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ABSTRACT

Android has become the most widely used mobile platform. Android developers

continuously introduce new features to their applications, which are consequently

becoming increasingly complex. This complexity could lead to a variety of software

defects. Due to the limited battery capacity of Android mobile devices, energy-related

defects are of significant importance to developers and app users. This motivates our

work to focus on detecting energy-inefficiency patterns on Android apps.

One important source of energy inefficiency is missing deactivation of energy-

related resources. Such resources are acquired during execution and continue to be

held by the app even after they are not being used. As the first contribution of this

dissertation, we present a static analysis to detect energy leaks caused by GPS lis-

teners. Such listeners keep the GPS active and can cause considerable battery drain.

Existing work on similar problems is mainly based on static or dynamic program anal-

ysis. For dynamic analysis, one shortcoming is that it is difficult to achieve high code

coverage, and code regions that contain energy-related leaks might not be executed.

For static analysis, one difficulty is that Android apps are event-driven and their

run-time behavior depends on the sequence of callbacks from the Android framework

to app. Such callback sequences are not modeled effectively by existing static analy-

ses. We aim to solve this problem by using a comprehensive static model of Android

GUI behavior, and paying careful attention to feasibility constraints for GUI event
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sequences and their related callback sequences. Based on this modeling of Android

GUI control-flow paths, and the conditions for GPS listener leaks along such paths,

we define two patterns of run-time energy-drain behaviors. Next, we develop a static

detection algorithm targeting these patterns. The analysis considers valid interpro-

cedural control-flow paths in a callback method and its transitive callees, in order to

detect operations that add or remove GPS listeners. Sequences of callbacks are then

analyzed for possible GPS listener leaks. Our evaluation considers the detection of

GUI-related energy-drain defects reported in prior work, as well as new defects not

discovered by prior approaches. The results from this evaluation demonstrate that

the detection is very effective and precise, suggesting that the proposed analysis is

suitable for practical use in static checking tools for Android.

As the second contribution of this dissertation, we extend the static detection of

missing deactivation to Android sensor resources. Similarly to GPS resources, a sensor

resource held by an application will not be released by the Android system even if it

has been idle for a long time, which will cause battery drain. To detect sensor leaks

statically in Android apps, we first perform static modeling of sensor-related objects

and API calls. This information is integrated into a static graph model. Graph edges

are labeled with symbols representing the opening/closing of UI windows and the

acquiring/releasing of sensors. We then define a context-free-language reachability

(CFL-R) problem over the graph. A CFL-R graph path is a “witness” of a sensor

leak. Given this formulation, we describe an approach to identify leaking paths. The

reported paths are then used to generate test cases. The execution of each test case

tracks the run-time behavior of sensors and reports observed leaks. Our experimental
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results indicate that this approach effectively detects sensor leaks, while focusing the

testing efforts on a very small subset of possible GUI event sequences.

Another aspect of energy inefficiency comes from improper usage of energy-intensive

Android system services. One such service is the AlarmManager service, which allows

an application to execute tasks at specific times. This service is commonly used to

perform periodic background tasks such as updating application contents and up-

loading user data. In normal conditions, these background tasks frequently wake the

device from low power sleep. Recent Android releases introduce JobService, a new

component that is better suited for such background tasks. While alarms scheduled

by AlarmManager are fired at specific times set up by the application, a job defined

by a JobService will be batched with other jobs to reduce device wake ups and save

energy. As our third contribution, we propose a static analysis to detect energy-

inefficient uses of AlarmManager. We define a static reference analysis to determine

possible values of parameters used in each alarm scheduling call, which are then used

to determine whether the alarm may have negative energy impact. The identified

problematic alarms are processed by our automated code refactoring engine and are

converted to jobs, while still retaining their original functionality. Our evaluation

shows that this approach successfully reduces energy consumption.

In conclusion, this dissertation presents several static analyses to uncover different

types of energy-inefficiency patterns of Android applications, with automated test-

ing to verify certain inefficiencies and automated code refactoring to improve energy

usage. Our evaluation shows that these analyses are effective and efficient.

iv



To my parents

v



ACKNOWLEDGMENTS

I would like to thank my advisor Prof. Atanas (Nasko) Rountev for his support,

guidance and patience during my Ph.D study. I would also like to thank all current

and former PRESTO group for all the collaborations and insightful discussions. I

thank Prof. Michael D. Bond and Prof. Neelam Soundarajan for serving on the

dissertation committee. I am grateful to Raluca Sauciuc and Sean Klein for their

mentoring during my internships at Google. Finally, I would like to thank my parents

for their unconditional support.

The material presented in this dissertation is based upon work supported by the

U.S. National Science Foundation under grants CCF-1319695 and CCF-1526459, and

by a Google Faculty Research Award. Any opinions, findings, and conclusions or

recommendations expressed in this material are those of the author(s) and do not

necessarily reflect the views of the National Science Foundation.

vi



VITA

September 2013 – present . . . . . . . . . . . . . . . . . . .Graduate Research Associate, The
Ohio State University

Dec 2016 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M.S. Computer Science and Engineer-
ing, The Ohio State University

June 2013 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B.Eng. Information Security,
Huazhong University of Science
and Technology

PUBLICATIONS

Research Publications

Hailong Zhang, Haowei Wu, and Atanas Rountev. Detection of Energy Inefficiencies
in Android Wear Watch Faces. In ACM Joint European Software Engineering Con-
ference and Symposium on the Foundations of Software Engineering (ESEC/FSE’18),
November 2018.

Shengqian Yang, Haowei Wu, Hailong Zhang, Yan Wang, Chandrasekar Swami-
nathan, Dacong Yan, and Atanas Rountev. Static Window Transition Graphs for
Android. In International Journal of Automated Software Engineering (JASE), June
2018.

Yan Wang, Haowei Wu, Hailong Zhang, and Atanas Rountev. Orlis: Obfuscation-
Resilient Library Detection for Android. In IEEE/ACM International Conference on
Mobile Software Engineering and Systems (MOBILESoft’18), May 2018.

Haowei Wu, Yan Wang and Atanas Rountev. Sentinel: Generating GUI Tests for
Android Sensor Leaks. In IEEE/ACM International Workshop on Automation of
Software Test (AST’18), May 2018.

vii



Hailong Zhang, Haowei Wu, and Atanas Rountev. Automated Test Generation for
Detection of Leaks in Android Applications. In IEEE/ACM International Workshop
on Automation of Software Test (AST’16), May 2016.

Haowei Wu, Shengqian Yang, and Atanas Rountev. Static Detection of Energy De-
fect Patterns in Android Applications. In International Conference on Compiler
Construction (CC’16), March 2016.

Shengqian Yang, Hailong Zhang, Haowei Wu, Yan Wang, Dacong Yan, and Atanas
Rountev. Static Window Transition Graphs for Android. In IEEE/ACM Interna-
tional Conference on Automated Software Engineering (ASE’15), November 2015.

Shengqian Yang, Dacong Yan, Haowei Wu, Yan Wang, and Atanas Rountev. Static
Control-Flow Analysis of User-Driven Callbacks in Android Applications. In Inter-
national Conference on Software Engineering (ICSE’15), May 2015.

FIELDS OF STUDY

Major Field: Computer Science and Engineering

Studies in:

Programming Language and Software Engineering Prof. Atanas Rountev
High-Performance Computing Prof. P. Sadayappan
Databases/Analytics Prof. S. Parthasarathy

viii



TABLE OF CONTENTS

Page

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

Chapters:

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Challenges for Detection of Energy-Inefficiency Patterns . . . . . . 1
1.2 Analysis to Uncover Energy-Inefficiency Patterns . . . . . . . . . . 2

1.2.1 Modeling the Control Flow of Android Applications . . . . . 2
1.2.2 Exposing Leaking Behaviors of GPS Listeners . . . . . . . . 3
1.2.3 Exposing Leaking Behaviors of Sensor Listeners . . . . . . . 5
1.2.4 Exposing and Correcting Energy-Inefficient Periodic Tasks . 6

1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2. Static Detection of Location-Related Energy Defects . . . . . . . . . . . 8

2.1 Background on Android GUIs and Location Listeners . . . . . . . . 8
2.1.1 Android GUIs . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.2 Adding and Removing Location Listeners . . . . . . . . . . 15

2.2 Patterns of Location-Related Energy Defects . . . . . . . . . . . . . 17
2.2.1 Pattern 1: Lifetime Containment . . . . . . . . . . . . . . . 19

ix



2.2.2 Pattern 2: Long-Wait State . . . . . . . . . . . . . . . . . . 21
2.3 Static Leak Detection for Location Listeners . . . . . . . . . . . . . 24

2.3.1 Phase 1: Add-Listener and Remove-Listener Operations . . 25
2.3.2 Phase 2: Path Generation . . . . . . . . . . . . . . . . . . . 28
2.3.3 Phase 3: Detection of Leaking Callback Sequences . . . . . 31

2.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3. Static Detection of Sensor-Related Energy Defects . . . . . . . . . . . . . 40

3.1 Android GUIs and Sensors . . . . . . . . . . . . . . . . . . . . . . . 41
3.1.1 Android GUI Control Flow . . . . . . . . . . . . . . . . . . 41
3.1.2 Sensors in Android Apps . . . . . . . . . . . . . . . . . . . . 41

3.2 Control-Flow Analysis for Sensor Leaks . . . . . . . . . . . . . . . 44
3.2.1 Control-Flow Model . . . . . . . . . . . . . . . . . . . . . . 44
3.2.2 CFL-Reachability for Sensor Leaks . . . . . . . . . . . . . . 46
3.2.3 Detection and Reporting of Leaks . . . . . . . . . . . . . . . 50
3.2.4 Generation of Test Cases . . . . . . . . . . . . . . . . . . . 52
3.2.5 Static Sensor-Related Abstractions . . . . . . . . . . . . . . 54

3.3 Analysis Implementation . . . . . . . . . . . . . . . . . . . . . . . . 56
3.4 Evaluation and Case Studies . . . . . . . . . . . . . . . . . . . . . 60
3.5 Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4. Refactoring of Energy-Inefficient Scheduled Tasks . . . . . . . . . . . . . 68

4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.1.1 Relevant Features of Android’s AlarmManager . . . . . . . 69
4.1.2 AlarmManager . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.1.3 Energy Impact . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.1.4 Android JobService . . . . . . . . . . . . . . . . . . . . . . 74
4.1.5 Energy-Inefficient AlarmManager Patterns . . . . . . . . . 77

4.2 Semantics of Relevant Android Constructs . . . . . . . . . . . . . . 78
4.2.1 Plain Java and Plain Android . . . . . . . . . . . . . . . . 78
4.2.2 Semantics of AlarmManager . . . . . . . . . . . . . . . . . . 79

4.3 Static Reference Analysis . . . . . . . . . . . . . . . . . . . . . . . 83
4.3.1 Constraint Graph . . . . . . . . . . . . . . . . . . . . . . . . 84
4.3.2 Constraint Analysis . . . . . . . . . . . . . . . . . . . . . . 85
4.3.3 Analysis Output . . . . . . . . . . . . . . . . . . . . . . . . 87

4.4 Automated Code Refactoring . . . . . . . . . . . . . . . . . . . . . 88
4.4.1 Instrument PendingIntent Creation . . . . . . . . . . . . . . 88
4.4.2 Refactoring the Scheduling of Alarms . . . . . . . . . . . . . 89

x



4.4.3 Construction of JobService for an Alarm . . . . . . . . . . . 91
4.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5. Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.1 Energy Analysis for Android . . . . . . . . . . . . . . . . . . . . . 97
5.2 Test Generation for Android . . . . . . . . . . . . . . . . . . . . . . 100
5.3 Automated Refactoring for Android . . . . . . . . . . . . . . . . . 101
5.4 Static Control-Flow Analysis for Android . . . . . . . . . . . . . . 101

6. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

xi



LIST OF FIGURES

Figure Page

2.1 Notation for run-time semantics. . . . . . . . . . . . . . . . . . . . . . 9

2.2 Example derived from the DroidAR application. . . . . . . . . . . . . 11

2.3 Notation for listener semantics. . . . . . . . . . . . . . . . . . . . . . 17

2.4 Example derived from the Ushahidi application. . . . . . . . . . . . . 22

2.5 WTGs for the running examples. . . . . . . . . . . . . . . . . . . . . 26

3.1 Example derived from Calculator Vault. . . . . . . . . . . . . . . . . 42

3.2 SG graph for the running example. . . . . . . . . . . . . . . . . . . . 45

3.3 Finite automaton F . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4 Example derived from CSipSimple. . . . . . . . . . . . . . . . . . . . 49

3.5 Pushdown automaton P . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.6 Example of generated test case. . . . . . . . . . . . . . . . . . . . . . 53

3.7 Example derived from Geopaparazzi. . . . . . . . . . . . . . . . . . . 65

4.1 Example derived from the Moloko application. . . . . . . . . . . . . . 71

4.2 Illustration of different wake up patterns . . . . . . . . . . . . . . . . 73

4.3 Example derived from the Muzei application. . . . . . . . . . . . . . . 75

xii



4.4 Semantic domains and functions . . . . . . . . . . . . . . . . . . . . . 79

4.5 Abstract program representation. . . . . . . . . . . . . . . . . . . . . 84

4.6 Example of a constraint graph . . . . . . . . . . . . . . . . . . . . . . 85

4.7 Recording of created pending intents. . . . . . . . . . . . . . . . . . . 89

4.8 Example of inserted method. . . . . . . . . . . . . . . . . . . . . . . . 90

4.9 Example of constructed JobService for Moloko app. . . . . . . . . . 92

4.10 Battery level comparison . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.11 Device wake up comparison . . . . . . . . . . . . . . . . . . . . . . . 95

xiii



LIST OF TABLES

Table Page

2.1 Analyzed applications and detected defects. . . . . . . . . . . . . . . 34

2.2 Defects reported: GreenDroid (D) vs static analysis (S). . . . . . . . 37

3.1 Applications, paths, and tests. . . . . . . . . . . . . . . . . . . . . . . 61

xiv



CHAPTER 1: Introduction

Android has become dominant platform in the smartphone market worldwide.

