that such constraints are public knowledge since they can be

extracted from the app code via static analysis. Thus, an adversary could observe the results

of applying a local randomizer to some user’s data, and then utilize similar post-processing

based on quadratic programming to enforce the constraints on these observations. However,

since DP is immune to post-processing [29], the DP guarantee still holds for the resulting

estimates.

3.3.3 Static Analysis of Call Frequencies

Frequency vectors have a certain structure that imposes constraints on the relationships

between vector elements. Below we illustrate such constraints for the frequency of method

calls in Android apps. However, similar machinery could be easily designed for other

use cases—for example, profiling of function calls in C programs and method calls in

24

Java/C++/C# programs, or general node/edge profiling in control-flow graphs [7]. The

constraints are of the form f (m)≤ f (m′) where m and m′ are methods in the app code.

A method m in an Android app could be called in two manners. Inside the app code,

there could be a call site that invokes m. A second possibility is that m is invoked by

the Android platform code. This is the case, for example, for methods that provide event

handlers for GUI events (e.g., onClick callbacks for click events) or for window lifecycle

events (e.g., onCreate callbacks for window creation events). As described below, in some

cases constraints can be inferred only for methods that cannot be invoked by unknown code

from the Android platform. We ensure this by only considering methods that do not override,

directly or transitively, any method declared in an Android class or interface. Note that

similar considerations would apply in general for object-oriented languages such as Java,

C++, and C#, where application methods override library methods, and thus unknown library

code invokes application methods. Callbacks could also occur in C code: a typical example

is the qsort library function, which takes as input a function pointer to a comparator

function, and therefore static constraints on the number of comparator invocations cannot be

established.

Algorithm 3.1 describes at a high level our static analysis for inferring that the call

frequency of a method is always not greater than the call frequency of another method. At

line 3, if cs is a virtual call site, we determine all possible target methods by considering the

class hierarchy of the app code and the Android platform code. If m′ is the only possible

target, we need to determine that m′ will be executed at least once. This is done via dominator

analysis of the control-flow graph (CFG) of the caller m. If the call site dominates all exit

nodes of the CFG (i.e., all return and uncaught throw statements), it is guaranteed that the

execution of m triggered at least one invocation of m′.

25

Algorithm 3.1: Find f (m)≤ f (m′)

1 foreach m ∈ V do
2 foreach call site cs in m do
3 foreach target m′ of cs do
4 if m′ is the only target of cs and cs dominates the exits of m then
5 Record f (m)≤ f (m′)

6 if m′ does not override any framework method and there are no other
calls to m′ in app and cs is not in loops then

7 Record f (m′)≤ f (m)

A second case implying an inequality constraint is as follows (lines 6–7). Suppose m′ is

one of several possible target methods at a call site, and this is the only call site in the entire

app that invokes m′. Further, suppose that m′ cannot be called from the Android platform

code, as discussed earlier. Then any invocation of m′ must occur as part of an invocation of

m. If, in addition, we can establish that m′ is not located inside any loops in the CFG of m,

this is enough to conclude that f (m′)≤ f (m).

To implement this static analysis for Android apps, we use the Soot analysis toolkit [86]

to create an intermediate representation of the app’s bytecode. For each app method we

consider its CFG and the call sites inside it. We record all call sites and their corresponding

dispatch targets utilizing class hierarchy analysis. To determine whether a call site dominates

the exits of a method m, we perform reachability analysis in m’s CFG, starting from the entry

node and stopping the traversal at the call site. At the end of the traversal, we determine

whether any of m’s exits is reached. To decide whether a call site is in loops, we find all

natural loops in the CFG using depth-first search to identify back edges.

26

App Stmts |V | ≤ Pairs Time (s)

barometer 660776 2237 2053 20.23
bible 832654 5340 3819 30.47
dpm 1505454 1362 1127 55.05

drumpads 979900 1903 1672 16.10
equibase 671692 1975 1720 28.64

localtv 1128876 3055 3178 41.53
loctracker 646698 837 540 27.85

mitula 783383 7172 7856 36.78
moonphases 478113 716 584 20.12

parking 482388 1649 1342 21.01
parrot 629429 7433 8000 48.43

post 832654 5340 3819 30.06
quicknews 832654 5340 3819 30.50
speedlogic 308102 265 239 14.27

vidanta 779294 9242 6824 33.37

Table 3.1: Benchmarks.

3.4 Evaluation

3.4.1 Data Collection

To empirically evaluate the proposed techniques, we conducted method frequency pro-

filing for Android apps. The events in this case are method calls. We used 15 Android

applications that have been used in other studies [103]. We then applied the Soot analysis

toolkit [86] to determine the set V of methods in each app. Table 3.1 describes the character-

istics of these benchmarks. Column “Stmts” lists the numbers of statements in Soot’s Jimple

IR. The size of V for each app is shown in column “|V |”. We excluded several third-party

libraries from this count (e.g., butterknife and okhttp).

Next, we utilized the Monkey tool for random GUI testing [40] to send GUI events to

the apps in order to simulate user interactions. For each benchmark we simulated 1000

27

independent executions by running Monkey with 1000 different random seeds for the GUI

event sequence generation. Before each execution, we created a fresh Android emulator

to avoid unintended configurations from previous runs. We recorded every method call

during each execution, using instrumentation at the entry of the corresponding method,

until 5×|V | method invocations were observed. As a result, we obtained 1000 traces each

of which contained k = 5× |V | method call events. From these traces, local frequency

vectors fff i for 1 ≤ i ≤ 1000 were constructed for each app. All frequency vectors, as

well as the code for static analysis, randomization and post-processing, are available at

https://presto-osu.github.io/cc20.

3.4.2 Implementation
3.4.2.1 Static Analysis

Our implementation of the static analysis of inequality constraints for method frequencies

was outlined in Section 3.3.3. Column “≤ Pairs” in Table 3.1 shows the number of pairs

(m,m′) such that f (m)≤ f (m′) was inferred by this analysis. The running time of the static

analysis is listed in column “Time (s)”, for a machine with Xeon E5 2.2GHz and 64GB

RAM. The cost of the static analysis is 3.93 seconds per 100K Jimple statements, on average

across all apps. This cost is negligible for all practical purposes, since it will be incurred

once by the software analysis server.

3.4.2.2 Client Side

Recall from Section 3.3.1 that we use normal distribution to approximate binomial

distribution, in order to achieve efficient randomization. We utilize Java’s Random class to

draw random values with normal distribution. We have observed that this implementation

yields an accurate approximation of a binomial distribution. Since Java is one of the

28

https://presto-osu.github.io/cc20

officially supported languages for Android, it is trivial to adopt this implementation of

the randomizer to existing apps. For convenience of experimentation, all randomization

in our experiments is performed under an offline setting—that is, each frequency vector

is incrementally collected during app execution, but the resulting fff i is then randomized

separately from this execution. This enables us to run multiple trials for each experiment, in

order to study the reported metrics under many instances of the random values drawn by

local randomizers on the same input fff i frequency vectors.

3.4.2.3 Server Side

After receiving the randomized vectors from the n clients, the server first generates an

aggregated vector F̂FF consisting of the estimates of frequencies after post-processing, as

discussed in Section 3.3.2. Then, for the quadratic optimization problem, it invokes the

quadratic programming solver in MATLAB’s Optimization Toolbox [62]. The cost for

solving the optimization problem depends on |V | and the number of inequality constraints.

For example, in our experiments, it takes about 30 seconds for the vidanta app, which has

the largest |V | and the third largest number of constraints across all apps. The solver rarely

runs for more than 5 seconds for smaller apps such as barometer.

3.4.3 Accuracy of Estimates

We evaluate the proposed techniques by varying the threshold τ for the difference

between two traces and the privacy loss parameter ε . In particular, we consider ε ∈

{ln9, ln49} and τ ∈ {100,101,102,k}. The values of ε are the same as those used in prior

work [32].

All ground-truth frequencies F(v) are normalized by nk so that ∑v F(v) = 1. Recall that

the estimates F̄(v) produced by the quadratic programming optimization also have a sum

29

4210
log10

0

1

2

RE

barometer

4210
log10

0

1

2

RE

bible

4210
log10

0

1

2

RE

dpm

4210
log10

0

1

2

RE

drumpads

4210
log10

0

1

2

RE

equibase

4210
log10

0

1

2

RE

localtv

4210
log10

0

1

2

RE

loctracker

5210
log10

0

1

2

RE

mitula

4210
log10

0

1

2

RE

moonphases

4210
log10

0

1

2

RE

parking

5210
log10

0

1

2

RE

parrot

4210
log10

0

1

2

RE

post

4210
log10

0

1

2

RE

quicknews

3210
log10

0

1

2

RE

speedlogic

5210
log10

0

1

2

RE

vidanta

= ln(9) = ln(49)

Figure 3.1: Relative error of estimates.

of 1. For each app, we run 100 independent experiments and report the mean under each

combination of τ and ε . In all experiments, the resulting standard deviations are typically

negligible and thus are not presented.

We use relative error (RE) as a metric to evaluate the accuracy of the estimates. This

metric measures the overall difference between the estimated frequencies and the actual

frequencies. More specifically, given a set D of methods, for each v ∈D we compute the

estimated and ground-truth frequency, calculate and sum their differences, and normalize by

the sum by the ground-truth total frequency:

RE =
∑v∈D |F(v)− F̄(v)|

∑v∈DF(v)
(3.3)

30

In the case when D = V (i.e., the metric is computed for the entire set of methods), the

denominator is 1. Later we discuss additional results where D ⊂ V . Smaller values for RE

means higher accuracy.

Figure 3.1 shows RE values of each app. Recall from Chapter 2 that higher values of ε

indicate weaker privacy guarantees. Consider, for example, the speedlogic app. For each

value of τ , we can observe that ε = ln49 yields less RE compared to ε = ln9, and hence

provides better accuracy. For instance, when τ = 1, the relative error REln9 = 0.067 is

nearly twice as large as REln49 = 0.036. We also tested other values for ε and had similar

observations. This conclusion also holds for the other apps, as shown in Figure 3.1.

Next, consider the effects of choosing τ . From Figure 3.1, one can observe that higher

values of τ generate less accurate estimates for all apps as they produce more RE. Intuitively,

the randomizer needs to introduce more noise (and thus more error) when τ grows in order to

“hide” the τ different events between two traces. When τ = k, which provides the strongest

privacy protection that guarantees the indistinguishability of any pair of traces, RE reaches

its worst-case value of 2. To further investigate the cause of the inaccuracy, for each app,

we examined the difference between the ground-truth frequency FFF and its estimate F̄FF per

method. We observed that (1) a small number of “hot” methods account for the majority

of event occurrences, (2) the frequency estimates for these methods are significantly more

accurate than the accuracy presented in Figure 3.1, and (3) the overall RE values are large

because of the errors contributed by the large number of infrequently-executed methods.

To illustrate these observations, consider again the speedlogic app for ε = ln9. Figure 3.2

shows the values of FFF and F̄FF , as well as F̂FF which will be discussed shortly, for the 20 most

frequently-executed methods in this app. A small number of methods contribute the majority

of events in the traces. For example, about 20% of the method calls are to a callback method

31

0 10 20
Method

0.0

0.2

Fr
eq

ue
nc

y

= 1

0 10 20
Method

0.0

0.2

Fr
eq

ue
nc

y

= 10

0 10 20
Method

0.0

0.2

Fr
eq

ue
nc

y

= 100

0 10 20
Method

0.0

0.2

Fr
eq

ue
nc

y

= k

F(v) F(v) F(v)

Figure 3.2: Ground-truth FFF and estimates F̄FF and F̂FF of 20 most frequently-executed methods
in the speedlogic app with ε = ln9.

that is invoked whenever there is new data from the accelerometer sensor. For these hot

methods, the estimation errors are small when τ ≤ 100. When τ grows to k, the estimates

are not useful since the noise introduced by randomization overwhelms the actual frequency.

Another observation we made was that the infrequently-executed methods usually have

significantly less-accurate estimates, and since the number of such methods is very large,

their accumulated error is an essential source of RE.

3.4.4 Estimates for Hot Methods

To quantify the observations described above, we compute RE for hot methods only.

Following prior work [107], the set of hot methods is defined based on a threshold 0≤ `≤ 1.

Given a frequency vector fff , the set of hot methods in fff is defined by hot(fff , `) = {v | f (v)≥

`×maxv f (v)}. That is, hot methods are ones with frequencies close to the frequency of the

hottest method [107]. Next, we follow the procedure in Section 3.4.3 to compute RE for

hot methods, with D = hot(fff , `) in Equation 3.3. Besides ε and τ , we also alter the limit `.

Figure 3.3 shows RE values when ε = ln9. We omit ε = ln49 since its effects are similar

to the ones outlined in Figure 3.1. In the experiments, we use ` ∈ {0.25,0.50,0.75} and

observe similar results, with the accuracy increasing when ` increases. Thus, we only show

32

4210
log10

0

1

2

RE

barometer

4210
log10

0

1

2

RE

bible

4210
log10

0

1

2

RE

dpm

4210
log10

0

1

2

RE

drumpads

4210
log10

0

1

2

RE

equibase

4210
log10

0

1

2

RE

localtv

4210
log10

0

1

2

RE

loctracker

5210
log10

0

1

2

RE

mitula

4210
log10

0

1

2

RE

moonphases

4210
log10

0

1

2

RE

parking

5210
log10

0

1

2

RE

parrot

4210
log10

0

1

2

RE

post

4210
log10

0

1

2

RE

quicknews

3210
log10

0

1

2

RE

speedlogic

5210
log10

0

1

2

RE

vidanta

Full Domain Hot Methods

Figure 3.3: Comparison of RE for all methods (i.e., the full domain V) and for hot methods
with `= 0.25 and ε = ln9.

the metrics for `= 0.25. The corresponding RE values from Figure 3.1 are also included in

the figure for comparison. We can see that the randomization generates much less RE for

hot methods, and thus the frequency of such methods can be estimated with high accuracy,

especially with 10≤ τ ≤ 100. As discussed later in Section 3.4.5, even such relatively small

values of τ provide significant privacy protections for more than 95% app methods in our

experiments; in particular, they allow “plausible deniability” about the presence/absence of

such methods in a local trace.

Instead of estimating the frequencies of hot methods, one could ask a simpler question:

what is the set of hot methods? Such identification of hot methods can be useful, for example,

to focus the efforts for manual or automated performance optimization. To measure the

33

quality of the DP estimates for this question, we use the hot method coverage (HMC) metric

defined by others [107]:

HMC(`) =
|hot(FFF , `)∩hot(F̄FF , `)|

|hot(FFF , `)|
(3.4)

Intuitively, higher values of HMC indicate that hot methods remain hot even after DP

processing is applied.

Figure 3.4 shows the average HMC across 100 independent repetitions of the same

experiment for ε = ln9 and ε = ln49, with different values of τ . For smaller values of τ ,

the set of hot methods is identified very accurately. For example, when τ = 1, perfect hot

method coverage is observed for all apps (i.e., HMC = 1). Most apps (13 out of 15) have

high HMC (≥ 0.9) when τ grows to 10. This suggests that reasonable accuracy can be

achieved with proper values of τ .

3.4.5 Presence/Absence of Infrequent Methods

As discussed in Section 3.2.2, Definition 3.1 implies privacy protection of the absence/p-

resence of methods with local frequencies f (v) ≤ τ . In other words, from the reported

randomized frequencies it is not possible to decide, with high probability, whether such a

method was executed at all. To explore the extent of this protection, we collect the number of

methods satisfying this property for each of the 1000 traces for an app. The detailed results

are not shown here, but can be summarized as follows. More than 95% of the methods

in V (averaged across all apps) have such protection when τ ≥ 10, and around 87% of

methods are protected even when τ = 1. Such protection could be especially important

for infrequently-executed methods that implement sensitive functionality. One example is

a method in the mitula app for changing the user’s password. Such a method will not be

executed frequently in any trace, yet its actions are highly sensitive and may be used for

34

4210
log10

0

1

HM
C

barometer

4210
log10

0

1

HM
C

bible

4210
log10

0

1

HM
C

dpm

4210
log10

0

1

HM
C

drumpads

4210
log10

0

1

HM
C

equibase

4210
log10

0

1

HM
C

localtv

4210
log10

0

1

HM
C

loctracker

5210
log10

0

1

HM
C

mitula

4210
log10

0

1

HM
C

moonphases

4210
log10

0

1

HM
C

parking

5210
log10

0

1

HM
C

parrot

4210
log10

0

1

HM
C

post

4210
log10

0

1

HM
C

quicknews

3210
log10

0

1

HM
C

speedlogic

5210
log10

0

1

HM
C

vidanta

= ln(9) = ln(49)

Figure 3.4: HMC for `= 0.25.

other types of analysis, such as user labelling. Overall, our experimental results clearly show

that the approach achieves strong privacy protection for infrequently-executed methods.

These results are consistent with the findings from the previous subsections.

3.4.6 Importance of Consistency Constraints

Recall from Section 3.3.2 that we compute estimates F̄(v) based on domain-specific

consistency constraints. To evaluate the effects of these constraints, we also compute

estimates F̂(v) without the quadratic programming step, as described in Section 3.3.2. For

proper comparison with F̄(v), estimates F̂(v) are then normalized by their sum. Figure 3.5

shows the RE values for the two categories of estimates. For all apps, the enforcement of

consistency constraints significantly improves the accuracy when τ ≤ 10. The RE of F̄FF is

35

4210
log10

1

2

RE

barometer

4210
log10

1

2

RE

bible

4210
log10

1

2

RE

dpm

4210
log10

0

2

RE

drumpads

4210
log10

1

2

RE

equibase

4210
log10

1

2

RE

localtv

4210
log10

1

2

RE

loctracker

5210
log10

1

2

RE

mitula

4210
log10

1

2

RE

moonphases

4210
log10

1

2

RE

parking

5210
log10

1

2

RE

parrot

4210
log10

1

2

RE

post

4210
log10

1

2

RE

quicknews

3210
log10

0

2

RE

speedlogic

5210
log10

1

2

RE

vidanta

F(v) F(v)

Figure 3.5: Full-domain RE of F̄FF and F̂FF with ε = ln9.

2.5× smaller than the RE of F̂FF when τ = 1 and 2.2× smaller for τ = 10, averaged across

all apps. For most apps, there are also accuracy benefits when τ = 100.

We also collect similar measurements for hot methods and find that the application

of quadratic programming provides improvements for both hot-method RE and HMC. To

further illustrate these observations, Figure 3.2 shows FFF , F̄FF , and F̂FF for the 20 most frequent

methods in the speedlogic app. The results indicate reduced accuracy of estimates for hot

methods if the consistency constraints are not incorporated in the analysis. We have observed

similar effects for other apps. Our conclusion is that the extra step of enforcing consistency

constraints is essential for error reduction.

36

3.5 Discussion and Limitations

The experiments demonstrate that there is no “free lunch”: increased privacy comes

with decreased accuracy. However, practical compromises are possible to achieve: for hot

methods, one can obtain accurate estimates with some degree of privacy protection, while

for infrequently-executed methods methods strong privacy guarantees can be provided at the

expense of inaccurate estimates. In many scenarios, the identification and analysis of hot

methods (and, more generally, hot statements, edges, paths, etc.) are of primary importance

and DP solutions can likely be successfully deployed. In all such cases, DP analysis would

have to be tuned to achieve the desired trade-offs, based on the parameterization we propose.

Software developers can conduct pre-deployment testing (e.g., using automated testing

tools) to obtain profiling information and then analyze it using experiments similar to ours,

in order to guide the selection of parameters given some desired privacy guarantees.

Limitations. The proposed approach is designed for event frequency profiling. Other

forms of profiling (e.g., for execution time or memory usage) present different challenges and

are important targets for future work. In addition, although the approach can effectively hide

the presence/absence of infrequent events, it does not perform well for frequency estimation

of such events and thus may be unsuitable for some profiling tasks. Another concern is that

the randomization requires developers to decide the privacy parameters prior to the actual

profiling. Our experimental setup provides a blueprint of how such decisions could be made

before deployment, but additional work is needed to improve the automation of this process.

