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ABSTRACT

With the fast growing complexity of software systems, developers experience new

challenges in understanding program’s behavior to reveal performance and functional

deficiencies and to support development, testing, debugging, optimization, and main-

tenance. These issues are especially important to mobile software due to limited

computing resources on mobile devices, as well as short development life cycles. The

correctness, security, and performance of mobile software is of paramount importance

for many millions of users. For software engineering researchers, this raises high ex-

pectations for developing a comprehensive toolset of approaches for understanding,

testing, checking, and verification of Android software. Static program analyses are

essential components of such a toolset. Because of the event-driven and framework-

based nature of the Android programming model, it is challenging to clearly under-

stand application semantics and to represent it in static analysis algorithms. This

dissertation makes several contributions towards solving this challenge.

The ability to understand the interprocedural control flow is critical for reason-

ing statically about the semantics of a program. For Android, this flow is driven

by the Graphical User Interface (GUI) of the application. As the first contribution

of this dissertation, we propose a novel technique that analyzes the control flow of

GUI event handlers in Android software. We build a callback control-flow graph,
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using a context-sensitive static analysis of callback methods such as GUI event han-

dlers. The algorithm performs a graph reachability analysis by traversing context-

compatible interprocedural control-flow paths and identifying statements that may

trigger callbacks, as well as paths that avoid such statements. We also develop a

client analysis that builds a static model of the application’s GUI. Experimental

evaluation shows that this context-sensitive approach leads to substantial precision

improvements, while having practical cost.

The next contribution of this dissertation is an even more general model and static

analysis of the control flow of an Android application’s GUI. We propose the window

transition graph (WTG), a model representing the possible GUI window sequences

and their associated events and callbacks. A key component and contribution of our

work is the careful modeling of the stack of currently-active windows, the changes to

this stack, and the effects of callbacks related to these changes. To the best of our

knowledge, this is the first detailed study of this important static analysis problem for

Android. We develop novel analysis algorithms for WTG construction and traversal,

based on this modeling of the window stack. We also describe an application of the

WTG for GUI test generation, using path traversals. The evaluation of the proposed

algorithms indicates their effectiveness and practicality.

User’s interactions with Android applications trigger callbacks in the UI thread.

The handling of such events may initialize work on the background in order to per-

form expensive tasks. Because Android does not allow non-UI threads modifying the

GUI state, standard Android “post” operations play a critical role in communicating

between background and UI threads. To understand this additional aspect of Android

semantics, we introduce a static analysis to model operations that post runnable tasks
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from non-UI threads to the UI thread’s event queue. The results of this analysis are

used to create a more general version of the WTG. This new WTG and the related

static analysis present an important step toward other more comprehensive modeling

of Android semantics. The experimental evaluation of the proposed representation

indicates promising overall accuracy improvements.

To conclude, this dissertation presents several static analysis techniques to model

the behaviors of the GUIs of Android applications. These analyses present essential

foundation for developing tools to uncover the symptoms of both functional and

performance issues in the mobile system, to perform model-based testing, and to

support the understanding, optimization, and evolution of Android software.
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CHAPTER 1: Introduction

In recent years the growth in the number of computing devices has been driven

primarily by smartphones and tablets. For such devices, Android is the dominating

platform. A recent report estimates that more than 1.3 billion Android devices will

be shipped in 2015, and this number will be larger than the combined number of all

shipped Windows/iOS/MacOS PCs, notebooks, tables, and mobile phones [14].

This explosive growth in the number of deployed smartphones and tablets has

significantly changed the computing landscape. The correctness, security, and per-

formance of such devices is of paramount importance for many millions of users.

For software engineering researchers, this raises high expectations for developing a

comprehensive toolset of approaches for understanding, testing, checking, and verifi-

cation of Android software. Static program analyses are essential components of such

a toolset. In this work we focus on several such static analyses.

1.1 Challenges

Increasing complexity of mobile software. With increasing hardware per-

formance, e.g., larger RAM, SSD, and powerful CPUs, it becomes easier to develop

mobile software offering complicated functionality. However, the increasingly complex

behavior of such software makes it difficult for developers to understand, test, and

maintain the software systems. This situation is getting even worse due to the fact

that the development life cycles for most mobile applications are short, in order to
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attract more users. For static analysis researchers that aim to develop software tools,

this complexity creates a number of technical challenges. For example, for Android

applications—which are driven by graphical user interfaces (GUIs)—the automated

generation of a static GUI representation is an essential component facilitating soft-

ware understanding and testing. While there are some techniques [7,53] proposed to

explore Android GUIs dynamically, there is little work on capturing the complex GUI

structure and behavior statically. At present, it is difficult to fully rely on dynamic

approaches to cover sufficient features in GUI-based Android software for the pur-

poses of understanding and testing. Furthermore, such dynamic approaches cannot

be used to check fully the absence of certain categories of defects (e.g., related to flow

of sensitive information, or leaking of resources/energy).

Framework-based and event-driven mobile software. In Android, a rich

variety of callbacks are defined by the Android framework model for events such

as component creation/termination, user actions, device state changes, etc. Users

primarily rely on gestures, e.g., click, swipe, etc., to communicate with applications.

In the typical scenario, when an user action is issued, the Android OS will capture

it, and send all the corresponding information, e.g., event type, screen pixel and

etc., to the framework. Based on the received data, the framework will determine

and trigger the associated callbacks. The application code and the Android platform

interact through callbacks : calls from the platform’s event processing code to the

relevant methods defined in the application code. Depending on the application logic,

callbacks could also be used to initialize the interactions among different Android

components, e.g., open a new GUI window. Because of such component-based and

event-driven nature, traditional static control-flow analysis cannot be directly applied
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to Android applications. How to precisely infer and represent the control flow of

Android applications presents new challenges for static analysis of Android software.

Inadequate static analysis of Android GUI control flow. The represen-

tation and analysis of callback methods play a critical role in a static analysis for

GUI model construction, and more generally, control/data-flow analysis for Android

GUIs. Transitions between GUI windows are triggered by such methods, and during

these transitions additional callbacks occur. However, the current state of the art in

static analysis for Android is inadequate when it comes to represent such run-time

behavior. For example, we have seen various cases from real applications where an

event handler may force the closing of the current window and its predecessor window,

while at the same time opening a new window; this leads to complicated interleavings

of callbacks for these three windows. As another example, we have also seen many

cases where the return from a window does not come back to the predecessor, but

rather to another window displayed earlier. In existing work, there is no conceptual

clarity on these possible run-time behaviors and how they can be analyzed in a static

control-flow analysis.

1.2 Static Analyses of GUI Behavior in Android Applications

Our focus is on a key component of a static analysis toolset for Android: an

analysis to create a model of an application’s graphical user interface (GUI). Such

a model can be used for program understanding, testing, and dynamic exploration

[3, 7, 24, 52, 58, 59]. It could also potentially be a starting point for static data-flow

analyses, for example, for checking of security properties, leak defects, and other

correctness properties [6, 8–10,12,13,16,19,22,26–28,36,38,39,51,64,65].
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1.2.1 Static Control-Flow Analysis of User-Driven Callbacks

The first contribution of this dissertation is a control-flow analysis that focuses

on the lifecycle and interactions of user-event-driven application components. Our

first goal is to formulate this control-flow analysis problem in terms of the traditional

concepts of interprocedural control-flow analysis [42,48], thus to provide a foundation

for reasoning about run-time semantics and its static analysis approximations. In

essence, the control-flow analysis problem can be reduced to modeling of the possible

sequences of callbacks. Some existing work considers aspects of this problem. For

example, FlowDroid [6] uses a static analysis that represents the possible orderings

of lifecycle/event callbacks for a single activity, but there is no modeling of sequences

involving multiple activities. The SCanDroid tool [13], which aims to model the se-

quence of callbacks to event handlers [47], exhibits similar lack of generality. Other

related approaches (e.g., [25,28,65]) are also limited, as they make overly-conservative

or overly-restrictive assumptions about sequencing constraints for callback invoca-

tion. Other related work attempts to resolve statically Android mechanisms for

inter-component communication (e.g., [7, 9, 12, 13, 22, 35, 36]), but this information

by itself is not enough to infer the possible run-time orderings of callbacks.

We propose the callback control-flow graph (CCFG), a static representation of pos-

sible callback sequences. We then present an algorithm for CCFG construction. The

algorithm considers user-driven components such as activities, dialogs, and menus,

and analyzes the corresponding lifecycle and event handling callback methods. The

analysis of each callback method (and the code transitively invoked by it) determines

what other callbacks may be triggered next. This information provides the basis for
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CCFG construction. We consider one possible client analysis: the automated gener-

ation of static GUI models, which are important for program understanding and test

generation. The CCFG can be easily transformed into a certain kind of GUI model

used in prior work (e.g., [24, 52, 58, 59]), and possible sequences of user GUI events

can be derived from valid paths in the model. Prior work (e.g., [3, 7, 53, 54, 62]) con-

structs such models using dynamic analysis: the run-time state of the application’s

GUI is examined to determine possible GUI actions, these actions are triggered, and

the resulting GUI changes are recorded. We propose an alternative: a purely-static

approach, which could (and does) produce more comprehensive models.

Using 20 applications, we performed an experimental evaluation whose results

can be summarized as follows. First, the analysis cost is suitable for practical use

in software tools. Second, the use of context-sensitive analysis results in substantial

precision improvements. Third, in six case studies, we compared the produced GUI

models against the “perfectly-precise” manually-constructed solution as well as the

solution from a dynamic analysis tool [3]. This comparison indicates high static

analysis precision and better coverage than what is achieved with dynamic analysis.

A key technical insight for the design of our algorithm is that a callback method

must be analyzed separately for different invocation contexts associated with it. For ex-

ample, an event handler method could process user events for several different widgets,

and may have a different behavior for each separate widget. Our context-sensitive

analysis employs a form of graph reachability that traverses context-compatible control-

flow paths and identifies statements whose execution may trigger subsequent call-

backs, as well as paths that avoid such statements. Through examples and experi-

mental studies, we show the importance of this form of context sensitivity.
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Chapter 2 describes our control-flow analysis algorithm and its experimental eval-

uation. A description of this work also appeared in [60].

1.2.2 Static Window Transition Graphs

As described above, GUI models can be derived from dynamic analysis [3,7,53,54,

62]; alternatively, models with potentially-higher coverage can be derived statically

from the CCFG. These static GUI models can be used, for example, to determine

the possible sequences of events and window transitions in an Android application.

However, the models derived from the CCFG lack generality, in that they (1) do not

model the general effects of callbacks, including certain operations that close windows,

(2) do not represent the interleavings of callbacks from multiple windows, (3) do not

model the complicated semantics of pressing the hardware BACK button, and (4) do

not capture system events (e.g., screen rotation) that significantly change the GUI

state.

Neither the work from Chapter 2, nor earlier work on static control-flow analysis

for Android [6,7,9,12,13,13,22,25,28,35,36,47,65], provide a comprehensive answer

to the following fundamental question: What are the possible sequences of events,

window transitions, and callbacks? The deficiencies in this prior work are due to the

complex run-time semantics of Android, in terms of both structural elements (e.g.,

GUI windows, widgets, and event handlers) and their behavior (e.g., interactions

between windows and their effects on callbacks).

To provide a more comprehensive modeling of important aspects of this run-time

semantics, we propose a new GUI control-flow representation for Android: the window

transition graph (WTG). Nodes in this graph represent windows and edges represent
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transitions between windows, triggered by callbacks executed in the UI thread. To al-

low the development of client data-flow analyses based on the WTG, graph edges are

annotated with the sequences of callback methods invoked by the Android platform.

These annotations capture event handling callbacks and window lifecycle callbacks.

These callbacks are a strict superset of the ones included in the CCFG (which as out-

lined in Section 1.2.1). The WTG subsumes the CCFG, in the sense that it captures

all information from the CCFG as well as additional aspects of possible behaviors.

The static analysis to construct the WTG employs, as an important building block,

the context-sensitive analysis of a callback method described in Section 1.2.1.

The GUI transitions in the WTG are represented with the help of the abstraction

of a window stack. The window stack generalizes the standard Android notion of a

“back stack” [2], which stores the currently-alive activities. (Activities correspond to

one category of windows.) No prior work on static control-flow analysis for Android

models this critical aspect of the run-time GUI behavior. Our generalization (1)

captures additional categories of windows, and (2) models the changes to the window

stack. An important observation is that a single transition in the WTG can have

complex effects on the window stack: for example, it can pop and/or push windows,

all as part of the same WTG edge. A major contribution of our work is the careful

modeling of these stack changes and their related callbacks—both the callbacks that

trigger the stack changes, and the callbacks triggered by them. To the best of our

knowledge, this is the first detailed study of this important static analysis problem

for Android.

The combined analysis of callbacks and the window stack also provides a solution

to an important related problem: which sequences of window transitions are feasible?
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One cannot consider all WTG paths, since some such paths are provably infeasible.

We can draw an analogy with the sequences of calls/returns in ordinary programs:

modeling the possible states of the call stack is a key concern in static analysis of

call/return sequences (which, in turn, is an important component of interprocedural

data-flow analysis). However, the behavior of the window stack can be significantly

more complicated. Our work provides a systematic identification of valid WTG paths

(and, by trivial extension, valid call/return sequences), which is a critical prerequisite

for future developments in interprocedural data-flow analysis for Android. As an

exemplar client, we have developed a test generation tool in which valid WTG paths

naturally correspond to test cases.

The experimental evaluation indicates that event handlers can have complex be-

haviors and their transitions depend on non-trivial sequences of preceding events.

Our WTG representation and static analysis are the first to model these features,

leading to improved static GUI models and test case generation. For six applications,

manual comparison with run-time behavior indicates that the analysis achieves good

precision. In addition, our results indicate that the analysis running times are suitable

for practical use.

Chapter 3 describes the WTG, the static analysis to construct it, and the related

experimental evaluation. A description of this work will also appear in [61].

1.2.3 Modeling of Asynchronous Control Flow

The window transition graph represents only the control flow triggered by code

executed in the main (UI) thread of the application. However, Android applications

often offload work to separate threads, and these threads asynchronously trigger GUI
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changes by posting code to be executed by the UI thread. The last contribution of this

dissertation is an extension of the WTG to represent common cases of such behavior,

as well as the necessary modifications to the static analyses for WTG construction.

The WTG is augmented with transition edges that represent the execution of such

code (i.e., code posted to the UI thread) and static analysis of this code determines

the effects of this execution. We present several case studies to demonstrate that the

resulting WTG is more comprehensive than the one outlined earlier, and that the

new WTG edges precisely represent the run-time behavior. Chapter 4 describes this

approach and its experimental evaluation.

1.3 Outline

The rest of this dissertation is organized as follows. Chapters 2–4 present the

novel program analysis techniques contributed by this dissertation. Related work is

described in Chapter 5. Chapter 6 summarizes this dissertation’s contributions and

conclusions.
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CHAPTER 2: Static Control-Flow Analysis of User-Driven
Callbacks in Android Applications

2.1 Control-flow Analysis for Android

Our work targets a fundamental problem: static control-flow analysis. Since data-

flow analysis must model the program’s control flow (in addition to the data-flow

domain), control-flow analysis is a key component of data-flow analysis.

2.1.1 Background

The standard program representation for control flow analysis is the interprocedu-

ral control-flow graph (ICFG). This graph combines the control-flow graphs (CFGs)

of the program’s procedures. Nodes correspond to statements, and intraprocedural

edges show the control flow inside a procedure. The CFG for a procedure p has a

dedicated start node sp and a dedicated exit node ep. Each call is represented by two

nodes: a call-site node ci and a return-site node ri. There is an interprocedural edge

ci→sp from a call-site node to the start node of the called procedure p; there is also

a corresponding edge ep→ ri. An ICFG path that starts from the entry of the main

procedure is valid if its interprocedural edges are matched (i.e., each ri is matched

with the corresponding ci) [42, 48].

The goal of control-flow analysis is to determine the set of all valid paths. In an

actual analysis, some abstractions of such paths are typically employed. Still, at its

essence, control-flow analysis needs to find and abstract all valid paths.
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For a framework-based platform such as Android, there is no main procedure

from which control-flow paths start. The interaction between an application and the

platform is through callbacks: the high-level view of the control flow is as a sequence

of calls from (unknown) platform code to specific application methods. This is a

key challenging aspect of Android control-flow analysis, and the focus of our work.

Thus, we consider abstracted ICFG paths in which only interprocedural edges to/from

callback methods are represented, and all other edges are abstracted away. In this

case, a path consists of edges ci → sm and em → ri where ci is a call-site node in the

platform code that invokes an application-defined callback method m, and ri is the

return-site node corresponding to ci.

The Android framework defines thousands of callbacks for a variety of interactions.

We focus on an essential aspect of this control flow: the lifecycle and interactions of

user-event-driven components. These components execute in the application’s UI

thread (which is its main thread). The components of interest are activities, dialogs,

and menus. Each such component is represented by a separate GUI window. We

consider two categories of callbacks.

Lifecycle callbacks manage the lifetime of application components. The most

important examples are callbacks to manage activities. Lifecycle methods such as

onCreate and onDestroy are of significant interest because management of the activ-

ity lifecycle is an essential concern for developers (e.g., to avoid leaks [10, 51, 58]).

Lifecycle callbacks for activities, dialogs, and menus define major changes to the

visible state and to the possible run-time events and behavior.

GUI event handler callbacks respond to user actions (e.g., clicking a button) and

define another key aspect of the control flow. These event handlers perform various
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actions, including transitions in the application logic (e.g., terminating an activity

and returning back to the previous one). Control-flow analysis of such handlers is

essential for an event-driven platform.

For these two categories of callbacks, the execution of a callback method mi com-

pletes before any other callback method mj is invoked. (As discussed later, mi may

cause the subsequent execution of mj.) Thus, the abstracted control-flow paths are

always of the form ci→ smi
, emi

→ ri, cj→ smj
, emj

→ rj, ck→ smk
, emk

→ rk, . . . and

will be represented simply as mi mj mk . . . where mi is the callback method invoked

by ci. Thus, in this work we are interested in a version of control-flow analysis which

produces all valid sequences of method callbacks for component lifecycles and event

handling. We aim to model only a single application; inter-application control flow

is beyond the scope of this work. Furthermore, we focus only on GUI changes trig-

gered by user events; Chapter 4 describes some generalizations to handle certain GUI

changes triggered by other threads from the same application.

2.1.2 Example from an Android Application

Figure 2.1 shows a simplified example derived from OpenManager [37], an open-

source file manager for Android. Class Main defines an activity: an application compo-

nent responsible for displaying a GUI window and interacting with the user. Method

onCreate is an example of a lifecycle callback method: it is invoked by the Android

platform when the activity is instantiated. The structure of the new window is defined

by file main.xml shown at the bottom of the figure. In this simplified example the

layout contains four GUI widgets, each one being a button with an image that can be

clicked. The call to setContentView at line 4 instantiates these widgets (together with
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1 public class Main extends Activity {

2 private EventHandler mHandler;

3 public void onCreate() {

4 this.setContentView(R.layout.main);

5 mHandler = new EventHandler(this);

6 int[] img_button_id = {

7 R.id.info_button, R.id.help_button,

8 R.id.manage_button, R.id.multiselect_button};

9 for(int i = 0; i < img_button_id.length; i++) {

10 ImageButton b = (ImageButton)findViewById(img_button_id[i]);

11 b.setOnClickListener(mHandler);

12 }

13 }

14 }

15 public class EventHandler implements OnClickListener {

16 private final Activity mActivity;

17 public EventHandler(Activity activity) {

18 mActivity = activity;

19 }

20 public void onClick(View v) {

21 switch(v.getId()) {

22 case R.id.info_button:

23 Intent info = new Intent(mActivity, DirectoryInfo.class);

24 mActivity.startActivity(info);

25 break;

26 case R.id.help_button:

27 Intent help = new Intent(mActivity, HelpManager.class);

28 mActivity.startActivity(help);

29 break;

30 case R.id.manage_button:

31 AlertDialog.Builder builder = ...

32 AlertDialog dialog = builder.create();

33 dialog.show();

34 break;

35 default:

36 ...

37 break;

38 }

39 }

40 }

main.xml:

<LinearLayout>

<ImageButton android:id="@+id/info_button"/>

<ImageButton android:id="@+id/help_button"/>

<ImageButton android:id="@+id/manage_button"/>

<ImageButton android:id="@+id/multiselect_button"/>

</LinearLayout>

Figure 2.1: Example derived from OpenManager [37]

their LinearLayout container) and associates them with the Main activity. The loop

at lines 9–12 iterates over the programmatic button ids and associates the buttons

with a listener object: the EventHandler created at line 5.

13



The listener class defines an event handling method onClick, which is invoked

by the Android platform when the user clicks on a button. The button that was

clicked is provided as parameter v of onClick. The event handler may start a new

activity: an instance of DirectoryInfo (when v is the info button, line 24) or of

HelpManager (when v is the help button, line 28). In both cases, an Intent triggers

the activation; this is the standard Android mechanism for starting a new activity.