Devices powered by Android are used by increasing numbers of users in their every-

day lives, for a variety of tasks such as social networking, online purchases, casual

gaming, and playback of audio and video. Since mobile devices have limited CPU

power, memory, and battery capacity, software defects related to inefficient use of

these resources can have substantial impact on the user experience. In particular,

as indicated by other researchers, energy-related defects are of significant interest to

developers and app users. On an Android device, such defects can be caused by dif-

ferent energy-inefficiency patterns. The focus on this dissertation is the analysis of

several such patterns.

1.1 Challenges for Detection of Energy-Inefficiency Patterns

Limitation of dynamic analysis While defects caused by energy inefficiency can

be observed by measuring the energy consumption of the running application, such

measurements are not always easy to perform. Furthermore, it is difficult to track

down the root causes of observed defects. Thus, dynamic analysis techniques require

significant effort. Developers typically start with initial test cases and use profilers to

identify the code areas that consume large portion of resources. However, for resources

that consume energy (e.g., GPS and hardware sensors), there are no reliable ways to

associate run-time energy consumption with profiler’s results. Furthermore, it is
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difficult to perform this type of measurements without specialized hardware. Even

if the profiler can locate code regions where energy consumption is high, significant

human effort is needed to identify correct fixes. Moreover, if a defective code region

is not covered by developer-written test cases, the profiler cannot discover it.

Limitation of static analysis Compared to dynamic analysis, static analysis

examines code paths in the application without actually executing them. Since An-

droid applications are event-driven, run-time app behavior is based on a sequence

of callbacks from the platform code to the application code. This behavior is not

modeled fully by existing static analyses, which could cause false negatives because

unmodeled event-driven behavior leads to under-approximations of possible run-time

behaviors. Furthermore, the modeling of control-flow in existing work is also over-

approximating some aspects of the run-time behavior. This may introduce infeasible

code paths that could cause false positives.

1.2 Analysis to Uncover Energy-Inefficiency Patterns

The goal of this dissertation is to develop several static program analyses to un-

cover energy-inefficiency patterns in Android applications. For certain patterns, we

also perform automated test generation to verify detected defects, as well as auto-

mated code refactoring to reduce energy consumption.

1.2.1 Modeling the Control Flow of Android Applications

Unlike a traditional program that usually has a fixed entry point (e.g., the main

function in a C program), the code of an Android app can be entered in multiple

ways. Because Android applications are GUI-based and event-driven, they contain

large numbers of callback methods. These methods are invoked from the framework
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when different types of events are sent to the application. Depending on the context

of a single event, the triggered callback methods can be significantly different, which

makes the control flow analysis even harder. The modeling of Android GUIs is also

essential for precise control flow analysis, since the relevant events are triggered on

GUI elements. In Android, the widgets of a screen window can be constructed from a

predefined layout definition and/or dynamically changed through several APIs at run

time, which makes GUI modeling a challenging problem. In this dissertation, we adapt

the modeling of Android GUIs from prior work [93, 94] as the basis of our analyses.

This work models the relationships among windows (Android activities, dialogs, etc.),

widgets (Android views), and their event handlers. This information is then used to

construct the so-called window transition graph (WTG), which represents the run-

time transitions between GUI windows caused by events. The details of this model

are explained in Chapter 2. This representation is the basis of our static analyses of

energy-inefficiency patterns.

1.2.2 Exposing Leaking Behaviors of GPS Listeners

For mobile devices, the management of energy-intensive resources (e.g., GPS) bur-

dens the developer with “power-encumbered programming” [69] and creates various

opportunities for software defects. Static detection of such defects is of significant

value. Common battery-drain defects—“no-sleep” [69] and “missing deactivation”

[10, 55]—are due to executions along which an energy-draining resource is activated

but not properly deactivated. Such dynamic behaviors can be naturally stated as prop-

erties of control-flow paths, and thus present desirable targets for static control-flow

and data-flow analyses. We aim to develop a general static analysis approach for
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detecting certain common categories of energy-drain defects. Specifically, we aim to

detect “missing deactivation” behaviors in the user interface thread of the application.

The proposed approach is based on three key contributions. First, we define pre-

cisely two patterns of run-time energy-drain behaviors. The definition is based on

formal definitions of relevant aspects of Android GUI run-time control flow, includ-

ing modeling of GUI events, event handlers, transitions between windows, and the

associated sequences of callbacks. This modeling allows us to define the notion of

a leaking control-flow path and two defect patterns based on it. These patterns are

related to the (mis)use of Android location awareness capabilities (e.g., GPS location

information). Location awareness is a major contributor to energy drain [28] and in

prior work on dynamic defect detection [55] has been identified as the predominant

cause of energy-related defects in UI behavior. Our definition of defect patterns is

motivated by case studies from this prior work and by our own analysis of these case

studies. However, our careful formulation of these patterns is new and provides a

valuable contribution to the state of the art. Furthermore, our control-flow model-

ing is significantly more general than any prior technique. The second contribution

of our approach is a static defect detection algorithm (Section 2.3). Based on the

WTG model, the analysis considers valid interprocedural control-flow paths in each

callback method and its transitive callees, in order to detect operations that add or

remove location listeners. Sequences of window transitions and their callbacks are

then analyzed for possible listener leaking behaviors based on the two patterns men-

tioned earlier. The third contribution is a study of the effectiveness of the proposed

static detection (Section 2.4). We aim to determine how well the analysis discovers

GUI-related energy-drain defects reported in prior work, as well as new defects not
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discovered by prior approaches. Our evaluation indicates that the static detection is

very effective and is superior to dynamic detection. Furthermore, all but one of the

reported problems are real defects. The evaluation also shows that the cost of the

analysis is low. This high precision and low cost suggest that the proposed approach

is suitable for practical use in static checking tools for Android.

This work first appeared at the International Conference on Compiler Construc-

tion [85].

1.2.3 Exposing Leaking Behaviors of Sensor Listeners

Hardware sensors on mobile devices are used to sense environment changes in

acceleration, rotation, luminance, etc. Sensors provide opportunities for Android

developers to offer rich app functionality. However, the use of sensors creates op-

portunities for energy inefficiencies. As a general Android developer guideline, the

app should always disable sensors that are not needed. Failing to disable unneeded

sensors—that is, sensor leaks—can drain the battery. If possible, sensor leaks should

be detected and eliminated before an app is released in an app store.

The second contribution of this dissertation is a static analysis, combined with a

test generation approach, to detect such sensor leaks. We first perform static modeling

of sensor-related objects and API calls. This information is integrated into a static

graph model. Graph edges are labeled with symbols representing the opening/closing

of UI windows and the acquiring/releasing of sensors. We then define two sensor

leaks patterns, described in Section 3.2.2. A context-free-language reachability (CFL-

R) is defined for these patterns over the graph. We next describe an approach to

identify and report buggy paths. This approach traverses selected CFL-R paths and
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checks them for potential leaks. Reported paths are then used to generate test cases.

The execution of each test case tracks the run time behavior of sensors and reports

observed sensor leaks. The evaluation results, presented in Section 3.4, indicate that

our approach effectively detects sensor leaks, while focusing the testing efforts on a

very small subset of possible GUI event sequences, as determined by our targeted

sensor-aware static analysis of app code.

An earlier version of this work appeared at the IEEE/ACM International Work-

shop on Automation of Software Test [86].

1.2.4 Exposing and Correcting Energy-Inefficient Periodic
Tasks

It is a common practice that Android applications run periodic background tasks

by scheduling alarms using the AlarmManager system service. When multiple appli-

cations use AlarmManager, this may cause frequent device wake ups, which impacts

the device’s energy consumption. Later Android versions offer better services (e.g.,

JobService) to execute periodic tasks in an energy-efficient manner. In Chapter 4,

we propose a static analysis to uncover such energy inefficiencies due to the use of

AlarmManager. We then combine this analysis with automated code instrumentation

and refactoring, in order to convert the problematic code to JobService, which al-

lows for these periodic tasks to be batched together to reduce CPU wake ups. We

evaluate this approach by measuring the energy consumption before and after the

code refactoring. Our results, presented in Section 4.5, show that this novel approach

for analysis and code transformation successfully reduces energy consumption.
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1.3 Outline

The rest of this dissertation is organized as follows. Chapter 2 describes the

program analysis that detects energy defects due to leaks of GPS listeners. Chap-

ter 3 presents the program analysis and test generation to uncover energy defects

due to sensor-related leaks. Chapter 4 defines the program analysis and automated

code refactoring to detect and transform improper uses of the AlarmManager service.

Chapter 5 describes related works and Chapter 6 summarizes the contributions of

this dissertation.
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CHAPTER 2: Static Detection of Location-Related Energy
Defects

On an Android device, GPS hardware provides location information to the sys-

tem software and applications, which allows the developer to build location-aware

applications. While this feature provides convenience to the users and developers,

it can also cause battery drain issues if not handled correctly. For example, if a

location-aware application registers a location listener (an object that contains call-

back methods that will be invoked when there is an update from the GPS) and still

keeps it when the application is put into the background, the device battery will be

exhausted in a short period of time. In this chapter, we target the energy defects

caused by “missing deactivation” of GPS location listeners. Section 2.1 explains the

run-time semantics of Android GUIs and location listeners. Section 2.2 defines the

targeted energy defects. Section 2.3 introduces the static analysis algorithms used to

detect these defects. Section 2.4 provides the evaluation of our static analysis.

2.1 Background on Android GUIs and Location Listeners

2.1.1 Android GUIs

We start with an overview of Android GUI run-time semantics. This is needed

because the patterns of location-related energy defects we target can be defined based

on the sequence of GUI actions and states. Figure 2.1 summarizes our notation for

these features. In this work, we focus on the event-driven control flow in the GUI
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w ∈ Win window
v ∈ View view

e = [v,k] ∈ Event widget event on v
e = [w,k] ∈ Event default event on w

c ∈ Cb callback method
[c,o] ∈ Cb× (Win ∪View) callback invocation
s ∈ Cbs callback inv. sequence

t = [w,w′] ∈ Trans window transition
ε(t) ∈ Event event that triggered t
σ(t) ∈ Cbs callback sequence for t
δ(t) ∈ ({push, pop} ×Win)∗ window stack changes
T ∈ Trans+ transition sequence

Figure 2.1: Notation for run-time semantics.

of the application (i.e. in the main application thread). Figure 2.2 and Figure 2.4

contain two code examples to illustrate these features.

Windows and views Activities are core components of Android applications, de-

fined by subclasses of android.app.Activity. An activity displays a window con-

taining several GUI widgets. A widget (a “view” in Android terminology) is an object

from a subclass of android.view.View.