Last but not least, there are potential optimizations that the proposed approach does not

consider. For example, the communication cost can be reduced by data compression and

dimensionality reduction. We leave these enhancements for future work.

37

3.6 Summary

There is strong interest in privacy-preserving data analysis, driven by legal and societal

demands. We study the foundational problem of software event frequency profiling and

propose a novel tunable approach for achieving differential privacy. Our techniques are

efficient and easy to deploy. Using domain-specific constraints, the approach significantly

improves the quality of the frequency estimates. Our experiments indicate that, despite the

tension between accuracy and privacy, practical trade-offs can be achieved. Future work on

other categories of profiling techniques should continue to grow the body of work in the

increasingly-important area of privacy-preserving remote software analysis.

38

Chapter 4: Differentially-Private Frequency Profiling Under Linear

Constraints

In Chapter 3, we propose a randomized-response-based approach to add noise to run-

time event traces to ensure their indistinguishability, and optimize the approach by applying

efficient randomization on the total trace frequencies. This solution provides tunable trade-

offs between privacy and accuracy. In this chapter, we discuss a different setting of software

frequency profiling where the order of events is typically ignored and event frequencies are

of developers’ core interest. Specifically, we propose an approach for differentially-private

collection of frequency vectors from software executions. Frequency information is reported

with the addition of random noise drawn from the Laplace distribution.

A key observation behind the design of our scheme is that event frequencies are closely

correlated due to the static code structure. Differential privacy protections must account for

such relationships; otherwise, a seemingly-strong privacy guarantee is actually weaker than

it appears. Motivated by this observation, we propose a novel and general differentially-

private profiling scheme when correlations between frequencies can be expressed through

linear inequalities. Unlike the approach in Chapter 3, which uses simple constraints only in

post-processing, here we consider general linear constraints in defining the privacy guarantee.

Using a linear programming (LP) formulation, we show how to determine the magnitude

of random noise that should be added to achieve meaningful privacy protections under

39

such linear constraints. Next, we develop an efficient instance of this general machinery

for an important subclass of constraints. Instead of LP, our solution uses a reachability

analysis of a constraint graph. As an exemplar, we employ this approach to implement

differentially-private method frequency profiling for Android apps.

Any differentially-private scheme has to balance two competing aspects: privacy and

accuracy. Through an experimental study to characterize these trade-offs, we (1) show

that our proposed randomization achieves much higher accuracy compared to related prior

work, (2) demonstrate that high accuracy and high privacy protection can be achieved

simultaneously, and (3) highlight the importance of linear constraints in the design of the

randomization. These promising results provide evidence that our approach is a good

candidate for privacy-preserving frequency profiling of deployed software.

4.1 Problem and Motivation

4.1.1 Frequency Profiling

Recall from Chapter 3 that we consider a software system that is deployed on the remote

machines of n users. A set of events V is defined by software developers before software

deployment. The execution of the software instance at each user i ∈ {1, . . . ,n} triggers at

run time a trace of k event instances that are recorded by the analysis infrastructure and

sent to the remote server for further analysis. Without loss of generality, assume that k is

decided by developers ahead of time and is publicly known. Thus, we consider “one-shot”

data collection that uses a window of observation of k event instances, and does not collect

any other data. Generalizing to a scenario with continuous and unrestricted data collection

and reporting requires more advanced privacy-preserving techniques [29, Section 12.3] and

is left for future work.

40

Each of the k event instances is an instance of some event v ∈ V . For example, v could

be “the run-time execution entered method m” and there could be several instances of v

among the k event instances. We will use fi(v) to denote the number of instances of event v

in the run-time trace of user i. For convenience, we will shorten “event instance” to “event”

when this does not create any ambiguities. The local information for user i can be thought

of as a vector of local frequencies fff i ∈ N|V |, with each entry corresponding to some event

v. The profiling problem we consider is to obtain estimates of population-wide frequency

information—that is, to estimate F(v) = ∑i fi(v) for every v∈ V , or equivalently, to estimate

the vector FFF = ∑i fff i.

As a concrete example, consider analytics frameworks for Android apps. In such apps,

each run-time event is logged by calling certain APIs with an identifier of the event. For

example, in Firebase Analytics [39], which appears in close to half of popular apps [33],

method logEvent is used for recording events. This method takes as parameters a string

and a map that uniquely identifies the event. When the method is invoked, the underlying

analysis infrastructure issues an HTTP request to record the logged event to the remote

analytics server.

4.1.2 Privacy-Preserving Profiling

There is a large body of work on various forms of profiling, starting from basic informa-

tion such as the frequencies of nodes and edges in control-flow models [7] and extending

to much more sophisticated run-time properties. When a user releases such information to

other parties—e.g., software developers or analysis infrastructure companies—there is a

fundamental question about privacy. The profiling information can provide details about

execution of sensitive software functionality (e.g., how often the user changes her login

41

credentials). The collected data can be used for characterizing user habits and interests,

which can then be combined with other sources of information for the purposes of behavior

profiling. There is a growing trend of aggregating data from various sources to create rich

knowledge about users—e.g., by cross-linking records from various data providers and by

applying sophisticated data mining. Data anonymization is not sufficient to address this

problem [67, 68]. The user has no control over unethical business practices (e.g., selling

the data to third parties) or unexpected uses of the data due to silent changes in end-user

privacy agreements, subpoenas by law enforcement, or security breaches in which user data

is stolen and then shared with malicious actors.

As multiple sources of data about a person can be combined in ways that cannot be

anticipated at the time when a profiling technique is deployed, it becomes increasingly

important to deploy profiling techniques that are designed with theoretical guarantees

against unknown privacy threats. Differential privacy is such a theoretical framework. A key

property of this approach is that it ensures privacy protections in the extreme setting where

an adversarial entity has access to large amounts of auxiliary data about the individual, and

employs such data in ways that are unknown to the designers of the differentially-private

data gathering. These strong properties make differential privacy an appealing target for the

designers of privacy-preserving software analyses.

Next, we outline the differentially-private version of our frequency profiling analysis.

Without privacy, a user reports to the remote analysis server her local frequency information,

encoded as a vector of local frequencies fff i. The server then simply computes and reports

the global frequency vector FFF = ∑i fff i. With a differentially-private schema, the local

frequencies are modified with the help of some randomization mechanism R. We consider

randomizers R : N|V |→ R|V |, where the frequency fi(v) ∈ N of event v ∈ V for user i is

42

transformed into a “noisy” frequency R(fi(v)) ∈ R. As discussed shortly, the noise being

added is drawn from a non-discrete probability distribution, which is why the randomized

data is not in the domain of integers.

The randomizer R is the same for all software users and is designed and embedded in

the software implementation before the software is deployed. It is important to note that

differential privacy assumes that a privacy adversary knows the exact design of R. For

example, since the randomization is implemented in the code of the software that resides

on a user’s machine, reverse engineering of this code could reveal the exact algorithm

for R. Nevertheless, the randomizer should still provide the differential privacy guarantee

(described shortly) even in this adversarial setting. Intuitively, by observing R(fff i) an external

entity should not be able to produce high-confidence estimates of fff i.

Each user i reports R(fff i) to the analysis server. The server computes a vector F̂FF ∈ R|V |

which estimates the vector of true global frequencies FFF . The computation of F̂FF depends

on the randomization mechanism R. For example, the approach in Chapter 3 requires a

post-processing step to account for the randomization of R to calculate F̂FF . In the approach

we propose in this chapter, we can simply compute F̂FF = ∑i R(fff i).

4.2 Feasible Frequency Vectors Under Linear Constraints

In many program profiling problems, there are constraints on the run-time frequencies

that are imposed by the static structure of the code. For example, consider the following

code:

void m1() { if (...) { m3(); m3(); } }
void m2() { if (...) m3(); }

Further, assume that there are no other calls to m3 in the entire program. From this code

structure, we can conclude that 2 f (m1)+ f (m2)≥ f (m3) for any run-time execution of this

43

code. Here f (m) denotes the frequency of method m in the method-execution-frequency

vector fff .

Linear Constraints on Run-time Frequencies. In this chapter we focus on a class of

commonly-occurring constraints that can be expressed as linear inequalities over the ele-

ments of the frequency vector fff . These inequalities are of the form AAA fff ≥ bbb, where AAAm×|V | is

an integer matrix encoding m linear functions of |V | variables and bbbm×1 is an integer vector.

Here we assume that fff is an integer vector of dimensionality |V |×1. For the example from

above, AAA =
(
2 1 −1

)
and bbb =

(
0
)
.

Feasible Frequency Vectors. For our problem statement, not all frequency vectors are

feasible at run time. Infeasible frequency vectors do not represent any run-time user behavior

and will never be observed during software execution. For the code example shown above,

there is no execution that can produce a vector fff with 2 f (m1)+ f (m2)< f (m3). We define

this property as follows:

Definition 4.1 (Feasibility). A frequency vector fff is feasible if fff ≥ 000, AAA fff ≥ bbb, and ‖ fff‖1 = k.

Here ‖ fff‖1 denotes the L1 norm of a vector fff , i.e., ∑v∈V | f (v)|. As discussed later, the

design of a differentially-private scheme must consider this notion of feasibility, and in

particular the linear constraints that feasible vectors satisfy. If the designers of the analysis

do not account for such constraints, the scheme is fundamentally flawed.

4.3 The Differential Privacy Guarantee

Informally, the differential privacy guarantee is of the following form: for any possible

output of a differentially-private data analysis, the probability this output was produced

44

from real data a and the probability this output was produced from some “neighbor” data

b are close to each other. Thus, just by observing the analysis output, an adversary cannot

distinguish with high probability the case when the input was a from the case when the input

was some neighbor b of a. This probabilistic indistinguishability guarantee is the essence of

differential privacy.

4.3.1 Indistinguishability

In the context of our problem, this property applies to any two neighbor feasible fre-

quency vectors fff and fff ′ that could represent the local data of one software user. The

“neighbor” relation will be defined shortly. Following the standard approach from the

differential privacy literature [29], we define ε-indistinguishability as follows:

Definition 4.2 (ε-indistinguishability). Randomizer R achieves ε-indistinguishability if for

any two neighboring feasible frequency vectors fff , fff ′ ∈ N|V | and for any set O ⊆ R|V | of

possible outputs of the randomizer, the following holds:

Pr[R(fff) ∈O]
Pr[R(fff ′) ∈O]

≤ eε

This definition should be interpreted as follows: for any randomizer output, the likelihood

that the real data was fff is close to the likelihood that the real data was fff ′. Thus, fff and fff ′

are indistinguishable in a probabilistic sense from the point of view of an adversary who

observes the randomizer output. Parameter ε defines the strength of this protection. Smaller

values of ε provide stronger protection but necessitate more “noisy” randomization which

leads to less accurate population-wide estimates. In practical applications, values of ε such

as ln(9) have been used [32].

45

4.3.2 Defining Neighbors

Recall that in our problem statement, for any feasible frequency vector fff we have

‖ fff‖1 = k. The L1 distance between two such frequency vectors fff and fff ′ is
∥∥ fff − fff ′

∥∥
1 and

this distance is in the set {0,2,4, . . . ,2k}. To normalize, we define the distance between two

feasible frequency vectors as

d(fff , fff ′) =
1
2

∥∥ fff − fff ′
∥∥

1 =
1
2 ∑

v∈V
| f (v)− f ′(v)|

We can then define the neighbors of a vector fff as

Neighbors(fff) = { fff ′ | d(fff , fff ′)≤ τ}

Here threshold τ is used to define the extent of this neighborhood. Note the different role

of parameters τ and ε . Using τ , we define for which pairs of vectors we aim to ensure

indistinguishability. The next section discusses the implications of this choice. Once the

notion of neighbors is defined, ε determines the desired strength of the indistinguishability

between any such pair of neighbors.

4.3.3 Randomization Based on Laplace Mechanism

We next show how to design a randomizer that achieves ε-indistinguishability. Our

approach is a direct application of a classic technique from differential privacy: it draws

random noise from the Laplace distribution and adds it to the “raw” frequency vector. The

Laplace probability distribution Lap(b), parameterized by a scale parameter b > 0 and

centered at 0, is defined by the probability density function p(y|b) = 1
2b exp(− |y|b). This is a

symmetric version of the exponential distribution. We define the following randomizer:

R(fff) = fff +

 Y1
...

Y|V |

46

where each Yj ∼ Lap(b) is drawn independently from the Laplace distribution with some

scale parameter b. As a direct corollary from standard results in differential privacy, this R

achieves ε-indistinguishability as long as b≥ 2τ

ε
. Below we provide an outline of the proof

for completeness.

Proof. Consider two feasible vectors fff and fff ′ such that d(fff , fff ′)≤ τ . Let g : R|V |→ [0,1]

be the probability density function (PDF) of R(fff) and g′ : R|V |→ [0,1] be the PDF for R(fff ′).

Let p : R→ [0,1] denote the PDF for Lap(b). Given some zzz =
(
z1 . . . z|V |

)
∈O ⊆ R|V |,

we have g(zzz) = ∏ j p(z j− f j) where f j is the value of the j-th element in fff . Similarly,

g′(zzz) = ∏ j p(z j− f ′j). The ratio of g(zzz) and g′(zzz) is a product of ratios of p(z j− f j) and

p(z j− f ′j):

g(zzz)
g′(zzz)

= ∏
j

p(z j− f j)

p(z j− f ′j)

= ∏
j

(
e−
|z j− f j |

b

/
e−
|z j− f ′j |

b

)
≤∏

j
e
| f j− f ′j |

b

= e
‖ f− f ′‖1

b

≤ e
2τ

b

≤ eε

where the first inequality follows from the triangle inequality, and the second follows from

the constraint d(fff , fff ′) ≤ τ which implies
∥∥ fff − fff ′

∥∥
1 ≤ 2τ . The last inequality is due to

47

b≥ 2τ

ε
. Then we can conclude

Pr[R(fff) ∈O]
Pr[R(fff ′) ∈O]

=

∫
O g(zzz)dzzz∫
O g′(zzz)dzzz

≤max
zzz∈O

g(zzz)
g′(zzz)

≤ eε

Thus R achieves ε-indistinguishability.

4.3.4 Randomization Based on Randomized Response

Several differentially-private data analyses (e.g., [9, 32, 96]) have employed as a basic

building block in their construction the technique of randomized response [99]. This

techniques was initially proposed in social sciences to survey information that could be

sensitive. The essence of randomized response is that a user’s data is represented as a binary

vector, with each bit corresponding to an event of interest, and then bits are inverted with

some probability. The resulting randomized vectors from many users are aggregated and

calibrated to obtain population-wide estimates.

This machinery has been employed in Chapter 3 to gather event frequency information

from software executions. Each run-time event is considered as a binary vector of size |V |

with a single bit equal to 1, corresponding to the observed event. Each such vector is then

randomized. The privacy guarantee for this approach ensures indistinguishability between

the real event trace and all other traces that differ from it by at most τ events.

Such an approach may be suitable for scenarios where event-by-event reports are sent to

the server—for example, for current mobile app analytics frameworks where the randomiza-

tion has to be conducted immediately after an event is triggered. However, it is unnecessarily

“noisy” for cases when only the frequency vector of the trace needs to be shared. Rather than

randomizing each event (via randomized response) and then accumulating the results in a

48

1 „class SignInActivity {
2 „ User user;
3 „ boolean validPasswords(String p1, String p2) {
4 „ Analytics.logEvent("SignInActivity.validPasswords"); // e1
5 „ return !Utils.isEmpty(p1) && isPasswordValid(p1)
6 „ && !Utils.isEmpty(p2) && p1.equals(p2);
7 „ }
8 „ void registration() {
9 ,, Analytics.logEvent("SignInActivity.registration"); // e2

10 „ EditText v1 = ...;
11 „ EditText v2 = ...;
12 „ String password = v1.getText();
13 „ String repeatPassword = v2.getText();
14 „ if (validPasswords(password , repeatPassword)) {
15 „ user.setPassword(password);
16 „ }
17 „ }
18 „}
19 „class User {
20 „ String password;
21 „ void setPassword(String password) {
22 „ Analytics.logEvent("User.setPassword"); // e3
23 „ this.password = password;
24 „ }
25 „}

Figure 4.1: Code derived from the mitula app.

frequency vector, we propose to accumulate the actual frequencies first and then randomize

the resulting vector using the Laplace mechanism. Theoretically, the second approach prov-

ably achieves better accuracy by roughly a factor of
√

k; this observation is a consequence

of well-known results in differential privacy [29, Section 12.1]. Our experimental results

in Section 4.6 empirically confirm that significantly higher accuracy is indeed observed in

practice.

49

Example 4.1. As a concrete example, consider the collection the frequencies of method

invocations in mobile apps. Figure 4.1 shows a snippet of code derived from the mitula

app, which has more than 1 million downloads according to Google Play store [64]. Class

SignInActivity allows the user to register a new account or log in using an existing

account. After signing in to the app, the user’s password, along with other critical information

such as email address and authentication token, is stored in an instance of the User class. As

introduced in Section 4.1.1, method invocations can be recorded by calling APIs in analytics

frameworks. Here, we use Firebase Analytics [39] for demonstration. As highlighted in

the figure, the app can be instrumented by inserting a call to the logEvent API at the

entry of every method with the method’s signature being a parameter, so that each method

call at run time is recorded and sent to the analytics server. For simplicity, we drop other

parameters of logEvent in this example. At run time, the frequency of e1 is guaranteed

to be greater than or equal to the frequency of e2, since each invocation of registration

involves a call to validPasswords in class SignInActivity. There are no additional

constraints for the three events as there are other call sites in the app of which the target is

SignInActivity.validPasswords or User.setPassword.

Using the randomized-response-based approach, each call to logEvent is intercepted

and the corresponding method-invocation event is perturbed. Figure 4.2 illustrates this

process. It includes event traces from 100 simulated app users, derived from the actual

data used in our experimental evaluation presented later in Section 4.6. Each trace records

k = 3 run-time occurrences of the three events V = {e1,e2,e3} in Figure 4.1. The actual

aggregated frequency vector in this concrete example is FFF =
(
105 88 107

)
. We set ε = 1

and τ = 1 (number of differing events in neighbor traces), which defines the functionality

of randomizer R. At the server, the randomization results for each event at each user are

50

∑
User
#1

e1

R(e1)

e3

R(e3)

User
#2

e2

R(e2)

e1

R(e1)

e3

R(e3)

User
#100

e1

R(e1)

e1

R(e1)

e1

R(e1)

...

Randomized Response

∑

User
#1

e3e3

User
#2

User
#100Calibration

...

Laplace Mechanism

e3

R(e3)

e1

R(f1)

e3e1e2

R(f2)

e1e1e1

R(f100)

Post-
Processing

Calibration

f2 = (1 1 1)

f100 = (3 0 0)

f1 = (1 0 2)

Figure 4.2: Comparison between randomization based on randomized response and Laplace
mechanism, by simulating 100 users using V = {e1,e2,e3} from Figure 4.1, k = 3, ε = 1,
and τ = 1.

accumulated and post-processed to account for the added random noise. The aggregation

result is then calibrated to produce the final frequency estimates. Details of this calibration

step will be introduced shortly. As shown in the figure, the resulting vector of frequency

estimates is
(
116 98 86

)
.

The randomization based on Laplace mechanism is applied to local frequency vectors

instead of individual events. When an event is triggered at a user i, it is accumulated locally

in a frequency vector fff i. The randomizer R directly adds noise drawn from the Laplace

distribution to fff i, as introduced in Section 4.3.3. To compare with the randomization based

on randomized response, we use the same parameters for R, i.e., ε = 1 and τ = 1. As a

result, the aggregated frequency vector in this concrete example is
(
103 97 100

)
after

calibration. Its distance to the actual frequency vector FFF is 9, much smaller than the distance

for the approach based on randomized response which is 21. Thus, the resulting estimates is

“closer” to the true frequencies. This indicates that, at least for the events and settings in this

51

example, the randomization based on Laplace mechanism produces more accurate analysis

results for frequency profiling. In Section 4.6, we conduct extensive experiments on a set of

apps and show the benefits of the proposed approach.