The call to startActivity posts an event on the framework’s event queue. After

onClick completes, this event is processed, a callback to onCreate is executed on the

new activity, and a new window is displayed.

When v is the manage button, a new dialog window is created and displayed at

line 33. This window is an instance of a AlertDialog and is used to show several

selectable items (e.g., to manage the running process, or to back up applications to

the SD card). The creation of the dialog is performed through helper object builder.

Finally, when v is the multi-select button, the displayed window remains the one

associated with activity Main, but its visual representation changes (line 36); details

of this change are omitted.

Control-flow analysis for this application needs to capture the ordering relationship

between onCreate and onClick: the event handler method may be invoked immedi-

ately after onCreate completes its execution. Similarly, control-flow analysis needs

to capture the ordering relationship between onClick and DirectoryInfo.onCreate,

HelpManager.onCreate, and AlertDialog.onCreate. In addition, because it is possi-

ble that the default branch of the switch statement is taken, the next callback after

onClick could be another invocation of onClick.
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Note that the flow of control triggered by onClick is context sensitive: depending

on the widget (parameter v), different sequences of callbacks may be observed. From

prior work on control-flow/reference analysis of object-oriented programs (e.g., [18,

33, 49]), it is well known that context sensitivity has significant precision benefits.

One effective way to introduce context sensitivity is to model the parameters of a

method invocation (including this) [18]. Based on this observation, we propose a

new form of context-sensitive control-flow analysis of callback methods. For this

example, a context-insensitive analysis would conclude that the execution of onClick

could be followed by execution of any one of the other four callbacks. However, a

context-sensitive analysis will report that, for example, onClick will be followed by

HelpManager.onCreate only when v was the help button.

2.1.3 Problem Definition

Consider two sets of application methods: set L of lifecycle methods for activities,

dialogs, and menus, as well as set H of GUI event handler methods. Sequences of call-

backs to such methods are the target of our analysis. In this work we focus on certain

lifecycle methods l ∈ L: specifically, creation callbacks (e.g., Activity.onCreate) and

termination callbacks (e.g., Activity.onDestroy).

We assume that relevant static abstractions have already been defined by an exist-

ing analysis of GUI-related objects [45, 56]. We will refer to this analysis as Gator,

using the name of its public implementation [15]. The analysis tracks the propaga-

tion of widgets and related entities (e.g., activities, dialogs, listeners, layout/widget

ids) by analyzing XML layouts and relevant code (e.g., the calls to findViewById and

setOnClickListener in Figure 2.1). Its output contains a pair of sets (W ,V). Each
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window w ∈ W (an activity, a dialog, or a menu) is associated with a set of views

v ∈ V . Views are the Android representation of GUI widgets, and are instances of

subclasses of android.view.View. A widget v ∈ V may be associated with event

handlers h ∈ H.

The control-flow analysis output can be represented by a callback control-flow

graph (CCFG). There are three categories of graph nodes. A node (h, v) ∈ H × V

indicates that event handler h was executed due to a GUI event on widget v. A node

(l, w) ∈ L×W shows that lifecycle method l was executed on window w. In addition,

helper nodes are used to represent branch and join points, as explained shortly. The

start node in the CCFG corresponds to the onCreate callback on the main activity

of the application. Each path starting from this node defines a possible sequence

of callbacks during the execution of the application. An edge n1 → n2 shows that

the callback represented by n1 may trigger the subsequent execution of the callback

represented by n2.

The CCFG for the running example is shown in Figure 2.2. For illustration, we

show a scenario where (1) the main activity also has an onDestroy lifecycle method,

(2) the details of HelpManager and AlertDialog are not elaborated, and are repre-

sented by the two dashed edges, (3) DirectoryInfo has two event handlers as well as

an onDestroy method, and (4) handler onCheckedChanged may force termination of

DirectoryInfo and return control back to Main.

To indicate that event handlers could be executed in any order, branch nodes bi

and join nodes ji are introduced, together with edges ji → bi. This technique is similar

to our early work on data-flow analysis approximations [44]; recent work [6] also uses

a similar approach, as discussed later. Both onDestroy methods are successors of
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Figure 2.2: Callback control-flow graph

the corresponding branch nodes (rather than join nodes) to show that the user may

click the device’s BACK button to exit an activity immediately, without triggering

any event handler. Note that onDestroy in DirectoryInfo is also a successor of

onCheckedChanged, to show that this handler may force exit from DirectoryInfo (e.g.,

by using a standard API call such as finish).

This model is not complete: for example, if Main is the current window and the

screen is rotated, a new instance of Main will replace the current one, and onCreate
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would be called on it, which would require additional edges in the graph. Such edges

could be added for standard Android events such as screen rotation, interruption due

to a phone call, or locking/unlocking the device screen [56], but we do not consider

them in the work described in this chapter. The generalizations described in the next

chapter capture the effects of such standard events.

2.1.4 Prior Work

Existing work has addressed some aspects of this problem. For example, Flow-

Droid [6] uses a static analysis that represents the possible orderings of lifecycle/event

callbacks for a single activity. The analysis encodes these orderings in an artificial

main method, and paths through this method correspond to sequences of callbacks.

This approach was designed for a particular form of interprocedural taint analysis

and does not solve the general control-flow problem described above. The key issue is

that there is no modeling of transitions and interactions involving multiple activities.

For example, there is no path through the main method to show that the execution

of EventHandler.onClick may trigger the execution of DirectoryInfo.onCreate; the

same is true for the other two onCreate methods. In addition, the approach does not

consider the widgets on which the event handlers operate, nor does it model tran-

sitions to/from dialogs and menus, or transitions due to window termination. The

earlier SCanDroid tool [13], which aims to model the sequence of callbacks to event

handlers [47], has similar limitations. Chapter 5 contains discussion of other related

work.

Another area of related work is the resolution of activity-launch calls, such as the

startActivity calls at lines 24 and 28 in Figure 2.1. Activity-launch APIs use an
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intent object to specify the target activity; two examples are shown at lines 23 and

27 in the figure. There are several existing techniques [7, 9, 12, 13, 22, 36] for analysis

of intent objects. By itself, intent analysis cannot determine the edges in a CCFG

(shown in Figure 2.2). It needs to be combined with (1) context-sensitive analysis of

event handlers and their transitive callees, (2) tracking of other window-launch calls

(e.g., the call to show at line 33), and (3) modeling of window termination calls. One

component of our control-flow analysis is an intent analysis which is derived from

prior work [36]. The details of this algorithm will be discussed in Section 2.2.4.

2.2 Analysis Algorithm

2.2.1 Control-Flow Analysis of a Callback Method

A key building block of our approach is a context-sensitive analysis of a callback

m ∈ L ∪ H under a context c. Recall that we use static abstractions for windows

w ∈ W (activities, dialogs, and menus) and views v ∈ V created by Gator. For

an event handler h ∈ H, the context is a view v; for a lifecycle callback l ∈ L, the

context is a window w. The analysis is outlined in Algorithm 2.1. This algorithm is

then used by the main control-flow analysis, as described in Section 2.2.2.

Input and output. The algorithm traverses valid ICFG paths, starting from the

entry node of m’s CFG. When a trigger node is reached, the traversal stops. A trigger

node is a CFG node that may trigger the subsequent execution of another callback;

the set triggerNodes of all such nodes is provided as input to the algorithm. Examples

of trigger nodes are shown at lines 24, 28, and 33 in Figure 2.1; other examples are

provided in Section 2.2.2. An analysis output is the set reachedTriggers of trigger

nodes encountered during the traversal.
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Algorithm 2.1: AnalyzeCallbackMethod(m,c)
Input: m : callback method
Input: c : context
Input: triggerNodes : set of ICFG nodes
Output: reachedTriggers ← ∅ : set of ICFG nodes
Output: avoidsTriggers : boolean

1 feasibleEdges ← ComputeFeasibleEdges(m, c)
2 visitedNodes ← {entryNode(m)}
3 nodeWorklist ← {entryNode(m)}
4 avoidingMethods ← ∅
5 while nodeWorklist 6= ∅ do
6 n← removeElement(nodeWorklist)
7 if n ∈ triggerNodes then
8 reachedTriggers ← reachedTriggers ∪ {n}
9 else if n is not a call-site node and not an exit node then

10 foreach ICFG edge n→ k ∈ feasibleEdges do
11 Propagate(k)

12 else if n is a call-site node and n→ entryNode(p) ∈ feasibleEdges then
13 Propagate(entryNode(p))
14 if p ∈ avoidingMethods then
15 Propagate(returnSite(n))

16 else if n is exitNode(p) and p /∈ avoidingMethods then
17 avoidingMethods ← avoidingMethods ∪ {p}
18 foreach c→ entryNode(p) ∈ feasibleEdges do
19 if c ∈ visitedNodes then
20 Propagate(returnSite(c))

21 avoidsTriggers ← m ∈ avoidingMethods

22 procedure Propagate(k)
23 if k /∈ visitedNodes then
24 visitedNodes ← visitedNodes ∪ {k}
25 nodeWorklist ← nodeWorklist ∪ {k}

Another key consideration is to determine whether the exit node of m is reachable

from the entry node of m via a valid trigger-free ICFG path. If so, the execution of

m may avoid executing any trigger. In the example such a path exists through the

default branch. This path is necessary to determine the CCFG edge from onClick

to j1 for the multiselect button. This edge shows that when this button is clicked,

onClick may be followed by another invocation of onClick (or by app termination).
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The algorithm outputs a boolean avoidsTriggers indicating the existence of a trigger-

free path.

Context sensitivity. Context sensitivity is achieved by performing a separate pre-

analysis—represented by the call to ComputeFeasibleEdges—to determine the

feasible ICFG edges in m and methods transitively called by m. During the traversal

(lines 5–20 in Algorithm 2.1), only feasible edges are followed. The choice of the

feasibility pre-analysis depends on the callback method and on the context. For

example, when onClick from the running example is analyzed, the context is a static

abstraction of the ImageButton instance provided as parameter. Using the output from

Gator, the id of this view is also available. This allows ComputeFeasibleEdges

to resolve the return value of v.getId() at line 21 and to determine which branch

is feasible. The general form of this pre-analysis is outlined in Section 2.2.3. For a

lifecycle callback under the context of a window, the analysis can identify virtual calls

where this window is the only possible receiver, and can determine more precisely the

feasible interprocedural edges.

Algorithm design. Algorithm 2.1 is based on the general graph-traversal technique

for solving interprocedural, finite, distributive, subset (IFDS) data-flow analysis prob-

lems [42]. We formulated an IFDS problem with a lattice containing two elements:

∅ and the singleton set {entryNode(m)}. The data-flow functions are λx.x (identity

function, for non-trigger nodes) and λx.∅ (for trigger nodes). The resulting data-flow

analysis was the conceptual basis for Algorithm 2.1.

Set avoidingMethods contains methods p that are proven to contain a trigger-free

same-level valid path from the entry of p to the exit of p. (In a same-level valid path,

a call site has a matching return site, and vice versa.) Thus, the execution of p may
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avoid any trigger. If a call-site node is reachable, and it invokes such a method, the

corresponding return-site node is inferred to be reachable as well (lines 14–15). As

another example, whenever the exit node of p is reached for the first time (line 16),

p is added to avoidingMethods and all call sites c that invoke p are considered for

possible reachability of their return sites (lines 18–20). The set of avoiding methods

is, in essence, a representation of the IFDS summary edges [42].

2.2.2 CCFG Construction

CCFG construction uses the output from Gator. In this output, an activity a

is associated with widgets Views(a) ⊆ V . The activity could also be associated with

an options menu m ∈ W ; such a menu is triggered by the device’s dedicated menu

button or by the action bar. Similarly, a view v ∈ V could have a context menu

m, triggered through a long-click on the view. Each menu m represents a separate

window with its own widget set Views(m), which typically contains views (instances

of MenuItem) representing items in a list. A dialog d ∈ W is a separate window with

some message to the user, together with related choices (e.g., buttons for “OK” and

“Cancel”). A dialog is associated with its own widget set Views(d). A widget v could

be associated with several event handlers Handlers(v) ⊆ H.

CCFG construction creates, for each w ∈ W , nodes for the relevant callbacks.

Lifecycle methods for creation and termination of w are based on standard APIs. In

the subsequent description we assume that w defines both a creation callback lc (e.g.,

onCreate) and a termination callback lt (e.g., onDestroy), but our implementation

does not make this assumption. For any h ∈ Handlers(v) where v ∈ Views(w), there
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is a CCFG node (h, v); we assume that at least one such node exists for w. A branch

node bw and a join node jw are also introduced.

Edge creation. Algorithm 2.2 defines the edges created for a window w. As illus-

trated in Figure 2.2, edges (lc, w) → bw → (lt, w) show the invocations of lifetime

callbacks; these edges are created at lines 5–6 in Algorithm 2.2. The second edge

represents the termination of w with the BACK button.

The termination of w could also be triggered by event handlers. Recall that for the

running example, we assume that handler onCheckedChanged calls finish on activity

DirectoryInfo. This is an example of a termination trigger node, and our analysis

creates an edge from onCheckedChanged to onDestroy (at line 10 in Algorithm 2.2, as

elaborated below). Furthermore, if the handler’s execution cannot avoid this trigger,

the analysis would not create the edge from onCheckedChanged to j2. For the example,

we assume that this termination trigger can be avoided along some ICFG path; thus,

there is an edge to j2 in Figure 2.2, created by line 12 in Algorithm 2.2.

For each handler h for a view v from w’s widget set, an edge bw → (h, v) is added to

indicate the possible user actions and the invoked handlers (line 8 in Algorithm 2.2).

Together with the back edge jw → bw created at line 14, this structure indicates

arbitrary ordering of user-triggered events. If w is a menu, menu item selection

immediately closes w and an edge from jw to the termination callback is created

instead.

Each h is analyzed under context v using Algorithm 2.1 (invoked at line 9). If

avoidsTriggers is true, (h, v)→ jw is added to show that the execution of h may re-

tain the current window w (rather than transition to a new one) and user events will
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Algorithm 2.2: CreateEdges(w)
Input: w : window
Input: (lc, w), (lt, w) : lifecycle nodes for w
Input: {(h1, v1), (h2, v2), . . .} : event handler nodes for w
Input: bw, jw : branch/join nodes for w
Output: newEdges : set of CCFG edges for w

1 newEdges ← ∅
2 〈triggers, avoids〉 ← AnalyzeCallbackMethod(lc, w)
3 newEdges ← newEdges ∪TriggerEdges(triggers, lc, w)
4 if avoids then
5 newEdges ← newEdges ∪ {(lc, w)→ bw}
6 newEdges ← newEdges ∪ {bw → (lt, w)}
7 foreach event handler node (h, v) do
8 newEdges ← newEdges ∪ {bw → (h, v)}
9 〈triggers, avoids〉 ← AnalyzeCallbackMethod(h, v)

10 newEdges ← newEdges ∪TriggerEdges(triggers, h, v)
11 if avoids then
12 newEdges ← newEdges ∪ {(h, v)→ jw}

13 if w is not a menu then
14 newEdges ← newEdges ∪ {jw → bw}
15 else
16 newEdges ← newEdges ∪ {jw → (lt, w)}

continue to trigger the event handlers for w. The other outgoing edges for (h, v) are de-

termined by set reachedTriggers and are created by helper function TriggerEdges

described below.

Algorithm 2.1 is also invoked for the creation callback lc (at line 2) to determine

which trigger statements are reachable. Termination callback lt is assumed to contain

no such triggers, since its role is to clean up resources, rather than to trigger window

transitions. Edge creation for (lc, w), shown at lines 3–5, is similar to the edge creation

for (h, v) at lines 10–12.

The set of edges produced by TriggerEdges is based on case-by-case analysis

of trigger statements. Activity-launch calls such as startActivity (e.g., lines 24 and

28 in Figure 2.1) are analyzed with our flow- and context-insensitive intent analysis,
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conceptually derived from a more expensive prior analysis [36], but accounting for

statement feasibility (analogous to line 1 in Algorithm 2.1). The analysis focuses on

explicit intents because they are designed for use inside the same application [23].

In our experience, it performed as well as existing alternatives [36, 47]. Section 2.2.4

provides more details on this analysis.

Menu-launch calls such as showContextMenu as well as dialog-launch calls (e.g., line

33 in Figure 2.1), are resolved by Gator. Any such statement triggers the launch of a

new window w′. Correspondingly, function TriggerEdges produces edges (h, v)→

(l′c, w′) and (l′t, w′) → jw when invoked at line 10, and edges (lc, w) → (l′c, w′) and

(l′t, w′)→ bw when invoked at line 3.

TriggerEdges also accounts for the possibility that set triggers contains a state-

ment that terminates the current window—e.g., a call to finish on an activity, or a

call to dismiss on a dialog. If triggers contains a termination statement for w, Trig-

gerEdges produces (h, v)→ (lt, w) or (lc, w)→ (lt, w) to represent the possible flow

of control.

Example. For the running example shown in Figure 2.1, calling AnalyzeCall-

backMethod at line 9 with h = onClick and v = ImageButton[info button] will

return triggers = {s24} and avoids = false. Activity-launch statement s24, repre-

senting line 24 in Figure 2.1, is resolved to w′ = DirectoryInfo. As a result, edges

(h, v) → (onCreate, w′) and (onDestroy, w′) → j1 are produced by TriggerEdges.

If the call at line 9 is for h = onCheckedChanged, triggers will contain the call to finish

that closes w′, resulting in an edge to (onDestroy, w′) created by TriggerEdges.
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2.2.3 Detection of Feasible Edges

CCFG construction depends on constant propagation analysis to determine the

feasible edges under a particular context (recall the invocation of ComputeFeasi-

bleEdges at line 1 of Algorithm 2.1). Consider the analysis of a callback method

m under context c, performed by ComputeFeasibleEdges. The context could

be a widget v or a window w; both cases are handled, although our experiments

suggest that context sensitivity for windows w has minor effect on precision. First,

this analysis uses a form of interprocedural constant propagation to identify each local

variable that definitely refers to only one object. This analysis employs (1) knowledge

that a particular parameter of m definitely refers to c, and (2) additional reference

information obtained from Gator. The analysis considers all methods transitively

invoked by m; virtual calls are resolved using class hierarchy information. After this

constant propagation, the computed information is used to refine virtual call reso-

lution: if only one receiver object is determined to be possible, the call is resolved

accordingly. Next, another interprocedural constant propagation analysis determines

constant values of integer and boolean type. For example, for an API call such as

x.getId() or x.getMenuItemId(), if x definitely refers only to one particular view,

the id for that view is treated as the return (constant) value of the call. Boolean

expressions such as x==y and x!=y are also considered, both for references and for

integers; switch statements are treated similarly. In a final step, branch nodes whose

conditions are found to be constants are used to determine infeasible ICFG edges,

which (together with infeasible interprocedural edges at refined virtual calls) defines

the output of ComputeFeasibleEdges.
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Example. For the example in Figure 2.1, suppose we analyze onClick under context

ImageButton[info button]. The first constant propagation analysis will determine

that v definitely points to only this button. The second constant propagation analysis

will determine that v.getId() returns the integer constant R.id.info button. The

output of the analysis will be the set of ICFG edges corresponding to the first branch

of the switch statement. Although in this simple example the propagation is trivial,

our analyses handle general interprocedural propagation along valid ICFG paths,

using jump functions and summary functions [46].

2.2.4 Intent Analysis

In Android, inter-component communication is based on intents. Such objects are

used, for example, in activity-launch calls such as startActivity (e.g., lines 24 and

28 in Figure 2.1). The intent objects are defined with or without explicit target com-

ponents. An explicit intent specifies the targeted component, while an implicit intent

specifies other information that can be used to indirectly infer the targeted compo-

nent(s). In general, explicit intents are used for intra-application interactions, that is,

when the target component is inside the same application (e.g., another application

activity). Implicit intents are mostly employed for inter-application communication.

The intents shown in Figure 2.1 are explicit, as they specify the target components

(activity DirectoryInfo or HelpManager) as parameters of the constructor calls at

lines 23 and 27.

Our current analysis is integrated with an analysis of explicit intents, as we focus

on analyzing intra-application transitions. Our prior work [45] builds a constraint

graph tracking the flow of objects. This graph does not record the propagation of
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constant values that are used to specify the targets of explicit intents: specifically,

class constants X.class (as shown at lines 23 and 27 in Figure 2.1) and string constants

"X".

To analyze intent objects and the targets they specify, the existing flow graph is

extended to capture value propagation for such constants, and to model API calls

that define the content of intent objects. Additional flow graph nodes and edges are

introduced for assignments involving class constants and string constants, e.g., x =

X.class and x = "X". Because our implementation is based on the Soot static analysis

framework [50], such assignments are easy to identify in the program representation.