. Example: Figure 2.2 shows an example derived from an energy-drain defect we

found in the DroidAR application analyzed in prior work on the GreenDroid dynamic

defect detection tool [55]. This particular defect is new, and was not reported in that

prior work. The defect is due to the lack of a listener-remove operation at the end of

the lifetime of activity DemoLauncher. When button btnRun is clicked, the onClick

handler registers a location listener (at line 16) but this listener is not removed even
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after the activity is destroyed. As a result, location data (e.g., GPS reads) is sensed

even after it is not needed anymore, which will drain the battery.

Class DemoLauncher is an example of an activity. In this case this is the start

activity of the application: it is started by the Android launcher when the user

launches the application. The onResume lifecycle callback (discussed shortly) retrieves

a button widget btnRun at line 3. This widget is then associated with an event

handler callback onClick, defined in an anonymous class that implements interface

OnClickListener (lines 4–5). Parameter v in this callback refers to the button

widget. /

We also consider the two other common categories of Android windows: menus

and dialogs. Instances of menu classes represent short-lived windows associated with

activities (“options” menus) and widgets (“context” menus). An example presented

later in this chapter illustrates the use of menus. A dialog is an object from some

subclass of android.app.Dialog. Both menus and dialogs require users to take an

action before they can proceed [27]. A menu/dialog implements a simple interaction

with the user, and its lifetime is shorter than activity lifetime. The last activity

that was displayed before a menu/dialog was displayed is the owner activity of this

menu/dialog. The lifetime of a menu or a dialog is contained within the lifetime of

its owner activity.

We will use Win to denote the set of all run-time windows (activities, menus, and

dialogs) and View for the set of all run-time widgets in these windows (Figure 2.1).

Events Each w ∈ Win can respond to several events. Widget events are of the

form e = [v,k] where v ∈ View is a widget and k is an event kind. For the example
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1 class DemoLauncher extends Activity {

2 void onResume() {

3 Button btnRun = ...;

4 btnRun.setOnClickListener(new OnClickListener() {

5 void onClick(View v) { run(); } }); }

6 // === Other possible lifecycle callbacks: onCreate,

7 // === onDestroy, onStart, onRestart, onPause

8 void run() {

9 EventManager.getInstance().registerListeners(); } }

10

11 class EventManager implements LocationListener {

12 static EventManager instance = new EventManager();

13 static getInstance() { return instance; }

14 void registerListeners() {

15 LocationManager lm = ...;

16 lm.requestLocationUpdates(this); } }

Figure 2.2: Example derived from the DroidAR application.

in Figure 2.2 we have event [br ,click ] where br is the Button instance referenced by

btnRun.

We also consider five kinds of default events. Event back corresponds to pressing

the hardware BACK button, which closes the current window w and typically (but

not always) returns to the window that opened w.1 Event rotate shows that the

user rotates the screen, which triggers various GUI changes. Event home abstracts a

scenario there the user switches to another application and then resumes the current

application (e.g., by pressing the hardware HOME button to switch to the Android

application launcher, and then eventually returning back to the application). Event

power represents a scenario where the device screen is turned off by pressing the

1In some scenarios (e.g., callback onBackPressed is defined) the window is not closed. We have
not observed such scenarios in the analyzed apps.
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hardware POWER button, followed by device reactivation. Event menu shows the

pressing of the hardware MENU button to display an options menu. A default event

will be represented as e = [w,t] ∈Win× {back , rotate, home, power ,menu} where w

is the currently-active window. We will use Event to denote the set of all widget

events and default events.

In Figure 2.2 we have five default events [DemoLauncher,. . .], but since the activity

does not define an options menu, event menu does not have any effect.

Callbacks Each e ∈ Event triggers a sequence of callback invocations that can be

abstracted as [c1,o1][c2,o2] . . . [cm,om]. Here ci is a callback method defined by the

application, and oi is a run-time object on which ci was triggered. Note that each

of these invocations completes before the next one starts—that is, their lifetimes are

not nested within each other, but rather they are disjoint. The actual invocations

are performed by event-processing logic implemented inside the Android framework

code.

We consider two categories of callbacks. Widget event handler callbacks respond

to widget events; an example is onClick in Figure 2.2. Lifecycle callbacks are used for

lifetime management of windows. For example, creation callback onCreate indicates

the start of the activity’s lifetime, and termination callback onDestroy indicates end

of lifetime. Menus and dialogs can also have create/terminate callbacks.

. Example: In Figure 2.2 event [br ,click ] (br is the Button object referenced by

btnRun) will cause a widget event handler callback invocation [onClick,br ]. In this

example the callback sequence contains only this invocation. However, for the sake of

the example, suppose that onClick invoked an Android API call to start some new
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activity a. Also, for illustration, suppose that the source activity DemoLauncher and

the target activity a both define the full range of activity lifecycle callbacks (listed

for completeness at lines 6–7 in Figure 2.2). Then the callback invocation sequence

would be [onClick,br ][onPause,DemoLauncher][onCreate,a][onStart,a][onResume,a]

[onStop,DemoLauncher]; this sequence can be observed via android.os.Debug trac-

ing.

If after [br ,click ] the next event was [a,back ]—that is, the BACK button was

pressed to close a and return to DemoLauncher—the sequence would be [onPause,a]

[onRestart,DemoLauncher] [onStart,DemoLauncher][onResume,DemoLauncher] [onS-

top, a] [onDestroy,a]. As seen from these examples, there can be a non-trivial se-

quence of callback invocations in response to a single GUI event. /

Window transitions We use the term run-time window transition to denote a pair

t = [w,w′] ∈ Win ×Win showing that when window w was active and interacting

with the user, a GUI event occurred that caused the new active window to be w′ (w′

may be the same as w). Each transition t is associated with the event ε(t) ∈ Event

that caused the transition and with σ(t), a sequence of callback invocations [ci,oi].

There are two categories of callback invocation sequences for Android GUI tran-

sitions. The first case is when event ε(t) is a widget event [v,k] where v is a widget

in the currently-active window w. In this case σ(t) starts with [c1,v] where c1 is the

callback responsible for handling events of type k on v. The rest of the sequence

contains [ci,wi] with ci being a lifecycle callback on some window wi. In general,

the windows wi whose lifecycles are affected include the source window w, the target

window w′, as well as other related windows (e.g., the owner activity of w). In the
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running example, a self-transition t for DemoLauncher is triggered by event [br ,click ],

resulting in σ(t) = [onClick,br ]. Following the hypothetical example from above, if

onClick opens another activity a, the transition would be from DemoLauncher to a,

with σ(t) as listed above: [onClick,br ] . . . [onStop,DemoLauncher].

The second category of callback sequences is when ε(t) is a default event [w,k] on

the current window w. In this case all elements of σ(t) involve lifecycle callbacks. For

example, event home on DemoLauncher triggers a self-transition t with σ(t) contain-

ing invocations of onPause, onStop, onRestart, onStart, onResume on that activity.

Additional details of the structure of these callback sequences are presented in our

earlier work [91, 93, 94].

Window stack Each transition t may open new windows and/or close existing

ones. This behavior can be modeled with a window stack : the stack of currently-active

windows.2 Each transition t can modify the stack by performing window push/pop

sequences. These effects will be denoted by δ(t) ∈ ({push, pop} ×Win)∗. In the

examples presented in this chapter, the effects of a transition t are relatively simple:

for example, opening a new window w represented by push w, or closing the current

window w represented by pop w. In the simplest case, as in the self-transition t from

Figure 2.2, δ(t) is empty. However, our prior work [93, 94] shows that in general these

effects are more complex: δ(t) could be a (possibly empty) sequence of window pop

operations, followed by an optional push operation. These operations could involve

several windows and can trigger complicated callback sequences.

2Features such as launch modes for activities [25] can lead non-LIFO behaviors, but they do not
appear to be commonly used [89].
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Transition sequences Consider any sequence of transitions T = 〈t1, t2, . . . , tn〉

such that the target of ti is the same as the source of ti+1. Let σ(T ) be the concate-

nation of callback sequences σ(ti); similarly, let δ(T ) be the concatenation of window

stack update sequences δ(ti). Sequence T is valid if δ(T ) is a string in a standard

context-free language [73] defined by

Valid → Balanced Valid | push wi Valid | ε

where Balanced describes balanced sequences of matching push and pop operations

Balanced → Balanced Balanced | push wi Balanced pop wi | ε

2.1.2 Adding and Removing Location Listeners

The callbacks invoked during window transitions can perform a variety of actions.

Our work considers actions that may affect energy consumption. In particular, we

focus on add-listener and remove-listener operations related to location awareness.

Such actions have been considered by GreenDroid [55], an existing dynamic analysis

tool for detection of energy defects in Android applications. Since almost all GUI-

related energy-drain defects reported in this prior work are due to location awareness,

focusing on such defects allows us to perform direct comparison with the results from

this existing study.

Relevant Android APIs The standard mechanism for obtaining information about

the location of the user (e.g., using GPS data) is by registering a location listener with

the framework’s location manager. The listener implements callback methods that

are invoked when relevant changes happen. Registration is done through API calls
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such as requestLocationUpdates, with the location listener provided as a param-

eter. The listener can be removed by calling removeUpdates and using the listener

as a parameter. A number of other Android APIs have similar effects. For example,

when an application is displaying a map, it could display an overlay of the cur-

rent user location on the map by calling enableMyLocation on an overlay object, in

which case this object becomes a listener for location updates. A subsequent call to

disableMyLocation stops this listening.

. Example: In Figure 2.2 callback [onClick,br ] invokes run, which in turn invokes

registerListeners on an instance of EventManager. This instance (created at line

12) is a listener object that is registered for location updates at line 16. However,

this listener is never removed by any other code in the activity. In particular, if the

user exits DemoLauncher—e.g., by pressing the hardware BACK button to exit the

application—the listener will remain registered and will drain the battery. We have

confirmed this incorrect behavior through testing. /

The standard guidelines for building location-aware applications warn the de-

velopers to “always beware that listening for a long time consumes a lot of battery

power” [28]. Our goal is to model the addition and removal of location listeners along

sequences of window transitions (and their related callbacks), in order to identify

problematic behaviors that may lead to extended periods of location listening. We

formalize the relevant run-time features as follows (also see Figure 2.3). Let Lst be

the set of all run-time objects l that are location listeners. Let Op be the set of pairs

[a,r] where a is an API method for adding a listener and r is the corresponding API

method for removing that listener. We will use Opa to denote {a | [a,r] ∈ Op}; Opr

16



w ∈ Win window
v ∈ View view

e = [v,k] ∈ Event widget event on v
e = [w,k] ∈ Event default event on w

c ∈ Cb callback method
[c,o] ∈ Cb× (Win ∪View) callback invocation
s ∈ Cbs callback inv. sequence

t = [w,w′] ∈ Trans window transition
ε(t) ∈ Event event that triggered t
σ(t) ∈ Cbs callback sequence for t
δ(t) ∈ ({push, pop} ×Win)∗ window stack changes
T ∈ Trans+ transition sequence
l ∈ Lst listener

op = [a,r] ∈ Op add/remove listener APIs
A ⊆ Opa × Lst added listeners
R ⊆ Opr × Lst removed listeners

Figure 2.3: Notation for listener semantics.

is defined similarly. For example, [requestLocationUpdates,removeUpdates] ∈ Op.

The extended notation based on these features is shown in Figure 2.3.

2.2 Patterns of Location-Related Energy Defects

Leaking sequences Consider s = [c1,o1][c2,o2] . . . [cm,om], a callback sequence ob-

served during some window transitions. Recall that ci is a callback method and oi is

a view/window on which ci is called. Let Ai be the set of pairs [a,l] ∈ Opa×Lst such

that add-listener method a was invoked on listener l during the execution of ci on oi,

and the rest of the execution of ci did not invoke r on l for any [a,r] ∈ Op. In other

words, ci (or its transitive callees) invoked a and provided l as a parameter, and sub-

sequently did not invoke on l any remove-listener method r that matches a. One can
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draw an analogy with the standard compiler notion [2] of a downward-exposed defi-

nition in a basic block (i.e., a definition that reaches the exit of the block). Similarly,

we will use downward-exposed to denote any [a,l] that was not killed by a subsequent

[r,l] in ci and its transitive callees, and thus reached the exit of ci.