4.3.5 Calibration of Estimates

One problem of the random frequency perturbation performed by R is that it leads to

inconsistent aggregated frequency vectors. As introduced in Section 4.2, every run-time

frequency vector fff satisfies the feasibility property, i.e., fff ≥ 000, AAA fff ≥ bbb, and ‖ fff‖1 = k. It is

desirable that the aggregated frequency estimate F̂FF = ∑i R(fff i) satisfies the constraints that

would have been satisfied by the true aggregated frequency FFF = ∑i fff i. It is easy to see that

those constraints are F̂FF ≥ 000, AAAF̂FF ≥ nbbb, and
∥∥F̂FF
∥∥

1 = nk. However, in general F̂FF will violate

the constraints. A standard approach to enforce such constraints is to calibrate the estimates

in F̂FF . Following similar techniques from Chapter 3, we compute a calibrated frequency

estimate vector F̄FF ∈R|V | which satisfies F̄FF ≥ 000, AAAF̄FF ≥ nbbb, and
∥∥F̄FF
∥∥

1 = nk and minimizes its

squared Euclidean distance to F̂FF . This calibrated estimate is the final output of the analysis.

4.4 Hiding The Presence or Hotness of Individual Events

One key question for the proposed randomization is how to select the value for τ . The

notion of “protected distance” between frequency vectors ultimately has to be derived from

some desired higher-level privacy properties. In this chapter we consider two examples of

such properties. First, we discuss a scenario where the analysis designer aims to ensure that

the presence of a certain run-time event is hidden from a privacy adversary. More precisely,

for some event v ∈ V that occurred at least once at run time, we would like to ensure that the

adversary cannot distinguish, in the differential privacy sense, the actual run-time behavior

from another possible behavior in which v was not observed at all. Equivalently, for any

52

fff with f (v)> 0, we would like to ensure that there exists at least one feasible fff ′ such that

f ′(v) = 0 and d(fff , fff ′)≤ τ .

A second scenario is where the analysis designer aims to hide from a privacy adversary

the “hotness” of some event, by ensuring indistinguishability with vectors in which this

event is “cold”. In this scenario, an event whose frequency in fff exceeds a certain threshold

is considered frequently-executed (i.e., hot) in fff . Here for any fff in which v is hot, we should

ensure that there exists at least one feasible fff ′ in which v is cold and d(fff , fff ′)≤ τ . We next

discuss the first scenario; the second one is presented later in this section.

We formulate the following problem: given a set U ⊆ V of events whose presence in

the run-time execution needs to be hidden, select the smallest distance threshold τ such that

for any particular v ∈ U , the presence of v is hidden in the sense discussed above. (A more

precise formulation will be presented shortly in Section 4.4.1.) The choice of U depends

on the usage scenario. For example, there may be some sensitive code functionality, e.g.,

changing a password, whose presence at run time should be hidden. Then U will contain

any event related to these parts of the code. As another example, we could select a criterion

of the form “at least h% of events are protected” based on some threshold h. In this chapter,

we explore the second use case, but the underlying techniques are directly applicable to any

other choices for U .

Next we discuss the following key subproblem: given U and some feasible vector fff ,

determine the smallest distance threshold τ such that the presence of any particular v ∈ U in

fff is hidden by the randomization. Section 4.5 describes the general problem: how to select

the value of τ to achieve privacy for the entire approach, over many software users i with

different local vectors fff i.

53

4.4.1 Difficulty of Hiding An Event

Consider any fff with f (v) > 0. The presence of v in fff can be hidden if fff is indistin-

guishable from some neighbor fff ′ with f ′(v) = 0. We define the difficulty of hiding v in fff as

the smallest distance at which such an fff ′ exists:

Dv(fff) = min
fff ′: f ′(v)=0

d(fff , fff ′)

Here both fff and fff ′ must be feasible. If no feasible fff ′ exists such that f ′(v) = 0, it means

that v always occurs at least once in all possible executions. In this case, it is impossible to

provide protection to hide the presence of this v and we have Dv(fff) = ∞.

If we have a randomizer that uses a value of τ ≥ Dv(fff), the presence of v in fff is hidden

by the randomization. To achieve our goal of hiding any particular event from U in a given

fff , this property has to hold for each v ∈ U . In order to find the smallest such τ , we need

to be able to compute Dv(fff) for any given v and fff . In the following subsection, for the

general case of arbitrary linear constraints, we describe this problem as an integer linear

programming problem. We then demonstrate that for the class of constraints of the form

f (v)≥ f (v′), a more efficient alternative is to define a constraint graph and then perform

analysis of this graph.

4.4.2 Computing Difficulty Using Linear Programming

We can compute Dv(fff) for any given fff and v by solving the following optimization

problem: minimize 1
2 ‖xxx− fff‖1 for xxx ∈ N|V |, xxx≥ 000, AAAxxx≥ bbb, ‖xxx‖1 = k, and x(v) = 0. Here xxx

is the unknown variable representing fff ′. All constraints except for the last one ensure that

xxx is a feasible frequency vector. This problem can be transformed into an integer linear

54

programming problem:

min
xxx,sss∈N|V |

111
222

T
sss

subject to xxx≥ 000

AAAxxx≥ bbb

111Txxx = k

x(v) = 0

sss≥ xxx− fff

sss≥ fff − xxx

The optimal value for the objective function gives us the desired value of Dv(fff).

4.4.3 Computing Difficulty Using Constraint Graph Analysis

Next, we focus on the special case of linear constraints of the form f (v)≥ f (v′). Such

constraints can naturally occur when the static structure of the code enforces properties such

as “the only way event v′ could occur is if it is caused by event v”.

4.4.3.1 Linear Constraints

To illustrate such constraints, consider method frequency profiling in a language such as

Java. In this case V contains all methods m in the program code (excluding library/framework

methods). Let f (m) denote the number of times method m was executed at run time. We

borrow the following exemplar static analysis from Chapter 3. First, if a call site in a caller

method m′ has only one possible target m, and this call site dominates the exit of m′, then

the frequency of m′ is no greater than the frequency of m. Second, if there is a single call

site in the program that may invoke a method m, this call site is not in a control-flow-graph

loop, and m does not override any method from standard libraries or relevant frameworks

55

(e.g., the Android framework), the frequency of m′ is greater than or equal to the frequency

of m. For example, consider the following code:

void m1() { m2(); do { m3(); } while (...); }
void m2() { m4(); if (...) m5(); }

Suppose there are no other calls to m5 in the entire program, and m5 does not override

library/framework methods. We can conclude that the following constraints hold: f (m2)≥

f (m1), f (m3)≥ f (m1), f (m4)≥ f (m2), and f (m2)≥ f (m5). For the example in Figure 4.1,

we can conclude that f (e1)≥ f (e2).

4.4.3.2 Constraint Graph Analysis

Each constraint f (v) ≥ f (v′) can be encoded as an edge v→ v′ in a directed graph

G = (V ,E). Given this constraint graph, the computation of difficulty Dv(fff) for any given

v and fff with f (v) > 0 is as follows. Let Rv be the set of nodes reachable from v in G,

including v. In any fff ′ with f ′(v) = 0, all nodes in Rv must have frequency of 0. To compute

Dv(fff) we need to find such an fff ′ that minimizes d(fff , fff ′). A lower bound on d(fff , fff ′) is the

sum of frequencies in fff for the nodes in Rv (since all of them will become 0 in fff ′). If there

exists w /∈ Rv such that w does not have any predecessors in graph, this lower bound is tight.

In this case, to construct fff ′, we can increase the frequency of w by ∑v′∈Rv f (v′), without

affecting any other nodes. Theoretically, such a w does not necessarily exist in general

cyclic graphs. However, in the examples we have seen from real code, there is always a

non-trivial number of events whose frequency is not constrained from above (i.e., they do

not have incoming edges), and therefore this assumption is always satisfied. Based on these

observations, we compute Dv(fff) = ∑v′∈Rv f (v′). While the same result could be achieved

with the more general linear programming formulation presented earlier, this graph analysis

is more efficient and easy to implement.

56

Example 4.2. For the earlier example, E = {m4→ m2,m2→ m1,m2→ m5,m3→ m1}. Further,

suppose that k = 16 and we are given a vector fff =
(
2 3 4 5 2

)
, where the first element

is the frequency of m1, the second one the frequency of m2, etc. Suppose we are interested

in Dm2(fff). Since Rm2 = {m1,m2,m5}, Dm2(fff) = 7 and the corresponding neighbor vector

fff ′ =
(
0 0 4 12 0

)
or fff ′ =

(
0 0 11 5 0

)
. As another example, Dm4(fff) = 12 with

fff ′ =
(
0 0 16 0 0

)
.

4.4.4 Hiding The Hotness of An Event

The approach presented earlier can be adapted to provide a different form of privacy

protection. Suppose we have defined two categories of events: “hot” and “cold”. An event

v is hot in fff if f (v)> η where η is a pre-defined threshold, possibly dependent on k and

|V |. Given a hot event v in some fff , we can ensure that an adversary cannot distinguish this

situation from another possible situation in which v was cold in fff .

Suppose we are given some v and fff with f (v)> η . The hotness of v in fff can be hidden

if fff is indistinguishable from some neighbor fff ′ with f ′(v)≤ η . In this case, the difficulty of

hiding the hotness of v in fff is the smallest distance at which such an fff ′ exists:

Dv(fff) = min
fff ′: f ′(v)≤η

d(fff , fff ′)

Here both fff and fff ′ must be feasible. If no feasible fff ′ with f ′(v) ≤ η exists, this means

that v is always hot in all possible executions. The computation of this difficulty can be

expressed as an integer linear programming problem similar to the one in Section 4.4.2,

except that constraint x(v) = 0 is replaced by x(v)≤ η . For the class of constraints described

in Section 4.4.3, the constraint graph analysis considers all hot nodes v′ reachable from v

and computes Dv(fff) = ∑v′ (f (v′)−η).

57

4.4.5 Importance of Constraints in Randomizer Design

In designing our randomization approach, it is critical to account for the linear constraints

AAA fff ≥ bbb that must be satisfied by any feasible fff . To illustrate this point, suppose that for a

given fff with f (v)> 0, we are interested in hiding the presence of v.

Example 4.3. Consider the example presented earlier: constraints f (m2)≥ f (m1), f (m3)≥

f (m1), f (m4)≥ f (m2), and f (m2)≥ f (m5), k = 16, and fff =
(
2 3 4 5 2

)
. As discussed,

Dm2(fff) = 7. Now suppose that instead of considering fff ′ for which fff ′ ≥ 000, AAA fff ′ ≥ bbb,∥∥ fff ′
∥∥

1 = k, and f ′(v) = 0, the designer of the randomizer ignored the linear constraints (or

was not aware of them) and instead considered fff ′ with fff ′ ≥ 000,
∥∥ fff ′
∥∥

1 = k, and f ′(v) = 0.

It is easy to see that in that case the conclusion would be that the difficulty of hiding m2 is

f (m2) = 3. For example, vector fff ′ =
(
2 0 7 5 2

)
would be considered one legitimate

neighbor, and the conclusion would be that Dm2(fff) = 3.

What are the implications of this outcome? Suppose that U = {m2}; that is, the only

event we want to hide is m2. To achieve this protection for m2, the appropriate selection

is τ = 7. However, if instead we chose τ = 3 because we ignored the linear constraints,

we added insufficient noise because we used Lap(6
ε
) to draw the random noise when

in reality we should have used Lap(14
ε
). Equivalently, the “effective” value of ε was

increased by a factor of 7
3 . Recall from Definition 4.2 that the role of ε is to bound the

ratio of probabilities between possible neighbors, which determines the strength of the

indistinguishability guarantee. In effect, this ratio is now increased by a factor of e
7
3 ≈ 10.3.

For example, if the designer of the randomizer was intending for the ratio of “probability

that the real data was fff ” and “probability that the real data was fff ′” to be bounded by 3, in

reality it is only bounded by 31. This could make one of these alternatives much more likely

than the other one, which significantly weakens the privacy guarantee of indistinguishability.

58

In the general case, if the linear constraints are ignored, the effective value of ε is

increased by a factor of Dv(fff)
f (v) for an event v. In Section 4.6 we further quantify these effects

and show that this increase could be substantial. Thus, to ensure that the differential privacy

guarantee is indeed provided with the expected strength defined by ε , it is imperative to

design the randomizer to account for the linear constraints among frequencies, which in turn

are the result of inherent correlations among software elements.

4.5 Overall Design of Data Collection

Given a set of events U to be protected and a frequency vector fff , one can select

τ =maxv∈U Dv(fff) to ensure privacy for each element of this set. However, in a differentially-

private scheme the value of τ must be selected ahead of time, before the randomizer is

embedded in the software and distributed to software users. As a general property, if any

parameter of the randomizer (e.g., ε or τ) depends on the local data fff i of an user i, the

analysis is not differentially-private for that user. To address this problem, we employ a

model with two groups of users: opt-in users and regular users. Different privacy protections

are provided for the two groups. Others have also used similar partitioning of users [6]

and this concept has been adopted by widely-used analytics libraries such as Firebase

Analytics [39].

Opt-in Users. Each opt-in user i sends to the server the set of pairs 〈v,Dv(fff i)〉 for all v

that are observed at run time. This does leak some information to the server, and in general

does not provide differential privacy for that user. However, we consider this a reasonable

compromise since the raw profile fff i is not shared with anyone; only its coarse-grain

characterization via this set of pairs becomes known to the server. Given this information,

for each v reported by users the server computes τ(v) = maxi Dv(fff i). The set of τ(v) is

59

sorted in ascending order and then used to select a set of events U covering the first h% of

this sorted list. The largest τ(v) in this set is selected as the final value of τ that will be used

later by regular users. The intent behind this approach is to calibrate the privacy/accuracy

trade-offs by selecting the value of h and then determining which h% events can be protected

with the smallest possible τ (i.e., the highest possible accuracy).

Regular Users. After the server computes τ from the opt-in users, this value is embedded

in the randomizer which is then distributed to the regular users. For any regular user i,

R(fff i) is sent to the server and used to compute the calibrated frequencies F̄FF described in

Section 4.3.5. One detail is that it is possible for some Dv(fff i) to exceed the bound τ . In

this case, the user’s data for v is obtained with weakened privacy protection. Formally, the

randomizer achieves ε ′-indistinguishability, where ε ′ = Dv(fff i)
τ

ε . An alternative would be to

exclude the data for v for such users from the data collection.

4.6 Evaluation

To empirically evaluate the proposed approach and its performance for privacy protection

of event presence and hotness, we use the same set of 15 Android applications that were

also used in Chapter 3. As in Section 3.4, we simulate 1000 users interacting with each app

using the Monkey tool [40]. During this process, we collect method execution frequency

information as follows. We instrument the entry of every method in each app to record the

run-time execution of every method and accumulate its frequency in a local frequency vector

at each user. We stop a simulation when the total frequency in the vector reaches k = 5×|V |.

As a result, we get 1000 run-time profiles of method frequencies for each experimental

subject. Table 4.1 shows the details of the subjects used in our experiments. Column

“Classes” and “Methods” list the number of application classes and methods, excluding

60

App Classes Methods k

barometer 378 2237 11185
bible 1087 5340 26700
dpm 271 1362 6810

drumpads 446 1903 9515
equibase 251 1975 9875

localtv 714 3055 15275
loctracker 197 837 4185

mitula 966 7172 35860
moonphases 165 716 3580

parking 370 1649 8245
parrot 1235 7433 37165

post 1087 5340 26700
quicknews 1087 5340 26700
speedlogic 77 265 1325

vidanta 1568 9242 46210

Table 4.1: Experimental subjects.

several well-known third-party Android libraries, e.g., dagger and okio. The threshold k

for each app is shown in column “k” in the table.

The instrumentation is based on Soot [86]. The profile-gathering mechanism utilizes

Android Debug Bridge [38] to communicate with and manage multiple instances of emula-

tors for user simulation. Given the collected profiles, we run all randomization on a local

machine separately from the executions that gather run-time frequencies. This allows us to

conduct each experiment for multiple trials to report rigorous statistical results that account

for the randomness introduced by local randomizers [36].

The benchmarks and code for the evaluation in the rest of this section are released to the

public at https://presto-osu.github.io/dp-freq-prof.

61

https://presto-osu.github.io/dp-freq-prof

4.6.1 Comparison Between Two Randomizers

To compare the accuracy of the two approaches based on randomized response and the

Laplace mechanism discussed in Section 4.3, we fix the privacy parameter ε = 1, which

has been used in evaluation of other differentially-private analyses [9], and alter the value

of threshold τ for defining neighbors. We consider τ ∈ {100,101,102,k} and compute the

vectors containing calibrated frequency estimates for the two approaches. We use the same

metric as in Chapter 3, relative error (RE, “error” for short) with respect to the ground-truth

frequencies FFF , to measure the accuracy of the estimated frequency vectors. Formally, given

a frequency vector xxx, its RE is defined as

RE =
∑v∈D |F(v)− x(v)|

∑v∈DF(v)

where D = V and the denominator in this case is k. Note that the value of RE is 2
k ×d(FFF ,xxx).

The worst-case value for the error is 2, e.g., when FFF =
(
k 0

)
and xxx =

(
0 k

)
for a V with

two events, where the distance for the two vectors is d(FFF ,xxx) = 1
2 (|0− k|+ |k−0|) = k.

Figure 4.3 shows the measurements of the error for the randomized-response-based

and Laplace-mechanism-based randomization for different values of τ . Unless otherwise

specified, each experiment in this and the following sections is repeated 30 times with the

mean and 95% confidence interval of the results reported. The confidence intervals are

typically very small, and barely noticeable in the figures.

Summary of Results. As can be seen from these experiments, randomization based on

the Laplace mechanism outperforms the randomized-response-based approach in all cases,

especially for small values of τ . In particular, the error for the Laplace mechanism is 39.8×

smaller than the error for the randomization based on randomized response when τ = 100,

16.6× smaller for τ = 101, and 5.9× smaller for τ = 102, averaged across all apps. With the

62

4210
log10

0

1

2

R
E

barometer

4210
log10

0

1

2

R
E

bible

4210
log10

0

1

2

R
E

dpm

4210
log10

0

1

2

R
E

drumpads

4210
log10

0

1

2

R
E

equibase

4210
log10

0

1

2

R
E

localtv

4210
log10

0

1

2

R
E

loctracker

5210
log10

0

1

2

R
E

mitula

4210
log10

0

1

2

R
E

moonphases

4210
log10

0

1

2

R
E

parking

5210
log10

0

1

2

R
E

parrot

4210
log10

0

1

2

R
E

post

4210
log10

0

1

2

R
E

quicknews

3210
log10

0

1

2

R
E

speedlogic

5210
log10

0

1

2

R
E

vidanta

Randomized Response Laplace Mechanism

Figure 4.3: Comparison of accuracy using randomization based on randomized response
and on Laplace mechanism with ε = 1.

increase of τ , both randomizers require more extensive randomization in order to achieve

differential privacy, and thus result in lower accuracy, which is to be expected.

Our conclusions is that instead of aiming for privacy protection for event traces, as done

in Chapter 3, a design for privacy at the level of frequency vectors via the Laplace mechanism

achieves significant accuracy benefits. This observation is important for profiling frameworks

for deployed software. It also raises interesting questions about potential redesign of widely-

used software analytics frameworks such as Google Firebase Analytics [39] and Facebook

Analytics [34]. The current design of these frameworks provides logging mechanisms at

the level of individual events, as illustrated by the code example in Section 4.3.4. It may be

desirable to provide alternatives at a higher level of abstraction—e.g., a frequency vector that

accumulates the effects of several events—since stronger privacy protections are possible

63

at this case, and such protections could be implemented as optional functionality by the

framework. Given the widespread use of these tracking frameworks in many thousands of

popular mobile apps [33], this is a worthwhile direction of future investigations.