Flow graph nodes for the constant values are introduced, together with edges to the

corresponding left-hand-side local variables. Another flow graph extension involves

nodes to represent methods calls that modify the content of an intent object. The

Android framework defines several such API calls. For example, method setClass of

in class Intent sets the target through a provided Class argument. Another example

is an Intent constructor for which the targeted component is defined by a string

parameter or a class constant (e.g., at lines 23 and 27 in Figure 2.1). Besides these

APIs, we also model methods which use an existing intent to copy all its data into

another one, e.g., method fillIn could copy all data from its parameter intent to

its receiver intent. A similar example is an Intent copy constuctor which takes as a

parameter another intent.

Algorithm 2.3 resolves intent targets without considering the invocation context

of a callback event handler. In addition to the extended flow graph, the algorithm

takes as input the set setIntentTargetMethods of methods that could modify the target

of an intent objects (e.g., setClass, fillIn, etc.) Helper function getFlowFrom
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Algorithm 2.3: ResolveIntentContextInsensitive()
Input: fg : extended flow graph
Input: setIntentTargetMethods : methods to set the content of an intent
Output: resolvedIntents ← ∅ : multimap from intent objects to targets

1 worklist ← ∅
2 intentToSetContent ← ∅
3 foreach node n in fg do
4 if n is intent allocation expression then
5 toNodes ← GetFlowFrom(fg , n)
6 foreach node setIntentContent ∈ toNodes do
7 if setIntentContent is invocation of

m ∈ setIntentTargetMethods ∧ setIntentContent modifies target of n then
8 if m propagates all values from one intent to another intent then
9 worklist ← worklist ∪ {n→ setIntentContent}

10 else
11 arg ← GetIntentTargetArg(setIntentContent)
12 foreach tgt ∈ GetFlowTo(fg , arg) ∧ tgt is class/string constant do
13 resolvedIntents ← resolvedIntents ∪ {n→ tgt}

14 intentToSetContent ← intentToSetContent ∪ {n→ setIntentContent}

15 while worklist 6= ∅ do
16 stable ← true
17 worklist ← worklist − {intent1 → propagateAllContent}
18 arg ← GetIntentAllArg(propagateAllContent)
19 foreach intent2 ∈ GetFlowTo(fg , arg) ∧ intent2 is intent allocation expression do
20 foreach tgt ∈ GetIntentContent(resolvedIntents, intent2) do
21 if tgt /∈ GetIntentContent(resolvedIntents, intent1) then
22 resolvedIntents ← resolvedIntents ∪ {intent1 → tgt}
23 stable ← false

24 if stable = false then
25 foreach setIntentContent1 ∈ GetFlowFrom(fg , intent1) do
26 if setIntentContent1 is invocation of m ∈ setIntentTargetMethods ∧m

propagates all values from one intent to another intent ∧ intent1 is the source
intent then

27 foreach {intent2 → setIntentContent2} ∈ intentToSetContent do
28 if setIntentContent1 = setIntentContent2 then
29 worklist ← worklist ∪ {intent2 → setIntentContent2}
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(or getFlowTo) traverses the flow graph from the given node to identify all nodes

reachable from (or reaching) it.

The first part of the algorithm (line 3–14) performs an initial resolution of intents.

For each node representing an intent allocation expression, (i.e., new Intent), the

nodes setting its content are examined (line 7). If a node modifies the intent by

passing another intent, the propagation relationship between the intent and the node

will be remembered in a worklist (line 9), which is processed later by the second part

of this algorithm. Otherwise, the local variable corresponding to the intent target will

be retrieved by helper function GetIntentTargetArg. After retrieving the local

variable arg used to set the target, all constants that flow to it are recorded as targets

(line 13). The second part of this analysis (lines 15–29) is a worklist algorithm which

incrementally updates the targets of resolved intents. Each element in the worklist is a

pair of an intent intent1 and a node that propagates all data of another intent intent2

into intent1. Similarly to GetIntentTargetArg, GetIntentAllArg finds the

local variable arg used to provide intent2. For example, statement x.fillIn(y) copies

the data from the intent pointed-to by local variable y into the intent pointed-to by

local variable x. To capture this flow, line 19 traverses the flow graph to find relevant

intent2 in order to update the targets of intent1 (line 22). If a change is observed, any

potentially-affected intents are added to the worklist to be processed in the future

(lines 24–29).

Algorithm 2.3 resolves intent targets without considering the callback context. To

improve the precision of intent analysis, our implementation refines this analysis by

utilizing the outputs from method ComputeFeasibleEdges used in Algorithm 2.1.

Given the callback and context, this method generates a set of reachable statements.
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Only the flow graph nodes related to those statements are considered in the context-

sensitive resolution. If this approach cannot resolve the target activity for a statement,

the conservative solution generated by Algorithm 2.3 is used instead.

2.2.5 Valid CCFG Paths

Not every path in the CCFG represents a valid sequence of run-time invocations

of callback methods. Consider again the example in Figure 2.2, and suppose that

another window w, different from the ones shown in the figure, contained a handler

h with startActivity call to trigger window w′ = DirectoryInfo. Edges (h, v) →

(onCreate, w′) and (onDestroy, w′) → jw would be created to represent this trigger

statement. Clearly, a path that enters w′ from Main through (onClick, info button)→

(onCreate, w′), but exits w′ back to w, through (onDestroy, w′) → jw, does not cor-

respond to a valid run-time execution.

In general, a valid CCFG path has matching edges . . .→ (lc, w) and (lt, w)→ . . ..

Each such pair is created at the same time by TriggerEdges and can be recorded as

a matching pair at that time. This condition is very similar to the traditional one for

valid ICFG paths. The implications for static analyses are also similar to traditional

ICFG control-flow analysis. Standard techniques can be applied to focus only on

valid CCFG paths (or some over-approximation): either by explicitly maintaining the

sequence of unmatched . . .→ (lc, w) edges, or by creating approximations of them, in

the spirit of k-call-site-string sensitivity [18,48]. Note that the next chapter presents

a generalized analysis of valid sequences of events and callbacks. That analysis is

more general than the CCFG path analysis outlined above.
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Figure 2.3: GUI model for the running example

2.3 Client Analysis: Construction of GUI Models

The control-flow analysis described above could potentially be used as a com-

ponent of other static analyses (e.g., [6, 9, 10, 12, 13, 16, 22, 28, 36, 38, 39, 51, 64, 65]).

Another possible use of the analysis is for generation of GUI models, which are im-

portant for program understanding and test generation. Various GUI models have

been employed (e.g., [3, 29, 52, 62]). Figure 2.3 shows an example of the GUI models

we consider; they are similar in spirit to those used in prior work. The model is a

directed graph in which nodes represent GUI windows and edges show possible transi-

tions between windows. Each transition is labeled by the GUI widget that triggers it.

Additional information for an edge is the type of GUI event (e.g., click) and the event

handler (e.g., method onClick). For simplicity, this information is not displayed in

32



Figure 2.3. “BACK” edges correspond to the device’s back button. “Launcher” de-

notes the Android app launcher. Only a subset of the edges are shown: for example,

the edge from HelpManager back to Main is not shown.

Such a model can serve as starting point for test generation. For example, an

existing automated test generation technique for Android [24] requires the set of

tuples (window w, GUI widget v, event e, handler method h), where v is visible when

w is active, and event e on v is handled by h. In this earlier work such models are

constructed manually. As another example, a test generation approach for exposing

leaks in Android applications [58] requires this model as input; in that work the

models were also manually created. There are other examples of model-based test

generation for Android where a GUI model is an essential prerequisite [52, 59], and

paths in the model correspond to GUI events in a test case.

This GUI model can be easily derived from the CCFG. Edges to a creation callback

(lc, w) in the CCFG represent transitions to window w in the model; the sources

of these edges describe the event handlers and widgets. Edges from a termination

callback (lt, w) represent returns from w to the previous window. The predecessors

of (lt, w) describe which events trigger the return; when the predecessor is bw, the

event is “BACK”. Self-transitions in the GUI model (e.g., for multiselect button in

Figure 2.3) are also easy to derive.

Each path in this model corresponds to a unique CCFG path. A path in the

model is valid only if its corresponding CCFG path is valid. If the model is traversed

to create test cases (e.g., as in [58]), only valid paths should be traversed.
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Our context-sensitive analysis is needed to avoid infeasible edges in the GUI model.

If a context-insensitive analysis were used instead, it would conclude that the exe-

cution of onClick could trigger each one of the four possible edges in the model,

regardless of the button being clicked. As a result, for example, infeasible edges for

manage button to HelpManager and DirectoryInfo would be created, as well as an

infeasible self-edge to Main. Overall, twelve infeasible edges would be added to the

GUI model for the running example.

2.4 Experimental Evaluation

We applied the analysis on 20 open-source Android applications used in prior

work [39, 45, 58, 62, 63]. Our goals were to (1) characterize the size and complexity

of the CCFG, (2) measure the benefits of context sensitivity in the analysis of event

handlers, and (3) evaluate the precision of the GUI models derived from the CCFG.

2.4.1 CCFG Construction

Table 2.1(a) shows the number of application classes and methods, as well as

counts for different categories of windows. Typically, an analyzed application has

more than twenty windows. The callback sequences and GUI models associated

with these windows cannot be practically analyzed by hand. This complexity is

also indicated in Table 2.2: there are typically more than a hundred CCFG nodes for

an application, where each node (except for branch/join nodes) represents a callback

under a particular context. The ordering constraints for such callbacks are modeled

by the output of our analysis.

Column “OutDegree” shows the average number of outgoing edges for CCFG

nodes corresponding to event handlers. This number is an indication of the variability
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Table 2.1: Characteristics of the analyzed applications and their CCFG analysis time.

(a) Applications (b) Times

Name Classes Methods Activities Menus Dialogs CS [s] CI [s]

APV 68 413 4 4 5 10 8
Astrid 1228 5782 41 3 48 105 54
BarcodeScanner 126 594 9 4 6 10 10
Beem 284 1883 12 6 5 12 12
ConnectBot 371 2366 11 8 17 28 22
FBReader 954 5452 27 9 8 843 269
K9 815 5311 32 3 19 79 54
KeePassDroid 465 2784 20 11 9 27 20
Mileage 221 1223 50 15 9 13 12
MyTracks 485 2680 32 8 20 23 21
NPR 249 1359 13 12 6 16 15
NotePad 89 394 8 3 10 9 9
OpenManager 53 237 6 2 9 7 6
OpenSudoku 140 726 10 6 18 11 11
SipDroid 331 2863 12 5 13 39 34
SuperGenPass 64 267 2 2 4 8 8
TippyTipper 57 241 6 3 0 6 6
VLC 242 1374 10 2 13 19 18
VuDroid 69 385 3 2 1 5 5
XBMC 568 3012 22 20 24 38 32

of behavior for a handler (e.g., onClick in the running example). Our context-sensitive

analysis aims to model this variability more precisely, by accounting for the handler’s

context. To measure the effects of context sensitivity, we also ran the analysis in

a context-insensitive mode, where context information was ignored (i.e., the call to

ComputeFeasibleEdges in Figure 2.1 was not used). Column “OutDegCI” shows

the resulting average number of outgoing edges. As the measurements in the two

columns show, there can be significant precision loss if context sensitivity is not used.

This observation is confirmed by Table 2.3, which contains similar measurements for
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Table 2.2: Average out degree of CCFGs for applications in Table 2.1.

CCFGs

Name Nodes Edges OutDegree OutDegCI

APV 88 158 1.15 2.98
Astrid 980 1896 1.14 1.14
BarcodeScanner 104 171 1.37 1.88
Beem 121 186 1.14 2.20
ConnectBot 197 317 1.20 1.20
FBReader 272 2916 11.41 12.59
K9 393 723 1.15 1.59
KeePassDroid 288 682 2.01 2.47
Mileage 522 914 1.34 1.70
MyTracks 286 630 1.83 4.31
NPR 564 1175 1.19 2.08
NotePad 134 259 1.32 2.84
OpenManager 110 183 1.10 2.30
OpenSudoku 170 307 1.41 3.44
SipDroid 148 346 2.00 3.98
SuperGenPass 61 107 1.18 1.64
TippyTipper 61 94 1.00 1.24
VLC 169 278 1.10 1.10
VuDroid 35 62 1.50 3.33
XBMC 2275 6254 1.85 2.24

the average number of outgoing edges for a node in the static GUI model. (Back

button edges were not included in these measurements, since in this GUI model each

forward edge implicitly has a corresponding back button edge.) More generally, these

results indicate that callback analysis with context sensitivity produces a more precise

representation of the control flow. Section 2.4.2 provides additional case studies on

the benefits of context sensitivity for GUI models.

We investigated two programs with significantly higher out-degrees measurements

in Table 2.3, compared to the rest of the programs: FBReader and XBMC. For FBReader,
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Table 2.3: Average out degree of GUI models for applications in Table 2.1.

Models

Name OutDegree OutDegCI

APV 4.23 10.85
Astrid 12.32 12.36
BarcodeScanner 3.28 4.44
Beem 2.57 5.24
ConnectBot 3.20 3.20
FBReader 55.95 61.67
K9 5.90 7.96
KeePassDroid 12.82 17.18
Mileage 5.41 6.64
MyTracks 8.53 18.71
NPR 34.29 59.29
NotePad 5.48 10.38
OpenManager 4.31 9.06
OpenSudoku 3.12 7.26
SipDroid 8.47 15.10
SuperGenPass 5.00 6.88
TippyTipper 4.13 5.13
VLC 4.24 4.24
VuDroid 3.67 8.00
XBMC 176.07 186.33

the culprit is a utility method that is called by the handlers of about 37% of the

CCFG nodes. These nodes have significantly higher out-degrees than the rest. We

examined a sample of such nodes, and determined that around 60% of their outgoing

edges are feasible. The infeasible edges are due to the utility method: in it, class

hierarchy analysis is used to resolve a run() call, which is overly conservative. While

not comprehensive, this examination indicated that FBReader has a rich GUI with

complex logic in event handlers, and this leads to a large number of possible window

transitions. For XBMC, the large number of edges is due to a known imprecision of
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Gator for this program [45]: because the analysis is context-insensitive, there is

spurious propagation of widgets.

Part (b) of the Table 2.1 shows the running times of the CCFG construction

analysis (including Gator analyses), both for context-sensitive (CS) and context-

insensitive (CI) algorithms. The running times of the GUI model construction are

not shown, since they were negligible. Overall, the results indicate that analysis

running times are suitable for practical use in software tools. The use of context-

insensitive analysis typically does not lead to significant reductions in running time,

and the resulting precision loss does not seem justified.

2.4.2 Case Studies of GUI Model Construction

To obtain additional insights on the precision of the static GUI models, case stud-

ies were performed on six applications: APV, BarcodeScanner, OpenManager, SuperGenPass,

TippyTipper, and VuDroid. These applications have the smallest number of windows

in Table 2.1, and were chosen to allow comprehensive manual examination.

We compared our static approach with Android GUI Ripper [3] (“Ripper” for

short), a state-of-the-art tool for automated dynamic exploration of an application’s

GUI.1 The public version from the tool’s web page [53] was used for these experiments.

The ripping observes run-time widgets for the current window, and fires events on

them to cause GUI changes. If a new GUI state is discovered, its widgets are also

considered for further events. This approach has the advantage of observing the full

details of run-time state and behavior, but is inherently limited in its ability to find all

feasible transitions. In our experiments we let Ripper run to completion; the running

1We initially also considered another dynamic exploration tool [7] but observed that sometimes it
achieved lower GUI coverage. We also attempted to obtain the reverse engineering tool used in [62],
but its proprietary implementation could not be distributed outside of the company [41].
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Table 2.4: Edges in the GUI model.

Application Static (CS/CI) Precise Ripper Ripping time

APV 55/141 55 22 1h34m
BarcodeScanner 59/80 43 20 4h44m
OpenManager 69/145 56 43 6h51m
SuperGenPass 40/55 40 19 1h26m
TippyTipper 33/41 33 28 1h21m
VuDroid 22/48 18 14 44m

times are shown in the last column of Table 2.4. Each transition triggered during the

dynamic exploration was mapped to a window-to-window transition edge, similar to

the ones in the static model.

The results of this experiment are summarized in Table 2.4. We first determined

the set of GUI model edges based on CCFG construction (column “Static”). For

precision comparison, we present results for both context-sensitive (CS) and context-

insensitive (CI) construction of the CCFG. Next, we performed a careful case study

of each application. Each GUI model edge reported by the context-sensitive analysis

was manually classified as “feasible” or “infeasible”. The number of feasible edges is

shown in column “Precise”.

To determine this number, we tried to manually achieve run-time coverage of the

edge by triggering a transition from the source window to the target window, using

the widget and GUI event for this edge. For infeasible edges, the source code was

examined to determine that no run-time execution could cover this edge. Clearly, this

manual examination presents a threat to validity; to reduce this threat, the code was

examined by multiple co-authors. Below we describe details of some of these studies,

39



as they shed light on the sources of imprecision of the proposed analysis. Column

“Ripper” shows how many of the feasible edges could have been inferred from the

dynamic exploration performed by Ripper.

The following conclusions can be drawn from these results. First, the overall

precision of the context-sensitive static analysis is quite good. This leads to a small

number of infeasible edges, which is beneficial for program understanding tools and

testing tools (e.g., to compute more precise GUI coverage metrics). Second, one of the

reasons for the good precision is the use of context sensitivity. A context-insensitive

analysis would have increased the number of infeasible edges by more than a factor

of 8. Third, the dynamic exploration in Ripper can miss significant portions of the

GUI. One reason is that the exploration order may affect which widgets are available

for interaction. For example, in APV, buttons “Clear Find”, “Find Prev”, and “Find

Next” will not be available until a search action is finished, and “Find Prev” and

“Find Next” are not available after “’Clear Find” is clicked. As another example,

in OpenManager, if a file is deleted before being copied, related widgets and edges

will be missed. As usual, static and dynamic approaches both have their respective

strengths and weaknesses. For example, run-time state can be used to create a finer-

grain dynamic GUI model, with multiple nodes for the same activity (based on widget

states), which could potentially improve program understanding and test generation.

For the three applications with infeasible edges, we performed manual analysis to

understand the sources of imprecision. Some examples of such sources are described

below.

VuDroid. This application displays PDFs and DjVu files. Class BaseViewerActivity

defines several event handlers shared by its two subclasses PdfViewerActivity and
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DjvuViewerActivity. One of these handlers restarts the current activity in full-screen

mode by reusing the activity’s intent. Since the handler is in the superclass, in our

intent analysis both intents flow to the “restart” call, and it appears that each activity

can trigger the other one, which cannot actually happen at run time. This explains

all four infeasible edges in the model. If the event handlers in the superclass were

cloned in the subclasses, the imprecision would be eliminated.

BarcodeScanner. This application scans and processes eleven types of barcodes.

Depending on the barcode type, various GUI widgets are displayed to the user. For

example, for one particular group of buttons, one subset of the group is used for an

address book barcode, while a different subset is used for an email barcode. Gator

cannot distinguish statically which subsets are enabled for different barcode types,

and concludes that all buttons in the group are always used, and that all eleven

handlers may be invoked for each button. This imprecision is responsible for 13

out of the 16 infeasible edges. It seems unlikely that Gator can be generalized to

handle this case, since it would require an intricate combination of reference analysis

with context-sensitive treatment of formals, together with interprocedural constant

propagation for integers, and loop unrolling for constant-bound loops. An intriguing

possibility for such cases is a hybrid static/dynamic approach.

OpenManager. For this application, the main source of imprecision is the context-

insensitive nature of Gator. The main activity of the application creates a dialog

object and initializes it in a switch statement. Different branches of the switch cor-

respond to different dialog layouts and widgets. In the analysis, all these widgets are

associated with that one dialog object. The switch is based on the value of an inte-

ger formal parameter, which defines the calling context of the surrounding method.
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However, Gator does not employ this context information. If the application code

were slightly different, with a separate dialog object being created for each context,

the number of edges in the model would be reduced from 69 to 57. It would be

interesting to consider context-sensitive generalizations of Gator, employing ICFG

traversal techniques similar to the ones used for CCFG construction.

2.5 Summary

In this chapter we develop a control-flow representation of user-driven callback

behavior, using new context-sensitive analysis of event handlers. A client analysis

for GUI model construction is also presented. Our experimental results highlight the

importance of context sensitivity in the design of the analysis algorithm, and indicate

good precision and practical cost for the proposed techniques.
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CHAPTER 3: Static Window Transition Graphs for Android

The GUI models derived from the CCFG lack generality, in that they (1) do

not model the general effects of callbacks, including certain operations that close

windows, (2) do not represent the interleavings of callbacks from multiple windows,

(3) do not model the complicated semantics of pressing the hardware BACK button,

and (4) do not capture system events (e.g., screen rotation) that significantly change

the GUI state. To solve this problems, we propose a more general GUI control-flow

representation for Android: the window transition graph (WTG).