In the running example, for the callback sequence containing only [onClick,br ],

the corresponding set A1 contains one element: [requestLocationUpdates,l] where

l is created at line 12.

Similarly, for callback invocation [ci,oi], let Ri contain [r,l] ∈ Opr×Lst such that

remove-listener method r was invoked on l during the callback execution. Note that

the definition of Ri could have included the following additional condition: “in the

execution of ci (and its transitive callees) [r,l] was not preceded by a matching [a,l]”.

Such a condition would have made the definition of Ri similar to the definition of

Ai. However, such a condition is not necessary because in Android it is possible for a

single [r,l] to be preceded by several matching [a,l], occurring over multiple callbacks,

including the callback ci that invokes [r,l]. That single remove operation “cancels”

all preceding add operations. Thus, it is irrelevant whether ci contains a preceding

[a,l].

Definition 1 Given a callback invocation sequence s of length m, let A1, A2, . . . , Am

be its sequence of add-listener sets and R1, R2, . . . , Rm be its sequence of remove-

listener sets. Sequence s leaks listener l if there exists an add-listener operation [a,l] ∈

Ai such that for each j > i there does not exist a matching [r,l] ∈ Rj.

Leaking callback sequences are typically harmless: they represent legitimate needs

to receive updated information about the location of the device. For example, in
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Figure 2.2, the click event on the button causes a window self-transition with a leaking

callback sequence (containing only [onClick,br ]), but of course this is the intended

behavior. However, not all leaking sequences are desired. We define two patterns

of leaking sequences that represent potential defects. These patterns are motivated

by case studies from the work on GreenDroid, and by our own analysis of these case

studies.

2.2.1 Pattern 1: Lifetime Containment

The informal definition of this pattern is as follows: if an activity adds a listener,

the listener should be removed before that activity is destroyed. A similar pattern has

been defined informally as part of the GreenDroid tool, but our goal here is to state

it precisely in order to allow the development of static detection algorithms. Note

that since menus and dialogs are intended to be short-lived, their lifetimes cannot be

expected to contain the lifetime of listener registration; thus, the pattern is defined

only for activities.

Consider a window transition sequence T = 〈t1, t2, . . . , tn〉 and recall that δ(T ) is

the concatenation of window stack push/pop operations δ(ti). Sequence T represents

a lifetime of an activity w if δ(t1) contains an operation push w, δ(tn) contains an op-

eration pop w, and the sequence of push/pop operations between these two operations

in δ(T ) is balanced (as defined by non-terminal Balanced described earlier).

Definition 2 Suppose T represents a lifetime of an activity w. Consider the callback

invocation sequence σ(T ) and its subsequence s = [c1,w] . . . [cm,w] where c1 is the

creation callback for w and cm is the termination callback for w. If s is leaking a
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listener l, and the corresponding add-listener operation [a,l] occurred when the top-

most activity on the window stack was w, then T matches Pattern 1.

Note that this definition does not say “the top element on the window stack was

w”. Here we allow for some menus/dialogs (owned by w) to be on top of w in

the window stack at the time when the listener is added. Since menus and dialogs

often execute small actions on behalf of their owner activity, we still attribute the

add-listener operation to the activity, and consider whether the activity’s lifetime

contains the lifetime of listener registration.

. Example: Consider DemoLauncher in the running example. For brevity, let us

denote it with a. Since this is the starting activity of the application, we introduce an

artificial transition t1 = [launcher ,a] where launcher denotes the Android application

launcher. The relevant callbacks are σ(t1) = [onCreate,a][onStart,a][onResume,a].

Next, let t2 = [a,a] be the transition triggered by button br , with σ(t2) = [onClick,br ].

Finally, let t3 = [a,launcher ] occur then the hardware BACK button is pressed to

close a and go back to the Android launcher. The callbacks are σ(t3) = [onPause,a]

[onStop,a][onDestroy,a]. Let window transition sequence T = 〈t1, t2, t3〉. This se-

quence is balanced, since the window stack effects are δ(t1) = push a, δ(t2) = [ ],

and δ(t3) = pop a. Clearly, T represents a lifetime of a. In the application code, the

activity defines only onCreate (not shown in the figure because it does not have rel-

evant effects) and onResume, but not any other lifecycle callbacks. Thus, the relevant

callback sequence is [onCreate,a][onResume,a][onClick,br ]. Since the last callback

contains [requestLocationUpdates,l] and there is no subsequent [removeUpdates,l],

window transition sequence T matches Pattern 1. /
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2.2.2 Pattern 2: Long-Wait State

Informally, this pattern considers an activity that adds a listener and then is put

in a (potentially) long-wait state without removing this listener. We are interested in

application states that can suspend the application for arbitrarily long periods of time.

Specifically, suppose the the application user presses the hardware HOME button

(or, equivalently, selects another application from the list of recent applications). As

a result, the current application is put in the background. However, if there are

any active location listeners, the battery’s energy is still consumed. It may be hours

before the user resumes the application. A similar scenario occurs when the hardware

POWER button is pressed: the screen is turned off, but active location listeners still

drain the battery. Since the callback sequences for these two scenarios are the same,

we will discuss only the use of the HOME button to put the application in a long-wait

state. This pattern has not been identified in the work on GreenDroid.

Unlike with Pattern 1, here the lifetime of the activity may contain the lifetime

of listener registration. This scenario is illustrated by the example in Figure 2.4. The

simplified code in the figure is derived from the Ushahidi application, which was also

analyzed in the prior work on GreenDroid. This particular defect is not detected

in the experiments from that prior work. Through testing, we have confirmed that

indeed this defect drains the battery.

. Example: Activity ListCheckin contains an options menu. Event handler

onOptionsItemSelected represents the clicking of an item in that menu. One of the

menu items is used to open CheckinActivity, using the standard Android mechanism

of intents. Inside the newly-opened activity, onCreate registers the activity as a

listener, and onDestroy stops the listening. As far as Pattern 1 is concerned, the
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1 class ListCheckin extends Activity {

2 void onOptionsItemSelected(MenuItem item) {

3 switch(item.getItemId()) { ...

4 case ADD_INCIDENT:

5 Intent i = new Intent(CheckinActivity.class);

6 startActivity(i); return; ... } }

7

8 class CheckinActivity extends Activity

9 implements LocationListener {

10 LocationManager lm = ...;

11 void onCreate() {

12 lm.requestLocationUpdates(this); }

13 void onDestroy() {

14 lm.removeUpdates(this); }

15 void onStart() { ... }

16 void onResume() { ... }

17 void onPause() { ... }

18 void onLocationChanged() {

19 lm.removeUpdates(this); } }

Figure 2.4: Example derived from the Ushahidi application.

lifetime of listener registration is contained within the lifetime of the activity that

adds the listener. The rest of the lifecycle callbacks defined in the code (lines 15–17)

do not have any effect on the listener.

Callback onLocationChanged is invoked when a location read is obtained; this

method stops the listening. However, it is still possible for the listener to be leaked. If

a location read cannot be acquired (e.g., the GPS cannot obtain a satellite fix because

of physical obstacles or atmospheric conditions), callback onLocationChanged will

not be invoked. If at this moment the user presses the HOME or POWER button

(e.g., the user gives up after the GPS signal cannot be acquired), the application is

put on the background but the listening is still active and is draining the battery.
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Note that battery drain for such “no-read” listener leaks occurs at the same rate as

drain for “normal” listener leaks when location reads are successfully acquired. /

To define the general form of this defect pattern, consider a window transition

sequence T = 〈t1, t2, . . . , tn〉 where δ(t1) contains push w for an activity w and event

ε(tn) is [w′,home] where w′ is either the same as w, or is a menu/dialog owned by w.

Here w is created at the beginning of T and default event home occurs on w′ at the

end of T . Suppose also that the sequence of push/pop operations in δ(T ), starting

from push w on t1, is valid as defined by non-terminal Valid described earlier. Under

these conditions, T puts w in a long-wait state.

Definition 3 Suppose T puts an activity w in a long-wait state. Consider the callback

invocation sequence σ(T ) and its subsequence s = [c1,w] . . . [cm,w
′] where c1 is the

creation callback for w and cm is the last callback before the application goes in the

background. If s is leaking a listener l, and the corresponding add-listener operation

[a,l] occurred when the top-most activity on the window stack was w, then T matches

Pattern 2.

Note that the last callback cm in this definition is an intermediate point in the

invocation sequence for the last transition tn. If an activity defines all lifecycle call-

backs, the entire sequence for tn is onPause, onStop, onRestart, onStart, onResume.

Callback cm is onStop, since the first two callbacks occur before the application goes

in the background, and the last three are executed during reactivation when the user

returns to the application.

. Example: For the example in Figure 2.4, let us use (for brevity) a to denote

ListCheckin, m to denote the options menu of a, and a′ to denote CheckinActivity.
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Consider the transition sequence T = 〈t1, t2〉 defined as follows. Transition t1 is

triggered when the ADD INCIDENT menu item is clicked. The window stack effect

sequence δ(t1) is pop m, push a′. Here we account for the standard behavior of menus:

after a menu item is clicked, the menu is automatically closed—thus, pop m should

be included in the sequence. Transition t2 is triggered by event [a′,home] and has an

empty δ(t2). Clearly, T represents a valid sequence of transitions.

In general, σ(t1) is [onOptionsItemSelected,ai ][onOptionsMenuClosed,m]

[onPause,a][onCreate,a′][onStart,a′][onResume,a′][onStop,a]; here ai is the menu item

with id ADD INCIDENT. Sequence σ(t2) contains [onPause,a′][onStop,a′][onRestart,a′]

[onStart,a′][onResume,a′]. The last three callbacks in σ(t2) occur after the application

is re-activated from the background. Accounting for the subset of callbacks defined

in the code, and the definition of Pattern 2, the relevant callbacks are [onCreate,a′]

[onStart,a′][onResume,a′][onPause,a′]. The first element in the sequence adds the

activity as a listener, but the rest of the callbacks do not remove this listener. Thus,

T = 〈t1, t2〉 matches Pattern 2. A fix for the defect would be to remove the listener

in CheckinActivity.onPause. /

2.3 Static Leak Detection for Location Listeners

The run-time behaviors defined earlier can be used as basis for defining static ab-

stractions and static detection analyses based on them. In a minor abuse of notation,

for the rest of this chapter we will use Win, View, etc. (Figure 2.3) to denote sets

of static abstractions rather than run-time entities. There are various ways to define

such static abstractions. We use the approach from [74, 89], which creates a separate

a ∈Win for each activity class, together with appropriate m, d ∈Win for its menus
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and dialogs, and abstractions v ∈ View for their widgets (i.e., defined programmati-

cally or in layout XML files), and then propagates them similarly to interprocedural

points-to analysis, but with special handling of Android API calls.

Follow-up work [91–94] defines the window transition graph (WTG), a static model

G = (Win,Trans, ε, δ, σ) with nodes w ∈Win and edges t = [w,w′] ∈ Trans. Each

transition t is annotated with trigger event ε(t), callback sequence σ(t), and window

stack changes δ(t). Implementations of these analyses are available in our GATOR [24]

analysis toolkit for Android, which itself is built using the Soot framework [83] and

its Jimple internal representation (constructed either from Java bytecode or from

Dalvik bytecode via Dexpler [13]). The energy defect analysis was developed in this

infrastructure.

The WTGs for the running examples are shown in Figure 2.5. These graphs

are small because the examples are simplified on purpose, but in actual applications

WTGs have hundreds of edges. Given the WTG, our detection analysis proceeds in

three phases.

2.3.1 Phase 1: Add-Listener and Remove-Listener Opera-
tions

Consider the set {[c,o] | t ∈ G ∧ [c,o] ∈ σ(t)}. For each invocation of a callback c

on object o, we compute a set A(c, o) of pairs [a,l] of an add-listener API invocation

statement a and a listener object l. We also compute a similar set R(c, o) of pairs

[r,l]. These sets are determined in four steps, as described below.

Step 1 An interprocedural control-flow graph (ICFG) [76] is constructed for c and

its transitive callees in the application code. Then, a constant propagation analysis is
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Figure 2.5: WTGs for the running examples.

performed to identify and remove infeasible ICFG edges, based on the knowledge that

the calling context of c is o. This analysis is defined in prior work [92], where it was

shown to produce more precise control-flow models. For the example in Figure 2.4,

this analysis will determine that when onOptionsItemSelected is invoked on the

item with id ADD INCIDENT, only one branch of the switch statement is feasible and

the rest of the branches can be ignored. In addition, we remove ICFG edges related

to null pointer checks and throwing of unchecked exceptions, since in our experience

they represent unusual control flow that does not contribute to defect detection.