4.6.2 Hiding The Presence of Events

In this and the following subsection, we evaluate the accuracy of data collection and

analysis introduced in Section 4.5 that allows the protection of each event from a set U ⊆ V ,

where U is selected depending on a threshold h and the difficulties reported by opt-in

users. We first consider the goal of hiding the presence of individual events. Recall from

Section 4.4 that each opt-in user i computes her difficulty Dv(fff i) for each event v such that

fi(v)> 0 using an analysis of the constraint graph. We run this computation on a PC with

Xeon E5 2.2GHz CPU and 64GB RAM. The average cost of running the algorithm is 6.6

ms per user to calculate Dv(fff iii) for all qualified events v.

After collecting the difficulties from opt-in users, for each reported event v we compute

τ(v) = maxi Dv(fff i) and set the final value of τ based on a threshold h such that the presence

of at least h% events is hidden, i.e., τ covers the first h% of the sorted list of all τ(v) values.

This τ is then used for the actual collection of frequency data from regular users. In the

experiments, we consider threshold values h ∈ {25,50,75,100} to evaluate the accuracy of

the proposed profiling under different protection goals. Higher threshold values provide

protection for more events, lead to higher values for τ , and are expected to produce more

error. To select opt-in users, we have used various settings and observed that using 10%

of all users as the opt-in user group provides a reasonable τ and only a few users from the

remaining 90% regular users have local difficulty exceeding this τ . Specifically, on average

64

h
RE

ε = 0.5 ε = 1 ε = 2

25 0.054 0.024 0.014
50 0.138 0.078 0.042
75 0.296 0.194 0.130

100 1.834 1.586 1.292

Table 4.2: Average RE across all apps for hiding event presence.

for each event, 10.5% users have difficulty > τ given h = 25. The percentage is 6.6% for

h = 50, 2.9% for h = 75, and, of course, 0% for h = 100.

Table 4.2 shows the average error of the proposed approach over all apps for different

values of ε and h. We have used various values for ε in the experimental evaluation.

Here we only show the results for ε ∈ {0.5,1,2} since we observe similar trends for other

values. We can see that despite the inherent trade-offs between accuracy and privacy, high

accuracy can be achieved simultaneously with a high protection goal (large h) and strong

indistinguishability (small ε). In particular, the error is below 0.15 if we want to protect

the presence of at least a quarter or a half of all events, i.e., h = 25 and h = 50, even with

very strong indistinguishability, e.g., ε = 0.5. When the protection goal is raised to hide the

presence of 75% of events, we still have relatively low error (≤ 0.3) for small values of ε .

For example, the error is 0.194 when ε = 1. However, when h = 100, i.e., the protection

goal is to protect the presence of all events, the error is above 1 for all choices of ε . This is

to be expected, since some events have high frequencies across all users and large amounts

of noise are needed to hide their presence.

Figure 4.4 shows more detailed measurements from these experiments. The analysis

produces more accurate results for each app with larger ε since the indistinguishability

65

-1 0 1
log2

0

1

2

R
E

barometer

-1 0 1
log2

0

1

2

R
E

bible

-1 0 1
log2

0

1

2

R
E

dpm

-1 0 1
log2

0

1

2

R
E

drumpads

-1 0 1
log2

0

1

2

R
E

equibase

-1 0 1
log2

0

1

2

R
E

localtv

-1 0 1
log2

0

1

2

R
E

loctracker

-1 0 1
log2

0

1

2

R
E

mitula

-1 0 1
log2

0

1

2

R
E

moonphases

-1 0 1
log2

0

1

2

R
E

parking

-1 0 1
log2

0

1

2

R
E

parrot

-1 0 1
log2

0

1

2

R
E

post

-1 0 1
log2

0

1

2

R
E

quicknews

-1 0 1
log2

0

1

2

R
E

speedlogic

-1 0 1
log2

0

1

2

R
E

vidanta

h=25 h=50 h=75 h=100

Figure 4.4: Error for hiding event presence with varying h and ε .

strength in Definition 4.2 is reduced, leading to less noise. This conforms with the theoretical

guarantee provided by the definition. As discussed before, when we enhance the protection

to hide more events by increasing the value of h, there is more error in the resulting frequency

estimate vector. For example, compared to h = 25, the error is 3.3× larger for h = 50 and

8.9× larger when h = 75, averaged across all apps for ε = 1. If we want to protect the

presence of all events, i.e., h = 100, the result is essentially unusable as the error is close to

the worst-case value 2.

Accuracy for Frequently-Executed Events. Recall that for the experiments from Chap-

ter 3 the inaccuracy was mainly caused by a large number of infrequently-executed methods

66

h
RE HMC

ε = 0.5 ε = 1 ε = 2 ε = 0.5 ε = 1 ε = 2

25 0.0012 0.0005 0.0003 1 1 1
50 0.0043 0.0020 0.0009 0.9989 1 1
75 0.0148 0.0069 0.0034 0.9938 0.9989 1

100 0.8104 0.5602 0.2804 0.1895 0.5270 0.7420

Table 4.3: Average RE and HMC for hiding the presence of frequently-executed events
given `= 0.25.

with low frequencies. Here we also expect that the frequency estimates for the frequently-

executed methods are significantly more accurate than those for infrequently-executed ones.

To quantify these observations, we compute the RE for only frequent methods and the hot

method coverage (HMC, defined by Equation 3.4) under different values of parameters, sim-

ilarly to the experimental evaluation in Chapter 3. Table 4.3 shows the average values of RE

and HMC across all apps using `= 0.25. We can see that the error is orders-of-magnitude

less for frequent events, compared to the corresponding values in Table 4.2. For example,

when h = 75 and ε = 1, the RE is 28.1× smaller. The coverage of these methods are also

very high, approaching the optimal value 1, for relatively large h, e.g., h = 75, even under

small values of ε such as ε = 0.5. In the experiments, we have also observed similar trends

for other values of `.

Summary of Results. These experimental results are promising. Despite the fundamental

tension between privacy (which requires higher magnitude of noise) and accuracy (which is

reduced by this noise), we see evidence of a “sweet spot”. In particular, our measurements

demonstrate that high-accuracy estimates can be achieved together with privacy protection of

67

h
RE

ε = 0.5 ε = 1 ε = 2

25 0.084 0.044 0.024
50 0.198 0.118 0.066
75 0.442 0.286 0.178

100 1.838 1.596 1.292

Table 4.4: Average RE across all apps for hiding event hotness.

the presence of most methods (i.e., high h) and strong differential privacy indistinguishability

(i.e., low ε).

4.6.3 Hiding The Hotness of Events

In this section we evaluate the effectiveness of the proposed approach for hiding the

“hotness” of events. Recall from Section 4.4.4 that an event v is hot in a frequency vector fff

if f (v)> η where η is a pre-defined threshold. Here we set η = k
|V | . We have used other

values of η and see similar results. As in the experiments from the previous subsection,

we consider four definitions of set U , based on a threshold h. For each reported event

v we compute the largest value of the hotness-hiding difficulty Dv(fff i) across all opt-in

users. We then set the final τ value to hide the hotness of at least h% of these events for

h ∈ {25,50,75,100}. A summary of the average error over all apps is shown in Table 4.4.

The detailed results for each app are shown in Figure 4.5.

We can see that the error is low (< 0.2) for all values of ε used in the experiment when

the protection goal is low, e.g., when we provide protection for half of the hot methods.

When the value of h is increased to 75, the analysis can provide accurate results with

somewhat larger values of ε . For example, we have error < 0.3 using ε = 1, which is a

68

-1 0 1
log2

0

1

2

R
E

barometer

-1 0 1
log2

0

1

2

R
E

bible

-1 0 1
log2

0

1

2

R
E

dpm

-1 0 1
log2

0

1

2

R
E

drumpads

-1 0 1
log2

0

1

2

R
E

equibase

-1 0 1
log2

0

1

2

R
E

localtv

-1 0 1
log2

0

1

2

R
E

loctracker

-1 0 1
log2

0

1

2

R
E

mitula

-1 0 1
log2

0

1

2

R
E

moonphases

-1 0 1
log2

0

1

2

R
E

parking

-1 0 1
log2

0

1

2

R
E

parrot

-1 0 1
log2

0

1

2

R
E

post

-1 0 1
log2

0

1

2

R
E

quicknews

-1 0 1
log2

0

1

2

R
E

speedlogic

-1 0 1
log2

0

1

2

R
E

vidanta

h=25 h=50 h=75 h=100

Figure 4.5: Error for hiding event hotness with varying h and ε .

typical value for this parameter in practice. At this protection level, the error is on average

2.4× and 6.5× larger than the error for h = 50 and h = 25, respectively. We reach the

highest error when h = 100, similarly to the results from Section 4.6.2. This is due to

the large frequencies of some extremely hot methods. One example of such a method is

DownloadProgress.onProgressUpdate in the dpm app, which will be invoked multiple

times to draw the progress bar when the user is downloading preset sound tracks. The

randomizer has to introduce considerable amount of noise to hide the hotness of such

methods.

The average RE and HMC for frequently-executed methods are listed in Table 4.5.

The results show similar trends as described in the previous subsection. The error caused

69

h
RE HMC

ε = 0.5 ε = 1 ε = 2 ε = 0.5 ε = 1 ε = 2

25 0.0021 0.0010 0.0005 1 1 1
50 0.0061 0.0029 0.0015 0.9978 1 1
75 0.0223 0.0106 0.0051 0.9845 0.9956 1

100 0.8329 0.5599 0.2876 0.1625 0.5318 0.7292

Table 4.5: Average RE and HMC for hiding the hotness of frequently-executed events given
`= 0.25.

by frequent events is significantly smaller than the overall error in Table 4.4—that is, the

estimates are much more accurate for these events.

Summary of Results. The conclusions from these experimental results are similar to the

ones from Section 4.6.2. For many (but not all) hot methods, our technique can effectively

hide their hotness while at the same time providing high-accuracy estimates. Together with

the earlier results for hiding event presence, this evaluation provides evidence of the promise

of differentially-private analyses for remote profiling of deployed software.

4.6.4 Implications of Enforcing Linear Constraints

Section 4.4.5 discussed the implications of including or excluding the linear constraints

AAA fff ≥ bbb in the randomizer design. We empirically evaluated the effects on the privacy

guarantee for these two scenarios and show the implicit degradation when the randomizer

does not consider the constraints. For each of the two scenarios we computed the value

of τ needed to hide the presence of individual events given h = 25, as was done for the

previous experiments. (We have computed similar results for other values of h and observed

even larger degradation.) We denote the two values by τtrue and τfalse, where the subscript

70

indicates whether or not the constraints are taken into account during the computation of

difficulties. We then calculate the degradation of the privacy guarantee as follows:

Degradation(τtrue,τfalse) = e
τtrue
τfalse

This definition shows the extent to which the bound on the ratio of the two probabilities in

Definition 4.2 implicitly increases if the randomizer simply ignores the constraints. The

mean value of this degradation for 30 independent repetitions of the same experiment is

26.5, averaged across all apps. This means that the probability bound is increased by a

factor of 26.5 on average, by which the indistinguishability between neighboring frequency

vectors is significantly weakened.

4.7 Summary

Differential privacy is a desirable theoretical framework for designing privacy-preserving

software analysis, due to its inherently strong and rigorous privacy guarantees. When such

machinery is applied to software profiling problems, or more generally to dynamic program

analysis, it is important to consider domain-derived insights into the analyzed data. For the

profiling problem we consider such data relationships are represented via linear constraints

on frequencies. As we discuss theoretically and demonstrate experimentally, such constraints

must be accounted for when designing a randomization scheme, in order to achieve the

expected privacy protections.

For the specific problem of frequency estimation, we show that randomization of fre-

quency vectors is more suitable than event trace randomization. This observation has

implications for the design of mobile app analytics frameworks such as Google Firebase

Analytics and Facebook Analytics, as well we for any infrastructure for remote profiling

of deployed software. Even with this design choice, it is still a challenge to select the

71

parameters of the randomization in order to achieve desired trade-offs between accuracy

and privacy. We show how to address this problem by defining and computing the difficulty

of protecting certain events. Our results demonstrate that with careful application of this

approach, it is possible to achieve both high privacy and high accuracy for the target goals

of this work.

72

Chapter 5: Differentially-Private Control-Flow Node Coverage

Analysis

The approach introduced in Chapter 4 takes into account the linear constraints of

frequency vectors in the design and configuration of the randomization. As we argued in

that chapter, it is important to account for such intrinsic constraints. Otherwise, a seemingly-

strong privacy guarantee is actually weaker than it appears. In this chapter, we focus on

a new type of problem which is related to control-flow node coverage, where the type

of constraints are with respect to control-flow graph nodes. Although the constraints are

different from the ones in Chapter 4, which are related to the frequency of events, they

are both based on the structural properties of application code. We carefully define the

differential privacy protection of graph nodes and algorithms to achieve it, and conduct

extensive experiments to empirically evaluate the effectiveness of the proposed algorithms.

Specifically, we propose a new notion of privacy guarantees based on a the neighbor

relation between control-flow graphs and a new differentially-private algorithm design based

on a novel definition of sensitivity with respect to differences between neighbors. We

provide an efficient implementation of the algorithm using dominator trees derived from

control-flow graphs. To improve the utility of the analysis results, we introduce a hybrid

approach similar to the one described in Section 4.5 to aggregate a bound of sensitivity,

a pruning approach to reduce the noise level by tightening the sensitivity bound using

73

restricted sensitivity, and a refined notion of relaxed indistinguishability based on distances

between neighbors. Our evaluation demonstrates that these techniques can achieve practical

accuracy while providing principled privacy-by-design guarantees.

An alternative version of this work [104] will appear at the USENIX Security Sympo-

sium 2020. There are some minor differences in theoretical machinery and experimental

evaluation between that work and what is described in this chapter. However, the core ideas,

major algorithm design decisions, and conclusions from the experimental evaluation are the

same.

5.1 Problem and Motivation

For the purposes of this chapter, each relevant event triggered at run time corresponds

to the execution of a specific component in the software. Thus, the triggering of events

can be characterized by the run-time control flow with respect to the execution of software

components. Privacy is needed to protect sensitive control-flow data. Consider the following

example:

if (sensitive condition) a();

void a() { b(); }

If the program execution reveals that function a was invoked at run time, an adversary can

infer that the sensitive condition were true. Furthermore, this inference could be indirect:

for example, even if the invocation of a were obfuscated, revealing that function b was

executed could also be used to infer the condition. Many analytics platforms, including

Facebook [34], Firebase [39], and Flurry [73], allow developers to gather raw control-flow

data by collecting remotely users’ interactions for data analysis and more complex tasks

such as machine learning. Figure 5.1 illustrates this process. Each directed graph on the

74

s
1

2
3

s 1

2
4

s
4

31

2

s 52

Users Analysis Infrastructure

Stat Reports

ML Models

⋯

⋯ Adversaries

Software

Figure 5.1: User interactions are reported for data analysis.

left represents the control-flow behavior of a user’s copy of the software. A node represents

a software component that corresponds to an event, and an edge represents control flow

between components. When a user interacts with her copy, her actions trigger a particular

control-flow graph instance which is cached locally and eventually sent to remote servers

for data analysis.

The above problem can be abstracted as the problem of collecting control-flow graph

node coverage information over many instances of a software application. It could be

instantiated at various levels of granularity: a graph node could represent a coarse-grained

software component, a GUI element, a function in the application code, or an individual code

statement. We aim to develop a privacy-preserving solution for this problem. Specifically,

our goal is to introduce a differential privacy (DP) mechanism that, in a principled and

quantifiable manner, hides the presence/absence of any particular graph node in a user’s

coverage information. In essence, our solution helps a software user to hide from others

whether any component of the software, represented by a graph node, was executed by this

user. One of the key technical contributions of this chapter is a novel privacy definition that

75

accounts for the intrinsic constraints between graph nodes, based on the structure of the

control-flow graph.

The motivation for this privacy-preserving analysis stems from two factors. The cover-

age information itself may reveal sensitive conditions, for example, whether the user has

executed security-related functionality such as changing a password or connecting to a

VPN. Furthermore, user habits can be mined from such data for the purposes of behavior

analytics. The power of such data mining continues to increase, by combining user data

from multiple sources to draw even-more-powerful inferences. Neither software users nor

software developers can anticipate all future uses of such information for mining of many

seemingly-unrelated data streams generated by the same user. Proactive protection against

unknown future uses (and misuses) is a desirable high-level goal that benefits not only

the users of the software but also its developers, who can claim with confidence that they

provide proactive, principled, and quantifiable privacy protections.

5.1.1 Problem Statement

In many software analysis problems, a control-flow model is instantiated at run time

when the software is executed. Examples of such models include statement-level control-

flow graphs, call graphs, calling context trees, and GUI screen transition models. Generally,

such a model is a directed graph G = (V ,E ,s) with node set V and edge set E ⊆ V ×V .

The start node s ∈ V represents the start of any run-time execution and the root of G.

When the software is executed, run-time events correspond to dynamic instances of

graph nodes and edges. For example, if G is the program’s call graph, run-time event

“function mi calls function m j” corresponds to a dynamic instance of graph edge mi→ m j.

We use Gccc to denote the subgraph of G defined by these run-time-covered nodes and edges.

76

Here ccc ∈ {0,1}|V | is the indicator vector of the corresponding set of covered nodes during

the program run. In a minor abuse of notation, we will use ccc to denote both a set of covered

nodes and its corresponding coverage vector. Node coverage analysis reports the set of

nodes in ccc.

Information about node coverage plays an important role in the area of mobile and web

apps, using analysis infrastructures such as Google Analytics [37] and Facebook Analyt-

ics [34]. For example, Google Analytics presents to developers reports of histograms of

events about the population of users who have executed them. Such information is also

essential for various software monitoring tasks. For instance, residual coverage monitor-

ing [78] cumulatively collects and calculates the basic block coverage in the control-flow

graph of a program. In general, many analyses of deployed software depend on some form

of control-flow coverage information [5, 14, 18, 20, 31, 45–48, 57, 58, 75, 77, 87, 105].

5.1.2 Differentially-Private Node Coverage Analysis

Consider n software users identified by integer ids i ∈ {1, . . . ,n}. All users run the

same software, which has some publicly known control-flow model G. This model would

typically be constructed by the software developers for their own analytics needs. The

deployed software would contain instrumentation to record and report events related to

run-time coverage of G. We consider G to be publicly known, as an adversary could reverse

engineer this model from the code of the deployed software using a wide range of existing

techniques.

The node coverage ccci ∈ {0,1}|V | of user i describes the run-time behavior of that user’s

instance of the software. In node coverage analysis, the software developer’s goal is to

determine, for each node v ∈ V , the frequency of v’s coverage across all users—that is,

77

F(v) = |{i ∈ {1, . . . ,n} | v ∈ ccci}|. Equivalently, the goal is to obtain an aggregate vector

FFF ∈ N|V | such that FFF = ∑i ccci, where the summation is element-wise for vectors ccci. In a

differentially-private setting, instead of FFF the developer will obtain an estimated aggregate

vector F̂FF where, with high probability, the node frequency estimates F̂(v) are close to the

actual node frequencies F(v). This analysis provides information about how users of the

deployed software interact with it—for example, how many users have accessed a particular

screen in an app’s GUI, which is a typical concern in mobile app analysis via infrastructures

such as Firebase Analytics [39]. As another example, gathering data about which code

regions are executed by software users provides rich feedback to software developers and

helps them validate and refine assumptions they have used in pre-deployment testing and

validation [78].

An LDP coverage analysis applies an ε-local randomizer R : {0,1}|V |→ {0,1}|V | to

each user’s observed coverage ccci. The resulting zzzi = R(ccci) is sent to the server. The server

collects all zzzi and uses them to compute the estimates F̂FF .