3.1 Android Behavior and Its WTG Representation

3.1.1 Relevant Android Features

For ease of presentation, we discuss again, through an example, some of the major

Android features relevant to our analysis. Figure 3.1 contains an example derived from

the APV PDF viewer [5]. For simplicity, the code and its description omit a number

of non-essential details. The example illustrates windows (e.g., ChooseFileActivity),

GUI widgets (e.g., fileListView), and event handlers (e.g., onItemClick).

Windows. Subclasses of android.app.Activity are used to define activities, which

are core application building blocks. ChooseFileActivity, OpenFileActivity, Options,

and About from Figure 3.1 are such classes; execution starts from an instance of

ChooseFileActivity, which shows a file list. An activity displays a window contain-

ing several GUI widgets. A widget (also referred to as a “view”) is an instance of a
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view class. In Figure 3.1, variables that refer to widgets include fileListView (list of

files), l (the same list), item (individual list element), aboutItem, optionsItem (both

are elements of a menu, as described below), and btn (a button).

We also consider the two other common categories of Android windows: menus

and dialogs. Instances of menu classes represent short-lived windows associated

with activities (“options” menus) and widgets (“context” menus). In Figure 3.1

OpenFileActitivy has an options menu, initialized by onCreateOptionsMenu to con-

tain menu items aboutItem and optionsItem. A dialog is an instance of a subclass of

android.app.Dialog. Both menus and dialogs are used for modal events that require

users to take an action before they can proceed [1].2 We will use Win to denote the

set of all run-time windows (activities, menus, and dialogs), and View for the set of

all run-time widgets in these windows.

A menu/dialog takes control temporarily for a simple interaction with the user,

and its lifetime is shorter than activity lifetime. The last activity that was dis-

played before a menu or a dialog was displayed is considered to be the owner ac-

tivity of this menu/dialog. In the running example, the options menu is owned by

OpenFileActivity. There are more general cases: for example, in OpenFileActivity

there exists a button (not shown in Figure 3.1) for which a long-click event opens a

context menu m1, in which a menu item can be clicked to open a dialog d1 asking for

a page number in the PDF file; if an incorrect number is entered, d1 shows another

dialog d2 with an error message. In this example OpenFileActivity is the owner ac-

tivity of m1, d1, and d2. The lifetime of a menu or a dialog is contained within the

lifetime of its owner activity.

2Such windows are common: for example, in our experiments, more than half of window transi-
tions involved menus and dialogs.
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1 class ChooseFileActivity extends Activity

2 implements onItemClickListener {

3 ArrayList<FileListEntry> fileList;

4 ListView fileListView;

5 // === Lifecycle callbacks ===

6 void onCreate() { ...

7 fileListView.setOnItemClickListener(this); }

8 // Other lifecycle callbacks: onDestroy, onStart,

9 // onRestart, onStop, onResume, onPause

10 // === Widget event handler callback ===

11 void onItemClick(ListView l, View item, int p) {

12 FileListEntry entry = fileList.get(p);

13 File file = entry.getFile();

14 if (!file.exists()) return;

15 Intent in = new Intent(OpenFileActivity.class);

16 // initialize intent based on file

17 startActivity(in); } }

18 class OpenFileActivity extends Activity {

19 MenuItem aboutItem, optionsItem;

20 // === Lifecycle callbacks ===

21 // onCreate, onDestroy, etc.

22 void onCreateOptionsMenu(Menu menu) {

23 aboutItem = menu.add("Item");

24 optionsItem = menu.add("Options"); }

25 void onOptionsMenuClosed(Menu menu) { ... }

26 // === Widget event handler callback ===

27 void onOptionsItemSelected(MenuItem item) {

28 if (item == aboutItem)

29 startActivity(new Intent(About.class));

30 if (item == optionsItem) {

31 startActivity(new Intent(Options.class));

32 this.finish(); } }

33 class Options extends Activity

34 implements OnClickListener {

35 Button btn;

36 void onCreate() { btn.setOnClickListener(this); }

37 void onClick(View v) {

38 startActivity(new Intent(About.class));

39 this.finish(); } } }

40 class About extends Activity { ... }

Figure 3.1: Example derived from the APV PDF reader [5].

Events. Each w ∈Win can respond to several events. Widget events are of the form

e = [v,t] where v ∈ View is a widget and t is an event type (e.g., v could be a button

and t could be “click”). We also consider five kinds of default events. Event back

corresponds to pressing the hardware BACK button, which typically (but not always)

returns to the window that triggered the current window. Event rotate shows that

the user rotates the screen, which triggers various GUI changes. For example, if the
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currently-active window is a dialog, this dialog is destroyed, its underlying activity

is also destroyed, and the activity (but not the dialog) is recreated and redisplayed.

Event home abstracts a scenario there the user switches to another application and

then resumes the current application (e.g., by pressing the hardware HOME button

to switch to the launcher, and then eventually returning to the application). Event

power represents a scenario where the device is put in low-power state by pressing

the hardware POWER button, followed by device reactivation. Event menu shows

the pressing of the hardware MENU button to display an options menu (or a click

to display the hidden parts of an action bar). A default event will be represented as

e = [w,t] ∈Win×{back , rotate, home, power ,menu} where w is the currently-active

window. We will use Event to denote the set of all widget events and default events.

Callbacks. Each e ∈ Event triggers a sequence of callbacks that can be abstracted

as [o1,c1][o2,c2] . . . [ok,ck]. Here ci is a callback method and oi is a run-time object

on which ci was triggered. We focus on two categories of callbacks. Widget event

handler callbacks respond to widget events. Figure 3.1 shows three examples. Method

onItemClick handles click events for items of list fileListView. The call at line 7

registers the activity with a listener for such events. The list, the item being clicked,

and its position in the list are provided as parameters to the callback. Method

onOptionsItemSelected handles clicks for items in the options menu, and takes the

clicked item as a parameter. Method onClick at lines 37–39 responds to clicks on

btn.

Lifecycle callbacks are used for lifetime management of windows. These methods

are of significant interest to developers (e.g., in order to avoid leaks [10, 19, 51, 58]).

There are seven kinds of lifecycle callbacks for activities, as indicated in Figure 3.1.
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For example, creation callback onCreate indicates the start of the activity’s lifetime,

and termination callback onDestroy indicated end of lifetime. Menus and dialogs

can also have create/terminate callbacks, for example, onCreateOptionsMenu and

onOptionsMenuClosed in Figure 3.1.3 We will use abstract names create and destroy

to represent these create/terminate callbacks. Similarly, start , . . . , pause will denote

corresponding callbacks in activities and (if applicable) in dialogs and menus. Let

Cback be the set of all lifecycle and widget event handler callbacks.

3.1.2 Motivation and Related Work

Section 3.1.3 describes the window transition graph, our proposed static represen-

tation of window transitions and callbacks. Each node corresponds to a window and

each edge represents a window transition, labeled with a callback sequence. Figure 3.2

shows the WTG for the running example.

Why this static representation? A number of challenging software engineering

problems for Android can be addressed with static analyses where the modeling of

control flow plays a critical role. A few examples include checking of security prop-

erties (e.g., [6,9,12,13,16,22,28,36,65]), detection of energy defects (e.g., [8,27,38]),

leak defects (e.g., [10, 19,51, 58]), data races (e.g., [26]), and other correctness check-

ing (e.g., [39, 64]). For example, common battery-drain defects—“no-sleep” [38] and

“missing deactivation” [8, 27]—can be stated as properties of callback sequences.

These sequences could potentially be derived from WTG paths. Prior work [38]

defines a data-flow analysis to identify relevant API calls (e.g., GPS is turned on)

and to search for no-sleep paths along which corresponding turn-off/release calls are

3There is a related callback onPrepareOptionsMenu; for simplicity, it is not discussed here, but
our implementation handles it.
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missing. For this work, the order of callbacks is of critical importance, but their solu-

tion lacks generality and precision, and may even involve manual efforts by the user.

Some dynamic analyses of energy defects [8,27] also consider paths in which a sensor

(e.g., the GPS) is not put to sleep appropriately, often because of mismanagement

of lifecycle callbacks. A static approach to identify such code paths requires callback

ordering information, and the WTG can provide this information. Another example

is static taint analysis for Android. Representative algorithms such as [6] do not

model soundly all callback interleavings and do not employ the control-flow validity

constraints captured in our work. Future work could investigate whether such anal-

yses benefit from the WTG representation. Yet another example is static detection

of resource leaks. Such leaks are often the result of improper resource management

under event/callback sequences [10,19,51,58], including events such as rotate, home,

and back . Developing static leak detectors requires callback sequences, which could

be obtained from the WTG.

In addition to defect detection, the WTG is directly applicable for GUI model

construction for program understanding, testing [24, 52, 58, 59], and dynamic explo-

ration [3,7,62]. In Section 3.3 we describe a test generation tool we developed based

on the WTG, using traversals of valid WTG paths.

Related work. Despite the critical importance of analyzing statically the possi-

ble GUI behaviors of an Android application, the current state of the art lacks a

systematic and comprehensive solution. For example, an activity transition graph

is constructed in [7] to guide run-time GUI exploration, but the underlying static

analysis [13, 47] uses conservative assumptions about GUI-related control flow, and

does not model the changes to the window stack. Other work that creates static GUI
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models (e.g., [65]) also lacks generality and representations of the window stack. Our

earlier work [60] considers analysis of callbacks and determines ordering constraints

between them. However, it also does not provide a comprehensive solution: (1) it

considers only a limited subset of lifecycle callbacks; (2) it does not represent the

interleavings of callbacks from multiple windows, as illustrated in Table 3.1, 3.2; (3)

it does not model the window stack (e.g., it assumes that each back event will return

to the previous window); (4) it does not handle the owner-close operations described

shortly; (5) it does not consider rotate, home, and power events. Other work that

analyzes possible callbacks in Android (e.g., [6, 12, 22, 25, 26, 28]) has similar or even

more significant limitations. To the best of our knowledge, the proposed static anal-

ysis is the first comprehensive solution to the important problem of modeling the

possible window/callback sequences in an Android GUI.4

3.1.3 Modeling of Window Transitions

Opening and closing of windows. Each callback could open a new window or

close an existing one. Consider the following scenario: when an “Exit” button in an

activity a is clicked, the corresponding event handler opens a new dialog d to ask the

user to confirm the exit. When the dialog’s “Yes” button b is selected, its handler

h closes both the dialog as well as its owner activity a, and control returns back to

some prior activity a′. At each event, various callbacks occur. For example, clicking b

triggers [b,h] [d,destroy ] [a,pause] [a′,restart ] [a′,start ] [a′,resume] [a,stop] [a,destroy ].

Our goal is to model statically such behavior and the related changes to the window

4Since our approach is tightly coupled with Android-specific semantics, it is unlikely that it will
be relevant beyond Android code.
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stack.5 Note that we focus on the behavior of the main thread (i.e., UI event thread)

of the application; analysis of multiple threads (e.g., as done in [26]) or of control flow

across applications is not being considered. Additional limitations of the approach

are discussed in Section 3.2.4.

There are various API calls to open and close windows. For example, a call to

startActivity opens a new activity, and a call to finish closes an existing one.

Similarly, calls to show and dismiss can create and destroy a dialog. These will be

represented with abstract operations open(w) and close(w), where w is the window

being created/destroyed. We have never encountered an example of an execution of

a callback method c that opens more than one window, and thus we assume that any

path through c contains at most one open(w) operation.

Operations close(w) may also be triggered during an execution of c. The two

common patterns are self-close and owner-close. In a self-close, c is associated with

a window w and c’s execution issues close(w); an example is shown at line 39 of

Figure 3.1. Another example is onOptionsItemSelected associated with the options

menu m: the semantics of menu-item-click event handlers includes an implicit menu

self-close operation close(m) that does not appear in the code. In owner-close oper-

ations, if c is associated with a menu m or a dialog d, it may issue close(a) for the

owner activity a. For example, the path at lines 30–32 in Figure 3.1 has an open

operation followed by owner-close at line 32 and then an implicit self-close.

5The discussion assumes Android version 4.3; some earlier versions have slight variations in
certain sequences of callbacks.
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Note that the actual opening/closing of windows, as well as the related lifecycle

callbacks, happen only after the callback issuing the open/close operations has com-

pleted. For example, after lines 30–32 are executed and onOptionsItemSelected com-

pletes, menu m and its owner a = OpenFileActivity are closed, activity a′ = Options

is opened, and the following callbacks are observed: [m,destroy ] [a,pause] [a′,create]

[a′,start ] [a′,resume] [a,stop] [a,destroy ]. The ordering of open and close operations

in a callback’s execution path typically does not affect the outcome of its execution.

Behavior of the window stack. The window stack represents the set of currently-

alive windows. The window that currently interacts with the user is on top of the

stack. Due to space limitations, we describe the case where open and close operations

appear only in widget event handler callbacks. Our algorithms and implementation

also handle common cases where such operations occasionally appear in lifecycle call-

backs.

The window stack starts a single element: the starting activity a. The creation

of this initial state is associated with the lifecycle callback sequence to initialize a:

[create,a] [start ,a] [resume,a]. At any moment of time, the window w ∈Win at the

top of the stack determines the possible events that could be triggered by the user.

These include widget events [v,t] where v ∈ View is a widget defined by w and t is

the event type, as well as default events such as [w, back ], etc. When a widget event

[v,t] is triggered, callback [v,h] is invoked. Here h ∈ Cback is the corresponding

event handling method, invoked on that same widget v. If h triggers a self-close
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Table 3.1: Some window stack changes and callback sequences (part 1).

Stack Event Handler Open/Close Stack changes

1 (. . . , a) [v,t] [v,h] none none
2 (. . . , a) [v,t] [v,h] open(a′) push a′

3 (. . . , a′, a) [v,t] [v,h] close(a) pop a
4 (. . . , a) [v,t] [v,h] close(a), open(a′) pop a, push a′

5 (. . . , a′, a) [a,back ] implicit close(a) pop a
6 (. . . , a) [a,rotate] implicit close(a), open(a) pop a, push a
7 (. . . , a) [a,home] implicit none none
8 (. . . , a) [a,power ] implicit none none
9 (. . . , a) [a,menu] implicit open(m) push m
10 (. . . , a) [v,t] [v,h] open(m) push m
11 (. . . , a) [v,t] [v,h] open(d) push d
12 (. . . , a,m) [v,t] [v,h] close(m) pop m
13 (. . . , a,m) [v,t] [v,h] close(m), open(a′) pop m, push a′

14 (. . . , a′, a,m) [v,t] [v,h] close(m), close(a) pop m, pop a
15 (. . . , a,m) [v,t] [v,h] close(m&a), open(a′) pop m&a, push a′

16 (. . . , a,m) [m,back ] implicit close(m) pop m
17 (. . . , a,m) [m,rotate] implicit close(m&a), open(a&m) pop m&a, push a&m
18 (. . . , a,m) [m,home] implicit close(m) pop m
19 (. . . , a, d) [v,t] [v,h] open(a′) push a′

operation, w is popped from the window stack. If, in addition, h triggers an owner-

close operation, the owner activity is also popped from the top of the stack. 6 Finally,

if h opens a new window, this window is pushed on top of the stack.

Some of these scenarios are summarized in Table 3.1 and Table 3.2. The first

column describes the stack state, with the currently-visible window on top. We use

a and a′ to denote activities, m to denote an options menu, and d denote a dialog.

Only a representative sample of cases are described; additional details on the scenarios

captured by our algorithm are presented in Table 3.3 and Table 3.4. In several rows

6Since the lifetime of a menu/dialog is contained within the lifetime of its owner, closing an owner
implies that all owned windows have been closed.
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Table 3.2: Some window stack changes and callback sequences (part 2).

Callback sequence

1 [v,h]
2 [v,h][a,pause][a′,create][a′,start ][a′,resume][a,stop]
3 [v,h][a,pause][a′,restart ][a′,start ][a′,resume][a,stop][a,destroy ]
4 [v,h][a,pause][a′,create][a′,start][a′,resume][a,stop][a,destroy]
5 [a,pause][a′,restart ][a′,start ][a′,resume][a,stop][a,destroy ]
6 [a,pause][a,stop][a,destroy ][a,create][a,start ][a,resume]
7 [a,pause][a,stop][a,restart ][a,start ][a,resume]
8 [a,pause][a,stop][a,restart ][a,start ][a,resume]
9 [m,create]
10 [v,h][m,create]
11 [v,h][d,create]
12 [v,h][m,destroy ]
13 [v,h][m,destroy ][a,pause][a′,create][a′,start ][a′,resume][a,stop]
14 [v,h][m,destroy ][a,pause][a′,restart ][a′,start ][a′,resume][a,stop][a,destroy ]
15 [v,h][m,destroy ][a,pause][a′,create][a′,start ][a′,resume][a,stop][a,destroy ]
16 [m,destroy ]
17 [a,pause][m,destroy ][a,stop][a,destroy ][a,create][a,start ][a,resume][m,create]
18 [a,pause][m,destroy ][a,stop][a,restart ][a,start ][a,resume]
19 [v,h][a,pause][a′,create][a′,start ][a′,resume][a,stop]

the event handler is listed as “implicit”, because it is defined by the Android platform

semantics and not by the application code. Column “Open/ Close” shows the window

open/close operations triggered by the event handler. The corresponding changes to

the window stack are shown in the next column. After these changes are applied, the

new stack top becomes the visible window.

The first four rows in Tables 3.1/3.2 represent an event for a widget v in an activity

a. If the window stack changes (rows 2–4), the callback sequences interleave lifecycle

callbacks for a and the activity a′ which becomes the new stack top. The implicit

handlers for default events also may trigger stack changes: for example, rotating the

screen destroys a and then recreates it on top of the stack (row 6). Rows 12–18 present
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Table 3.3: Complete window stack changes and callback sequences (part 1).

Stack Event Handler Open/Close Stack changes

1 (. . . , a) [v,t] [v,h] none none
2 (. . . , a) [v,t] [v,h] open(a′) push a′

3 (. . . , a) [v,t] [v,h] open(d) push d
4 (. . . , a) [a,menu] implicit open(m) push m
5 (. . . , a) [v,t] [v,h] open(m) push m
6 (. . . , a) [v,t] [v,h] close(a)open(a′) pop a push a′

7 (. . . , a) [a,rotate] implicit close(a)open(a′) pop a push a′

8 (. . . , a) [a,home] implicit none none
9 (. . . , a) [a,power] implicit none none
10 (. . . , a, a′) [v,t] [v,h] close(a′) pop a′

11 (. . . , a, a′) [a′,back] implicit close(a′) pop a′

12 (. . . , d) [v,t] [v,h] none none
13 (. . . , d) [v,t] [v,h] open(d′) push d′

14 (. . . , d) [v,t] [v,h] open(m) push m
15 (. . . , d) [v,t] [v,h] close(d)open(d′) pop d push d′

16 (. . . , d) [v,t] [v,h] close(d)open(m) pop d push m
17 (. . . , d) [v,t] [v,h] close(d) pop d
18 (. . . , d) [d,back] implicit close(d) pop d
19 (. . . , a, d) [v,t] [v,h] open(a′) push a′

20 (. . . , a, d) [v,t] [v,h] close(d)open(a′) pop d push a′

21 (. . . , a, d) [v,t] [v,h] close(d)close(a)open(a′) pop d pop a push a′

22 (. . . , a, d) [d,rotate] implicit close(d)close(a)open(a′) pop d pop a push a′

23 (. . . , a, d) [d,home] implicit none none
24 (. . . , a, d) [d,power ] implicit none none
25 (. . . , a, a′, d) [v,t] [v,h] close(d)close(a′) pop d pop a′

26 (. . . ,m) [v,t] [v,h] close(m) pop m
27 (. . . ,m) [m,back] implicit close(m) pop m
28 (. . . ,m) [v,t] [v,h] close(m)open(d) pop m push d
29 (. . . , a,m) [v,t] [v,h] close(m)open(a′) pop m push a′

30 (. . . , a,m) [v,t] [v,h] close(m)close(a)open(a′) pop m pop a push a′

31 (. . . , a, om) [om,rotate] implicit close(om)close(a)open(a′) pop om pop a push a′

open(om′) push om′

32 (. . . , a, om) [om,home] implicit close(om) pop om
33 (. . . , a, om) [om,power] implicit close(om) pop om
34 (. . . , a, cm) [cm,rotate] implicit close(cm)close(a)open(a′) pop cm pop a push a′

35 (. . . , a, cm) [cm,home] implicit close(cm) pop cm
36 (. . . , a, cm) [cm,power] implicit close(cm) pop cm
37 (. . . , a, a′,m) [v,t] [v,h] close(m)close(a) pop m pop a
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Table 3.4: Complete window stack changes and callback sequences (part 2).