Step 2 An ICFG traversal is performed starting from the entry node of c. This

traversal follows interprocedurally-valid paths. During the traversal, whenever an

add-listener API call site a is encountered, the points-to set of the listener param-

eter is used to construct and remember pairs [a,l]. (Points-to sets are derived as
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described elsewhere [74].) Similarly, we also record all reached pairs [r,l] where r is a

remove-listener API invocation statement. For the example in Figure 2.2, analysis of

onClick and its callees will identify [requestLocationUpdates,EventManager] where

the second element of the pair denotes the listener created at line 12. For Figure 2.4,

analysis of onCreate will identify a similar pair with the activity being the listener.

In addition, analysis of onDestroy will detect [removeUpdates,CheckinActivity].

Step 3 For each [a,l] encountered in Step 2, we need to determine whether the

ICFG contains a path from statement a to the exit of c along which there does not

exist a matching remove-listener operation [r,l]. If the ICFG contains at least one [r,l]

for the same listener l (as determined by Step 2), we perform an additional traversal

on the reverse ICFG, starting from the exit node of c. This traversal considers only

valid paths with proper matching of call sites and return sites. During the traversal,

whenever a remove-listener API call site r with listener l is encountered and it matches

the pair [a,l] being considered, the traversal stops. If the add-listener call site a is

never reached, this means that [a,l] is not downward exposed and is not included in

set A(c, o). In both of our examples, the add-listener operation is downward exposed

and this step does not modify sets A(c, o).

Step 4 We construct a similar set R(c, o) of remove-listener operations. However,

only operations that are guaranteed to execute along all possible execution paths

should be included in this set. If [r,l] could be avoided along some path, this could

lead to a leak of listener l. Thus, for each [r,l] observed in Step 2, we perform a

traversal of valid ICFG paths, starting from the entry node of c, and stopping if [r,l]

is encountered. If the exit node of c is reached, this means that some valid ICFG
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path can avoid [r,l]. Set R(c, o) excludes such remove-listener operations. In the

running example, the analysis of onDestroy will determine that each path through

the callback must reach the remove-listener call site, and therefore this operation is

included in R(c, o).

. Example: The final sets A and R computed by Phase 1 for the two running

examples are as follows:

A(onResume, DemoLauncher) = ∅
R(onResume, DemoLauncher) = ∅
A(onClick, br) =

{ [requestLocationUpdates,EventManager] }
R(onClick, br) = ∅
A(onOptionsItemSelected, ai) = ∅
R(onOptionsItemSelected, ai) = ∅
A(onCreate, CheckinActivity) =

{ [requestLocationUpdates,CheckinActivity] }
R(onCreate, CheckinActivity) = ∅
A(onDestroy, CheckinActivity) = ∅
R(onDestroy, CheckinActivity) =

{ [removeUpdates,CheckinActivity] }
A(onStart/onResume/onPause, CheckinActivity) = ∅
R(onStart/onResume/onPause, CheckinActivity) = ∅

Here br and ai represent the static abstractions of the corresponding run-time wid-

gets. /

2.3.2 Phase 2: Path Generation

The second phase of the analysis creates a set of candidate paths that represents

the lifetime of an activity (for Pattern 1) or the transition to a long-wait state (for

Pattern 2). For each activity w ∈ Win, we consider all incoming WTG edges t1 =

[w′,w] that have push w as the last element in δ(t1). Starting from each such t1, we

perform a depth-first traversal to construct “candidate” paths 〈t1, t2, . . . , tn〉. The
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Algorithm 1: GenerateCandidatePaths

1 foreach activity w ∈Win do
2 foreach edge t1 = [w′,w] such that δ(t1) ends with push w do
3 path ← 〈t1〉
4 stack ← 〈w〉
5 Traverse(w, path, stack)

6 procedure Traverse(w, path, stack)
7 if path.length > k then
8 return

9 if ActivityLifetime(path, stack) then
10 record path
11 return

12 if LongWait(path, stack) then
13 record path
14 return

15 foreach edge t = [w,w′] such that t /∈ path do
16 if CanAppend(t, path, stack) then
17 DoAppend(t, path, stack)
18 Traverse(w′, path, stack)
19 UndoAppend(t, path, stack)

details of this traversal are presented in Algorithm 1. During the traversal, path

stores the current path and stack is the window stack corresponding to that path.

We only consider paths whose length does not exceed some analysis parameter k (in

our implementation, this parameter’s value is 5). Any path that represents a lifetime

for the initial activity w or a transition to a long-wait state from w is recorded for

later processing.

Helper function ActivityLifetime checks the following conditions: (1) δ(tn) of

the last edge tn in path contains pop w, and (2) the stack operations in δ(tn), up

to and including this pop w, when applied to stack , result in an empty stack. The

second condition guarantees that the sequence of push/pop operations from push w

in δ(t1) to pop w in δ(tn) is a string in the language defined by Balanced .
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Helper function LongWait determines if path will transit to a long-wait state

from the initial activity w. The following conditions are checked: (1) stack is not

empty and its top window w′ is either w or a dialog/menu owned by w, and (2) the

event on the last edge in path is [w′,home]. Since the window stack is not empty, the

sequence of push/pop operations along path is a string in the language defined by

Valid .

During the depth-first traversal, helper function CanAppend (invoked at line 16)

considers the sequence δ(t) of stack operations for a given edge t = [w,w′] and decides

whether this sequence can be successfully applied to the current window stack. In

particular, for each pop w′′ operation in δ(t), the current top of the stack must match

w′′. Furthermore, after all operations are applied, the top of the stack must be the

same as the target node of t. If CanAppend returns true, it means that the sequence

of stack push/pop operations in the concatenation of δ(path) and δ(t) is a string in

the language defined by Valid .

If transition t is a valid extension of the current path, helper function DoAppend

appends t to path and applies stack operations δ(t) to stack . After the traversal of

the new path completes, helper function UndoAppend removes t from the path and

“unrolls” the changes made to stack due to operations δ(t).

. Example: Consider the example in Figure 2.2 and its WTG shown in Figure 2.5a.

Let a denote the WTG node for DemoLauncher. Figure 2.5a shows transitions t1 =

[launcher ,a], t2 = [a,a], and t3 = [a,launcher ] with events ε(t1) = launch, ε(t2) =

[br ,click ] and ε(t3) = [a,back ]. In addition, consider transition t4 = [a,a] with ε(t4) =

[a,home] (not shown in the figure). The stack operations for these four edges are

δ(t1) = push a, δ(t2) = [ ], δ(t3) = pop a, and δ(t4) = [ ].
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For the sake of the example, suppose we execute Algorithm 1 with k = 3. The

candidate paths for Pattern 1 are 〈t1, t3〉, 〈t1, t2, t3〉, and 〈t1, t4, t3〉. The second path

corresponds to the problematic leaking behavior, as discussed earlier. The candidate

paths for Pattern 2 are 〈t1, t4〉 and 〈t1, t2, t4〉. For the second path, the callback

sequence before the application goes in the background is [onResume,a][onClick,br ]

(because no other lifecycle callbacks are defined in the application), and therefore this

is also a leaking path. The next phase of the analysis considers all these candidate

paths and identifies the ones with leaking callback sequences. /

2.3.3 Phase 3: Detection of Leaking Callback Sequences

In this phase, we perform leak detection on candidate paths recorded in Phase 2.

First, the relevant callback sequence is extracted from each candidate path. Consider

a transition sequence T = 〈t1, . . . , tn〉 which represents a Pattern 1 candidate path.

The relevant callback subsequence of δ(T ) is [c1,w] . . . [cm,w] where c1 is the creation

callback for w and cm is the termination callback for w (w is the target window of

edge t1). Similarly, for a sequence T = 〈t1, . . . , tn〉 which is a Pattern 2 candidate

path, the relevant subsequence is [c1,w] . . . [cm,w
′] where c1 is the creation callback

for w and cm is the last callback before the application goes in the background.

Given a sequence of callbacks s = [c1,o1][c2,o2] . . . [cm,om], we consider its sequence

A1, A2, . . . , Am of add-listener sets and R1, R2, . . . , Rm of remove-listener sets. Recall

from Definition 1 that s leaks listener l if there exists an add-listener operation [a,l] ∈

Ai such that for each j > i there does not exist a matching [r,l] ∈ Rj. In Phase 1, we

have already computed sets A(c, o) and R(c, o) for any relevant c and o. To detect

leaks, we examine each element [ci,oi] of s in order and maintain a set L of added but
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not yet released listeners. Initially, L is empty. When [ci,oi] is processed, all elements

of R(ci, oi) are removed from L, and then all elements of A(ci, oi) are added to L.

Any [a,l] that remains in L at the end of this process is considered to be a leak.

. Example: Consider again Figure 2.2 and the WTG in Figure 2.5a. We have

t1 = [launcher ,a], t2 = [a,a] for the button click, t3 = [a,launcher ] for back , and

t4 = [a,a] for home. Candidate paths for Pattern 1 (for k= 3) are 〈t1, t3〉, 〈t1, t2, t3〉,

and 〈t1, t4, t3〉. For the first and the third path, the relevant callback sequence is

[onResume,a] which is not leaking because both A(onResume, a) and R(onResume, a)

are empty. For the second path, callback sequence [onResume,a][onClick,br ] leaks

[requestLocationUpdates,EventManager]. For candidate path 〈t1, t2, t4〉 for Pattern

2, the callbacks before the application goes in the background are also [onResume,a]

[onClick,br ] and there is a leak as well./

Defect reporting For any leaking candidate path 〈t1, . . .〉, the analysis records

the pair [w,l] of the initial activity w (i.e., the target of t1) and the leaking listener

l, identified by the allocation site of the corresponding object. For Figure 2.2, this

would be [DemoLauncher,l12] where l12 is the EventManager allocation site at line 12

in the code. For each recorded pair, the leaking candidate paths for that pair are also

recorded. Each [w,l] is reported as a separate defect, since it requires the programmer

to examine the callbacks associated with w and to determine whether they manage

listener l correctly.

Defect prioritization In addition to these reports, we also classify leaking listeners

as “high” or low “low” priority, based on the following rationale. Consider again the

example in Figure 2.4. The leaking behavior can be observed only when a location
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read is not obtained (e.g., the weather does not allow a GPS fix), which arguably

is not a very frequently-occurring situation. If we analyze onLocationChanged—the

callback that is executed on a listener l when a location read is obtained—we can

determine whether it contains a remove-listener operation for l along each execution

path. If this is the case, a location read will release the listener. In the defect report

from the analysis such listeners are labeled as “low priority”: they should still be

examined by the programmer, but perhaps after other leaking listeners have been

examined. To make this distinction, for each leaking l we analyze the corresponding

callback (onLocationChanged or similar method) using the same approach as in Step

4 of Phase 1. The defect in Figure 2.4 will be reported as low priority, while the one

from Figure 2.2 will be high priority. In our experiments 3 out of the 17 reported

defects were classified as low priority ones.

2.4 Evaluation

The static analysis was implemented in GATOR [24], our open-source static anal-

ysis toolkit for Android. The toolkit contains implementations of GUI structure

analysis [74, 89] and WTG generation [91–94]. The implementation of the energy

defect analysis is currently available as part of the latest release of GATOR.

The goal of our evaluation is to answer several questions. First, how well does the

analysis discover GUI-related energy-drain defects already known from prior work?

Second, does the analysis discover defects that have not been identified in prior work?

Third, does the detection exhibit a reasonably small number of false positives? Fi-

nally, what is the cost of the analysis?