5.2 Feasibility and Neighbors

Differentially-private analysis of graph data has been considered almost exclusively

in the centralized model of DP [50, 52, 72, 83]. Two graph privacy definitions have been

proposed. Node privacy [83] considers the indistinguishability of two undirected neighbor

graphs G and G′, where G′ can be obtained from G by deleting one node and all its adjacent

edges. A node-private analysis provides plausible deniability about the presence of any

particular node in the graph. More precisely, for any graph G, if an adversary observes the

randomized output R(G), the probability that the input to the randomizer R was G is very

close (by a factor of eε) to the probability that the input to R was any neighbor of G in which

78

one node of G was removed (together with its adjacent edges). Thus, the adversary cannot

conclude with high probability that any graph node was actually present in the protected

private graph. An alternative weaker notion of privacy is edge privacy [50, 72], which

obfuscates the presence of any graph edge. Node privacy provides stronger protection,

but achieving high accuracy for node-private analyses is inherently more difficult than for

edge-private ones [83]. For our problem of collecting control-flow node coverage, we will

focus on the more challenging node privacy.

One key question for achieving such node privacy is the definition of neighbors. Using

the traditional notion from DP graph analysis [83], a neighbor graph Gccc′ would be obtained

from a given Gccc by removing a single node and its adjacent edges. Thus, coverage vector

ccc′ would differ from ccc by a single bit. However, this notion is meaningless for control-

flow graphs and their coverage vectors, since not all vectors represent feasible run-time

behaviors—that is, we will never observe them during execution. We define this key property

of feasibility as follows:

Definition 5.1 (Feasibility). A dynamic graph Gccc and its coverage vector ccc are feasible if

s ∈ ccc and every covered node is reachable from s along a path of covered nodes and edges,

i.e., for any v ∈ ccc, there exists a path 〈s,v1, . . . ,vk,v〉 in Gccc such that v j ∈ ccc for 1≤ j ≤ k.

Here v ∈ ccc denotes that v is in the set of nodes encoded by ccc. If Gccc and ccc do not satisfy

these properties, there does not exist a run-time execution that could have produced them. To

illustrate this point, consider the graph G in Figure 5.2, where s is the start node. Coverage

vector ccc is feasible, as it represents the covered set {s,v1,v2,v3,v4}. However, ccc′ which

represents {s,v1,v3,v4} is not feasible since v3 and v4 cannot be reached from s along a path

of covered nodes. No software execution can generate ccc as a coverage vector.

79

s v1 v2 v3 v4 v5

feasible ccc = [111110]
infeasible ccc′ = [110110]

feasible ∆v2(ccc) = [110000]

Figure 5.2: Feasible and infeasible coverage.

As with traditional DP graph analyses, we consider the removal of a graph node in order

to define the notion of a neighbor graph. However, our definition takes into account the

feasibility constraint. Given a feasible dynamic Gccc and some node v ∈ ccc\{s}, the neighbor

graph Gccc′ = ∆v(Gccc) obtained by removing v is defined as follows: (1) Gccc′ is a subgraph of

Gccc, (2) v /∈ ccc′, (3) Gccc′ is feasible, and (4) Gccc′ is maximal (i.e., there does not exist a proper

supergraph of Gccc′ with properties 1–3). Intuitively, the last constraint ensures that we do not

remove “too many” nodes and edges from Gccc.

Graph ∆v(Gccc) exists and is unique, as shown by Lemma 5.1, followed by its proof.

Lemma 5.1. Let Gccc be a feasible dynamic graph. For any v ∈ ccc\{s}, there exists a unique

feasible subgraph Gccc′ such that v /∈ ccc′ and Gccc′ is maximal.

Proof. Consider the set of all feasible subgraphs Gccc′ for the given Gccc such that v /∈ ccc′. This

set is not empty because it contains, at the very least, the trivial graph containing only the

starting node s. Since the set is finite, at least one of its elements is maximal. To show

uniqueness, suppose that two different graphs from the set are both maximal. It is easy to

see that the graph containing the union of their nodes and edges also belongs to the set,

which means that neither of the original two graphs could have been maximal.

For brevity, we will often use ccc′ = ∆v(ccc) to denote that Gccc′ = ∆v(Gccc) for a given Gccc.

For illustration, in Figure 5.2 the removal of v2 from ccc requires the removal of v2 and v3 as

80

well, in order to preserve feasibility. Thus, the neighbor ∆v2(ccc) is the covered set {s,v1}. If

one were to use the traditional definition of neighbors described earlier, the removal of v2

would produce the infeasible vector ccc′ shown in the figure.

The set of neighbors for the coverage vector ccc of a given Gccc is defined as follows:

Definition 5.2 (Neighbors). Given a feasible coverage vector ccc, its neighbors are the set

{∆v(ccc) | v ∈ ccc\{s}}∪{ccc′ | ∃v ∈ ccc′ \{s} : ∆v(ccc′) = ccc}.

This definition considers both the removal of a node v from ccc (the first term in the formula)

and the addition of a node v to ccc (the second term in the formula) as means of obtaining a

neighbor vector. Thus, the neighbor relation is symmetric.

Next, we show that ∆v(ccc) for given Gccc and v can be constructed efficiently. In a control-

flow graph with a start node s, a node d dominates a node v (denoted d dom v) if every path

from s to v goes through d [1]. A node trivially dominates itself. Given a feasible Gccc, let

domGccc denote its dominator relation. The key observation is that the nodes dominated by v

(plus their adjacent edges) are exactly the ones that need to be deleted to obtain the neighbor

graph:

Proposition 5.1. For any node v ∈ ccc\{s}, we have ∆v(ccc) = ccc\{v′ | v domGccc v′}.

The proof of the proposition is shown below:

Proof. Consider Gccc and its subgraph Gccc′ obtained by removing all nodes in {v′ : v domGccc v′}

and their adjacent edges. We need to show that (1) v /∈ ccc′; (2) Gccc′ is feasible; and (3) Gccc′ is

maximal. (1) trivially follows from v domGccc v. For (2) we need to establish that in Gccc′ , all

nodes are reachable from the start node s. Suppose this is not true for some k ∈ ccc′. Clearly,

k is reachable from s in Gccc. Graph Gccc′ is obtained from Gccc by removing all v′ such that

v domGccc v′. Thus, every path from s to k in Gccc contains at least one such v′. Since v domGccc v′,

81

each such path also must contain v. This means that v domGccc k, which contradicts k ∈ ccc′.

Finally, (3) requires that Gccc′ be maximal. Consider some proper supergraph Gccc′′ of Gccc′ that

is a feasible subgraph of Gccc and has v /∈ ccc′′. It is easy to see that ccc′′ contains at least one

node k such that v domGccc k. Since ccc′′ is feasible, there is at least one path from s to k in

Gccc′′ . This path also exists in Gccc, and thus v belongs to it because it dominates k in Gccc. This

contradicts v /∈ ccc′′.

This property allows us to find efficiently all ∆v(ccc) for a given Gccc, which is needed for

our randomizer (as described later). Consider the dominator tree for Gccc, which is a standard

representation of the dominator relation. For any node, the set of its ancestors in the tree is

exactly the set of its dominators. For the simple Gccc in Figure 5.2, the dominator tree is the

same as the graph itself (root s dominates all nodes, v1 dominates all nodes except s, etc.).

The dominator tree can be constructed efficiently; we use a classic approach by Lengauer

and Tarjan [55] with complexity O(|E | log |V |). Given v ∈ ccc\{s}, the dominator subtree

rooted at v provides all and only nodes that should be removed from ccc to obtain its neighbor

∆v(ccc).

As discussed shortly, our randomizer only needs to consider the size of set ∆v(ccc) rather

than the actual nodes in it. A linear-time bottom-up traversal of the dominator tree for Gccc

can annotate each node v with the size subGccc(v) of the subtree rooted at that node. Thus,

given any v, we can easily obtain |∆v(ccc)| as |ccc|− subGccc(v).

5.3 LDP Analysis

Consider again our problem: for user i, coverage vector ccci ∈ {0,1}|V | describes the

behavior of that user’s code instance. The same local randomizer R : {0,1}|V |→{0,1}|V |

is used by all users. Each user reports R(ccci) to the analysis infrastructure. All reports are

82

gathered and post-processed to construct an estimate of FFF = ∑i ccci. Such analysis, based on

Definition 5.2, can achieve control-flow graph node privacy as follows:

Definition 5.3 (ε-Node-LDP). Randomizer R is ε-node-LDP if for any pair of coverage

vector neighbors ccc,ccc′ for G from Definition 5.2, we have

Pr[R(ccc) = zzz]
Pr[R(ccc′) = zzz]

≤ eε

5.3.1 Difficulty of Hiding Graph Nodes

To define analyses that satisfy Definition 5.3, it is important to consider the distances

between a given feasible graph/vector and all its neighbors. The goal of the randomizer is to

“obfuscate” such distances to ensure their indistinguishability. The notion of distance here

also implies the difficulty of the obfuscation by the randomizer. If the distances are large,

they are hard to obfuscate and substantial obfuscation has to be applied. Given a feasible

coverage vector ccc and a node v, the difficulty of hiding v in ccc is Dv(ccc) = |ccc|− |∆v(ccc)|, i.e.,

the distance between ccc and its nearest feasible neighbor vector ∆v(ccc) which has 0 for v.

When we consider a set of nodes to be protected, one has to consider the largest difficulty

for nodes in the set. For the rest of this chapter, we would like to protect all nodes in G except

for the start node (since the start node is always present at run time). It is straightforward

to extend our solution to protect a subset U ⊆ V , as was done in Chapter 4. The difficulty

in this case is maxv∈ccc\{s}Dv(ccc). It turns out that this is exactly the same as the concept of

local sensitivity, as defined below, which is employed in various forms by many DP analysis

algorithms. In our analyses, we will use it to capture the properties of the “graph neighbor”

relation defined earlier.

83

Definition 5.4 (Local Sensitivity). Consider a feasible graph Gccc and its corresponding

coverage vector ccc. The local sensitivity of ccc is

LS(ccc) = max
v∈ccc\{s}

Dv(ccc) = max
v∈ccc\{s}

|ccc|− |∆v(ccc)|

LS(ccc) captures how sensitive Gccc is to the removal of any of its nodes v. Since the

“neighbor” relation from Definition 5.3 is symmetric, the sensitivity of adding a node v to

Gccc will be accounted for by LS(ccc′) for another coverage vector ccc′ such that ccc = ∆v(ccc′).

Intuitively, the larger the local sensitivity, the more extensive randomization needs to

be added by R in order to satisfy Definition 5.3, since the randomized output has to “hide”

the differences between ccc and any ∆v(ccc). This increased randomization is manifested by an

increased probability of flipping any bit in the coverage vector.

Example 5.1. In Figure 5.2, consider c = {s,v1,v2,v3,v4}. We have ∆v4(ccc) = {s,v1,v2,v3},

∆v3(ccc) = {s,v1,v2}, ∆v2(ccc) = {s,v1}, and ∆v1(ccc) = {s}. The local sensitivity is LS(ccc) =

|ccc|− |∆v1(ccc)|= 4.

Given Gccc, computing LS(ccc) is straightforward. Recall that, with the help of Proposi-

tion 5.1, we can efficiently find all ∆v(ccc) by considering the dominator tree for Gccc. Suppose

each node v in this tree is annotated with the size subGccc(v) of the subtree rooted at v. Then

LS(ccc) is the largest value of subGccc(v) among the nodes v that are children of the start node s

in the tree.

Example 5.2. Figure 5.3 and 5.4 show an example from the parking Android app [92]. This

app navigates users to parking places, records history of parking locations, and reminds

users about parking time. It uses Google Analytics [37] to collect GUI screen view events

from users. The developer defines a dictionary of GUI screens to be collected and reported

to the Google Analytics remote servers. Figure 5.3 shows the control-flow model G for this

84

s: Splash

v1: LastParkingFragment

v3: HelpActivity

v6: HistoryFragment

v2: CompassActivity

v7: ParkActivity

v8: SettingsActivity

v4: AboutActivity

v9: ZoneEditorActivity

v5: AutoParkActivity

Figure 5.3: GUI screen view graph G from the parking app.

app, with nodes corresponding to different screens and edges showing possible transitions

between screens. Consider the run-time behavior of one app user, corresponding to graph Gccc

and its coverage vector ccc = [1101010111]. The graph and its dominator tree are shown in

Figure 5.4. Each node v in the tree is annotated with subGccc(v), the size of its corresponding

subtree. The local sensitivity for Gccc is LS(ccc) = subGccc(v1) = 6.

85

s v1

v3
v7 v5v8

v9

ccc = [1101010111]

v9

1

v3

1

s

7

v1

6

v5

2

v7

1

v8

1

Figure 5.4: Gccc, coverage vector ccc, and dominator tree for Gccc, from the parking app.

5.3.2 Randomizer Definition

Suppose we know an upper bound S of LS(ccc) for all possible feasible ccc for a given graph

G. The randomizer R can be defined as follows:

Definition 5.5 (Randomizer). Given a feasible ccc, R independently flips each bit in ccc with

probability

p =
1

1+ e
ε

S

Then the following proposition holds:

Proposition 5.2. The randomizer R from Definition 5.5 satisfies ε-node-LDP.

86

The proof of the proposition is as follows:

Proof. Let ccc be a feasible coverage vector. For any v ∈ ccc and ttt ∈ {0,1}|V |, consider the ratio

between Pr[R(ccc) = ttt] and Pr[R(∆v(ccc)) = ttt]. This ratio is bounded from above by the product

of x terms e
ε

S , where x is the number of bits in ccc that were changed to obtain ∆v(ccc). Each of

the x terms is contributed by one of the flipped bits. Since x≤ S, this ratio is bounded from

above by eε . Similarly, the ratio is bounded from below by e−ε . Given any neighbors ccc,ccc′,

either ccc′ = ∆v(ccc) or ccc = ∆v(ccc′), therefore Pr[R(ccc) = ttt]≤ eεPr[R(ccc′) = ttt]. Thus, R satisfies

Definition 5.3.

Each user i applies local randomizer R to add noise to local vector ccci. (Since we are

interested in (estimates of) total node frequencies across all users, and not for individual

users, we design R to produce vectors that are not necessarily feasible.) After the remote

software analysis infrastructure collects and reports a histogram HHH = ∑i R(ccci) over all users,

this noisy data is processed to account for the effects of the randomizers. For any node v,

the expected value of the number of occurrences of v in HHH is F(v)e
ε

S p+(n−F(v)) p where

F(v) is real frequency of v, n is the number of users, and p is probability from Definition 5.5.

If the collected histogram HHH has a frequency H(v) for v, then the estimate F̂(v) for the real

frequency F(v) is

F̂(v) =

(
1+ e

ε

S

)
H(v)−n

e
ε

S −1
(5.1)

It is easy to see that the expected value of estimate F̂(v) is F(v). Thus, F̂(v) is an unbiased

estimator of F(v). To improve accuracy, the estimate is reset to zero if it is negative, and is

reset to n if it exceeds n.

Note that this approach is designed for “one-shot” randomization, i.e., Gccc and ccc are

deleted at the user end once R(ccc) is generated. Any subsequent requests for data will receive

87

the same value of R(ccc). In contrast, in a framework that allows submission of multiple

realizations of R(ccc), the privacy protection will degrade due to composition [29]. Our

approach can prevent such degradation and has practical usage, for example, by Facebook

in their ads system [19].

The approach also excludes the consideration of contexts, i.e., from which nodes a node

is reached at run time. A classic example of a context is the calling context (i.e., the chain

of callers) for a call graph node. Solving this problem requires the randomizer to record

and obfuscate paths in the control-flow graph model. We leave this challenging problem for

future work.

5.4 Selection of Sensitivity Bound

The choice of probability p in Definition 5.5 guarantees that R is ε-node-LDP. Thus, the

main question is how to select the sensitivity upper bound S. One obvious choice for S is

given by the global sensitivity, which is the maximum value of the local sensitivity taken

over all realizations of feasible coverage vectors. In our baseline approach, we instantiate S

with the global sensitivity in the technique described in Section 5.3.2. It is important to point

out that this baseline approach provably achieves the optimal worst-case estimation error,

which scales with the global sensitivity. This follows from a straightforward extension of the

known lower bound on the worst-case error associated with LDP frequency estimation [8].

However, as demonstrated by our empirical results (Section 5.5), the accuracy resulting

from the baseline approach is usually modest since the global sensitivity is quite large.

To circumvent this fundamental limitation, we propose an alternative approach similar

to the data collection in Section 4.5 that splits users into an opt-in user group and a regular

user group, computes the bound S using opt-in user data, and aggregates node coverage

88

from regular users. However, this approach may yield weakened protection for regular users,

as discussed in Section 5.4.2. Therefore, we propose another two approaches ensuring strict

ε-node-LDP for all users that entail either a relaxation of the utility guarantee (Section 5.4.3)

or a relaxation of the privacy guarantee (Section 5.4.4). In particular, in Section 5.4.3, the

proposed approach offers a conditional utility guarantee, i.e., it achieves good accuracy

but only for a sub-collection of well-behaved control-flow graphs. The approach in Sec-

tion 5.4.4 entails assigning different levels of privacy protection for different nodes in the

graph (depending on how “revealing” a node is). These approaches are simple, practical

alternatives that provide meaningful privacy guarantees, while significantly improving the

accuracy resulting from the baseline approach as demonstrated in the experiments shown in

Section 5.5.

5.4.1 Baseline: Global Sensitivity

One choice for S in Definition 5.5 is to consider the worst-case value for LS(ccc). For our

problem, this worst-case value is Sgs = |V |−1. Here suffix gs is short for “global sensitivity.”

For any G and any feasible ccc for G, LS(ccc)≤ Sgs since, in the worst case, ccc contains all nodes

in V and its farthest neighbor contains only the start node s. Since G is known to all remote

instances of the software, each local randomizer R can use the same value S = |V |−1 to

add noise to its local vector. Figure 5.2 illustrates this case: for c = {s,v1,v2,v3,v4,v5} and

its neighbor ∆v1(ccc) = {s}, we have LS(ccc) = |V |−1 = 5.

Example 5.3. Consider the example of n= 10 users for the parking app, shown in Figure 5.5.

The sensitivity bound is Sgs = 9 as there are 10 nodes in the control-flow model from

Figure 5.3. This bound is a priori knowledge to all users. Each user generates her own

coverage vector ccci independently and runs R with Sgs locally. In this example, ε is set to

89

c1=[1111010110]
R(c1)=[0111000000]

c2=[1101010110]
R(c2)=[0110010110]

c3=[1101010010]
R(c3)=[0111001110]

c4=[1101010110]
R(c4)=[1010010011]

c5=[1101010110]
R(c5)=[1010000011]

c6=[1101011110]
R(c6,)=[1100010000]

c7=[1101100110]
R(c7)=[1111100101]

c8=[1101010111]
R(c8)=[0001001010]

c9=[1111010110]
R(c9)=[1100001100]

c10=[1101000100]
R(c10)=[1001000001]

Users Analysis Infrastructure

H=∑R(⋅)= [6 6 6 5 1 3 3 4 5 4]

F= [10 10 10 5 0 0 0 0 5 0]

Post-Processing

Real frequency vector for comparison:
F= [10 10 2 10 1 8 1 9 9 1]

Figure 5.5: Randomization using global sensitivity Sgs and ε = 1 for the parking app, with
10 users.

1. The analysis infrastructure collects all randomized R(ccci) vectors to get HHH = ∑i R(ccci) =

[6 6 6 5 1 3 3 4 5 4]. Using Equation 5.1, we then obtain a vector of estimates F̂FF =

[10 10 10 5 0 0 0 0 5 0], with all decimals rounded to the nearest integer.

The real frequency vector is FFF = [10 10 2 10 1 8 1 9 9 1]. Clearly, the differentially-

private estimates for this example are rather inaccurate. This is due to the small number of

users as well as the loose upper bound Sgs.