Callback sequence

1 [v,h]
2 [v,h][a,pause][a′,create][a′,start ][a′,resume][a,stop]
3 [v,h][d,create]
4 [m,create]
5 [v,h][m,create]
6 [v,h][a,pause][a′,create][a′,start ][a′,resume][a,stop][a,destroy ]
7 [a,pause][a,stop][a,destroy ][a′,create][a′,start ][a′,resume]
8 [a,pause][a,stop][a,restart ][a,start ][a,resume]
9 [a,pause][a,stop][a,restart ][a,start ][a,resume]
10 [v,h][a′,pause][a,restart ][a,start ][a,resume][a′,stop][a′,destroy ]
11 [a′,pause][a,restart ][a,start ][a,resume][a′,stop][a′,destroy ]
12 [v,h]
13 [v,h][d′,create]
14 [v,h][m,create]
15 [v,h][d,destroy ][d′,create]
16 [v,h][d,destroy ][m,create]
17 [v,h][d,destroy ]
18 [d,destroy ]
19 [v,h][a,pause][a′,create][a′,start ][a′,resume][a,stop]
20 [v,h][d,destroy ][a,pause][a′,create][a′,start ][a′,resume][a,stop]
21 [v,h][d,destroy ][a,pause][a′,create][a′,start ][a′,resume][a,stop][a,destroy ]
22 [a,pause][d,destroy ][a,stop][a,destroy ][a′,create][a′,start ][a′,resume]
23 [a,pause][a,stop][a,restart ][a,start ][a,resume]
24 [a,pause][a,stop][a,restart ][a,start ][a,resume]
25 [v,h][d,destroy ][a′,pause][a,restart ][a,start ][a,resume][a′,stop][a′,destroy ]
26 [v,h][m,destroy ]
27 [m,destroy ]
28 [v,h][m,destroy ][d,create]
29 [v,h][m,destroy ][a,pause][a′,create][a′,start ][a′,resume][a,stop]
30 [v,h][m,destroy ][a,pause][a′,create][a′,start ][a′,resume][a,stop][a,destroy ]
31 [a,pause][om,destroy ][a,stop][a,destroy ][a′,create][a′,start ][a′,resume][om′,create]
32 [a,pause][om,destroy ][a,stop][a,restart ][a,start ][a,resume]
33 [a,pause][om,destroy ][a,stop][a,restart ][a,start ][a,resume]
34 [a,pause][cm,destroy ][a,stop][a,destroy ][a′,create][a′,start ][a′,resume]
35 [a,pause][cm,destroy ][a,stop][a,restart ][a,start ][a,resume]
36 [a,pause][cm,destroy ][a,stop][a,restart ][a,start ][a,resume]
37 [v,h][m,destroy ][a′,pause][a,restart ][a,start ][a,resume][a′,stop][a′,destroy ]
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scenarios for an options menu m, owned by an activity a. The widget events [v,t] are

of the form [menu item,click ] with handlers h illustrated by onOptionsItemSelected

in the running example. The implicit close(m) operation in h is explicitly represented

in the table. Row 13 corresponds to lines 28–29 in the running example, and row 15

represents the effects of lines 30–32.

Window transition graph. The WTG is defined as G = (Win, E, ε, δ, σ) with

nodes w ∈ Win and edges e ∈ E ⊆ Win ×Win. Here we use Win and View to

denote sets of static abstractions of run-time windows and widgets (while previously

these sets denoted the actual run-time entities). There are various ways to define

such static abstractions. We use the approach from [45,56], which creates a separate

a ∈Win for each activity class, together with appropriate m, d ∈Win for its menus

and dialogs, and abstractions v ∈ View for their widgets (i.e., defined in layout XML

files), and then propagates them similarly to interprocedural points-to analysis, but

with special handling of Android API calls.

Labels ε : E → Event indicate that the window transition represented by an edge

could be triggered due to a particular event. Labels δ : E → ({push, pop} ×Win)∗

annotate an edge with a sequence of window stack operations push(w) and pop(w).

Finally, σ : E → ((Win ∪View)×Cback)∗ shows the sequence of callbacks for the

transition.

The meaning of an edge e = w1 → w2 is as follows: suppose that the currently-

visible window is w1 (i.e., it is on top of the window stack). If event ε(e) is issued by

the GUI user, the processing of this event may trigger the stack changes described

by δ(e), resulting in a new stack top element w2. During these changes, the callback

sequence σ(e) is observed.
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a1:ChooseFileActivity e1:item,
click

a2:OpenFileActivity

e2:item,
click e3:back

m:OptionsMenu(a2)

e4:menu e5:back e6:home

a3:About
e7:aboutItem,click

a4:Options

e9:optionsItem,click

e12:back

e8:back  e10:back

 e11:btn,click 

(a) Window transition graph

e δ(e) σ(e) e δ(e) σ(e)

e1 − 1 e7 pop m, push a3 13
e2 push a2 2 e8 pop a3 5
e3 pop a2 5 e9 pop m, pop a2, push a4 15
e4 push m 9 e10 pop a4 5
e5 pop m 16 e11 pop a4, push a3 4
e6 pop m 18 e12 pop a3 5

(b) Edge labels

Figure 3.2: WTG for the running example.

Example. Figure 3.2 shows the WTG for the running example. To simplify the

figure, edges w → w for rotate and home events are not shown. Since edges for

power are very similar to the ones for home, they are not shown either. The back -

event edge from the starting activity a1, which returns control back to the Android

platform, is also not shown. Each ei is labeled with its triggering event ε(ei). Edge e1

represents the case when the PDF file does not exist (line 14 in onItemClick) and the

event handler returns without opening a new window. The table shows the associated

stack changes as well as row numbers from Table 3.2 describing the callback sequences

σ(e).
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Two acyclic paths reach a3: p = e2, e4, e7 and p′ = e2, e4, e9, e11, where p produces

a window stack (a1, a2, a3) and p′ produces (a1, a3). Edges e8 and e12 correspond to

possible next edges along p and p′, respectively. Note that if e8 is appended to p′,

the path is invalid: it represents a stack (a1), but the end node of the path is a2,

which violates the property that the current window is on top of the window stack.

Similarly, e12 cannot be appended to p. Our graph construction creates both e8 and

e12, while our subsequent path traversal avoids the infeasible paths p′, e8 and p, e12.

3.2 WTG Construction Algorithm

The static analysis algorithm to construct the WTG takes as input all w ∈Win,

v ∈ View, and, for each w, the possible widget events [v,t] and their corresponding

event handler callbacks [v,h]. This information is computed by an existing static anal-

ysis described in [45,56]. Given this input, the algorithm proceeds in three stages. In

the first stage, initial edges e are constructed and annotated with trigger-event labels

ε(e). This stage requires analysis of open(w) operations in event handlers, as well as

modeling of default events rotate, home, power , and menu. Since close(w) opera-

tions are not accounted for in this stage, some of the resulting edges have incorrect

target nodes. In the second stage, the initial edges are extended to include push/pop

sequences δ(e) and callback sequences σ(e). This requires analysis of self-close and

owner-close operations. In the third stage, backward traversal of the graph is used

to analyze the push/pop sequences along traversed paths, in order to determine the

correct target nodes of edges that could not be resolved earlier.
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Algorithm 3.1: ConstructInitialEdges

1 foreach w ∈Win do
2 foreach widget event [v,t] with callback [v,h] for w do
3 if MayOpenNone([v,h]) then
4 AddEdge(w,w, [v,t])

5 foreach open(w′) ∈ Open([v,h]) do
6 AddEdge(w,w′, [v,t])

7 if w is an activity a with options menu m then
8 AddEdge(a,m, [a,menu])

9 AddEdge(w,w, [w,back ])

10 foreach menu and dialog w ∈Win do
11 FindOwner(w)

12 foreach window w ∈Win do
13 if w is an activity a then
14 AddEdge(a, a, [a,rotate])
15 AddEdge(a, a, [a,home])
16 AddEdge(a, a, [a,power ])

17 if w is an options menu m with owner a then
18 AddEdge(m,m, [m,rotate])
19 AddEdge(m, a, [m,home])
20 AddEdge(m, a, [m,power ])

21 if w is a context menu m with owner a then
22 . . .

23 if w is a dialog d with owner a then
24 . . .

3.2.1 Stage 1: Open-Window Operations and Default Events

In Stage 1, helper function AddEdge(w1, w2, ev) represents the addition to the

WTG of an edge from window w1 to window w2. The edge is labeled with event ev :

a widget event [v,t], where v is an widget in w1, or a default event [w1,t].

The first stage of the analysis applies Algorithm 3.1. For each window w, in

addition to w’s widget events [v,t] and their callbacks [v,h], the algorithm requires

two additional properties. The first is a map Open, mapping each callback [v,h]

to the set of open(w′) operations that could be triggered by paths in the callback’s
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execution. The second is a map MayOpenNone from [v,h] to a boolean value: true if

the callback’s execution could complete without triggering any open(w′) (i.e., there

is an execution path without window-open operations), and false otherwise. Both of

these maps can be computed using an approach from [60], in which interprocedural

control-flow traversal of h (and its transitive callees) is performed to find calls such

as startActivity.

Algorithm 3.1 considers each event and its callback. If [v,h] could be executed

without opening a new window, an edge w → w is created. Edge e1 in Figure 3.2 illus-

trates this case; the edge is created because there is a path in onItemClick (through

line 14 in Figure 3.1) for which no windows are created. We will refer to such edges

as no-open edges. Next, each possibly-opened window w′ is considered. At line 6,

an edge from w to w′ is created for event [v,t]. Line 8 handles default event menu

for activities. The edges created at lines 6 and 8 push a new window on top of the

window stack, and will be referred to as window-open edges.

At line 9, initial edges for back -button events are created. The targets of these

edges (as well as their callback sequences) will not be known until Stage 3. Next,

for each menu and dialog w, its owner activity is determined by traversing backward

the newly-created window-open edges, using helper function FindOwner.7 Finally,

default events rotate, home, and power are handled. This handling is consistent with

the description in Table 3.1, 3.2. The cases for context menus and dialogs are not

shown, but they are similar to those for options menus.

Example. Figure 3.3 shows the WTG for the running example after Stage 1 has

completed. The edge numbering is the same as in the final WTG from Figure 3.2.

7In general, w could have multiple owners, e.g., due to subclassing of activities; the necessary
algorithmic generalizations are straightforward.
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Similarly to that earlier figure, certain rotate, home, and power edges are not shown

for simplicity. Edge e1 is created because MayOpenNone is true for the corresponding

event handler, while e2 shows that this handler could open a2. The owner of m is a2,

and the home edge for m reflects that. The back -event edges have incorrect targets

that will be fixed later. The back -event edge for a3 is labeled as e8, e12 since eventually

it will lead to the creation of two separate edges e8 and e12.

After generating the edges triggered by event handling callbacks, we perform a

similar analysis on the creation lifecycle callbacks of activities, in order to detect

the windows opened by these methods. Based on our observations, opening/closing

windows inside of lifecycle callback onCreate is commonly used by developers to

handle exceptional run-time behavior. Consider the following example: the creation

of the main activity, executed when an application is launched, triggers the associated

lifecycle callback onCreate which attempts to initialize the network connection to the

server. This operation checks if the current version of the application is obsolete in

order to decide whether to an update is needed. A dialog will be displayed to the users

if the network is not available. Modeling such transitions requires additional changes

to Algorithm 3.1. For each edge w1 → w2 generated by this algorithm, analysis on

lifecycle callback onCreate of w2 is performed to detect if it opens additional windows

w3. Then a new edge w1 → w3 is created. The corresponding label sequence for

this new edge would contain push w2 followed by push w3 (generated in Stage 2, as

described later). If MayOpenNone returns false for onCreate, edge w1 → w2 will be

deleted indicating that this lifecycle callback will definitely trigger new windows.
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a1:ChooseFileActivity e1:item,
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a2:OpenFileActivity
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a4:Options

e9:optionsItem,
click

e8,e12:back

 e11:btn,click 

 e10:back

Figure 3.3: WTG after Stage 1.

3.2.2 Stage 2: Close-Window Operations

In this stage the analysis first considers each edge e for a widget event [v,t] and

handler [v,h]. Using the interprocedural control-flow reachability analysis from [60], h

under calling context v is analyzed for self-close operations (e.g., calls to finish) and

e is classified in one of three disjoint categories: must-not-self-close, may-self-close,

and must-self-close. If h under context v does not contain a path reaching a self-close

operation, e is in the first category. If some but not all paths reach a self-close, the

second category applies. If every path reaches a self-close, the edge is must-self-close.

In a similar manner, classification is performed for owner-close operations. The

analysis considers each menu and dialog w and w’s owner activity a. For an edge

e = w → . . . for a widget event [v,t], we can classify e as must-not-close-owner,

may-close-owner, and must-close-owner.

Example. In Figure 3.3, e7 and e9 are must-self-close due to the implicit close(m)

in onOptionsItemSelected. Edge e11 is also must-self-close due to the call to finish

at line 39 in the running example. (If, hypothetically, this call were guarded by a
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Algorithm 3.2: ExpandEdgesWithLabels

1 foreach w ∈Win do
2 if w is an activity a then
3 foreach window-open edge e = a→ w′ do
4 if e is may/must-self-close then
5 ExpandEdge(e, [pop a, push w′])

6 if e is not must-self-close then
7 ExpandEdge(e, [push w′])

8 foreach no-open edge e = a→ a do
9 if e is may/must-self-close then

10 ExpandEdge(e, [pop a])

11 if e is not must-self-close then
12 ExpandEdge(e, [ ])

13 if exists e = a→ m for default event [w,menu] then
14 ExpandEdge(e, [push m])

15 if w is a menu m with owner a then
16 foreach window-open edge e = m→ w′ do
17 if e is may/must-owner-close then
18 ExpandEdge(e, [pop m, pop a, push w′])

19 if e is not must-owner-close then
20 ExpandEdge(e, [pop m, push w′])

21 foreach no-open edge e = m→ m do
22 if e is may/must-owner-close then
23 ExpandEdge(e, [pop m, pop a])

24 if e is not must-owner-close then
25 ExpandEdge(e, [pop m])

26 if w is a dialog d with owner a then
27 . . .

28 foreach edge w → w for default event [w,back ] do
29 ExpandEdge(e, [pop w])

conditional, the classification would have been may-self-close.) The other two widget

event edges e1 and e2 are must-not-self-close. For owner-close operations, e7 is must-

not-close-owner, while e9 is must-close-owner, since under widget context optionsItem

the handler definitely closes the owner activity a2 (line 32 in the running example).
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This classification is used to create push/pop labels δ(e) for the analyzed edges.

For example, e9 opens a4 while definitely closing m and its owner a2; thus, δ(e9) =

pop m, pop a2, push a4. Algorithm 3.2 provides some details on this process. One

important observations is that a single edge created by Stage 1 may be expanded

into several edges, with different δ(e) labels. For example, if (hypothetically) e11

were may-self-close, it would expand to two edges from a4 to a3, one labeled with

push a3 (line 7 in the algorithm) and the other with pop a4, push a3 (line 5 in the

algorithm). Helper function ExpandEdge(e, d) takes an edge e created by Stage 1

and constructs an “expanded” version of it with δ(e) = d. After all expansions done

in Stage 2, the edges from Stage 1 are discarded.

As discussed earlier, Stage 1 considers the open-window effects of onCreate life-

cycle callbacks for activities. Similarly, Stage 2 analyzes the close-window effects of

these callbacks. To capture such close operations for edges triggering new activi-

ties, two cases are considered. First, if the opened activity must be closed by its

onCreate (i.e., every path contains a self-close operation), the corresponding pop will

be included in the edge’s label. Otherwise, if the target activity may be closed (i.e.,

some but not all paths contain self-close operations), two edges are generated: one

with and one without a pop label. For example, if transition w1 → w2 must close

target activity w2, one edge with label push w2 pop w2 will represent this behavior.

If w2 may be closed during this transition, two edges will be created: one with label

push w2 and one with label push w2 pop w2. Recall that in some cases a transition

w1 → w2 may be created by Stage 1 when onCreate of some intermediate activity a

opens w2 (and a itself is opened by w1). In this case the analysis will create either a
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single edge with label push a push w2 pop w2, or two edges with labels push a push w2

and push a push w2 pop w2.

The handling of dialogs is similar to that of menus, but with the additional possi-

bility that a self-close operation is not executed. The handling of rotate, home, and

power events is consistent with the push/pop sequences listed in Table 3.1, 3.2, and is

not shown in Algorithm 3.2. After the algorithm completes, all edges have labels δ(e).

The labels created for the running example are shown in Figure 3.2b. At this point,

there is still a single back -event edge for a3 (labeled with pop a3); Stage 3 creates two

separate edges from it.

Certain edges have incorrect targets and have to be processed by Stage 3. These

edges do not open new windows, but close existing ones: namely, (1) edges for back

events, and (2) no-open edges that contain close operations. In both cases, the top of

the stack after executing the edge is some (yet) unknown previously-opened window.

The rest of the edges have correct target nodes and their callback sequences σ(e) can

be determined at this time, using the Android semantic specification illustrated by

Table 3.1, 3.2. For edges e1, e2, e4, e6, e7, e9, e11 from Figure 3.3, the callback sequences

computed by Stage 2 are listed in Figure 3.2b. The rest of the edges in Figure 3.3

have incorrect target nodes, and since σ(e) depends on the target of e, their callback

sequences cannot yet be determined.

3.2.3 Stage 3: Backward Analysis of the Window Stack

Edges with incorrect targets require further processing. They are of the form

e = w → w, with labels δ(e) containing no push but at least one pop. To identify the

correct target of e, Stage 3 performs a backward traversal from w, using correct edges
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finalized in Stage 2, to examine all paths ending at w. This traversal is parameterized

by a value k, which defines the largest number of edges along any path being consid-

ered.8 For each such path e1, e2, . . . , en, where n ≤ k and the target node of en is w,

we need to consider the sequence of push/pop operations δ(e1), δ(e2), . . . , δ(en), δ(e)

and to decide (1) whether this sequence represents valid run-time behavior, and (2)

what could be the top of the window stack after the sequence is executed.

Example. Suppose that k= 2 and we consider e5 = m → m in Figure 3.3, labeled

with pop m. Two paths ending at m need to be examined: e2, e4 and e6, e4. The edge

labels for the first path (including e5’s label) are push a2, push m, pop m. This is a

feasible sequence whose execution is guaranteed to leave a2 as the top of the stack.

Thus, e5 should have a2 as a target, and the analysis creates this corrected edge. For

the second path, the edge labels (including e5) are pop m, push m, pop m. Although

this is a feasible sequence, it does not provide enough information to decide what

would be the top of the stack after executing these operations, and the analysis does

not create any edges due to this path.

As another example, consider edge e10 = a4 → a4. For k = 4, the relevant

path is e0, e2, e4, e9. Here e0 is an implicit edge entering a1, labeled with push a1;

this edge represents the triggering of the start activity a1 by the Android platform.

The sequence for e0, e2, e4, e9, e10 is push a1, push a2, push m, pop m, pop a2, push a4,

pop a4. This sequence leaves a1 as the top of the stack. Thus, e10 should be redirected

to a1 (as shown in the graph in Figure 3.2).

As a final example, consider back -event edge a3 → a3. Path e2, e4, e7, with this

edge appended, has the sequence push a2, push m, pop m, push a3, pop a3. Thus,

8An alternative would be to traverse all acyclic paths, without a length limit.
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this back -event edge should have a2 as target. In the final graph from Figure 3.2, e8

is this redirected edge. Another relevant path is e0, e2, e4, e9, e11; the sequence along

the path, appended with the back -event edge, is push a1, push a2, push m, pop m,

pop a2, push a4, pop a4, push a3, pop a3, which leaves a1 as the top of the stack. In

this case an edge from a3 to a1 needs to be introduced (e12 from Figure 3.2).

Stage 3 analyzes an edge e = w → w as follows. A stack containing push and

pop operations is maintained. The stack is initialized with the reverse of δ(e); for

all examples from above, this is an operation pop w. Backward traversal from w is

performed, limiting path length to at most k edges. When an edge ei is encountered

during the traversal, the reverse of its δ(ei) sequence is used to update the stack. If

pop w′ is seen, it is just added on top of the stack. If push w′ is encountered and

the stack is not empty, the top of the stack must be pop w′ (otherwise the path is

infeasible and is ignored) and pop w′ is removed from the stack. If push w′ is observed

when the stack is empty, the traversal stops and w′ is identifies as a possible target,

leading to a new edge w → w′. After these edges are changed with the correct targets,

their callback sequences σ(e) can be generated in a similar way described previously.

Example. Consider edge e10 = a4 → a4. Starting from a stack containing pop a4,

edges e9, e4, e2, e0 are visited to produce the following sequence: push a4, pop a2,

pop m, push m, push a2, push a1. Operations push a4 and push a2 empty the stack.

Since push a1 occurs for an empty stack, edge e10 becomes a4 → a1.