33



Application WTG Defects Time

Nodes Edges Paths Pat-1 Real-1 Pat-2 Real-2 (s)

droidar 10 120 82292 2 2 2 2 2.47
osmdroid 14 92 1425 0 0 2 2 0.07
recycle 7 22 98 1 1 1 1 0.04
sofia 11 55 237 1 1 1 1 0.05
ushahidi 42 296 31416 1 1 3 3 1.21

droidar-f 10 120 82292 1 1 1 1 2.44
osmdroid-f 14 92 1425 0 0 0 0 0.07
recycle-f 8 29 258 0 0 0 0 0.04
sofia-f 15 67 406 0 0 0 0 0.08
ushahidi-f 42 284 30758 0 0 2 2 0.71

heregps 3 14 414 1 1 1 1 0.05
locdemo 5 13 228 1 1 1 1 0.04
speedometer 2 5 10 1 1 1 1 0.03
whereami 5 17 51 1 1 1 1 0.03
wigle 18 64 3769 1 0 1 1 0.41

Table 2.1: Analyzed applications and detected defects.

Benchmarks To answer these questions, we used several sources of benchmarks,

as listed in Table 2.1. First, we considered the benchmarks from the work on Green-

Droid [55] that exhibit defects due to incorrect control flow and listener operations

in the UI thread of the application. Almost all such GUI defects involve opera-

tions related to location awareness, and our static analysis was built to track add/re-

lease operations for location listeners. We also considered the fixed versions of these

benchmarks—that is, the versions that involve fixes of these known defects. Both

defective and fixed versions were obtained from the public GreenDroid web site.3 In

3sccpu2.cse.ust.hk/greendroid
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Table 2.1, applications in the first part of the table are the defective ones, while ap-

plications in the second part of the table, suffixed with -f, are the ones with defect

fixes.

We also considered the F-Droid repository of open-source applications4 and searched

for applications that use location-awareness capabilities in their UI-processing code.

Specifically, the textual description and the manifest file were checked for references to

location awareness of GPS, and the code was examined to ensure that the UI thread

uses location-related APIs. For the applications we could successfully build and run

on an actual device, the static analysis was applied to detect potential defects. Out

of the 10 applications that were analyzed, 5 were reported by the analysis to contain

defects. The last part of Table 2.1 shows these 5 applications.

Columns “Nodes” and “Edges” show the numbers of WTG nodes and edges,

respectively. Column “Paths” contains the number of candidate paths that were

recorded and then analyzed for leaking listeners. The last column in the table shows

the cost of the analysis; for this collection of experiments, this cost is very low.

Detected defects Recall that for a leaking path 〈t1, . . .〉, the analysis reports a

pair [w,l] of the initial activity w (i.e., the target of t1) and the leaking listener l.

We consider each [w,l] to be a defect. Column “Pat-1” shows the number of such

defects that were reported by the static analysis as instances of Pattern 1. Column

“Pat-2” shows a similar measurement for Pattern 2. In our experiments, a total of 17

unique pairs [w,l] were reported, and all defects that match Pattern 1 (11 defects) also

match Pattern 2 (17 defects), but not vice versa. However, it is still useful to detect

both patterns statically, as they correspond to two different scenarios. If a defect

4f-droid.org
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matches both Pattern 1 and Pattern 2 (e.g., the one in Figure 2.2), it usually means

that the programmer completely ignored the removal of the listener. On the other

hand, if a defect matches Pattern 2 but not Pattern 1 (e.g., the one in Figure 2.4),

this means that the programmer attempted to remove the listener, but did not do

it correctly. Given the low cost of the analysis, we believe that detection of both

patterns is valuable.

Column “Real-1” shows the number of detected defects from column “Pat-1” that

we manually confirmed to be real, by observing the actual run-time behavior of the

application. Similarly, column “Real-2” shows the number of defects from column

“Pat-2” that were verified in the same manner. Only one reported defect is incorrect:

in wigle, a defect is incorrectly reported by the analysis as an instance of both Pattern

1 and Pattern 2, while in reality it is only an instance of Pattern 2. The cause of this

imprecision will be discussed shortly.

Two conclusions can be drawn from these measurements. First, the analysis

successfully detects various defects across the analyzed applications. Even the “fixed”

versions are not free of defects: for example, we discovered two defects in ushahidi-f

that were not reported in the work on GreenDroid, and were missed by the application

developers when ushahidi was fixed to obtain ushahidi-f (in fact, these two defects

are quite similar to the one that was fixed). A similar situation was observed for

droidar. This observation indicates the benefits of static detection, compared to

run-time detection which depends on hard-to-automate triggering of the problematic

behavior. Of course, static detection has it own limitations, with the main one being

false positives. However, the experimental results for the 15 benchmarks shown in

Table 2.1 indicate that the proposed analysis achieves very high precision.
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Application |D| |S| |D−S| |S−D|

droidar 1 2 0 1
osmdroid 2 2 0 0
recycle 1 1 0 0
sofia 1 1 0 0
ushahidi 1 3 0 2

Table 2.2: Defects reported: GreenDroid (D) vs static analysis (S).

False positive The false positive for wigle is because the developer decided to

override standard method Activity.finish with a custom version which removes

the listener. When method finish is invoked on an activity (by the application code

or by the framework code), this causes the termination of the activity. However, this

method is not a callback that is defined as part of the lifecycle of an activity, and

is rarely overridden by applications. In other words, finish can be called to force

termination, but it is not executed as part of the actual termination process. Thus,

finish does not appear on WTG edges (although it is accounted for during WTG

creation [93, 94]). In fact, termination could happen even if finish is not called: for

example, the system may silently terminate an activity to recover memory [26]. The

Android lifecycle model guarantees that onDestroy will be called in all scenarios, and

this is where the listener should be removed, rather than in finish. This example

indicates that the developer misunderstands the activity lifecycle. During the manual

examination of this defect on a real device we did observe that the location listener is

properly released, and decided to classify the defect as a false positive, although one

could argue that it violates Android guidelines.
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Comparison with GreenDroid To compare the proposed static detection with

the most relevant prior work, Table 2.2 considers the UI thread defects [w,l] reported

by the dynamic analysis approach in GreenDroid. For a given application, letD be the

set of these defects, while S be the set of defects reported by our static analysis. The

sizes of these sets are given in the second and third column in Table 2.2. The next two

columns show the sizes of sets D−S and S−D, respectively. As the next-to-last column

shows, our static analysis reported all defects from the prior dynamic analysis work.

The last column shows how many of the statically-detected defects were not reported

by GreenDroid; for two of the applications, there are additional defects we discovered

statically (and these defects are still present in the fixed versions from GreenDroid).

A possible explanation of this result is that the run-time exploration strategy in

GreenDroid did not trigger the necessary GUI events; in general, comprehensive run-

time GUI coverage is challenging [18].

Overall, these results indicate that static detection could be more effective than

dynamic detection. At the same time, it is important to consider the relative strengths

and weaknesses of both approaches: while the static analysis can model more com-

prehensively certain behaviors of the UI thread, other aspects of run-time semantics

are not modeled statically (e.g., asynchronous tasks and services) and dynamic anal-

ysis does capture additional defects for such behaviors. This highlights the need

for more comprehensive static control-flow analyses for Android, as well as hybrid

static/dynamic approaches for defect detection.
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2.5 Conclusions

We propose a static analysis for detection of energy-related defects in the UI logic

of an Android application. The technical foundation for this analysis is the static

modeling of possible sequences of window transitions and their related callbacks.

By identifying certain such sequences, based on the state of the window stack, we

define two patterns of behavior in which location listeners are leaking. Control-flow

analysis of individual callbacks is combined with analysis of callback sequences to

identify instances of these patterns. Seventeen known and new defects were detected

in previously-analyzed and newer-analyzed applications. All but one of the reported

defects are observable at run time. The evaluation also shows that the cost of the

analysis is low.
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CHAPTER 3: Static Detection of Sensor-Related Energy
Defects

Android devices have hardware sensors for acceleration, rotation, proximity, light,

etc. As a general guideline, the app should disable sensors that are not needed.

Failing to disable sensors—that is, sensor leaks—can drain the device battery.

We propose a static analysis to detect potential sensor leaks in Android apps. The

leaks are then verified by generated test cases. The approach was implemented in the

Sentinel tool for sensor testing to detect leaks. The tool and benchmarks used for

its evaluation are publicly available at https://presto-osu.github.io/Sentinel.

Section 3.2.1 describes our static graph model of sensor-related objects and API calls.

Graph edges are labeled with symbols representing the opening/closing of UI windows

and the acquiring/releasing of sensors. Section 3.2.2 defines a context-free-language

reachability (CFL-R) problem over the graph. This problem is based on two context-

free languages over the alphabet of symbols. A graph path that defines a string from

these languages is a “witness” of a leak. Given this CFL-R formulation, Section 3.2.3

describes an approach to identify and report buggy paths. This approach traverses

selected CFL-R paths and checks them for leaks. The reported paths are then used to

generate test cases, as outlined in Section 3.2.4. Our experimental results, presented in

Section 3.4, indicate that the proposed approach achieves high precision and exhibits

practical cost.
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3.1 Android GUIs and Sensors

3.1.1 Android GUI Control Flow

Details of Android GUI structure and behavior were already discussed in Sec-

tion 2.1. This section illustrates the relevant control flow abstractions with the fol-

lowing example.

. Example: Figure 3.1 shows a simplified example derived from a sensor leak

we found in the apps we analyzed. Calculator Vault is a vault app used to hide

photos and other documents. The app has over a million downloads in the Google

Play Store. The example shows two of the app’s activities: SettingActivity and

UnlockActivity. The first activity has a button widget (btn at line 4); the second

one has a switch widget (sc at line 17) which is a toggle to select between two options.

if btn’s button is touched, onClick (lines 7–13) is invoked by the Android platform

code. In this example, using startActivity at line 12, the event handler opens a

new window corresponding to UnlockActivity. Inside UnlockActivity, when the

user changes the state of switch sc, onCheckedChanged (lines 24–27) is invoked. As

discussed later, this event handler registers a listener for the accelerometer sensor. /

3.1.2 Sensors in Android Apps

On an Android device there exists multiple categories of sensors. Each category is

represented by an integer constant defined in class android.hardware.Sensor. For

example, Sensor.TYPE ACCELEROMETER corresponds to all accelerometer sensors. A

sensor object, instantiated from android.hardware.Sensor is used to represent a

hardware sensor. These sensor objects are created by the Android framework and

will not be replaced or destroyed unless the app process is killed. From our case
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1 class SettingActivity

2 extends Activity implements OnClickListener {

3 onCreate(...) {

4 Button btn = findViewbyId(R.id.rl_unlockSetting);

5 btn.setOnClickListener(this); ...

6 }

7 onClick(View v) {

8 switch(v.getId()) {

9 ...

10 case R.id.rl_unlockSetting:

11 Intent i = new Intent(UnlockActivity.class);

12 startActivity(i); break;}

13 }

14 }

15 class UnlockActivity extends Activity {

16 onCreate(...) {

17 SwitchCompat sc = ...;

18 SensorManager sm = ...;

19 Sensor accel = sm.getDefaultSensor(Sensor.TYPE_ACCELEROMETER);

20 SensorEventListener shakeListener = new SensorEventListener {

21 onSensorChanged(...) {

22 if (...) { sm.unregisterListener(this); }}};

23 sc.setOnCheckedChangeListener(new OnCheckedChangeListener{

24 public onCheckedChanged(View v) {

25 ...

26 sm.registerListener(shakeListener, accel);}});

27 }

28 onDestroy() { ... }

29 }

Figure 3.1: Example derived from Calculator Vault.

studies, we observed that developers rarely use more than one sensor from a sensor

category: typically, only the default sensor is used. To obtain it, the code calls method

getDefaultSensor defined in android.hardware.SensorManager. In Figure 3.1,

line 19 illustrates such a call: accel refers to the default accelerometer sensor object,
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which is used by the application to detect when the user shakes the device in order

to unlock it.

To obtain sensor data, the programmer creates and registers a sensor event lis-

tener. Such a listener is an instance of android.hardware.SensorEventListener

(line 20). Callback method onSensorChanged is invoked on this listener whenever

new sensor data is available. Line 26 shows how a listener is registered with a sensor

object. The sensor hardware will be enabled when there exists any listener registered

to listen to the sensor’s changes. The hardware will be turned off when all listeners

are removed via unregisterListener (illustrated at line 22).