This baseline approach could introduce significant amount of noise. For illustration,

consider ε = 1 and S = |V |−1 = 100. The probability p of flipping any bit is 0.4975, which

is very close to the probability 0.5 that would produce uniformly-distributed random vectors

drawn from {0,1}|V |. Next, we discuss three techniques that lead to reduction of the noise

introduced by the randomization.

90

5.4.2 Tighter Bound Based on Local Sensitivity

One naive attempt to improve the worst-case analysis from above is the following. Each

software user i computes the local sensitivity LS(ccci) of its coverage ccci and reports it to the

software analysis infrastructure. The largest value of these reports is used as the upper

bound S = maxi LS(ccci). This S is reported back to all users’ software instances and used in

all randomizers Ri as shown in Definition 5.5. If this bound is lower than the worst-case

bound of |V |−1, the analysis accuracy could be improved.

Unfortunately, publicly releasing the value of LS(ccci) and the randomizer output R(ccci)

reveals too much information about the underlying data ccci and the resulting scheme is not

differentially private [72]. As in Chapter 4, we propose to address this problem by separating

the analysis users in two groups: opt-in users and regular users. For each opt-in user i,

only the local sensitivity LS(ccci) is reported, but not the actual noisy data R(ccci). The local

sensitivities for opt-in users are gathered without privacy protections. However, each such

user i only reports the size of the largest subtree in the dominator tree of her local graph

Gccci induced by ccci, but the identity of nodes v with large subGccci
(v) is never revealed. We

consider this technique to be a compromise that offers a reasonable privacy protection while

allowing for much better accuracy.

Given the set of LS(ccci) from the opt-in users, the largest of these values is used as

the bound S and is reported to all regular users for use in their randomizers (according to

Definition 5.5). Each regular user i applies this R to the local coverage ccci and reports R(ccci)

to the software analysis infrastructure. All reported noisy coverage vectors from regular

users are post-processed to account for the randomization, as described in Equation 5.1.

It is possible that LS(ccci) exceeds this proposed bound S for a regular user i. One option

is to exclude the user from the data gathering. However, if the identity of such users is

91

known to the server, this technique will not generally satisfy LDP (in the strict sense of

Definition 5.3) for those users. Intuitively, the reason is that two “neighboring” local vectors

for such a user may lead to two different scenarios, where the user is participating in one,

and not participating in the other. An alternative handling of such “sensitive” users would be

to apply the randomizer based on S and to report R(ccci) anyway. This means that the user’s

data is obtained with weakened privacy protection. Formally, the privacy for a sensitive user

i satisfies Definition 5.3 but with a larger value of the privacy loss parameter ε ′ = LS(ccci)
S ε . In

our experimental studies we have observed that using 10% of the software users as opt-in

users provides a reasonable bound S and only a few users from the remaining 90% (i.e.,

regular users) have local sensitivity exceeding this S and thus their ci is protected with

weakened guarantees.

5.4.3 Tighter Bound via Restricted Sensitivity

The approach discussed earlier cannot guarantee strong privacy protection for regular

users whose local sensitivities are above the S computed from the opt-in user data. To deal

with this issue, in this and the next subsection we introduce two approaches that yield strict

ε-node-LDP for all users.

A tighter sensitivity bound can be achieved with certain hypotheses. A hypothesisH in

our context is a subset of the set D of all possible feasible coverage vectors. The specific

hypotheses we consider are parameterized by a value k < Sgs and defined asHk ⊆D where

LS(ccc)≤ k for all ccc∈Hk. The sensitivity bound is S = k in this case. This technique is similar

in spirit to restricted sensitivity [10] that guarantees differential privacy for a restricted class

of datasets. The result of the analysis is useful if the hypothesis is correct, which in our case

92

means that all coverage vectors have local sensitivity not exceeding k. The result may be

inaccurate if some vectors have local sensitivity greater than k.

To ensure that the hypothesis holds for the input domain of randomizer R, one solution

is to define a projection function µ : D→Hk by which ccc is transformed into µ(ccc) such

that LS(µ(ccc)) ≤ k. Then R is applied to µ(ccc). We design µ as follows. For all ccc ∈ Hk,

we have µ(ccc) = ccc. For any other ccc ∈D, we prune Gccc according to its dominator relation.

Specifically, consider each child node v of the start node s in the dominator tree for which

|ccc|− |∆v(ccc)|> k. (If this condition does not hold, v and its tree descendants do not need to

be pruned.) We conduct breadth-first search starting from v and prune the last subGccc(v)− k

traversed nodes from the dominator tree and from Gccc. The corresponding bits in ccc are set to

0.

Example 5.4. Consider the coverage vector ccc = [1101010111] and its corresponding domi-

nator tree in Figure 5.4. If k = 5, as |ccc|− |∆v1(ccc)|= 6 > 5, by removing the leaf node v9 at

the last level in the subtree, the projection produces µ(ccc) = [1101010110]. Next, consider

an extreme case where k = 1. The projection µ(ccc) needs to trim from Gccc a set of 5 nodes

{v3,v5,v7,v8,v9}. The final output of the projection is µ(ccc) = [1100000000]. Its local

sensitivity is LS(µ(ccc)) = 1≤ k.

After the projection step, each user reports R(µ(ccc)) to the server for further analysis.

Overall accuracy depends not only on R but also on k. When k� Sgs, we have a very tight

bound such that the noise introduced by R reduces significantly, while the noise due to the

projection µ increases. For the extreme example above, the utility of the analysis result

is expected to drop since most of the information of ccc is lost after the projection. This

highlights the trade-offs between privacy and accuracy in any DP analysis. In Section 5.5,

93

we conduct empirical evaluation on the impact of k and show that practical accuracy can be

achieved by properly selecting the value for k.

5.4.4 Relaxed Indistinguishability of Neighbors

The above techniques ensure the same level of indistinguishability for all neighbors of

a coverage vector. However, in practice, not all neighbors are of the same significance in

terms of privacy protection. For instance, consider a news app that records users’ reading

content. It might be acceptable to reveal that a user is reading sports news instead of

business news, but disclosing whether it is about basketball or football may be undesirable

as this information can be used for targeted advertisement. As another example, API

methods invoked by the Android framework (e.g., activity lifecycle callbacks) are expected

to be covered in any non-trivial execution. The weakened hiding of their presence is a

reasonable compromise. Thus a relaxed indistinguishability level depending on some notion

of “distance” between any pair of neighbors would be useful. Intuitively, neighbors with

small distance require more extensive randomization. For the above example of the news

app, the more specific the news topic is, i.e., news are “closer” to each other, the more privacy

concerns a user may have and the more noise is needed. Distance-based indistinguishability

has been studied theoretically [15] as a generalization of traditional DP.

We investigate a distance metric d∗ based on the difference of each pair of neighboring

coverage vectors ccc and ∆v(ccc). More specifically, d∗(ccc,∆v(ccc)) = |ccc \∆v(ccc)| = subGccc(v).

We define the privacy budget ε ′ depending on this metric to achieve (d∗,ε)-privacy [15]:

ε ′ = ε×d∗(ccc,∆v(ccc)). This can be realized by setting S = 1 in Definition 5.5, of which the

proof is similar to the one for Proposition 5.2. In general, if the distance is large between

two neighbors, the privacy budget will also be large and R only introduces a small amount

94

of noise to “hide” their difference. If the distance is 1, we will have the same protection as

by the traditional DP techniques introduced earlier. For the example in Figure 5.4, we have

ε ′ = ε × d∗(ccc,∆v1(ccc)) = 6ε , while ε ′ = ε × d∗(ccc,∆v9(ccc)) = ε which guarantees stronger

protection.

The intuition behind this metric is that nodes that are close to the root of the dominator

tree are likely to be covered by most run-time executions and thus are less sensitive in terms

of privacy. For instance, the analysis of 15000 realizations of screen view graphs for 15

Android apps from Section 5.5 shows that nodes that are in all dynamic graphs for an app

(which strongly indicates that their executions are deterministic and the protection of their

existence is impossible) have an average dominator tree level of 2, while nodes that appear

in less than half of the graphs have an average level of 4. Intuitively, stronger protection is

desirable for a node v if its execution is specific for a small group of users, compared to the

case where v’s execution is deterministic and happens for all users.

As a concrete example, in Figure 5.3, the “LastParkingFragment” screen (v1) in the

parking app is the landing screen after the “Splash” screen and is observed in all run-time

executions in our experiments. Such population-wise behaviors likely cannot be used as

user-specific usage patterns and may be of less interest to the adversary. Thus we believe

that reducing the effort to hide its existence is a reasonable compromise. Meanwhile,

among 1000 independent executions of the parking app in the experimental evaluation, the

“ZoneEditorActivity” screen (v9) is observed only once. It could be used as a fingerprint for

that particular user and thus requires more protection. A vector ccc and its neighbor ∆v9(ccc)

should be indistinguishable after randomization to prevent adversaries from inferring the

occurrence of v9.

95

This technique is an example of d-privacy [15] which is a generalization of differential

privacy. There are other possible choices for techniques to help improve utility. For example,

consider a set of non-sensitive nodes that is defined as part of the analysis specification.

Metric d∗ can set the distance of neighbors with respect to these nodes to a very large

value (e.g., d∗ = ∞), so that the privacy protection for such neighbors are minimized.

Utility-optimized LDP [65] can also be used, by providing ε-node-LDP protection for graph

instances that include sensitive nodes while relaxing the protection of graphs containing

only non-sensitive nodes. However, the original algorithms in [65] fail to consider the

correlation between data items and cannot be directly employed here. It would be interesting

to investigate the problem of control-flow node coverage with predefined non-sensitive

nodes, depending on domain-specific and software-specific considerations.

5.5 Evaluation

To evaluate the proposed techniques, we gathered two kinds of control-flow graphs:

GUI screen graphs and call graphs. Each GUI screen graph was obtained by analyzing the

sequence of Google Analytics (GA) GUI screen view events. A GA GUI screen view event

indicates that a particular screen in the app’s GUI was displayed. Each screen has a unique

string name that is used as an identifier. With the help of app code instrumentation, in our

experiments we intercepted and recorded such events to a local database (by the tracker

component). The transitions from one screen to the next define a GUI screen graph, in

which nodes are screens and edges are transitions between screens. We first ran extensive

experiments with the Monkey tool for GUI testing [40] to construct a graph G = (V ,E ,s)

that captures possible screen transitions. Alternatively, app developers could have GUI

design information that provides such a graph G directly. Given this G, we simulated

96

App
Screen Graph Call Graph

#Nodes #Edges #Nodes #Edges

barometer 9 69 1066 1683
bible 11 75 832 1412
dpm 8 36 623 1016

drumpads 14 108 613 868
equibase 18 297 340 826

localtv 28 366 1741 3102
loctracker 14 151 199 335

mitula 16 169 3700 6879
moonphases 15 126 254 454

parking 10 58 712 1223
parrot 51 1239 3748 9804

post 9 54 791 1635
quicknews 14 120 970 1861
speedlogic 10 75 124 186

vidanta 12 112 2290 4089

Table 5.1: Apps and control-flow graph models.

1000 executions of the app. To represent the data for each execution, we ran Monkey

(independently from any other executions) to obtain 10×|V | screen view events for that

execution. From that trace we determined the coverage vector ccc and the corresponding

subgraph Gccc of G. The call graph models G were obtained in a similar manner; here nodes

represent methods in the app code and edges represent calling relationships, with an artificial

start node s representing the Android framework code. Using separate Monkey runs and

code instrumentation, we created 1000 traces each with 10×|V | method call events. From

these traces, call graph coverage vectors ccc were constructed.

To obtain apps that use Google Analytics, we analyzed popular apps in each category

in the Google Play store and identified apps that include GA API calls. The apps and their

control-flow models G are described in Table 5.1. As can be seen from these measurements,

97

a call graph is typically one to two orders of magnitude larger than the GUI screen graph

for the same app (as can be expected). We chose to study data for both GUI screen

graphs and call graphs in order to observe the effects of graph size on the accuracy of the

analysis. All graphs G and the 1000 run-time realizations of Gc for each app are available at

https://presto-osu.github.io/sec20.

5.5.1 Metrics

Theoretically, when S is large, the protocol achieves higher privacy (i.e., the probability

p in Definition 5.5 is large) at a cost of lower utility. Such trade-offs between privacy and

utility are inherent in DP analyses and need to be explored carefully in order to design

practical solutions. In Sections 5.3.2 and 5.4, we propose techniques based on ε-node-LDP

and d-privacy that utilize different bounds to achieve high utility of analysis results. To

evaluate the effectiveness of these techniques, we consider two practical usage scenarios

and questions:

• Q1: Which control-flow graph nodes are executed by at least one user? This

question is the core to many debugging and testing techniques, e.g., residual test-

ing [78]. The answer is the set of nodes that are observed at run time in at least

one deployed software instance: {v ∈ V | F(v)> 0}. Recall that the algorithm from

Section 5.3 provides an estimate vector F̂FF of the real frequency vector FFF . Thus, we

can estimate the set of nodes by {v ∈ V | F̂(v)> 0}. We use precision and recall to

measure the utility of the estimation.

• Q2: Given a node, what is the number of users who have executed it? This

information is useful for tasks such as finding popular app features. We evaluate the

accuracy of estimates by computing the relative error (RE), which is also used in the

98

https://presto-osu.github.io/sec20

experimental evaluation in Chapter 3 and 4, defined as follows:

RE =
∑v∈D |F(v)− F̄(v)|

∑v∈DF(v)

where F̄FF is a calibrated estimate vector computed by applying the same quadratic pro-

gramming technique used in previous chapters. We minimize the squared Euclidean

distance from F̄FF to F̂FF under the constraints that F̄FF ≥ 000 and the sum of all elements

in F̄FF is ∑v∈V F(v). This guarantees that the worst-case value of RE is 2, which is

consistent with the metrics in earlier chapters. In the experiments, we calculate both

the overall RE for all nodes, i.e., D = V , and the RE for frequently-executed nodes

across all users, i.e., D = hot(FFF , `) as introduced in Section 3.4.4. We also compute

the hot node coverage (HNC), defined similarly to the hot method coverage metric in

Section 3.4.4: HNC(`) = |hot(FFF , `)∩hot(F̄FF , `)|/|hot(FFF , `)|. In this section, we only

show the results for `= 0.25 as other threshold values show similar trends.

5.5.2 GUI Screen Graphs

Answering Q1. We first collected all ccci for 1 ≤ i ≤ 1000 to get the ground truth FFF ,

as described earlier, and computed F(v) = ∑i ccci(v) where i ranges over all independent

executions that are regarded as individual users. To compute estimates F̂FF , for the same

range of i we randomized each ccci independently according to Definition 5.5, computed

HHH = ∑i R(ccci), and post-processed HHH using Equation 5.1. To empirically compare the

accuracy of the proposed techniques, we used ε = 1 for the randomization; this choice was

motivated by a popular DP analysis [9]. During post-processing, the estimate was set to 0 if

it was negative, and to the number of analyzed users if it exceeded that number. Then each

estimate was rounded to the nearest integer. We repeated this process for 100 independent

trials and collected the precision and recall for each trial. The variations among the 100

99

0.0

0.5

1.0

Pr
ec

isi
on

baseline tighter-ls tighter-rs relaxed

ba
rom

ete
r
bib

le
dp

m

dru
mpa

ds

eq
uib

ase
loc

alt
v

loc
tra

cke
r
mitu

la

moo
np

ha
ses

pa
rki

ng
pa

rro
t

po
st

qu
ick

ne
ws

spe
ed

log
ic

vid
an

ta
0.0

0.5

1.0

Re
ca

ll

Figure 5.6: Precision and recall for GUI screen graphs.

trials are due to the randomness when perturbing ccci (since ccci for user i is the same in each

trial). Figure 5.6 reports the mean values and the 95% confidence intervals for the 100 trials,

using the GUI screen graphs. The confidence intervals are typically very small, and barely

noticeable in this figure and other figures in the this section.

When applying randomization, we first set the sensitivity bound S to the global sensitivity

Sgs = |N|−1 (in Section 5.4.1) to obtain a worst-case baseline. As shown by bars “baseline”

in Figure 5.6, using global sensitivity yields perfect precision but relatively low recall.

The precision is perfect due to the fact that in our run-time traces every node in graph G

has been executed by at least one user, i.e., there are no false positives. We include this

redundant precision data only for completeness and for uniformity with the data for call

graphs presented later (where false positives are present). We have recall below 0.8 in

5 out of the 15 apps. Practically, this means that more than 20% of nodes are lost after

randomization and post-processing. The figure also shows similar measurements for the

remaining three techniques.

100

To obtain tighter bounds based on local sensitivities from opt-in users as introduced in

Section 5.4.2, we randomly selected 100 (from the 1000) users to form the opt-in user group.

For each selected user i, its local sensitivity LS(ccci) was calculated using the dominator tree

induced by ccci. The maximum of all local sensitivities of the sampling group was set to be the

bound S used for randomization. The remaining 900 users perturbed their coverage vectors

accordingly. The resulting precision and recall for each app is shown by bars “tighter-ls” in

Figure 5.6.

To select a proper k for tighter bound via restricted sensitivity, we used k = bt×Sgsc

where t = {0.95,0.9, . . . ,0.05} and computed the largest difference between the estimated

and the true frequencies, i.e., maxv∈V |F(v)− F̂(v)|. We chose the k that minimized the

largest difference for each app. For example, we set k = b0.35×Sgsc= 3 for the parking

app leading the bound to be 3× smaller. The impact of k varies from app to app. This is

mainly due to variance of the structure of graphs and dominator trees of each app.

By using the tighter bounds and relaxed indistinguishability level for neighbors, the

recall is significantly improved. With the tighter bound, the recall is below 0.8 for 4 apps if

based on local sensitivity, and for only 3 apps if using restricted sensitivity. With relaxed

indistinguishability level, the recall is ≥ 0.85 for all apps and is perfect for 5 apps. This

means that the LDP algorithm successfully preserves the presence of all nodes that were

actually observed at run time.

Answering Q2. To evaluate the ability of the proposed techniques to recover frequencies,

we collected the RE for every experimental subject in each of the 100 independent trials and

computed the mean of the errors. Table 5.2 lists the average RE across all apps for different

values of ε . Figure 5.7 shows the mean values of RE across 100 trials and the 95% confidence

101

RE

ε = 0.5 ε = 1 ε = 2

baseline 0.490 0.321 0.190
tighter-ls 0.392 0.261 0.147
tighter-rs 0.313 0.200 0.120

relaxed 0.064 0.032 0.015

Table 5.2: Average RE across all apps for GUI screen graphs.

RE HNC

ε = 0.5 ε = 1 ε = 2 ε = 0.5 ε = 1 ε = 2

baseline 0.312 0.193 0.110 0.640 0.754 0.875
tighter-ls 0.247 0.157 0.086 0.706 0.804 0.909
tighter-rs 0.201 0.122 0.073 0.749 0.842 0.917

relaxed 0.034 0.017 0.008 0.992 0.996 0.997

Table 5.3: Average RE and HNC for hot nodes in GUI screen graphs given `= 0.25.

intervals for each app under various values of ε . As expected, the baseline approach provides

the least accurate estimates. The two techniques, which yield tighter sensitivity bounds based

on local sensitivity (“tighter-ls” in the table and figure) and restricted sensitivity (“tighter-rs”

in the table and figure), achieve comparable improvements in accuracy. For example, they

produce 1.2× and 1.6× less RE compared to the baseline approach when ε = 1, respectively.

We can observe significant improvement when applying relaxed indistinguishability. The

average RE in this case is 9.9× smaller than the baseline RE under ε = 1, and is 12.6×

smaller when ε grows to 2.