3.2.4 Limitations

The algorithm and its implementation have several limitations. As discussed

earlier, control flow due to multiple threads or across multiple applications is not
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modeled. The modeling of GUI widgets and event handlers [45] captures many

commonly-used Android widgets, but is not fully comprehensive. Furthermore, cus-

tom window/widget systems cannot be handled. Asynchronous transitions (e.g., due

to timers and sensor events) are not represented in the WTG. The interprocedural in-

tent analysis used to resolve open(w) calls [60] considers only explicit intents, as they

are designed for use inside the same application [23]. More general intent analyses

(e.g., [35,36,47]) could be used instead. Our analysis also does not model the different

launch modes for activities [2]. Due to these limitations, some window transitions are

missing: for example, for the 20 apps used in our evaluation, on average 13% of the

WTG nodes have no incoming edges. While most of these limitations are orthogonal

to the contributions of this chapter, they emphasize the need to advance the state of

the art in static analysis for Android, and in particular the comprehensive modeling

of Android-specific control flow and data flow.

3.2.5 Path Validity

The analysis outlined in the previous sections does not ensure that each path

represents a feasible run-time execution. Consider again the final WTG (after Stage

3) shown in Figure 3.2. Paths p = e0, e2, e4, e7 and p′ = e0, e2, e4, e9, e11 both reach

node a3. However, p cannot be extended with edge e12 because the corresponding

edge labels would be push a1, push a2, push m, pop m, push a3, pop a3. This leaves

a2 as the top of the window stack, while the target node of e12 is a1. Similarly, if p′

were extended with e8, the top of the stack would be a1 while the target of e8 is a2.

The WTG can be augmented with a path validity check, which “simulates” the

window stack along a given path of interest, and decides whether the path is valid.
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This is similar in spirit to classical interprocedural analyses, where the sequence of

calls and returns along a path is used to simulate the call stack, in order to decide

path validity [48]. A WTG edge may correspond to several push/pop operations, but

the validity of these operations is still based on the same style of push/pop matching

as in traditional analyses. As discussed in the next section, one use of this validity

check is during test generation, to avoid the creation of unexecutable test cases. Path

validity checks may also be needed for static checking of correctness properties, in

order to avoid analyzing infeasible paths that lead to false positives.

3.3 Test Generation

One possible application of the WTG is for model-based test generation (e.g.,

[8, 24, 52, 58, 59]). To illustrate this use of the WTG, we developed a prototype test

generation tool. The tool traverses certain WTG paths and for each path creates

a test case implemented with the Robotium testing framework [43]. For a path

p = e1, e2, . . ., the event label ε(ei) is translated to corresponding Robotium API calls

to trigger the event. Some events may require additional input from the tester—e.g.,

to decide which item in a list to click. Since the static analysis solution is conservative,

it is possible that event ε(ei) may not be feasible at run time, or even if it is feasible,

the target window of ei after the run-time event is not as expected. Each test case

includes run-time checks to detect such scenarios and report the test case as infeasible.

One can consider various test generation schemes (e.g., leak testing in [58] consid-

ers neutral-effect cycles in a manually-constructed model). In our proof-of-concept

tool, we use a simple path-based approach. Starting from the implicit edge e0 show-

ing the invocation of the start activity, we append m distinct edges to create a path

69



Table 3.5: WTG construction algorithm: number of nodes/edges across stages.

Application SLOC Nodes Edges

Stage 1 Stage 2 ∆1,2 Stage 3 ∆2,3

APV 3832 14 77 101 24 105 58
Astrid 24487 93 594 740 146 838 236
BarcodeScanner 6549 20 90 121 31 128 65
Beem 12962 24 99 125 26 132 65
ConnectBot 32638 37 185 233 48 237 112
FBReader 45510 45 286 17774 17488 41942 26326
K9 52240 55 258 411 153 516 221
KeePassDroid 27457 41 272 468 196 643 389
Mileage 9881 75 409 562 153 676 268
MyTracks 23389 61 212 314 102 391 197
NotePad 4986 22 122 191 69 213 110
NPR 12118 32 344 502 158 590 106
OpenManager 2562 18 95 116 21 116 64
OpenSudoku 6079 35 173 232 59 237 125
SipDroid 24533 31 176 305 129 406 331
SuperGenPass 2119 9 49 63 14 64 39
TippyTipper 1739 10 54 63 9 65 16
VLC 10670 26 117 130 13 131 45
VuDroid 2380 7 30 44 14 47 23
XBMC 23295 67 1080 3819 2739 4279 722

p = e0, e1, . . . , em. A naive approach is to simply explore all such paths. A more

precise approach is to apply the validity check from Section 3.2.5 each time the path

is extended with a new edge. The next section shows that this validity check, which

is based on our proposed tracking the push/pop sequences, can reduce substantially

the number of test cases being generated.

3.4 Experimental Evaluation

The WTG was constructed for the 20 open-source applications used in the previous

chapter. The first goal of the evaluation is to characterize the effects of different stages
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Table 3.6: WTG construction algorithm: search depth and analysis cost.

Application k Time

k=1 k=2 k=3 k=4 (sec)

APV 75 95 104 105 5
Astrid 675 836 838 838 18
BarcodeScanner 98 118 128 128 6
Beem 100 118 132 132 6
ConnectBot 182 211 234 237 8
FBReader 29473 39820 41941 41942 2086
K9 433 486 509 516 25
KeePassDroid 399 598 640 643 9
Mileage 485 636 676 676 7
MyTracks 294 363 391 391 7
NotePad 162 195 213 213 6
NPR 525 590 590 590 6
OpenManager 84 113 116 116 5
OpenSudoku 180 208 237 237 6
SipDroid 226 364 396 406 12
SuperGenPass 45 58 64 64 5
TippyTipper 56 61 65 65 5
VLC 112 131 131 131 6
VuDroid 34 41 47 47 4
XBMC 3690 4241 4278 4279 16

of the algorithm, as well as its overall cost. The second goal is to evaluate precision,

relative to a manually-constructed model. The third goal is to evaluate precision for

the test generation from Section 3.3. The implementation is available as part of our

public analysis toolkit [15].

3.4.1 Algorithm for Building the WTG

Tables 3.5/ 3.6 provide measurements of the number of WTG nodes and edges.

Column “Stage 1” shows the number of edges before considering any close-window

operations (Algorithm 3.1). After Stage 2, the edges are expanded with push/pop
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sequences, based on analysis of close-window effects. Column ∆1,2 shows the increase

due to this expansion. One can observe that an edge from Stage 1 can often have

several possible push/pop sequences. This indicates that an event handler may exhibit

a variety of behaviors. Our analysis discovers such variations and represents them

with separate edges (Algorithm 3.2). We are not aware of any existing work that

performs such detailed analysis of Android event handlers.

The large number of edges for FBReader and XBMC is caused by a known limitation of

our prior analyses [45,60]: both analyses use a context-insensitive call graph based on

class hierarchy analysis. For example, in FBReader, two utility methods are responsible

for over 96% of the WTG edges. Both methods take parameters of Runnable type

which is implemented by 130 classes. Class hierarchy resolution for calls on these

parameters is highly imprecise. The next chapter discusses this program in more

detail.

Recall that some of the Stage 2 edges have incorrect target nodes. Column “Stage

3” shows the number of edges after the correct targets have been determined. This is

achieved with backward path analysis, based on a parameter k for path length; the

column of Table 3.6 contains measurements for k=4. Column ∆2,3 in Table 3.5 shows

the size of the difference (number of edges removed and added) between the edge sets

from Stage 2 and Stage 3. The backward path traversal, combined with tracking

of feasible push/pop sequences along the path (Section 3.2.3), results in significant

changes to the graph. The four columns of Table 3.6 show the effects of increasing

the path length limit k. In general, newly-created edges require backward traversals

of non-trivial length. Thus, one cannot consider just the edges entering a node w to

determine the targets of Stage 3 edges w → . . .; rather, paths of length k reaching w
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Table 3.7: Feasibility of WTG edges.

Application WTG Manual Infeasible

APV 105 105 0
BarcodeScanner 128 106 22
OpenManager 116 109 7
SuperGenPass 64 64 0
TippyTipper 65 65 0
VuDroid 47 45 2

must be examined. To the best of our knowledge, ours is the first approach to perform

such static modeling of possible transitions in Android GUIs. For most programs,

the graph stabilizes at k=4; for the rest, slightly larger values of k (not shown here)

are needed.

The last column shows the running time of the analysis in seconds. This mea-

surement includes the time for the event handler analysis from [60], which is invoked

on-demand inside our analysis. Overall, the running times are suitable for practical

use, even though we have not made any significant effort to optimize the implementa-

tion. However, as indicated by the results for FBReader, scalability limitations could

be encountered for large WTGs.

3.4.2 Manual Examination of WTGs

For in-depth evaluation of analysis precision, we examined the WTG (k = 4) for

APV, BarcodeScanner, OpenManager, SuperGenPass, TippyTipper, and VuDroid. These

applications had the smallest numbers of WTG nodes, and thus could be examined

manually with reasonable effort.
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Column “WTG” in Table 3.7 replicates the Stage 3 measurements from Ta-

bles 3.5/3.6. Column “Manual” shows the number of WTG edges that were manually

confirmed to be feasible using run-time test cases. The last column contains the num-

ber of infeasible WTG edges. The infeasibility was asserted by examining the source

code. In general, the number of infeasible edges is small (around 6% across the six

applications). We determined the root causes of all infeasible edges. In all cases,

the infeasibility was due to deficiencies in the earlier work on window/widget model-

ing [45, 56] and event handler analysis [60]. If these existing static analyses were to

be improved, the WTG would achieve perfect precision. These results highlights the

need for continued advances in static analysis of GUI structure and behavior for An-

droid applications. Still, the small number of infeasible edges is a positive indicator

that highly-precise static GUI models can be constructed automatically.

3.4.3 Test Generation

Recall that our prototype test generator considers paths p = e0, e1, . . . , em (all ei

are distinct) and generates test cases from them. Here e0 represents the invocation of

the start activity by the Android platform. The numbers of paths for m=2 and m=3

are shown in Table 3.8. Columns “All” contain the number of all paths, while columns

∆ show the reduction (in percent) when the path validity check from Section 3.2.5 is

applied. For FBReader the number of paths with m= 3 was too large enumerate in

reasonable time.

For several applications the path validity check reduces the number of test cases.

For example, for m=3 (i.e., test cases containing three GUI events), 10 applications

74



Table 3.8: Number of paths for test generation.

Application m=2 m=3

All ∆ (%) All ∆ (%)

APV 116 24.1 1416 37.7
Astrid 232 62.1 1822 75.3
BarcodeScanner 526 1.9 7675 4.6
Beem 138 26.1 929 38.6
ConnectBot 287 26.1 3384 40.3
FBReader 33404638 84.9 N/A N/A
K9 12393 19.8 443647 27.0
KeePassDroid 20 0.0 48 0.0
Mileage 16 0.0 45 0.0
MyTracks 1331 9.4 35212 20.5
NotePad 217 17.5 2625 26.0
NPR 4171 21.0 251251 30.5
OpenManager 392 0.8 5803 1.5
OpenSudoku 111 23.4 980 33.3
SipDroid 905 32.9 13604 51.6
SuperGenPass 195 0.0 2110 0.0
TippyTipper 341 0.0 5405 0.0
VLC 42 0.0 131 0.0
VuDroid 52 0.0 276 0.0
XBMC 5728 62.3 1330605 71.0

show reductions of 26% or more. Such reductions indicate that statically we can

eliminate significant numbers of infeasible test cases.

Of course, even if a path satisfies the static validity condition, it could still result

in an infeasible test case. As indicated earlier, due to deficiencies in prior static

analyses, some WTG edges (and thus paths) may be infeasible. To understand better

this infeasibility, for the six applications studied in Section 3.4.2 we generated test

cases from the statically-feasible paths for m= 2. Although the sequences of events

(implemented through Robotium [43] API calls) are generated automatically, some
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Table 3.9: Run-time feasibility of generated test cases.

Application Static Feasible

APV 88 88
BarcodeScanner 516 88
OpenManager 389 364
SuperGenPass 195 195
TippyTipper 341 341
VuDroid 52 52

test cases still require manual effort: for example, for BarcodeScanner, we need to

manually set up a variety of actual barcode images to drive the different test cases.

Due to this manual effort, we did not consider larger values of m.

The number of test cases (with path validity) is shown in column “Static” in

Table 3.9. We set up and executed all 1581 test cases indicated in this column.

The next column “Feasible” shows the number of these test cases that were feasible

at run time—that is, they could match the event sequence and target windows of

the static path. In BarcodeScanner, the event handler analysis from [60] leads to

infeasible edges that make most of the test cases infeasible. As described in [60],

the application processes eleven types of barcodes, and the GUI behavior (subset of

visible widgets and subset of handler effects) differs based on the barcode type. This

variability cannot easily be modeled statically. In OpenManager, the 6.5% of infeasible

test cases are due to inter-application interactions. When the main activity is invoked

by another application (rather than by the user), that activity computes information

about a file, returns it to the invoking application, and closes itself. Our analysis

does not model the interactions between multiple applications and does not recognize
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that the activity-close operation happens under these conditions. Overall, with the

exception of one application, the vast majority of statically-generated test cases are

feasible at run time.

Summary. Columns ∆1,2 and ∆2,3 of Table 3.5, 3.6 indicate that event handlers

can have complex behaviors and their transitions depend on non-trivial sequences of

preceding events. Our analysis is the first to model these features, leading to improved

static GUI models and test case generation. For six applications, manual comparison

with run-time behavior indicates that the analysis achieves good precision.
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CHAPTER 4: Modeling of Asynchronous Control Flow

The WTG described in the previous chapter represents only control flow caused

by code executed by the UI thread of the application. In Android, other theads

may asynchronously trigger GUI changes by posting code to be executed by the UI

thread. This chapter describes an extension of the WTG definition and construction

to capture common cases of such behavior.

4.1 Window Transitions Triggered by Other Threads

Chapter 3 proposed the window transition graph (WTG) to describe the GUI be-

havior of Android applications. Recall that the WTG is defined asG = (Win, E, ε, δ, σ)

with nodes w ∈ Win representing windows and edges e ∈ E ⊆ Win ×Win repre-

senting window transitions. An edge e is labeled with several labels: ε(e) shows that

the transition could be triggered due to a particular event, δ(e) annotates e with a

sequence of window stack operations push(w) and pop(w), and σ(e) is the sequence

of callbacks that occur during the transition. For an edge e = w1 → w2, if the top

of the window stack is w1 and event ε(e) is issued by the GUI user, the handling of

this event may trigger the stack changes denoted by δ(e), leading to a new stack top

element w2. During these changes, the callbacks in σ(e) are observed.

Events ε(e) are either widget events (e.g., clicking on a button) or default events

(back , rotate, home, power ,menu). The sequence of such events is generated by the

GUI user and is processed by the UI interface thread, which is the main thread of
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1 class OpenFileActivity

2 extends Activity {

3 private String findText = null;

4 private MenuItem findTextMenuItem = ...;

5 public boolean onOptionsItemSelected(MenuItem menuItem) {

6 if (menuItem == this.findTextMenuItem) {

7 final Dialog dialog = new Dialog(this);

8 Button goButton = new Button(this);

9 goButton.setOnClickListener(new OnClickListener() {

10 public void onClick(View v) {

11 OpenFileActivity.this.findText = ...;

12 OpenFileActivity.this.find(true);

13 dialog.dismiss();

14 }

15 });

16 dialog.setContentView(contents); // ’contents’ contains goButton

17 dialog.show();

18 }

19 }

20 void find(boolean forward) {

21 Finder finder = new Finder(this, forward);

22 Thread finderThread = new Thread(finder);

23 finderThread.start();

24 }

25 static class Finder implements Runnable,

26 DialogInterface.OnCancelListener, DialogInterface.OnClickListener {

27 private OpenFileActivity parent = null;

28 private boolean forward;

29 public Finder(OpenFileActivity parent, boolean forward) {

30 this.parent = parent;

31 this.forward = forward;

32 }

33 public void run() {

34 this.parent.runOnUiThread(new Runnable() {

35 public void run() {

36 AlertDialog dialog = ...;

37 dialog.show();

38 }

39 });

40 }

41 }

42 }

Figure 4.1: Example derived from the APV PDF reader [5]

the application. However, in addition to user-event-driven window transitions, the UI

thread may perform transitions due to other threads in the application. Such threads

can generate separate sequences of events and window transitions that are interleaved

with the ones generated by the GUI user. The WTG representation described earlier

is not designed to capture such events and transitions.

79



The work presented in Chapter 3 does consider two API calls allowing other

threads to post events on the UI thread: Activity.runOnUiThread and View.post.

However, as explained later, this handling does not represent faithfully the actual

run-time execution. Furthermore, not all uses of these calls are considered, and

several other similar APIs are not handled at all. The work presented in this chapter

(1) generalizes the APIs that are considered by the analysis, (2) uses a different

representation to integrate them in the WTG, and (3) uses a different analysis to

model their effects.

We illustrate these issues with two examples derived from APV [5]. Figure 4.1

contains the first example. This example shows the use case of text search in a

PDF file. When options menu item findTextMenuItem is selected, a dialog to enter

the searched text is displayed (line 17). After the user enters the text and clicks

goButton, this dialog is closed (line 13). Meanwhile, a thread is started searching

for the text (line 23); the progress of this thread is displayed by another dialog

(openend at line 37). The search functionality is offloaded to a background thread for

better responsiveness, because the UI thread may be blocked while a large PDF file

is processed. Because Android does not allow non-UI threads to access GUI widgets,

developers use API calls such as Activity.runOnUiThread (line 34) to post a Runnable

task into the event queue of the UI thread, in order to update the progress dialog.

This is a typical example of how another thread can affect the execution of the UI

thread and trigger window transitions.

The WTG approach described in the previous chapter uses Algorithm 2.1 to detect

opened or closed windows. This algorithm analyzes the interprocedural control-flow

graph (ICFG) starting from event handler callbacks and lifecycle callbacks. In this
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example, the ICFG starting from event handler onClick will be constructed and

analyzed. The version of the algorithm described in the previous chapter uses a

specialized form of the ICFG. This form resolves calls to trigger new threads and

considers the control flow due to the execution of these threads. Going back to the

example of analyzing onClick, the call to start at line 23 will be considered to be

an invocation of method run defined at lines 33–40. To identify the called methods

for such invocations, a backward traversal along the chain of assignments is used to

identify the Runnable instance that flows as a parameter to the constructor of Thread

(line 22). This traversal is performed in the flow graph defined in prior work [45]. In

this example, the thread is coupled with the Finder instance created at line 21. This

information is used to resolve the call to start at line 23: the Thread instance that

flows to the call to start is determined through backward traversal of the flow graph

(this instance is created at line 22) and the associated runnable object is examined.

As a result, in the ICFG, the call to start is considered to invoke Finder.run.

Similarly, the call to runOnUiThread (line 34) will be considered to be an invocation

of method run defined at lines 35–38. This resolution is done by determining the

Runnable instances that can flow as parameters of the call. The corresponding run

methods will be considered as callees at this call site.9 In the example, the parameter

of runOnUiThread is determined to be the anonymous class instance created at line

34, and the ICFG will consider the call to runOnUiThread to be an invocation of

method run defined at lines 35–38. Thus, the ICFG will include the call to show at

line 37. As a result, the WTG will contain a transition from the window for the dialog

9Due to unsoundness in the modeling of the complete Android framework, it is possible that no
objects are reached during the backward flow graph traversal from a Runnable parameter. In this
case, class hierarchy analysis is used to determine the potentially invoked run methods.
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(a) Current WTG
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(b) New WTG

Figure 4.2: WTG comparison for Example 4.1

created at line 7 to the progress dialog created at line 36. This edge is shows as e3 in

Figure 4.2(a). While this approach considers the code executed by the UI thread due

to other threads (i.e., the body of run at lines 36–37), it does not represent precisely

the run-time behavior, since it implies that the body of run is executed as part of

processing a click event.