The sensor leak in the running example occurs as follows. After UnlockActivity is

opened, the user may toggle sc’s switch in the UI, which will invoke onCheckedChanged

and as a result will (1) register shakeListener’s listener object with accel’s sensor

object, and (2) wait for a shake gesture from the user to unlock the vault. Whenever

the device is moved, onSensorChanged is invoked with information about the physical

movement. If this movement is above some threshold (checked at line 22), it is con-

sidered to be “shake to unlock” which releases the listener via unregisterListener

and unlocks the vault. However, if the user does not shake the device, the listener will

continue to listen for updates. If the user quits this app and makes the phone station-

ary, UnlockActivity will be closed. At that time, lifecycle callback onDestroy (line

28) does not release the sensor either. Thus, the window that acquired the sensor

does not release it, which keeps the sensor alive and drains the battery. We have

confirmed this behavior using tests on a real Android device. This is an example of

a typical sensor leak pattern. Our goal is to express such sensor leaks formally and

to detect them statically.
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3.2 Control-Flow Analysis for Sensor Leaks

3.2.1 Control-Flow Model

Window transition graph The run-time behavior of windows and events can

be modeled statically in a variety of ways. The starting point of our work is the

window transition graph (WTG) [93, 94] static model discussed earlier. Recall that

graph nodes graph represent windows and an edge e = wi → wj indicates that when

window wi was visible and interacting with the user, some user-triggered event caused

window wj to be displayed and to begin interacting with the user. It is possible that

i = j, in which case the currently-active window does not change.5 As discussed

earlier, during a transition from wi to wj, various callback methods are executed.

The WTG defined in prior work [93, 94] contains information about both callback

methods and window open/close effects.

Sensor effects control-flow graph For the purposes of control-flow analysis for

sensor leak detection, we define a static model derived from (1) the WTG and (2)

further analysis of the callback methods along WTG edges. We refer to this model

as the sensor effects control-flow graph (SG). The graph is SG = (N,E,L) where N

and E are the node set and edge set from the WTG and L : E → Σ∗ defines a label

l(e) for each edge e ∈ E. The label is a sequence of symbols from the alphabet

Σ = {open(wi), close(wi), acquire(sk), release(sk)}

Here symbols open(wi) and close(wi) denote the opening/closing of a window

represented by wi ∈ N . Symbols acquire(sk) and release(sk) denote the acquiring

5In some cases (e.g., when the device is rotated) the current window is destroyed and then
recreated with a different layout. Such cases are also represented as wi → wi transitions.
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w1:Main

w2:SettingActivity

 open(w2)  close(w2) 

w3:UnlockActivity

 open(w3)  close(w3) 

 acquire(s) 

Figure 3.2: SG graph for the running example.

and release of a sensor sk. The set of sensor abstractions sk will be described later

in this section. To obtain all acquire/release symbols in Σ, and to determine how

such symbols appear in label l(e) for an edge e, we analyze the bodies of the callback

methods executed during the transition represented by e. This analysis is described in

Section 3.2.5. Note that some WTG edges may not have any effects that correspond

to the symbols in Σ (that is, l(e) = ε); in such cases, the edges are not included in

SG .

Example Figure 3.2 shows SG for the running example. Node w1 corresponds

to activity Main, which is not shown in the code from Figure 3.1. A widget event

handler in w1 opens SettingActivity. The self-edge for w3 corresponds to a change

in the state of switch widget sc; the invoked callback onCheckedChanged acquires the

default accelerometer sensor, denoted by s in the figure. Note that this example is

rather simple. However, we have seen many apps where a single edge contains several
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symbols (e.g., it represents the opening/closing of several windows, or the acquiring

of several sensors).

3.2.2 CFL-Reachability for Sensor Leaks

Given a directed graph with labeled edges, context-free language (CFL) reachabil-

ity defines a set of paths in the graph. The paths are based on a context-free language

L over the alphabet Σ of edge labels. An L-path is such that the sequence of edge

labels along the path forms a string in L. Many static analyses can be formulated as

CFL-reachability problems [73, 78].

Since traditional CFL reachability assumes graph edges labeled with elements of

Σ rather than with elements of Σ+, for the sake of presentation we assume that SG

is modified to ensure that each l(e) contains at most one symbol. This can be easily

achieved by introducing intermediate graph nodes/edges to “break up” each sequence

l(e). Note that this transformation is just a conceptual vehicle for ease of explanation.

Our analyses are implemented to handle the general case of l(e) ∈ Σ+.

Using CFL reachability, next we define two sensor leak patterns. These patterns

are similar to GPS leaks that have been observed in prior work [85]. However, that

work did not consider sensors and did not formulate leak properties and analysis

algorithms using CFL reachability.

Leaks Beyond Window Lifetime

Given SG , we define sensor leak analyses as CFL-reachability problems over SG .

We start by defining a context-free language L1(wi) describing paths that represent

the lifetime of a window wi. By intersecting this language with several regular lan-

guages over sensor acquire/release effects, we will capture one common pattern of
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q

release

facquire
release

acquire

Figure 3.3: Finite automaton F .

sensor leaks. The subscript indicates that this is the first pattern being considered.

A second pattern, described later, will be based on another context-free language

L2(wi).

L1(wi) is similar to classic balanced-parentheses languages:

S1 → open(wi) Bal close(wi)
Bal → open(wj) Bal close(wj) |Bal Bal | Sen | ε
Sen → acquire(sk) | release(sk)

A string in this language corresponds to a run-time execution scenario in which wi is

opened, a number of other windows are opened and closed, and at the end wi itself is

closed. The actual run-time execution is based on a stack of currently-active windows,

with the top of the stack being the window that is currently visible and interacting

with the user. During the execution described by an L1(wi) string, wi is pushed on

top of the stack, additional push/pop operations are performed on top of wi, and

at the end wi is popped from the stack. Any string from the language describes a

possible lifetime for wi.

To define the correct behavior for sensor effects, we define a regular language R(sk)

for each sensor sk. We specify this language using a deterministic finite automaton

F = (Q,Σ, δ, q, f). Here Q = {q, f} is the set of states, with q being the initial

state and f being the final state. The input alphabet is the set Σ defined earlier.

The transition function δ : Q × Σ → Q is shown in Figure 3.3. The figure shows
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only transitions for symbols acquire and release for the sensor of interest sk. For the

remaining symbols in Σ (open/close, as well as acquire/release for other sensors), there

are self-transitions in both states.

If a string belongs to the regular language defined by F , it represents a leak of

sensor sk. Note that in Android it is possible to perform successive acquire operations

on the same sensor without in-between release operations; the second, third, etc.

acquire have no effect. Similarly, it is possible to have successive release operations

without in-between acquire; all but the first release are no-ops. Finally, it is also

possible to execute release operations on a sensor that was never acquired. All these

scenarios are captured by F .

Since the intersection of a context-free language with a regular language is a

context-free language, the language

P1(wi, sk) = L1(wi) ∩R(sk)

is context-free and thus suitable for CFL-reachability analyses. If there exists an

SG path whose edge labels form a string from P1(wi, sk), the lifetime of window wi

acquires sensor sk without releasing it, and thus matches our first pattern of sensor

leaks.

Leaks in Suspended State

The second pattern of sensor leaks will be illustrated using the example in Fig-

ure 3.4. CSipSimple is an open-source VoIP app that has been used by several com-

mercial VoIP app which have more than a million downloads on Google Play Store.

InCallActivity will register a listener for the proximity sensor in onCreate and will

release this listener in onDestroy. This example does not exhibit the leak pattern
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1 class InCallActivity extends Activity {

2 CallProximityManager proximityManager = ...;

3 onCreate(...) { proximityManager.startTracking(); ... }

4 onResume() { ... }

5 onPause() { ... }

6 onDestroy() { proximityManager.stopTracking(); ... }

7 }

8 class CallProximityManager implements SensorEventListener {

9 SensorManager sm = ...;

10 Sensor proximitySensor = sm.getDefaultSensor(Sensor.SENSOR_PROXIMITY);

11 onSensorChanged(...) { ... }

12 startTracking() {

13 sm.registerListener(this, proximitySensor); ... }

14 stopTracking() {

15 sm.unregisterListener(this); ... }

16 }

Figure 3.4: Example derived from CSipSimple.

described earlier: by the time the activity is destroyed, the sensor is released. How-

ever, another possible scenario is when the activity is suspended for a long period of

time (e.g., hours). For example, if the user presses the HOME button, the app is put

in the background but the sensor is still active.

To formalize this second pattern of sensor leaks, we add to the alphabet Σ a symbol

suspend(wi) for each window wi. Graph SC is augmented as follows: for each window

wi a new node w̄i is added to represent the suspended state of wi. An edge wi → w̄i

is labeled with symbols from Σ representing the sensor effects of lifecycle callbacks

(e.g., onPause) executed before entering the suspended state. The last symbol on the

edge is suspend(wi). Another edge w̄i → wi captures the sensor effects of resuming

the app (e.g., sensors being reacquired in lifecycle callback onResume). Figure 3.4
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illustrates these two callbacks at lines 4 and 5. In this app, both callbacks have no

effect on sensors.

As before, we define a context-free language to express how a window wi reaches

a suspended state. This language L2(wi) is:

S2 → open(wi) Val suspend(wk)
Val → open(wj) Val | Bal Val | ε

where Bal was defined earlier. Here Val represents a valid sequence of symbols

which could have not-yet-matched open symbols. Language P2(wi, sk) = L2(wi) ∩

R(sk) captures the scenario where execution is suspended without releasing sensor

sk. This is the second sensor leak pattern we consider.

3.2.3 Detection and Reporting of Leaks

For any wi, language L1(wi) can be recognized by a pushdown automaton P =

(Q,Σ,Γ, δ, s, f). Here Q = {s, q, f} is the set of states, with s being the initial state

and f being the final state. The input alphabet is the set Σ defined earlier. The

stack alphabet Γ = {open(wj), close(wj)} for all possible windows wj (including the

“window of interest” wi). The transition relation δ is shown in Figure 3.5. Each edge

is labeled with (a, x, y) ∈ Σ× Γ× Γ, indicating that when the input symbol is a and

the top of the stack is x, a is consumed, x is popped, and y is pushed on the stack.

If x = ε, the transition occurs regardless of what is on the stack. If y = ε, nothing

is pushed on the stack. In Figure 3.5 wi is the window of interest wi and wj is any

window (including wi). A string is accepted in state f with an empty stack.

Note that this automaton is non-deterministic: from state q with symbol close(wi)

and stack top open(wi), there are two possible transitions (to q and to f). The non-

determinism can be easily eliminated by introducing an artificial stack symbol ⊥ (for
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s q  open(wi),ε,open(wi)           

 acq/rel,ε,ε

  open(wj),ε,open(wj)  

  close(wj),open(wj),ε  

f            close(wi),open(wi),ε  

Figure 3.5: Pushdown automaton P .

“bottom of stack”) and artificial initial/final states; for brevity, we omit this simple

refinement.

The simplest way to recognize language P1(wi, sk) is to run concurrently the push-

down automaton for L1(wi) and the (deterministic) finite automaton for R(sk). Since

typically there would be several possible sensors sk, several finite automata for the

corresponding R(sk) would be maintained. In essence, for each window wi, this ap-

proach traverses each L1(wi) path and checks it for leaks of each possible si. Since

the number of paths is typically infinite, we define a finite subset of paths using two

criteria: (1) a path cannot contain the same edge more than once, and (2) the num-

ber of open and close symbols along a path cannot exceed a certain pre-defined limit

k. The second criterion captures the complexity of sequences of GUI control-flow

events, regardless of how these events affect sensors. These two restrictions control

the cost of the analysis and the intricacy of “buggy” paths that are eventually re-

ported to a programmer. The recognition of P2(wi, sk) can be done similarly, using a
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slightly modified version of the pushdown automaton. In the next section we present

additional details on the analysis algorithms.

3.2.4 Generation of Test Cases

For any wi, all path strings in language P1(wi, sk) can be determined by traversing

SG paths starting at wi and maintaining a stack corresponding to window open/close

events. The stack elements are open and close symbols. A new open symbol is

pushed on top of the stack. A new close(wj) is allowed only if the current stack top is

open(wj) for the same window wj; as a result, the top stack element is popped. During

path traversal, the state of finite automaton R(sk) is updated based on symbols

acquire and release. Since typically there would be several possible sensors sk, several

finite automata for the corresponding R(sk) would be maintained. The path strings

for P2(wi, sk) can be generated similarly. Since the number of paths is typically

infinite, we define a finite subset of paths using two criteria: (1) a path cannot

contain the same edge more than once, and (2) the number of open and close symbols

along a path cannot exceed a certain pre-defined limit k (our implementation uses

k = 4). The second criterion captures the complexity of sequences of GUI control-flow

events, regardless of how these events affect sensors. These two restrictions control

the number and length of generated test cases.