If we only focus on the frequency estimates for frequently-executed nodes, the accuracy

is higher. As shown in Table 5.3, the average RE for hot nodes in GUI screen graphs across

102

-1 0 1
log2

0.0

0.2

RE

barometer

-1 0 1
log2

0.0

0.5

RE

bible

-1 0 1
log2

0.0

0.2

RE

dpm

-1 0 1
log2

0.0

0.5

RE

drumpads

-1 0 1
log2

0.00

0.25RE

equibase

-1 0 1
log2

0.0

0.5RE

localtv

-1 0 1
log2

0.00

0.25RE

loctracker

-1 0 1
log2

0.00

0.25RE

mitula

-1 0 1
log2

0.00

0.25

RE

moonphases

-1 0 1
log2

0.0

0.5

RE

parking

-1 0 1
log2

0.0

0.5

RE

parrot

-1 0 1
log2

0.00

0.25

RE

post

-1 0 1
log2

0.0

0.5

RE

quicknews

-1 0 1
log2

0.0

0.5RE

speedlogic

-1 0 1
log2

0.0

0.2

RE

vidanta

baseline tighter-ls tighter-rs relaxed

Figure 5.7: Relative error for GUI screen graphs.

all 15 experimental subjects is much smaller than the RE for all nodes. For example, for

the baseline approach, the RE is 1.6×, 1.7× and 1.7× smaller when ε is set to 0.5, 1, and 2.

As another example, the relaxed-indistinguishability-based approach produces 1.9× less RE

on average for all values of ε . The HNC is reasonable (≥ 0.8) only when appropriate ε is

chosen. For example, the two approaches that tighten the bound only provide acceptable

HNC when ε ≥ 1.

5.5.3 Call Graphs

Answering Q1. GUI screen graphs for Android applications are typically small, since

the GUI structure of an app is highly unlikely to contain hundreds of screens. To evaluate

the performance of the proposed techniques on larger graphs, we obtained call graph data

as described earlier. The coverage measurements for this data were computed in the same

103

0.0

0.5

1.0

Pr
ec

isi
on

baseline tighter-ls tighter-rs relaxed

ba
rom

ete
r
bib

le
dp

m

dru
mpa

ds

eq
uib

ase
loc

alt
v

loc
tra

cke
r
mitu

la

moo
np

ha
ses

pa
rki

ng
pa

rro
t

po
st

qu
ick

ne
ws

spe
ed

log
ic

vid
an

ta
0.0

0.5

1.0

Re
ca

ll

Figure 5.8: Precision and recall for call graphs.

manner as for the GUI screen graphs. We ran 100 independent trials for each experiment.

Figure 5.8 reports the means and 95% confidence intervals of precision and recall over the

100 trials. As expected, using the global sensitivity as the sensitivity bound introduces the

largest amount of noise due to the large size of V . Though only 3 out of the 15 apps have

precision below 0.9 due to the correct discovery of frequently executed methods, the recall

is under 0.6 for all apps. By manual investigation, we found that for many infrequently

executed methods the frequency estimates were negative and thus were zeroed out after

post-processing. In these cases, the noise overwhelmed the small frequency counts and the

nodes were not correctly discovered.

Using tighter sensitivity bound based on local sensitivities, there is only a little im-

provement on the recall, i.e., 1.1× increase averaged across all apps for ε = 0.5, 1.2×

increase for ε = 1 and 1.3× increase for ε = 2. Using tighter bound based on restricted

sensitivities, the improvement is also not obvious. The recall is 1.2×, 1.3× and 1.4× larger

for ε = 0.5, ε = 1 and ε = 2, respectively. This implies that, at least for these specific runs

104

RE

ε = 0.5 ε = 1 ε = 2

baseline 1.080 1.068 1.048
tighter-ls 0.973 0.867 0.709
tighter-rs 0.807 0.656 0.527

relaxed 0.082 0.042 0.019

Table 5.4: Average RE across all apps for call graphs.

in the experiment, the balance between the accuracy gain and loss by the projection is hard

to achieve and strong privacy guarantees cannot be achieved without sacrificing accuracy.

The recall has an observable jump when the relaxed indistinguishability is used and 13 out

of 15 apps have recall ≥ 0.8 when ε is small (0.5 and 1).

Answering Q2. Table 5.4 shows the average RE for all apps. Figure 5.9 shows detailed

results for each app. For most apps, there is observable less RE for the techniques that tighten

the sensitivity bound. Comparing to the baseline approach, the one based on local sensitivity

achieves 1.1×, 1.2× and 1.5× less RE on average for ε = 0.5, 1 and 2, respectively. The one

based on restricted sensitivity performs a little better, producing estimates with 1.3×, 1.6×

and 2× less RE for the three different ε values. The best accuracy is achieved when using

relaxed indistinguishability by providing less protection for neighbors that are “far away”

from each other, which in the case of call graphs means that two neighboring executions

share only a small set of common methods. For example, when ε = 2, this approach

guarantees 53.8× smaller RE, averaged across all apps.

105

-1 0 1
log2

0

1

RE

barometer

-1 0 1
log2

0

1

RE

bible

-1 0 1
log2

0

1

RE

dpm

-1 0 1
log2

0

1

RE

drumpads

-1 0 1
log2

0.0

0.5RE

equibase

-1 0 1
log2

0

1

RE

localtv

-1 0 1
log2

0.0

0.5RE

loctracker

-1 0 1
log2

0.0

0.5RE

mitula

-1 0 1
log2

0.0

0.5RE

moonphases

-1 0 1
log2

0

1

RE

parking

-1 0 1
log2

0

1

RE

parrot

-1 0 1
log2

0.0

0.5RE

post

-1 0 1
log2

0

1

RE

quicknews

-1 0 1
log2

0

1

RE

speedlogic

-1 0 1
log2

0

1

RE

vidanta

baseline tighter-ls tighter-rs relaxed

Figure 5.9: Relative error for call graphs.

Table 5.5 shows the average RE and HNC for hot nodes in call graphs. We will not

elaborate the details as we can draw similar conclusion as in the previous subsection, i.e.,

the accuracy is much better if only estimates for frequently-executed nodes are of interest.

To summarize, our results demonstrate that node coverage analysis of control-flow graphs

could be achieved with both privacy and practical accuracy. At the same time, the results

clearly show that there is a fundamental trade-off between the degree of privacy protection

and the utility of the analysis estimates. In addition to the theoretical exploration of this space

presented in Section 5.3 and Section 5.4, we experimentally identify practical trade-offs that

could be used for future developments of privacy-preserving software analyses.

Processing cost. The cost of computing LS(ccci) is rather small. For example, call graphs

Gccci for app mitula are the largest ones in our data, with 2011 nodes per graph on average. The

106

RE HNC

ε = 0.5 ε = 1 ε = 2 ε = 0.5 ε = 1 ε = 2

baseline 0.576 0.570 0.558 0.491 0.499 0.506
tighter-ls 0.512 0.450 0.360 0.493 0.538 0.622
tighter-rs 0.433 0.365 0.312 0.530 0.563 0.622

relaxed 0.032 0.016 0.007 0.990 0.996 0.998

Table 5.5: Average RE and HNC for hot nodes in call graphs given `= 0.25.

average time to compute LS(ccci) for one of these graphs is about 15 ms. Given the sensitivity

bound S, the average time to compute R(ccci) for these graphs is about 30 ms. Clearly, for the

graphs considered in our experiments, the cost of data processing is negligible.

5.6 Summary

Over the last decade, pervasive data gathering has become the norm. Combined with

rapid advances in large-scale data analytics and machine learning, this presents fundamental

challenges to privacy. Exploring the trade-offs between privacy protections and the utility

of data gathering/analysis is a critical scientific challenge. To study such trade-offs in the

analysis of deployed software, we explore the use of differential privacy. With the help of

this rigorous technique, we develop a novel node coverage analysis of control-flow graphs.

By carefully defining feasibility constraints and neighbor relations for such graph, our study

highlights the key trade-offs in algorithm design and presents effective choices for these

trade-offs. Our evaluation demonstrates that, with these choices, both privacy and accuracy

can be achieved for this control-flow analysis. This work is a promising step in the larger

landscape of privacy-preserving software analysis and analytics.

107

Chapter 6: Related Work

Differential privacy. Several examples of prior work on differential privacy were already

discussed in Chapter 2. Many other analytics problems have also been considered: for

example, heavy hitters [9, 13], distribution estimation [27], clustering [71], learning [51],

and convex optimization [89]. These theoretical models have not yet been applied to

software profiling and present a rich source of powerful privacy-preserving techniques.

Several applications of LDP have been realized in practice [3, 25, 32, 35, 70, 94, 95].

Google’s RAPPOR combines randomized responses and Bloom filters to encode and identify

popular URLs in the Chrome browser [32, 35]. Apple applies DP for gathering analytics

data for emoji and quick type suggestions [3, 94]. Samsung proposed the Harmony LDP

system to collect data from smart devices [70]. Microsoft uses LDP to collect telemetry

data across millions of devices [25]. Several of these existing approaches are focused on

collection of a single data item per user, while this dissertation aims at profiling where

accurate results are needed for multidimensional local frequency profiles.

There also exists a large body of work on protection of correlated data [16, 53, 54,

60, 106] and graphs with DP [23, 49, 50, 52, 83, 84, 88]. A few examples are outlined

below. Karwa et al. [50] consider subgraph counting queries and present solutions with edge

differential privacy. Liu and Mittal [59] propose LinkMirage to mediate privacy-preserving

108

access to social networks by obfuscation of links. Qin et al. [82] aim at providing LDP of

social networks where each user holds an adjacency list of her friends. While these studies

provide edge-DP, our solution in Chapter 5 achieves the more challenging node-DP for

control-flow graphs considering the causal relationships between nodes.

Profiling and its privacy. Many works have considered collection of various forms of

data from deployed software for profiling and analysis purposes, and could be interesting

targets for developing DP analyses. Residual coverage monitoring [78] collects statement

coverage cumulatively. Liblit et al. [57] minimize per-user overhead during information

gathering by using sampling of program executions. Bond and McKinley [11] propose

a hybrid instrumentation and sampling approach for continuous path and edge profiling.

Ricci et al. [85] track garbage collection events to help the development of new garbage

collection algorithms. The GAMMA system [76] tracks data from many users by assigning

monitoring subtasks to different software instances and integrating results from probes to

provide information about the original task. Orso et al. [77] leverage GAMMA for impact

analysis and regression testing using profiling and coverage data at block and method levels.

Haran et al. [44] use random forest to classify failing executions based on execution data.

Nagpurkar et al. [66] propose an instruction-based profiling approach for deployed software.

DiCE [14] explores system behaviors to check whether the system deviates from its desired

behavior. BugRedux [47] collects execution data and synthesizes in-house executions the

reproduce field failures. Their follow-up work [48] enhances BugRedux with debugging

capabilities by synthesizing a set of program executions that mimic a field failure based

on call sequences. Saha et al. [87] collect execution information across software instances

by running the program multiple times with the same input. Diep et al. [24] propose a

109

probe distribution algorithm to collect profile events. Clause and Orso [20] record program

execution information, including interactions between software and environment and the

input data for each interaction, for failure reproduction and in-house debugging. Ohmann

et al. [74] propose algorithms based on dominator trees to minimize the coverage probes

required for monitoring. A related effort [75] introduces a new language for answering

control-flow queries based on incomplete data from post-deployment failure reports.

Privacy has also been considered. Elbaum and Hardojo [31] marshal and label data with

the encrypted sender’s name for anonymization at the deployed site. Clause and Orso [21]

anonymize inputs that cause failures in deployed software. There are no theoretical guaran-

tees about the privacy protection these techniques provide. In general, such approaches may

suffer from carefully tuned attacks such as linkage attacks, in which data is gathered from

several sources to reveal personally-identifiable information [26, 67, 68]. The approaches

introduced in this dissertation, which are based on DP and its generalizations, are designed

from the ground up with strong and well-defined privacy guarantees: despite any additional

information an adversary may obtain from other sources, she cannot determine with high

probability what is a user’s private data.

Privacy in programming languages and software engineering. There is a growing

number of efforts on differential privacy in the programming languages community. Zhang

and Kifer [102] propose LightDP, a relational type system, to verify sophisticated differential

privacy algorithms requiring less annotations from programmers than customized logics

based proofs. Inspired by LightDP, Wang et al. [98] further propose a flow-sensitive type

system, ShadowDP, that uses shadow execution to verify more differential privacy algorithms

110

and reduce the complexity of the verification process. Near et al. [69] propose the Duet

language for verifying differential privacy of general-purpose higher-order programs.

Some emphasis has also been put on privacy in various fields of software engineering [42].

Two typical areas of interest are testing [12, 41, 61, 93] and defect prediction [56, 79, 80].

Budi et al. [12] propose to use kb-anonymity for testing and debugging data. MORPH [79]

preserves data privacy of software defects in a cross-company scenario, by perturbing

instance values. The CLIFF+MORPH approach [80] uses perturbation to preserve data

privacy of software defect information. With the exception of the work presented in this

dissertation, we are not aware of any efforts to create DP versions of existing program

analyses and profiling, which we believe is a fruitful target for future work.

111

Chapter 7: Conclusions

Over the last decade, pervasive data gathering has become the norm. Combined with

rapid advances in large-scale data analytics and machine learning, this presents fundamental

challenges to privacy. Exploring the trade-offs between privacy protections and the utility

of data gathering/analysis is a critical scientific challenge. To study such trade-offs in the

analysis and profiling of deployed software, we explore the use of differential privacy. With

the help of this rigorous technique, this dissertation proposes several solutions targeting

various profiling tasks to protect user profile data, as follows:

• Chapter 3 presents an approach that allows tunable trade-offs between accuracy and

privacy with respect to traces of run-time events, and enforces consistency constraints

of event frequencies to improve estimate accuracy.

• Chapter 4 presents a Laplace-mechanism-based approach for randomization of event

frequency vectors, a novel linear programming formulation to compute the magnitude

of random noise that should be added to achieve meaningful privacy protections,

and the design of a hybrid approach to collect user profiles in a differentially-private

manner that utilizes raw data from opt-in users.

• Chapter 5 presents a differentially-private approach that ensures the privacy pro-

tection of control-flow graph nodes during node coverage profiling. The privacy

112

guarantees depend on the intrinsic correlations of nodes that can be captured by

the dominator relationships between nodes, and can be effectively achieved by the

proposed approach while providing practical accuracy.

The proposed approaches advance both the theoretical state of art and provide guidelines

for future development of privacy-preserving software profiling and analysis infrastructures.

They are the first to introduce differential privacy into remote software frequency and

coverage profiling in order to provide principled privacy guarantees for user profiles. Our

experimental evaluation shows that, with careful application, it is possible to achieve both

high privacy and high accuracy for the target profiling tasks of these approaches.

In conclusion, the techniques described in this dissertation present promising novel

advances in a broader research agenda to develop privacy-preserving analyses of deployed

software. We anticipate that many interesting technical challenges will arise in attempts to

apply differential privacy to other forms of dynamic program analysis of remote software.

This dissertation provides several potentially-useful building blocks for such future attempts.

113

Bibliography

[1] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques,

and Tools. Addison-Wesley, 2006.

[2] G. Ammons, J. Choi, M. Gupta, and N. Swamy. Finding and removing perfor-

mance bottlenecks in large systems. In European Conference on Object-Oriented

Programming, pages 172–196, 2004.

[3] Apple. Learning with privacy at scale. https://machinelearning.apple.com/

2017/12/06/learning-with-privacy-at-scale.html, 2017.

[4] M. Arnold, S. Fink, D. Grove, M. Hind, and P. Sweeney. A survey of adaptive

optimization in virtual machines. Proceedings of the IEEE, 93(2):449–466, 2005.

[5] P. Arumuga Nainar, T. Chen, J. Rosin, and B. Liblit. Statistical debugging using

compound boolean predicates. In International Symposium on Software Testing and

Analysis, pages 5–15, 2007.

[6] B. Avent, A. Korolova, D. Zeber, T. Hovden, and B. Livshits. BLENDER: Enabling

local search with a hybrid differential privacy model. In USENIX Security Symposium,

pages 747–764, 2017.

[7] T. Ball and J. Larus. Optimally profiling and tracing programs. ACM Transactions

on Programming Languages and Systems, 16(4):1319–1360, July 1994.

114

https://machinelearning.apple.com/2017/12/06/learning-with-privacy-at-scale.html
https://machinelearning.apple.com/2017/12/06/learning-with-privacy-at-scale.html

[8] R. Bassily and A. Smith. Local, private, efficient protocols for succinct histograms.

In ACM Symposium on Theory of Computing, pages 127–135, 2015.

[9] R. Bassily, K. Nissim, U. Stemmer, and A. Thakurta. Practical locally private heavy

hitters. In Advances in Neural Information Processing Systems, pages 2285–2293,

2017.

[10] J. Blocki, A. Blum, A. Datta, and O. Sheffet. Differentially private data analysis of

social networks via restricted sensitivity. In Innovations in Theoretical Computer

Science Conference, pages 87–96, 2013.

[11] M. D. Bond and K. S. McKinley. Continuous path and edge profiling. In IEEE/ACM

International Symposium on Microarchitecture, pages 130–140, 2005.

[12] A. Budi, D. Lo, L. Jiang, and Lucia. kb-anonymity: A model for anonymized

behaviour-preserving test and debugging data. In ACM SIGPLAN Conference on

Programming Language Design and Implementation, pages 447–457, 2011.

[13] M. Bun, J. Nelson, and U. Stemmer. Heavy hitters and the structure of local privacy.

In ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems,

pages 435–447, 2018.

[14] M. Canini, V. Jovanović, D. Venzano, B. Spasojević, O. Crameri, and D. Kostić.

Toward online testing of federated and heterogeneous distributed systems. In USENIX

Annual Technical Conference, 2011.

[15] K. Chatzikokolakis, M. Andrés, N. Bordenabe, and C. Palamidessi. Broadening the

scope of differential privacy using metrics. In Proceedings on Privacy Enhancing

Technologies, pages 82–102, 2013.

115

[16] R. Chen, B. C. Fung, P. S. Yu, and B. C. Desai. Correlated network data publication

via differential privacy. The International Journal on Very Large Data Bases, 23(4):

653–676, 2014.

[17] R. Chen, H. Li, A. K. Qin, S. P. Kasiviswanathan, and H. Jin. Private spatial data

aggregation in the local setting. In International Conference on Data Engineering,

pages 289–300, 2016.

[18] T. M. Chilimbi, B. Liblit, K. Mehra, A. V. Nori, and K. Vaswani. Holmes: Effective

statistical debugging via efficient path profiling. In International Conference on

Software Engineering, pages 34–44, 2009.

[19] A. Chin and A. Klinefelter. Differential privacy as a response to the reidentification

threat: The Facebook advertiser case study. North Carolina Law Review, 90:1417,

2011.

[20] J. Clause and A. Orso. A technique for enabling and supporting debugging of field

failures. In International Conference on Software Engineering, pages 261–270, 2007.

[21] J. Clause and A. Orso. Camouflage: Automated anonymization of field data. In

International Conference on Software Engineering, pages 21–30, 2011.

[22] A. Dajan, A. Lauger, P. Singer, D. Kifer, J. Reiter, A. Machanavajjhala, S. Garfinkel,

S. Dahl, M. Graham, V. Karwa, H. Kim, P. Leclerc, I. Schmutte, W. Sexton, L. Vil-

huber, and J. Abowd. The modernization of statistical disclosure limitation at the

U.S. Census Bureau. https://www2.census.gov/cac/sac/meetings/2017-09/

statistical-disclosure-limitation.pdf, Sept. 2017.

116

https://www2.census.gov/cac/sac/meetings/2017-09/statistical-disclosure-limitation.pdf
https://www2.census.gov/cac/sac/meetings/2017-09/statistical-disclosure-limitation.pdf

[23] W. Y. Day, N. Li, and M. Lyu. Publishing graph degree distribution with node

differential privacy. In International Conference on Management of Data, pages

123–138, 2016.

[24] M. Diep, M. Cohen, and S. Elbaum. Probe distribution techniques to profile events in

deployed software. In International Symposium on Software Reliability Engineering,

pages 331–342, 2006.