Another example, presented in Figure 4.3, describes a similar case. In this ex-

ample, pagesView is a view associated with activity OpenFileActivity. When the

Android framework invokes callback onDraw on this view (when the view is drawn),

a PDFPagesProvider is used to prepare the PDF file (method setVisibleTiles) by
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1 public class PDFPagesProvider extends PagesProvider {

2 private PagesView pagesView = ...;

3 private RendererWorker rendererWorker = new RendererWorker(this,...);

4 public PDFPagesProvider(PagesView view,...) {

5 this.pagesView = view;

6 }

7 public void setVisibleTiles(Collection<Tile> tiles) {

8 List<Tile> newtiles = ...;

9 this.rendererWorker.setTiles(newtiles,...);

10 }

11 public PagesView getPagesView() {

12 return this.pagesView;

13 }

14 private static class RendererWorker implements Runnable {

15 private PDFPagesProvider pdfPagesProvider = ...;

16 RendererWorker(PDFPagesProvider provider,...) {

17 this.pdfPagesProvider = provider;

18 }

19 void setTiles(Collection<Tile> tiles,...) {

20 Thread t = new Thread(this);

21 t.start();

22 }

23 public void run() {

24 while(true) {

25 try {

26 Map<Tile,Bitmap> renderedTiles = this.pdfPagesProvider.renderTiles(tiles);

27 } catch (RenderingException e) {

28 PagesView pagesView = this.pdfPagesProvider.getPagesView();

29 pagesView.post(new Runnable() {

30 public void run() {

31 AlertDialog errorMessageDialog = ...;

32 errorMessageDialog.show();

33 }

34 });

35 }

36 }

37 }

38 }

39 }

40 public class PagesView extends View {

41 private PagesProvider pagesProvider = new PDFPagesProvider(this,...);

42 public void onDraw(Canvas canvas) {

43 LinkedList<Tile> visibleTiles = ...;

44 this.pagesProvider.setVisibleTiles(visibleTiles);

45 }

46 }

Figure 4.3: Another example derived from APV

offloading the rendering work into a background thread RendererWorker at line 21.

The call to renderTiles (line 26) renders all PDF pages unless a RenderingException

is thrown. This error happens when there is insufficient memory to load the PDF file.

In such a situation a Runnable instance is posted on the UI thread, in order to create
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an errorMessageDialog displaying an error message to the user. This process is done

through the invocation of standard API View.post at line 29. In this example, the

WTG described in the previous chapter does not contain an edge to represent the

opening of the error message dialog: since onDraw is not a callback representing a

widget event, it will not be analyzed and the call chain to the call of show at line 32

(reached from onDraw by resolving the calls to Thread.start and View.post) will not

be examined.

4.1.1 Representation of Events and Transitions Triggered by
Other Threads

The examples from the previous section exemplify a general pattern: after being

offloaded into a background thread, a long running task has to communicate with the

UI thread in order to access and modify GUI state. In this chapter we propose WTG

generalizations and analysis to represent some common cases of such interactions. In

particular, we focus on the following three standard Android API calls:

• Activity.runOnUiThread(Runnable): This API enqueues the runnable task on

the event queue of the UI thread. The posted task will be executed in the future

when the UI thread is free.

• View.post(Runnable): Similarly to runOnUiThread, this API call adds a runnable

action to the event queue. The task will be run on the UI thread.

• View.postDelayed(Runnable,long): Calling this method will add the runnable

task into the event queue. The task will be run on the UI thread once the

specified amount of time elapses.
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We aim to model the behavior of these APIs (together with the Handler APIs

described later) in a more comprehensive and precise manner compared to the work

presented in the previous chapter. This extension could be used as the starting

point for more generalized control-flow analyses of Android asynchronous operations,

beyond these particular API calls.

To represent the run-time behavior of such asynchronous operations, we con-

sider and analyze the run methods of runnable tasks used as parameter at calls to

runOnUiThread, post, and postDelayed. Each such run method can be thought of as a

special kind of event handler for an artificial “post” event. The post event is triggered

by another thread (not the UI thread), concurrently with the “regular” widget/de-

fault events triggered by the GUI user. The representation of these artificial events

and their run handlers is detailed next.

Runnable tasks. Classes implementing interface java.lang.Runnable define runnable

objects that encapsulate tasks to be run in various threads of the application. For the

two examples discussed earlier, classes Finder and RendererWorker represent tasks to

be executed in non-UI threads, while the two anonymous inner classes implementing

Runnable define tasks to be executed in the UI thread. Let Runnable be the set

of all static abstractions of runnable objects. As usual, in our analysis each such

abstraction corresponds to a new expression instantiating a Runnable class.

Post events. We define a special type of “post” event to represent the posting of a

runnable task to be executed by the UI thread. A post event will be represented as

e = [w,post ,r] where w ∈Win indicates the window through which the event is posted

and r ∈ Runnable is the posted runnable task. For example, in Figure 4.1, the call

to runOnUiThread at line 34 triggers event e = [OpenFileActivity ,post ,Runnable(34)].
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Here Runnable(34) is a static abstraction of the object created at that line. For

Figure 4.3, line 29 corresponds to e = [OpenFileActivity ,post ,Runnable(29)]. In this

case pagesView is part of the GUI hierarchy of OpenFileActivity, and this activity

is considered to be the window through which the event is posted.

Source window. Post events may trigger window transitions that are represented

by edges in the WTG. The source node of a transition for an event e = [w,post ,r]

will be considered to be w. In our observations, the typical scenario is the following:

posting of a runnable task on the UI thread is done through the window that is on top

of the window stack, and by the time the task is actually executed this window is still

on top of the stack. Thus, in our WTG representation and analysis, we assume that

the visible window at the time the task is posted is the same as the visible window

at the time the task is executed. Future work may consider generalizations of this

approach, where the two windows may potentially be different.

Figure 4.2b shows the new WTG for Example 4.1 after introducing post events.

The target of edge e3 in the new WTG is changed to OpenFileActivity because this

edge represents an event handler that closes the current dialog (line 13 in Figure 4.1)

and starts a new Finder thread. A new edge e7 is added in the WTG to represent

the effects of the post event triggered at line 34. Note that the two edges are related:

e7 can be observed only after e3 has occurred. In the current WTG representation

we do not explicitly represent this constraint. However, such ordering constraints

can be easily produced by our static analysis (described shortly) and can be utilized

by client analyses—for example, to enumerate valid WTG paths for automated test

generation or static checking.
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Runnable(29)]

 e2:back

Figure 4.4: WTG for the example in Figure 4.3

In the example from Figure 4.3, the post event is not analyzed by the approach

from the previous chapter, since onDraw does not correspond to a widget event. How-

ever, with the new version of the WTG, we will explicitly analyze the call to post

and will determine that it corresponds to e = [OpenFileActivity ,post ,Runnable(29)].

The analysis of the run method for the runnable task will determine that an error

message dialog may be opened. The resulting WTG is shown in Figure 4.4.

4.2 Algorithmic Extensions

The WTG construction algorithm described in Section 3.2 is composed of three

stages. In the first stage, edges are constructed for open-window and default events.

Since close-window operations are not analyzed at this stage, some of the generated

edges may be incorrect. Owner relationships also computed by this first stage. The

second stage extends the initial edges to include self-close and owner-close operations.

Additional information about push/pop sequences δ(e) and callback sequences σ(e)

is gathered for each resulting edge e. In the last stage, based on push/pop sequences,

backward traversal of the WTG is performed to determine the correct target nodes

of edges that have not been resolved yet.
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Algorithm 4.1: ConstructInitialEdges

1 foreach w ∈Win do
2 foreach widget event [v,t] with callback [v,h] for w do
3 if MayOpenNone([v,h]) then
4 AddEdge(w,w, [v,t])

5 foreach open(w′) ∈ Open([v,h]) do
6 AddEdge(w,w′, [v,t])

7 if w is an activity a with options menu m then
8 AddEdge(a,m, [a,menu])

9 AddEdge(w,w, [w,back ])

10 foreach menu and dialog w ∈Win do
11 FindOwner(w)

12 foreach window w ∈Win do
13 if w is an activity a then
14 AddEdge(a, a, [a,rotate])
15 AddEdge(a, a, [a,home])
16 AddEdge(a, a, [a,power ])

17 if w is an options menu m with owner a then
18 AddEdge(m,m, [m,rotate])
19 AddEdge(m, a, [m,home])
20 AddEdge(m, a, [m,power ])

21 if w is a context menu m with owner a then
22 . . .

23 if w is a dialog d with owner a then
24 . . .

25 foreach statement stmt ∈ post operations do
26 foreach widget rcv ∈ GetReceivers(stmt) do
27 if rcv ∈Win then
28 src windows ← {rcv}
29 else
30 src windows ← GetWindow(rcv)

31 foreach callback run cb ∈ GetRunCallbacks(stmt) do
32 if MayOpenNone([none,run cb]) then
33 foreach window src window ∈ src windows do
34 AddEdge(src window , src window , post)

35 foreach open(w′) ∈ Open([none,run cb]) do
36 foreach window src window ∈ src windows do
37 AddEdge(src window , w′, post)
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Algorithm 4.1 is an extension of Algorithm 3.1 to augment the WTG with repre-

sentation of post events. Edges for such events are constructed through the statements

at lines 25–37. Function GetReceivers at line 26 returns the points-to set of the

receiver variable for the processed statement, obtained using a flow graph defined in

prior work [45]. According to the definitions in Section 4.1.1, the source node of a edge

could be (1) an activity on which runOnUiThread is called, or (2) the windows contain-

ing widgets that are receivers of post or postDelayed. Lines 27–30 in the algorithm

consider these two cases. The post events are associated with callbacks which are

the run methods of related runnable objects. Helper function GetRunCallbacks

looks up the points-to set of the call site’s argument to identify the related runnable

objects and their corresponding run methods. If no object is detected during this

process (due to unsound modeling of certain Android features), all possible subtypes

of Runnable are considered. Unlike widget events, the post events are not triggered

by interacting with GUI widgets, and thus no contextual information is provided to

analyze the run callbacks at line 32 and 35 (as indicated by context none). In the

case when run may complete without opening a window, self edges will be created

(line 34). Otherwise, edges from source windows to targets are added at line 37. For

the two running example, the edges created due to this processing are shown as e7

in Figure 4.2b and e1 in Figure 4.4. The edges for post operations, along with other

transitions generated by this stage, are processed by the subsequent stages of the

analysis. During these stages, additional edges are generated based on edges created

by the first stage. This subsequent processing treats edges for post events the same

way it treats the “normal” edges described in the previous chapter, by analyzing
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run methods as if they were event handlers, and establishing callback sequences and

push/pop sequences as expected.

4.3 Post Operations through Handler Objects

Section 4.1 describes a mechanism that provides asynchronous post operations

for background tasks to communicate with the UI thread. The Android framework

defines another, more general solution to manage thread interactions. A Handler

object allows sending and processing instances of Message or Runnable associated with

a thread. When a Handler is initialized, it is bound to the thread creating it. By

posting Message or Runnable through a Handler, the associated or designated thread

will execute the tasks at some point in the future. Handler manages task interactions

through two rather different mechanisms. The first one is Message. Based on specified

attributes, a Message object can be sent through Handler to a designated thread

triggering specific tasks. The second strategy is very similar to what is introduced

in Section 4.1: a Handler allows posting a runnable task to the event queue of the

associated thread.

Because modeling Message instances and their content requires sophisticated static

analysis, in this section we focus only on analyzing the post events that can be

triggered through a Handler. Our goal is to represent such operations on the existing

WTG.

Figure 4.5 illustrates an example based on APV. By entering a valid page number

through the options menu item gotoPageMenuItem, the user can directly jump to a

page of PDF to start reading (lines 23–29). When the page is opened, a zoom-in

button residing at the bottom of this page shows up, and disappears after 7 seconds.
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1 class OpenFileActivity extends Activity {

2 Button zoomButton = ...;

3 Handler zoomHandler = ...;

4 Runnable zoomRunnable = ...;

5 public void onCreate(Bundle savedInstanceState) {

6 RelativeLayout activityLayout = new RelativeLayout(this);

7 this.zoomButton = new Button(this);

8 activityLayout.addView(this.zoomButton);

9 this.zoomHandler = new Handler();

10 this.zoomRunnable = new Runnable() {

11 public void run() {

12 this.zoomButton.setVisibility(View.GONE);

13 }

14 };

15 this.setContentView(activityLayout);

16 }

17 public boolean onOptionsItemSelected(MenuItem menuItem) {

18 if (menuItem == this.gotoPageMenuItem) {

19 final Dialog dialog = new Dialog(this);

20 LinearLayout contents = new LinearLayout(this);

21 Button gotoPageButton = new Button(this);

22 gotoPageButton.setOnClickListener(new OnClickListener() {

23 public void onClick(View v) {

24 int pagecount = ...;

25 dialog.dismiss();

26 ... // open specific PDF page at pagecount

27 this.zoomButton.setVisibility(View.VISIBLE);

28 this.zoomHandler.postDelayed(zoomRunnable,7000);

29 }

30 });

31 contents.addView(gotoPageButton,...);

32 dialog.setContentView(contents);

33 dialog.show();

34 }

35 }

Figure 4.5: Example of a Handler, derived from APV

This animation is implemented using Handler to post zoomRunnable into the event

queue of the UI thread (line 28). zoomRunnable overrides the method run at line

12 to disable the visibility of zoomButton after certain delay. Note that in this case

the UI thread posts the runnable task on itself. As stated in the relevant Android

documentation [20], “there are two main uses for a Handler: (1) to schedule messages

and runnables to be executed as some point in the future; and (2) to enqueue an

action to be performed on a different thread than your own.”. The APV example

illustrates the first use.
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In our analysis we focus on the following three standard APIs calls defined in class

Handler.

• Handler.post(Runnable): This API call enqueues the runnable task on the

event queue of the thread associated with the Handler. The posted task will be

executed in the future when the associated thread is free.

• Handler.postDelayed(Runnable,long): Calling this method will add the runnable

task into the event queue. The task will be run on the associated thread once

the specified amount of time elapses.

• Handler.postAtTime(Runnable,long): Similarly to postDelayed, this API call

adds a runnable action to the event queue at a specific time. The task will be

run on the associated thread when it is available.

Source window. Similar to other post operations introduced earlier, the post events

of a Handler may trigger transitions in the WTG. As explained previously, a Handler

posts the operations into the event queue of the thread that allocates it. We aim

to recognize Handler instances that are created by lifecycle callbacks or GUI event

handler callbacks, since these callbacks are executed by the UI thread and can be

directly associated with GUI elements. Specifically, consider a window w ∈ Win

whose GUI hierarchy involves widgets v ∈ View, and any callback c triggered by

event e = [v,t] where t is an event type (e.g., v could be a button and t could be

“click”). If the creation of a Handler object is reachable from c in the ICFG, the post

events associated with this handler are represented in the WTG by edges starting

from node w.
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Algorithm 4.2: ConstructInitialEdges

1 source windows ← ∅
2 foreach handler h allocation statement stmt do
3 foreach event or lifecycle callback registered on v and transitively invokes stmt do
4 src windows ← ∅
5 if v ∈Win then
6 src windows ← src windows ∪ {v}
7 else
8 src windows ← src windows ∪GetWindow(v)

9 foreach src window ∈ src windows do
10 source windows ← source windows ∪ {h→ src window}

11 foreach statement stmt ∈ handler post operations do
12 foreach callback run cb ∈ GetRunCallbacks(stmt) do
13 if MayOpenNone([none,run cb]) then
14 foreach window src window ∈ GetSourceWindows(source windows, stmt)

do
15 AddEdge(src window , src window , post)

16 foreach open(w′) ∈ Open([none,run cb]) do
17 foreach window src window ∈ GetSourceWindows(source windows, stmt)

do
18 AddEdge(src window , w′, post)

Algorithm 4.2 presents the analysis for building stage-1 edges for the post oper-

ations through Handler objects. As another component of our extensions to handle

asynchronous control flow, this algorithm is appended to Algorithm 4.1. The first

part of the algorithm (lines 2–10) identifies the source windows for the allocations

of Handler. For each callback registered on widget v, if it reaches the statement

allocating Handler h, then the sources are the windows containing v in their GUI

hierarchy (line 3–8). Helper function GetWindow returns the windows whose hi-

erarchy structure, computed by prior work [45], involves widget v. Such relationship

is recorded in multimap source windows mapping a Handler to multiple source win-

dows. The second part of the algorithm (line 11–18) considers each post operation
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a1:OpenFileActivity
e1:[OpenFileActivity,

post,
Runnable(10)]

Figure 4.6: WTG for Example 4.5

done through a Handler, and analyzes the corresponding Runnable object retrieved

by method GetRunCallbacks. This method traverses backward the flow graph

from [45] (similarly to earlier descriptions of how this flow graph is used to determine

points-to sets) and collects a set of allocation expressions of Runnable that flow to

the corresponding argument of the post operation (line 12). For each Runnable ob-

ject overriding method run, the callback analysis introduced in Chapter 2 is used to

detect the possible triggered targets, and to build corresponding WTG edges (lines

13–18). Method GetSourceWindows retrieves the associated WTG source nodes

from multimap source windows.

The WTG for Figure 4.5 after considering post operations through Handlers is

presented in Figure 4.6. The operation does not trigger any statement opening or

closing windows, thus is represented as a self edge from OpenFileActivity. This edge

matches the behavior of the run-time execution and correctly captures a window

transition missing from the WTG described in the previous chapter.

4.4 Experimental Evaluation

The evaluation of the proposed analysis was conducted for the 20 applications

used in the previous chapters. The first goal of this experimental evaluation is to

characterize how widely post operations are being used. The second goal is to evalu-

ate the differences between the WTGs from the previous chapter and from our new
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Table 4.1: Number of post operations: (1) Activity.runOnUiThread (2) View. post (3)
View.postDelayed (4) Handler.post (5) Handler.postDelayed (6) Handler.postAtTime

Application (1) (2) (3) (4) (5) (6) Total Resolved

APV 5 1 0 0 2 0 8 8
Astrid 48 3 4 10 3 0 68 31

BarcodeScanner 1 0 0 0 0 0 1 1
Beem 3 0 0 6 0 0 9 4

ConnectBot 1 0 2 0 2 0 5 2
FBReader 38 1 2 0 0 0 41 39

K9 17 0 0 17 0 0 34 28
KeePassDroid 0 1 0 6 0 0 7 5

Mileage 0 0 0 0 0 0 0 0
MyTracks 35 0 0 4 3 0 42 17
NotePad 0 0 0 0 1 0 1 0
NPR 0 1 0 4 4 0 9 4

OpenManager 0 0 0 1 0 0 1 0
OpenSudoku 0 0 0 2 3 2 7 7
SipDroid 0 0 0 0 0 0 0 0

SuperGenPass 0 0 0 0 0 0 0 0
TippyTipper 0 0 0 2 2 0 4 0

VLC 0 1 1 1 4 0 7 2
VuDroid 1 4 0 0 0 0 5 2
XBMC 5 0 0 104 2 0 111 97

approach. Finally, we also perform case studies for more in-depth understanding of

the performance of the new analysis.

4.4.1 Occurrences and Resolution of Post Operations

Table 4.1 contains measurements for the six post operations defined in Section 4.1.1

and Section 4.3. Columns (1)–(6) show the numbers of their invocations in the appli-

cation code. A total of 360 post operations, presented in column “Total”, are detected

across the 20 applications. Column “Resolved” shows the number of post operations

that were successfully resolved by the proposed approach, leading to the creation
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of WTG edges. A total of 247 post operations (out of 360) were resolved to WTG

edges. As described earlier, invocations of Activity.runOnUiThread, View.post and

View.postDelayed can be resolved by our analysis if their receiver activity/widget

objects and parameter Runnable objects can be identified. Similarly, the proposed

technique handles Handler.post, Handler.postDelayed and Handler.postAtTime only

if their invocations are reachable from an event/lifecycle handling callback, and the

associated Runnable instances can be successfully identified. Although most of the

post operations (69%) are resolved, future work needs to investigate why the rest

cannot be resolved. Our case studies, presented later, provide additional examples to

illustrate this issue. We also manually examined Astrid and MyTracks to determine

why a large number of post operations cannot be resolved. The reason is that a large

number of post operations have empty points-to sets for the receiver. In both cases,

the reason is the use of FragementActivity, which is an Android feature not modeled

in the prior work [45] upon which our WTG construction is built.

4.4.2 Differences Between WTGs

Table 4.2 shows the numbers of WTG edges in three settings for the analysis.

Column “Ch.3” shows the number of WTG edges for the approach defined in the

previous chapter.10 As described earlier, some (but not all) of the post operations de-

fined in Section 4.1.1 and Section 4.3 are considered to be part of callback processing.

In particular, when these operations are reached during interprocedural control-flow

graph traversals, the corresponding method run is identified as the callee. The next

column, labeled “W/o post”, represents a variation of this analysis where the post

operations are ignored during the traversals—that is, the bodies of resolved methods

10These measurements were presented in Chapter 3 and are replicated here for convenience.
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Table 4.2: Differences between numbers of WTG edges

Application Ch.3 W/o post New

APV 105 97 116
Astrid 838 838 993

BarcodeScanner 128 128 129
Beem 132 132 134

ConnectBot 237 237 238
FBReader 41942 5416 5919

K9 516 516 563
KeePassDroid 643 643 2317

Mileage 676 676 676
MyTracks 391 391 555
NotePad 213 213 213
NPR 590 590 598

OpenManager 116 116 116
OpenSudoku 237 237 246
SipDroid 406 406 406

SuperGenPass 64 64 64
TippyTipper 65 65 65

VLC 131 131 136
VuDroid 47 47 51
XBMC 4279 4279 7627

run at post operations are not traversed. The last column “New” shows the number

of WTG edges when the post operations are analyzed and represented as described

earlier in this chapter. As the measurements indicate, the proposed handling of post

operations affects the WTGs of 14 out of the 20 programs, with some cases showing

significant differences between the two graphs.
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4.5 Case Studies

To better understand our experimental results, we considered the six applica-

tions used for case studies in the previous chapter. Three of these applications—

OpenManager, TippyTipper, and VuDroid—have post operations that cannot be re-

solved to WTG edges. We studied the reasons for this behavior. Post operations

that were resolved occurred in APV, BarcodeScanner, and VuDroid. In those cases,

we wanted to evaluate the feasibility of the generated WTG edges. In addition, we

also performed a study for FBReader, in order to determine why the number of WTG

edges is reduced so dramatically.

OpenManager. In order to concisely show an overview of a specific folder, each

of the files, along with its thumbnail, is presented as an element of a list view. The

only Handler, detected by the proposed analysis, is used to create the thumbnails

for each file. However, the statements creating Handler instances are transitively

invoked by the callback getView defined in class ArrayAdapter. This callback method

is neither a widget event handler callback nor a lifecycle callback. Thus, the proposed

Algorithm 4.2 cannot capture and represent this post operation in the WTG.

TippyTipper. As a tips calculator, this application provides functionality for split-

ting a bill. The default number of people sharing the bill can be configured through a

preference whose type is DialogPreference. When the dialog is displayed, users can

long press buttons to either increment or decrement the default number of people.

To keep changing the value while users hold the button, developers use a Handler

to post a Runnable object every 0.3 seconds. When the Runnable is executed, it

increments/decrements the default value by one, then posts itself again using the

same Handler object until the button is no longer pressed. Similarly to the previous
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example, our algorithm does not capture the related four edges because the Handler

initialization statement is transitively invoked by callback onCreateDialogView, which

is not a callback we consider in the WTG.

VuDroid. In this PDF reader application, three post operations cannot be resolved

by our approach, because their associated GUI components are not identified in the

solution produced by the prior work from [45]. Four additional edges are created due

to the remaining two post operations. For these, the process of decoding a PDF file is

offloaded to a background thread to improve UI performance. The post operations are

performed after decoding a page to configure parameters of the UI, e.g., screen size.

The four WTG edges created for these operations represent valid run-time behaviors;

thus, no infeasible WTG edges are produced.

APV. As described in Table 4.1 and 4.2, the proposed analysis resolves all eight

post operations, and generates corresponding WTG edges. A total of 14 edges are

created.11 Among these 14 edges, only one does not represent valid run-time execution

behavior. In this case, a call to runOnUiThread is executed on OpenFileActivity;

therefore, this activity is considered to be the source node of the corresponding WTG

edge. However, in reality, the current window is a dialog owned by the activity and

opened by another thread. As a result, the source node of the transition is incorrect.

The remaining 13 edges, which have were manually verified, represent transitions that

can be observed at run time.

BarcodeScanner. This application scans and processes eleven types of barcodes.

The only post operation is detected when an WiFi barcode is read. In this case, a task

11Note that in Table 4.2 the difference between columns “W/o post” and “New” for APV is larger
than 14. The 14 edges for post operations are created in stage 1 of the algorithm; in later stages,
additional edges may be created due to these stage-1 edges (e.g., edges for back events).
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is posted showing a toast to inform the user that a network connection is requested.

The proposed analysis creates a self transition for this case, while in the work from

the previous chapter this behavior was considered as part of the callback for handling

WiFi barcodes. We examined this edge, and verified its feasibility.

FBReader. The functionality of this application relies heavily on post operations

and threads. As explained in Section 3.4.1, the analysis from the previous chapter

builds a call graph based on the backward traversal of the flow graph, or class hi-

erarchy analysis in case the flow graph does not provide the necessary information.

Such resolution is highly imprecise for certain call sites inside two utility methods.

From our observations, over 96% of WTG edges are generated because of these two

methods. After separating the handling of post operations, the total number of edges

is reduced by more than 75%. Through examination of relevant portions of the code,

we identified a potential explanation. Figure 4.7 presents a simplified version of the

related code. Method wait declared at line 45 is one of the problematic utility meth-

ods. (The other one has a similar pattern.) In this example, this method is used to

start a new thread running the runnable object provided as a parameter. When the

thread is initialized at line 46, a backward traversal, starting from the Runnable vari-

able action, is performed. The reachable instantiated Runnable objects will be bound

to the thread object. In this case, the Runnable instances created at lines 6 and 31 will

be coupled with the thread object initialized at line 46. This information is used when

the invocation of method start at line 46 is resolved: the run methods of Runnable

instances that are associated with this thread are considered as the called target

methods. For the analysis proposed in Chapter 3, the statement at line 46 is reached

during ICFG traversals from both BuyBooksActivity and NetworkLibraryActivity.
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1 public class BuyBooksActivity extends Activity {

2 protected void onCreate(Bundle bundle) {

3 Button okButton = ...;

4 okButton.setOnClickListener(new View.OnClickListener() {

5 public void onClick(View v) {

6 UIUtil.wait(new Runnable() {

7 public void run() {

8 try {

9 downloadBook(...);

10 } catch (ZLNetworkException e) {

11 BuyBooksActivity.this.runOnUiThread(new Runnable() {

12 public void run() {

13 new AlertDialog.Builder(BuyBooksActivity.this)

14 .setPositiveButton(buttonResource.getResource("ok").getValue(), null)

15 .create().show();

16 }

17 });

18 }

19 }

20 });

21 }

22 });

23 }

24 }

25 public class ShowBookInfoAction extends BookAction {

26 Activity myActivity = ...;

27 public ShowBookInfoAction(Activity activity) {

28 this.myActivity = activity;

29 }

30 public void run(...) {

31 UIUtil.wait(new Runnable() {

32 public void run() {

33 try {

34 myActivity.runOnUiThread(new Runnable() {

35 public void run() {

36 myActivity.startActivity(new Intent(myActivity, NetworkBookInfoActivity.class));

37 }

38 });

39 } catch (...) {...}

40 });

41 }

42 }

43 }

44 public class UIUtil {

45 public static void wait(Runnable action) {

46 new Thread(action).start();

47 }

48 }

Figure 4.7: Studied case derived from FBReader [11]

Consequently, the invocations which trigger window transitions at lines 15 and 36 are

explored to generates six edges:
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BuyBooksActivity→ BuyBooksActivity

BuyBooksActivity→ Dialog(13)

BuyBooksActivity→ NetworkBookInfoActivity

NetworkLibraryActivity→ NetworkLibraryActivity

NetworkLibraryActivity→ Dialog(13)

NetworkLibraryActivity→ NetworkBookInfoActivity.

While the work from the previous chapter generates all six edges, the proposed

generalizations for modeling of post operations eliminate two infeasible edges:

BuyBooksActivity→ NetworkBookInfoActivity

NetworkLibraryActivity→ Dialog(13)

4.6 Limitations

Source of transition may not be associated with the receiver. The proposed

analysis is based on the assumption that the receiver of a post operation is (or is

related to) the source window of the transition. However, this assumption may not

always be true. For example, an infeasible edge is generated in APV because our

analysis assumes that the current window, which is associated with the receiver of

a post operation, is the source node of the WTG edge. However, in the run-time

execution, this source node is actually a dialog which references that window, rather

than the window itself.

Multiple executions of post operations. Post operations are often used by back-

ground threads to communicate with the with UI thread. We have seen cases in

which multiple threads, posting post operations, are initialized by a widget event.

For example, clicking a button of a dialog starts two threads: one of them executes
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a post operation to open a new dialog, while another one closes the current dialog.

The proposed work represents this scenario by three WTG edges. The first is the

edge with a post event opening a new dialog. The second edge is triggered by a post

event closing the current dialog. The last one is a self edge for the click button, which

neither opens nor closes any windows. However, during run-time execution, such

transitions are usually ordered in terms of when they are added into the event queue

of the UI thread. The proposed analysis does not capture such ordering constraints.

4.7 Summary

In this chapter we developed a new representation for post operations, to more

faithfully describe their run-time behavior. The experimental results show the im-

portance of identifying and analyzing such operations, and also indicate that the GUI

behavior is more comprehensively captured, compared to the approach developed in

Chapter 3.
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CHAPTER 5: Related Work

Control-flow analysis for Android. Static analysis to understand GUI-driven

behavior is essential for modeling the control/data flow of Android applications. The

early work on the SCanDroid security analysis tool [13,47] includes control-flow anal-

ysis and security permissions analysis for activities and other Android components

(e.g., background services). The tool performs intent analysis and determines the

inter-component control flow based on it. The approach does not employ static mod-

eling/analysis for GUI objects, events, and handlers that trigger the inter-component

transitions, and uses conservative assumptions about the GUI-related control/data

flow. Subsequent work on related security problems, which also uses intent analysis

and control-flow analysis [9, 16, 36], has similar limitations. As described in Sec-

tion 2.1.4, and indicated by our experiments, comprehensive and precise control-flow

analysis requires context-sensitive analysis of event handlers and the actions taken by

them (e.g., component creation and termination).

SCanDroid’s static analysis is used in the A3E tool [7] to construct an activity

transition graph, which subsequently guides run-time GUI exploration. In this graph

nodes correspond to activities and edges indicate transitions between them. This

representation does not capture menus/dialogs, does not consider the general GUI

effects of event handlers (e.g., window-close) and the triggered callbacks, and does

not model the window stack and its state changes. Similar limitations exist for a

static/dynamic analysis of UI-based trigger conditions [65], where security-sensitive
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behaviors are triggered dynamically based on a static model of activity transitions.

The static model construction in this work is incomplete, since it is based on restrictive

assumptions about event handlers and on rudimentary analysis of these handlers. Our

control-flow analysis provides a more rigorous and general solution to this problem.

FlowDroid [6] is a precise flow- and context-sensitive taint analysis which performs

interprocedural control-flow and data-flow analysis for Android. As part of this ap-

proach, the effects of callbacks are modeled by creating a wrapper main method. Our

CCFG is conceptually similar, but without explicitly creating a wrapper. FlowDroid

does not model the general propagation of GUI widgets and listeners, nor does it

analyze event handlers context sensitively. As discussed in Section 2.1.4, this analysis

does not represent control flow that spans multiple activities. In particular, informa-

tion of the form “callback mi may be followed by callback mj” cannot be inferred

when mi and mj do not belong to the same activity. Control flow involving dialogs,

menus, and window termination is also not handled. This approach cannot capture

the callback sequences described in Table 3.2 and does not consider the state/changes

of the window stack. Providing the WTG as input to FlowDroid is an intriguing pos-

sibility for future work.

In CHEX [28], each callback method and all its transitive callees are defined as

a code split, and split permutations are used to derive the set of control-flow paths.

Another security analysis [25] also considers all possible permutations of callbacks.

AsDroid [22] analyzes event handlers of GUI objects to detect stealthy behaviors, but

does not systematically model the GUI objects and their handlers, nor does it account

for the widget context of a handler. Apposcopy [12] builds an inter-component call
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graph, as part of a malware detection analysis, but it is unclear how it models GUI

widgets, events, and handlers.

An existing work of operational semantics for activities [40] captures aspects of

Android control flow, including callbacks and the activity stack, but does not de-

fine GUI static models or analysis algorithms. Various other static analyses aim

to model the sequences of callbacks in Android, in the context of security analysis

(e.g., [12, 22, 25, 28]), GUI model construction (e.g., [62]), race detection (e.g., [26]),

leak analysis (e.g., [19, 38]), and static checking (e.g., [39, 64]). None of these tech-

niques provide comprehensive behavior definition/analysis for the key aspects of GUI

behavior: widgets, event handlers, callback sequences, and window stack changes.

Our work on the WTG develops a more general approach for static analysis and rep-

resentation of Android GUI behavior, which provides a promising starting point for

generalizing existing (and future) static analyses.

Intent analysis has been used extensively to resolve inter-component control flow

in Android [7, 9, 12, 13, 22, 35, 36]. While intent resolution is a prerequisite for the

static analyses described in this paper, it cannot solve the more general control-flow

questions we address. Section 2.2.4 describes the simplified intent analysis used in our

work. While conceptually derived from a more complex prior intent analysis [36], our

approach only focuses on explicit intents and does not employ general context/flow

sensitivity. However, we do consider a limited form of flow sensitivity, by accounting

for infeasible CFG edges under a given widget context; other intent analyses do not

employ this technique. It is an interesting open question how to properly integrate

intent analysis and GUI-based control-flow analysis, since they depend on each other.
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GUI models for understanding and testing. Reverse engineering of GUI mod-

els has been studied by others (e.g., [17, 30, 32]) and has been applied to Android

(e.g., [3,7,53,54,62]). These approaches are typically based on dynamic exploration.

We provide an alternative: a purely-static approach, which could produce more com-

prehensive models. Of course, dynamically-generated models can provide additional

information that is not available statically—for example, whether certain widgets are

disabled in a particular state. On the other hand, static analysis may expose behav-

iors that are only possible under complex run-time conditions that are unlikely to be

triggered by automated dynamic exploration. As results from Chapter 2 indicate, a

static approach could produce more comprehensive models—of course, at the expense

of potential infeasibility. For the purposes of program understanding, hybrid static/-

dynamic techniques are the most promising, and existing work by Yang et al. [62]

and Azim et al. [7] has already considered this possibility. With the help of informa-

tion computed by static analysis (e.g., the events supported by a GUI widget, or the

possible GUI transitions related to a widget), dynamic analysis can be made more

efficient and complete. Existing examples of such techniques [7,62] may benefit from

our static WTG models, including the path validity check which could be beneficial

for dynamic GUI crawling.

Model-based GUI testing. Finite state machines and similar GUI models have

been used often as basis for test generation (e.g., [3, 7, 17,29,31,32,52,55,62]). Tests

are defined with respect to GUI model coverage criteria (e.g., [31]). An alternative

to model-based testing is random testing; for Android, the Monkey tool [34] has

been used for this purpose [21]. Other related efforts for testing of Android include

the use of concolic execution to create event sequences for Android testing [4, 24],
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and amplification techniques for testing of exception-handling code [63] and of low

responsiveness defects [59].

The WTG models can serve as basis for automated test generation. Several test

generation techniques for Android [24,52,58,59] require models of GUI structure and

behavior, and the WTG is a promising candidate in such techniques. Some initial

results in this direction were presented in Section 3.3. A natural extension for future

work is to develop our prior work on generation of leak-exposing test cases [58] to use

the WTG.

Leak analysis for Android. Energy-leak defects have been investigated by others,

using both static analysis [38] and dynamic analysis [8,27]. In prior work we developed

techniques for static detection of memory leaks in Java [57] and for test generation for

resource leaks in Android [58]. An interesting direction for future work is to generalize

this prior work to (1) perform static data-flow analyses to check for potential leaks

along valid WTG paths, and (2) perform test generation to target common patterns

of leaks defined in prior work [8, 19,27,38,58].
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CHAPTER 6: Conclusions

With the fast growing complexity of software systems, the industry has experi-

enced new challenges in understanding program’s behavior, to reveal both perfor-

mance and functional deficiencies, and to support software development, testing, de-

bugging, optimization and maintenance. These issues are especially important to

mobile software due to the limited computing resources on mobile devices, the short

development life cycles, and the lack of comprehensive design principles and experi-

enced programmers. Various tools based on static analyses can help to address this

challenge. The work presented in this dissertation contributes to a growing foundation

of static analyses for Android software.

It is difficult to rely only on dynamic approaches to automatically extract mod-

els of behavior for Android software. The ability to trigger certain behaviors (e.g.,

sequences of events and transitions between GUI windows) requires modeling of com-

plex dependences and contextual information. Thus, static modeling of control flow

and data flow is essential for comprehensive understanding, testing, and correct-

ness/performance checking. However, the framework-based and event-driven nature

of Android software hides implementation details and introduces a barrier to soft-

ware understanding and analysis. In particular, the behavior of callbacks can be

complicated and varied, with complex interactions between the framework code and

application components.
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6.1 Contributions

We advance the state of the art in static analysis for Android with the follow-

ing contributions. Our first contribution (Chapter 2) is a control-flow analysis for

callbacks on user-event-driven application components, including activities, menus,

dialogs, and their associated widgets. This analysis infers sequencing constraints for

callback invocations, which are then encoded in a callback control-flow graph. The

key observation that drives the design of this analysis is that a callback should be

analyzed separately for different invocation contexts. In particular, an event handling

callback may be responsible for handling of GUI events for several different widgets,

which may lead to a different behavior for each widget. We design a context-sensitive

graph reachability analysis to identify window open/close operations that affect the

callback sequences. The context information, which is a static abstraction of a widget,

is used to perform several constant propagation analyses (before the main reachability

analysis) in order to identify infeasible code under this context. Our experimental

evaluation clearly shows that without exploiting such context knowledge, spurious

callback sequences may be inferred. In case studies on six applications, we also ob-

served that only few of the inferred callback sequences are infeasible at run time,

typically due to imprecision in prior work [45] upon which our analysis is based.

These case studies also indicate that there are clear advantages of using static anal-

ysis to model the behavior of these applications, since dynamic ripping techniques

may miss significant portions of the GUI.

The second contribution of this dissertation (Chapter 3) is based on another im-

portant observation: the effects of handling a GUI event depend on the history of

110



prior GUI events and the window open/close operations triggered by them. We for-

malize this behavior with the help of an abstraction of window stack. Changes to

the stack are also associated with interleavings of callbacks that are invoked on the

components involved in the stack change. Our careful description of the details of this

behavior adds to the body of knowledge in static analysis of Android, and provides

a solid foundation for developing control-flow and data-flow analyses. Based on this

formalization, we develop a static analysis to construct the window transition graph

(WTG), a new program representation suitable as a starting point for developing new

static analyses. One can draw an analogy between the WTG and the interprocedural

control-flow graph (ICFG) [48], a key representation for traditional static analysis.

WTG can be used as a similarly-important static model for Android. In addition to

graph generation (which employs the analysis from Chapter 2 as a building block),

we define a WTG path validity check. While ICFG path validity is based on proper

matching of calls and returns, WTG path validity is based on matching of window

open/close operations, as encoded by the evolution of the window stack along the

path. Our experimental evaluation highlights the importance of analyzing the his-

tory of prior GUI events and window open/close operations when determining the

effects of a GUI event. The results also indicate that a significant portion of WTG

paths can be statically pruned through the proposed validity check. Case studies

on the six applications used in Chapter 2 show that only 6% of the WTG edges are

infeasible at run time, which is a positive indicator that highly-precise static GUI

models can be constructed automatically.
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The third contribution of this dissertation (Chapter 4) considers an important

generalization of the WTG: a representation of certain asynchronous operations per-

formed by other threads. We focus on several standard Android mechanisms that

allow a background thread to post a runnable task to be executed by the UI thread

of the application. The WTG is extended with edges that signify the execution of

such posted tasks. Static analysis of the task’s code determines the window open/-

close operations resulting from task execution. Our measurements indicate that these

mechanisms are often used in the analyzed programs. Through several case studies

we demonstrate that the generated WTGs are more comprehensive than the ones de-

scribed in Chapter 3, and that the newly-introduced WTG edges typically represent

feasible run-time behavior.

6.2 Future Work

Our experience indicates that existing expertise in static analysis for Android is

still lacking in a number of important aspects. First, the semantics of the Android

platform is rich and complicated. There are no precise and comprehensive formal de-

scriptions of this semantics. The semantics also changes, in subtle and undocumented

ways, as the platform evolves. This presents a significant challenge for developing new

analysis algorithms. As one dimension of this problem, it is essential to create a for-

mal description of the important aspects of Android GUI behavior, and to validate

it against actual observed run-time executions.

A second challenge is to develop new static analysis abstractions and patterns suit-

able for modeling Android behavior. As one example, prior work on GUI structural

analysis [45] was observed to lack in both comprehensiveness and precision. Similarly,
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the handling of asynchronous control flow described in Chapter 4 does not cover the

full generality of relevant Android mechanisms. We have also observed that several

analyses are interdependent: for example, the GUI analyses defined in this disserta-

tion depend on intent analysis, but they also provide control-flow information that is

needed by intent analysis. Similarly, the analysis from [45] depends on information

about the control flow, but also provides necessary for control-flow analysis. Creating

a conceptual framework for an integrated algorithm that is the “cross product” of

existing analyses, and evaluating the benefits of such integration, is an important

open problem.

While the WTG presents a promising starting point for control-flow analysis, its

strengths and deficiencies need to be evaluated further in the context of client data-

flow analyses. For example, static information flow analysis [6] could be redefined

based on the WTG. Similarly, energy-leak defects observed in prior work [8, 27, 38]

could potentially be stated as properties of WTG paths. The same may be possible

for other leak-related patterns investigated in earlier work [19, 58]. In addition to

static program checking, automated test generation to support existing [24,52,58,59]

and future test generation strategies may be able to take advantage of the WTG

representation.
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