[25] B. Ding, J. Kulkarni, and S. Yekhanin. Collecting telemetry data privately. In

Advances in Neural Information Processing Systems, pages 3571–3580, 2017.

[26] I. Dinur and K. Nissim. Revealing information while preserving privacy. In ACM

SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, pages

202–210, 2003.

[27] J. Duchi, M. Jordan, and M. Wainwright. Local privacy and statistical minimax rates.

In IEEE Annual Symposium on Foundations of Computer Science, pages 429–438,

2013.

[28] C. Dwork. Differential privacy. In International Colloquium on Automata, Languages

and Programming, pages 1–12, July 2006.

[29] C. Dwork and A. Roth. The algorithmic foundations of differential privacy. Founda-

tions and Trends in Theoretical Computer Science, 9(3-4):211–407, 2014.

[30] C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise to sensitivity in

private data analysis. In Theory of Cryptography Conference, pages 265–284, 2006.

117

[31] S. Elbaum and M. Hardojo. An empirical study of profiling strategies for released

software and their impact on testing activities. In International Symposium on

Software Testing and Analysis, pages 65–75, 2004.

[32] Ú. Erlingsson, V. Pihur, and A. Korolova. RAPPOR: Randomized aggregatable

privacy-preserving ordinal response. In ACM SIGSAC Conference on Computer and

Communications Security, pages 1054–1067, 2014.

[33] Exodus Privacy. Most frequent app trackers for Android. https://reports.

exodus-privacy.eu.org/en/reports/stats, 2020.

[34] Facebook. Facebook Analytics. https://analytics.facebook.com, 2020.

[35] G. Fanti, V. Pihur, and Ú. Erlingsson. Building a RAPPOR with the unknown:

Privacy-preserving learning of associations and data dictionaries. Proceedings on

Privacy Enhancing Technologies, 2016(3):41–61, 2016.

[36] A. Georges, D. Buytaert, and L. Eeckhout. Statistically rigorous Java performance

evaluation. In ACM SIGPLAN Conference on Object-Oriented Programming, Systems,

Languages, and Applications, page 57–76, 2007.

[37] Google. Google Analytics. https://analytics.google.com, 2019.

[38] Google. Android Debug Bridge. https://developer.android.com/studio/

command-line/adb, 2020.

[39] Google. Firebase. https://firebase.google.com, 2020.

[40] Google. Monkey: UI/Application exerciser for Android. http://developer.

android.com/tools/help/monkey.html, 2020.

118

https://reports.exodus-privacy.eu.org/en/reports/stats
https://reports.exodus-privacy.eu.org/en/reports/stats
https://analytics.facebook.com
https://analytics.google.com
https://developer.android.com/studio/command-line/adb
https://developer.android.com/studio/command-line/adb
https://firebase.google.com
http://developer.android.com/tools/help/monkey.html
http://developer.android.com/tools/help/monkey.html

[41] M. Grechanik, C. Csallner, C. Fu, and Q. Xie. Is data privacy always good for

software testing? In International Symposium on Software Reliability Engineering,

pages 368–377, 2010.

[42] I. Hadar, T. Hasson, O. Ayalon, E. Toch, M. Birnhack, S. Sherman, and A. Balissa.

Privacy by designers: Software developers’ privacy mindset. Empirical Software

Engineering, 23(1):259–289, 2018.

[43] S. Han, Y. Dang, S. Ge, D. Zhang, and T. Xie. Performance debugging in the large via

mining millions of stack traces. In International Conference on Software Engineering,

pages 145–155, 2012.

[44] M. Haran, A. Karr, A. Orso, A. Porter, and A. Sanil. Applying classification tech-

niques to remotely-collected program execution data. In ACM Joint European Soft-

ware Engineering Conference and Symposium on the Foundations of Software Engi-

neering, pages 146–155, 2005.

[45] L. Jiang and Z. Su. Context-aware statistical debugging: From bug predictors to

faulty control flow paths. In IEEE/ACM International Conference on Automated

Software Engineering, pages 184–193, 2007.

[46] L. Jiang and Z. Su. Profile-guided program simplification for effective testing and

analysis. In ACM Joint European Software Engineering Conference and Symposium

on the Foundations of Software Engineering, pages 48–58, 2008.

[47] W. Jin and A. Orso. BugRedux: Reproducing field failures for in-house debugging.

In International Conference on Software Engineering, pages 474–484, 2012.

119

[48] W. Jin and A. Orso. F3: Fault localization for field failures. In International

Symposium on Software Testing and Analysis, pages 213–223, 2013.

[49] Z. Jorgensen, T. Yu, and G. Cormode. Publishing attributed social graphs with formal

privacy guarantees. In International Conference on Management of Data, pages

107–122, 2016.

[50] V. Karwa, S. Raskhodnikova, A. Smith, and G. Yaroslavtsev. Private analysis of graph

structure. In International Conference on Very Large Data Bases, pages 1146–1157,

2011.

[51] S. P. Kasiviswanathan, H. Lee, K. Nissim, S. Raskhodnikova, and A. Smith. What

can we learn privately? SIAM Journal on Computing, 40(3):793–826, 2011.

[52] S. P. Kasiviswanathan, K. Nissim, S. Raskhodnikova, and A. Smith. Analyzing

graphs with node differential privacy. In Theory of Cryptography Conference, pages

457–476, 2013.

[53] D. Kifer and A. Machanavajjhala. No free lunch in data privacy. In International

Conference on Management of Data, pages 193–204. ACM, 2011.

[54] D. Kifer and A. Machanavajjhala. A rigorous and customizable framework for privacy.

In ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems,

pages 77–88, 2012.

[55] T. Lengauer and R. Tarjan. A fast algorithm for finding dominators in a flowgraph.

ACM Transactions on Programming Languages and Systems, 1(1):121–141, Jan.

1979.

120

[56] Z. Li, X.-Y. Jing, X. Zhu, H. Zhang, B. Xu, and S. Ying. On the multiple sources and

privacy preservation issues for heterogeneous defect prediction. IEEE Transactions

on Software Engineering, pages 1–21, 2017.

[57] B. Liblit, A. Aiken, A. Zheng, and M. Jordan. Bug isolation via remote program

sampling. In ACM SIGPLAN Conference on Programming Language Design and

Implementation, pages 141–154, 2003.

[58] B. Liblit, M. Naik, A. Zheng, A. Aiken, and M. Jordan. Scalable statistical bug

isolation. ACM SIGPLAN Notices, 40(6):15–26, 2005.

[59] C. Liu and P. Mittal. LinkMirage: Enabling privacy-preserving analytics on social

relationships. In Network and Distributed System Security Symposium, 2016.

[60] C. Liu, S. Chakraborty, and P. Mittal. Dependence makes you vulnberable: Differ-

ential privacy under dependent tuples. In Network and Distributed System Security

Symposium, 2016.

[61] Lucia, D. Lo, L. Jiang, and A. Budi. kbe-anonymity: Test data anonymization for

evolving programs. In IEEE/ACM International Conference on Automated Software

Engineering, pages 262–265, 2012.

[62] MathWorks. Optimization toolbox. https://www.mathworks.com/help/optim,

2019.

[63] H. Mi, H. Wang, Y. Zhou, M. R. Lyu, and H. Cai. Toward fine-grained, unsupervised,

scalable performance diagnosis for production cloud computing systems. IEEE

Transactions on Parallel and Distributed Systems, 24(6):1245–1255, 2013.

121

https://www.mathworks.com/help/optim

[64] Mitula. Mitula Homes. https://play.google.com/store/apps/details?id=

com.mitula.homes, 2020.

[65] T. Murakami and Y. Kawamoto. Utility-optimized local differential privacy mecha-

nisms for distribution estimation. In USENIX Security Symposium, pages 1877–1894,

2019.

[66] P. Nagpurkar, H. Mousa, C. Krintz, and T. Sherwood. Efficient remote profiling

for resource-constrained devices. ACM Transactions on Architecture and Code

Optimization, 3(1):35–66, Mar. 2006.

[67] A. Narayanan and V. Shmatikov. Robust de-anonymization of large sparse datasets.

In IEEE Symposium on Security and Privacy, pages 111–125, 2008.

[68] A. Narayanan and V. Shmatikov. De-anonymizing social networks. In IEEE Sympo-

sium on Security and Privacy, pages 173–187, 2009.

[69] J. P. Near, D. Darais, C. Abuah, T. Stevens, P. Gaddamadugu, L. Wang, N. Somani,

M. Zhang, N. Sharma, A. Shan, and D. Song. Duet: An expressive higher-order lan-

guage and linear type system for statically enforcing differential privacy. Proceedings

of the ACM on Programming Languages, 3(OOPSLA):1–30, 2019.

[70] T. Nguyên, X. Xiao, Y. Yang, S. Hui, H. Shin, and J. Shin. Collecting and analyzing

data from smart device users with local differential privacy. arXiv:1606.05053, 2016.

[71] K. Nissim and U. Stemmer. Clustering algorithms for the centralized and local

models. arXiv:1707.04766, 2017.

122

https://play.google.com/store/apps/details?id=com.mitula.homes
https://play.google.com/store/apps/details?id=com.mitula.homes

[72] K. Nissim, S. Raskhodnikova, and A. Smith. Smooth sensitivity and sampling in

private data analysis. In ACM Symposium on Theory of Computing, pages 75–84,

2007.

[73] Oath. Flurry. http://flurry.com, 2020.

[74] P. Ohmann, D. B. Brown, N. Neelakandan, J. Linderoth, and B. Liblit. Optimizing

customized program coverage. In IEEE/ACM International Conference on Automated

Software Engineering, pages 27–38, 2016.

[75] P. Ohmann, A. Brooks, L. D’Antoni, and B. Liblit. Control-flow recovery from partial

failure reports. In ACM SIGPLAN Conference on Programming Language Design

and Implementation, pages 390–405, 2017.

[76] A. Orso, D. Liang, M. J. Harrold, and R. Lipton. GAMMA system: Continuous

evolution of software after deployment. In International Symposium on Software

Testing and Analysis, pages 65–69, 2002.

[77] A. Orso, T. Apiwattanapong, and M. J. Harrold. Leveraging field data for impact

analysis and regression testing. In ACM Joint European Software Engineering

Conference and Symposium on the Foundations of Software Engineering, pages

128–137, 2003.

[78] C. Pavlopoulou and M. Young. Residual test coverage monitoring. In International

Conference on Software Engineering, pages 277–284, 1999.

[79] F. Peters and T. Menzies. Privacy and utility for defect prediction: Experiments with

MORPH. In International Conference on Software Engineering, pages 189–199,

2012.

123

http://flurry.com

[80] F. Peters, T. Menzies, L. Gong, and H. Zhang. Balancing privacy and utility in

cross-company defect prediction. IEEE Transactions on Software Engineering, 39

(8):1054–1068, 2013.

[81] Z. Qin, Y. Yang, T. Yu, I. Khalil, X. Xiao, and K. Ren. Heavy hitter estimation

over set-valued data with local differential privacy. In ACM SIGSAC Conference on

Computer and Communications Security, pages 192–203, 2016.

[82] Z. Qin, T. Yu, Y. Yang, I. Khalil, X. Xiao, and K. Ren. Generating synthetic decen-

tralized social graphs with local differential privacy. In ACM SIGSAC Conference on

Computer and Communications Security, pages 425–438, 2017.

[83] S. Raskhodnikova and A. Smith. Private analysis of graph data. In Encyclopedia of

Algorithms, pages 1–6. Springer Berlin Heidelberg, 2014.

[84] S. Raskhodnikova and A. Smith. Lipschitz extensions for node-private graph statis-

tics and the generalized exponential mechanism. In IEEE Annual Symposium on

Foundations of Computer Science, pages 495–504, 2016.

[85] N. Ricci, S. Guyer, and J. Moss. Elephant tracks: Portable production of complete

and precise GC traces. In ACM SIGPLAN International Symposium on Memory

Management, pages 109–118, 2013.

[86] Sable. Soot – A framework for analyzing and transforming Java and Android applica-

tions. https://soot-oss.github.io/soot, 2020.

[87] D. Saha, P. Dhoolia, and G. Paul. Distributed program tracing. In ACM Joint

European Software Engineering Conference and Symposium on the Foundations of

Software Engineering, pages 180–190, 2013.

124

https://soot-oss.github.io/soot

[88] A. Sala, X. Zhao, C. Wilson, H. Zheng, and B. Y. Zhao. Sharing graphs using

differentially private graph models. In Internet Measurement Conference, pages

81–98, 2011.

[89] A. Smith, A. Thakurta, and J. Upadhyay. Is interaction necessary for distributed

private learning? In IEEE Symposium on Security and Privacy, pages 58–77, 2017.

[90] T. Suganuma, T. Yasue, M. Kawahito, H. Komatsu, and T. Nakatani. A dynamic

optimization framework for a Java just-in-time compiler. In ACM SIGPLAN Con-

ference on Object-Oriented Programming, Systems, Languages, and Applications,

pages 180–195, 2001.

[91] L. Sweeney. Weaving technology and policy together to maintain confidentiality. The

Journal of Law, Medicine & Ethics, 25(2-3):98–110, 1997.

[92] TalentApps. ParKing: Where is my car? Find my car - Automatic. https://play.

google.com/store/apps/details?id=il.talent.parking, 2020.

[93] K. Taneja, M. Grechanik, R. Ghani, and T. Xie. Testing software in age of data

privacy: A balancing act. In ACM Joint European Software Engineering Conference

and Symposium on the Foundations of Software Engineering, pages 201–211, 2011.

[94] A. G. Thakurta, A. H. Vyrros, U. S. Vaishampayan, G. Kapoor, J. Freudiger, V. R.

Sridhar, and D. Davidson. Learning new words. In Granted US Patents 9594741 and

9645998, 2017.

[95] Uber. Uber releases open source project for differen-

tial privacy. https://medium.com/uber-security-privacy/

differential-privacy-open-source-7892c82c42b6, July 2017.

125

https://play.google.com/store/apps/details?id=il.talent.parking
https://play.google.com/store/apps/details?id=il.talent.parking
https://medium.com/uber-security-privacy/differential-privacy-open-source-7892c82c42b6
https://medium.com/uber-security-privacy/differential-privacy-open-source-7892c82c42b6

[96] T. Wang, J. Blocki, N. Li, and S. Jha. Locally differentially private protocols for

frequency estimation. In USENIX Security Symposium, pages 729–745, 2017.

[97] T. Wang, M. Lopuhaä-Zwakenberg, Z. Li, B. Skoric, and N. Li. Consistent and

accurate frequency oracles under local differential privacy. In Network and Distributed

System Security Symposium, 2020.

[98] Y. Wang, Z. Ding, G. Wang, D. Kifer, and D. Zhang. Proving differential privacy

with shadow execution. In ACM SIGPLAN Conference on Programming Language

Design and Implementation, pages 655–669, 2019.

[99] S. Warner. Randomized response: A survey technique for eliminating evasive answer

bias. Journal of the American Statistical Association, 309(60):63–69, 1965.

[100] A. Wood, M. Altman, A. Bembenek, M. Bun, M. Gaboardi, J. Honaker, K. Nissim,

D. O’Brien, T. Steinke, and S. Vadhan. Differential privacy: A primer for a non-

technical audience. Vanderbilt Journal of Entertainment and Technology Law, 21(1):

209–276, 2018.

[101] Yale Privacy Lab. App trackers for Android. https://privacylab.yale.edu/

trackers.html, 2017.

[102] D. Zhang and D. Kifer. LightDP: Towards automating differential privacy proofs. In

ACM SIGPLAN Conference on Programming Language Design and Implementation,

pages 888–901, 2017.

[103] H. Zhang, S. Latif, R. Bassily, and A. Rountev. Introducing privacy in screen event

frequency analysis for Android apps. In International Working Conference on Source

Code Analysis and Manipulation, pages 268–279, 2019.

126

https://privacylab.yale.edu/trackers.html
https://privacylab.yale.edu/trackers.html

[104] H. Zhang, S. Latif, R. Bassily, and A. Rountev. Differentially-private control-flow

node coverage for software usage analysis. In USENIX Security Symposium, Aug.

2020. To appear.

[105] A. X. Zheng, M. I. Jordan, B. Liblit, and A. Aiken. Statistical debugging of sampled

programs. In Advances in Neural Information Processing Systems, pages 603–610,

2004.

[106] T. Zhu, P. Xiong, G. Li, and W. Zhou. Correlated differential privacy: Hiding

information in non-iid data set. IEEE Transactions on Information Forensics and

Security, 10(2):229–242, 2014.

[107] X. Zhuang, M. Serrano, H. W. Cain, and J. D. Choi. Accurate, efficient, and adaptive

calling context profiling. In ACM SIGPLAN Conference on Programming Language

Design and Implementation, pages 263–271, 2006.

127

	Abstract
	Dedication
	Acknowledgments
	Vita
	List of Tables
	List of Figures
	1. Introduction
	1.1 Overview and Outline
	1.2 Contributions and Impact

	2. Background and Terminology
	2.1 Differential Privacy
	2.2 Frequency Oracle
	2.3 Differential Privacy Techniques

	3. Event Frequency Profiling with Differential Privacy
	3.1 Problem and Motivation
	3.2 The Differential Privacy Guarantee
	3.2.1 Example
	3.2.2 Privacy for Presence/Absence in Trace

	3.3 Differentially-Private Event Frequency Profiling
	3.3.1 Efficient Randomization
	3.3.2 Server-Side Computation of Estimates
	3.3.3 Static Analysis of Call Frequencies

	3.4 Evaluation
	3.4.1 Data Collection
	3.4.2 Implementation
	3.4.3 Accuracy of Estimates
	3.4.4 Estimates for Hot Methods
	3.4.5 Presence/Absence of Infrequent Methods
	3.4.6 Importance of Consistency Constraints

	3.5 Discussion and Limitations
	3.6 Summary

	4. Differentially-Private Frequency Profiling Under Linear Constraints
	4.1 Problem and Motivation
	4.1.1 Frequency Profiling
	4.1.2 Privacy-Preserving Profiling

	4.2 Feasible Frequency Vectors Under Linear Constraints
	4.3 The Differential Privacy Guarantee
	4.3.1 Indistinguishability
	4.3.2 Defining Neighbors
	4.3.3 Randomization Based on Laplace Mechanism
	4.3.4 Randomization Based on Randomized Response
	4.3.5 Calibration of Estimates

	4.4 Hiding The Presence or Hotness of Individual Events
	4.4.1 Difficulty of Hiding An Event
	4.4.2 Computing Difficulty Using Linear Programming
	4.4.3 Computing Difficulty Using Constraint Graph Analysis
	4.4.4 Hiding The Hotness of An Event
	4.4.5 Importance of Constraints in Randomizer Design

	4.5 Overall Design of Data Collection
	4.6 Evaluation
	4.6.1 Comparison Between Two Randomizers
	4.6.2 Hiding The Presence of Events
	4.6.3 Hiding The Hotness of Events
	4.6.4 Implications of Enforcing Linear Constraints

	4.7 Summary

	5. Differentially-Private Control-Flow Node Coverage Analysis
	5.1 Problem and Motivation
	5.1.1 Problem Statement
	5.1.2 Differentially-Private Node Coverage Analysis

	5.2 Feasibility and Neighbors
	5.3 LDP Analysis
	5.3.1 Difficulty of Hiding Graph Nodes
	5.3.2 Randomizer Definition

	5.4 Selection of Sensitivity Bound
	5.4.1 Baseline: Global Sensitivity
	5.4.2 Tighter Bound Based on Local Sensitivity
	5.4.3 Tighter Bound via Restricted Sensitivity
	5.4.4 Relaxed Indistinguishability of Neighbors

	5.5 Evaluation
	5.5.1 Metrics
	5.5.2 GUI Screen Graphs
	5.5.3 Call Graphs

	5.6 Summary

	6. Related Work
	7. Conclusions
	Bibliography