Given an SG path generated as described above, it can be mapped to a sequence

of GUI events using information available in the WTG. For example, for the graph in

Figure 3.2, the path with edge labels open(w3), acquire(s), close(w3) will be mapped

to the test case shown in Figure 3.6. The test case uses a Python wrapper for Google’s

UI Automator testing framework [81]. Several low-level details of the test case are
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d.screen.on() # turn on device screen

killApp("com.calculator.vault") # kill target app to clean up acquired resources

oldsensors = readAssociatedSensors() # gather currently-acquired sensors

startActivity("com.calculator.vault", "com.calculator.vault.UnlockSettingActivity")

d(resourceId="com.calculator.vault:id/shake_btn").click() # click the switch widget

d.press.back() # press the back button

newsensors = readAssociatedSensors() # gather acquired sensors after execution

# report differences between newsensors and oldsensors

Figure 3.6: Example of generated test case.

omitted for brevity. Section 3.3 provides additional details on how such test cases are

generated and executed.

Test case filtering We employ three filtering techniques to reduce the number of

generated test cases. First, note that all paths in a particular set P1(wi, sk) are in

some sense equivalent: they exhibit the same pattern, for the same window wi and

sensor sk. Thus, after leaking paths are generated, we select only one path from each

P1(wi, sk) set for test generation—specifically, any minimal-length path in that set.

Similar filtering is applied to any P2(wi, sk).

Next, consider SG for the running example. The path with labels open(w3),

acquire(s), close(w3) is in language P1(w3, s). But the path with labels open(w2),

open(w3), acquire(s), close(w3), close(w2) is in language P1(w2, s). It is redundant

to generate test cases for both paths: from the point of the view of a programmer,

the “blame” should be assigned to activity w3 because that activity was responsible

for acquiring (but not releasing) the sensor. Thus, only a test case for the first path

should be generated and executed.

To achieve this filtering, during the traversal of an L1(wi) path we ignore acquire(sk)

if wi was not responsible for acquiring sk. To make this decision, we consider the state
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of the open/close stack at the time when acquire(sk) was encountered. If the top of

the stack is not open(wi), the acquire operation is ignored.6 This guarantees that any

leaking sk reported due to P1(wi, sk) can be blamed on wi. The same filtering is used

for P2(wi, sk).

The last filter we apply is for L2(wi) paths. While the definition of this language

allows strings starting with open(wi) and ending with suspend(wj), we only report

paths for which wj is either the same as wi, or a menu/dialog acting on behalf of wi

(menus and dialogs will be described shortly). If wi is responsible for acquiring sk

and there exists any leaking L2(wi) path, there also exists a leaking L2(wi) path that

satisfies this constraint.

3.2.5 Static Sensor-Related Abstractions

A sensor sk described earlier is actually a pair 〈l, o〉 of a sensor listener l and a

sensor object o. For example, in Figure 3.1 the sensor being analyzed is a pair of the

SensorEventListener object l referenced by shakeListener and the Sensor object

o referenced by accel. To determine these sk, our analysis first creates static abstrac-

tions of Sensor objects. One static object o per sensor type (e.g., accelerometer, prox-

imity) is created. Next, propagation for integer constants Sensor.TYPE * is used to

determine which sensor types reach calls to getDefaultSensor. The resulting sensor

objects o returned by such calls are then propagated to calls to registerListener.

The listener objects are created by instantiating classes that implement interface

SensorEventListener. Each such new expression corresponds to a static listener

object l. These objects are also propagated to calls to registerListener. For every

6More generally, the top of the stack could be open(wj) for some menu or dialog wj working on
behalf of activity wi. This generalization is discussed in Section 3.3.
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l and o that reach some such call, the analysis creates a corresponding sensor abstrac-

tion sk = 〈l, o〉. Each such call is considered an instance of an “acquire” operation

for sk. Similarly, calls to unregisterListener are instances of “release” operations.

Note that in both Figure 3.1 and Figure 3.4, the call to unregisterListener takes

as a parameter the listener but not the sensor object. This method has two versions:

one that takes as parameters both l and o, and another that takes only l. In the

latter case, the call is considered to be a release operation for any sk = 〈l, . . .〉.

Recall that our SG control-flow model (illustrated in Figure 3.2) is derived from

the WTG. Recall that the WTG edges are labeled with information about the call-

backs invoked at run time—e.g., the lifecycle callbacks onCreate/onDestroy and the

event handler onCheckedChanged in Figure 3.1. Each such callback is analyzed to

determine whether it contributes any acquire(sk) or release(sk) symbols to the corre-

sponding SG edge.

This analysis of a callback method m considers m and its transitive callees in the

app code. The callees are determined using class hierarchy analysis [20]. If any one

of those methods contains an acquire operation for some sk, it is necessary to check

whether there is an interprocedural path from that operation to the exit of m that

is free of a corresponding release of sk. If such a path exists, callback m contributes

symbol acquire(sk). Callbacks onCheckedChanged in Figure 3.1 and onCreate in

Figure 3.4 are examples of this case. It is also necessary to check whether every

interprocedural path from the entry to the exit of m contains a release operation

for sk. If this is the case, the execution of m is guaranteed to release sk and the

callback contributes symbol release(sk). Callback onDestroy in Figure 3.4 illustrates

this case. Note that a callback m could contribute both a release operation and an
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acquire operation for the same sk (e.g., if it releases the sensor and then re-acquires

it). In this case the analysis of m results in the string release(sk), acquire(sk).

In addition to lifecycle callbacks and GUI event handler callbacks, we also need to

consider the potential effects of callback onSensorChanged. Lines 21–22 in Figure 3.1

illustrate this callback. Whenever a listener l is registered with a sensor object o, the

listener is (almost) immediately notified of the current value of the sensor data, via

an invocation of onSensorChanged on l. It is possible that this invocation uncondi-

tionally releases the sensor, and we have seen such examples in real apps. To account

for this possibility, for each acquire(sk) where sk = 〈l, o〉, we identify the correspond-

ing callback onSensorChanged for l and analyze it using the same callback analysis

described earlier. The contributions of the callback are appended at the end of each

acquire(sk) symbol in the control-flow model. For the example in Figure 3.1, the

callback contains a release operation but this operation does not occur along every

path, due to the if statement. If, hypothetically, the callback did not contain this

if statement, it would contribute a symbol release(s). In this case, the self-edge for

w3 in Figure 3.2 would be labeled with the string acquire(s), release(s).

3.3 Analysis Implementation

The analysis described in the previous section was implemented in the Soot analy-

sis framework [77]. The starting point of the implementation is the publicly-available

GATOR analysis toolkit for Android [24] which contains an implementation of the

window transition graph (WTG) representation [93, 94] described in Section 3.2.1.

Rather than explicitly building the sensor effects control-flow graph SG , our im-

plementation works directly on the WTG. A WTG edge w → w′ shows that from
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current window w can transition to window w′. Such an edge contains the sequence

of UI event handler callbacks and window lifecycle callbacks. In addition, an edge

describes the window open/close effects, from which symbols open(wi) and close(wi)

can be directly derived. The analysis works in two stages, as described below.

Stage 1: Sensors and sensor operations To determine how acquire(sk) and

release(sk) symbols should be introduced, the analysis first constructs a set of sensor

abstractions sk. Each sk = 〈l, o〉 for a sensor listener l and a sensor object o. As de-

scribed in Section 3.2.5, l corresponds to a new expression for SensorEventListener

and o corresponds to a sensor type. Integer constants such as Sensor.TYPE ACCELERO-

METER are propagated to calls to getDefaultSensor to determine which o is being

produced. Objects l and o are then propagated to calls to (un)registerListener.

The propagation of integer constants and object references is done in a flow/context-

insensitive manner, based on an internal representation similar to the pointer assign-

ment graph used in Soot [44]. The result is a set of sk abstractions as well as the

program statements that acquire/release them.

Next, analysis of UI event handler callbacks and lifecycle callbacks along WTG

edges is performed to determine whether any acquire(sk) or release(sk) symbols are

contributed by each callback method. As outlined in Section 3.2.5, this involves

interprocedural reachability to/from acquire and release operations. The reachability

computation uses Soot’s control-flow-graph representation for each reachable method.

Calls are resolved using class hierarchy information. Callbacks onSensorChanged and

their transitive callees are analyzed in a similar manner.
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Stage 2: Generation and checking of SG paths For each activity wi, the anal-

ysis considers the context-free language L1(wi) defined in the previous section. (The

analysis for L2(wi) is done similarly.) Recall that this language describes a possible

lifetime for wi. To reduce the number and complexity of paths being considered,

we only consider a path if it does not contain duplicated edges and if its number of

open and close symbols does not exceed an analysis parameter k (Section 3.2.3). In

addition, as a pre-processing step, we identify equivalence sets of SG edges: if two

edges have the same source, target, and label, they are equivalent. Only one edge per

equivalence class is considered when exploring paths.

The analysis performs a graph traversal starting from an open(wi) edge and runs

the pushdown automaton P (Figure 3.5) along the current path. The state of P

is updated when a new edge is added to the path, assuming the edge is acceptable

according to P and the restrictions from the previous paragraph. The path ends with

close(wi) and an empty stack in P . Each generated path from L1(wi) is checked with

finite automaton R(sk) for each sk for a possible leak of sk.

Stage 3: Test generation and execution Paths generated in Stage 2 are used

to generate test cases. Test generation maps an SG path to a sequence of calls to

UIAutomator API calls. Widgets are referenced using their ids defined in XML layout

files or in setId calls in the code, as determined by GATOR [74]. If widgets do not

have static ids (e.g., list items), a test case cannot be generated. For widgets that

require user input (e.g., EditText), manual post-processing is needed; we have seen

a very small number of cases in which this occurs.
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The generated test cases are executed using a Python wrapper for UI Automa-

tor [81, 82]. This framework allows testing to be controlled from a computer with

direct access to the Android Debug Bridge (ADB), which is necessary for run-time

sensor leaks measurements. Given a path reported by the static analysis, Sentinel

generates code which sets up the test case, starts the first activity on the path using an

Android intent, and triggers the necessary GUI events. A simplified example of such

code was presented in Figure 3.6. Depending on the application, it may be necessary

to perform additional steps by the tester to fully set up the test case: for example,

for the calculator vault app, it is necessary to setup a password for unlocking before

the rest of the app can be used.

Acquired sensors with information about listener’s package names and sensor types

can be queried using dumpsys command in ADB. Each generated test case performs this

measurement at the start and at the end of its execution (readAssociatedSensors

in Figure 3.6). If a sensor is not at the start but is active at the end of the test case,

and if the listener’s package name is the same as the target application, a leak report

will be generated. In our experiments, we executed the test cases and observed the

sensor on a Google Nexus 5X smartphone with Android 7.1.2.

Handling of menus and dialogs Activities are the primary windows in Android

apps. However, the UI also allows for menus and dialogs, which are windows used

to provide helper functionality for an activity. For example, in Figure 3.1, the devel-

oper could have chosen to add a dialog window that is opened when btn’s button is

pressed, in order to ask for confirmation that the vault should be locked. Upon user

confirmation, the dialog’s event handler would have started the sensor event listener.
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In general, menus and dialogs have their own widgets, UI event handlers, and lifecycle

callbacks. Our implementation handles all these features; for example, these callbacks

are analyzed to determine acquire/release symbols as described earlier. Languages P1

and P2 are only considered for activities because menus and dialogs are short-lived

and a sensor they have acquired on behalf of some activity may be still active past

their lifetime.

One adaptation needed is in reporting of leaks. Recall from Section 3.2.3 that

blame is assigned to an activity wi only if it was the currently-active window when

a leaking sk was last acquired. It is possible that a menu or a dialog was the actual

active window that acquired sk on behalf of activity wi. Typically wi is the last still-

opened activity at the time when the menu/dialog was opened. Instead of recording

the menu/dialog for subsequent blame assignment, we examine the stack of P from

top to bottom for the first symbol open(wi), where wi is an activity, and then record

wi. This ensures that only activities are eventually reported by the analysis.

3.4 Evaluation and Case Studies

We considered the entire set of apps in the F-Droid repository, as well as the

top 100 apps from each category of Google Play. The evaluation of Sentinel was

performed on the entire subset of apps that contained sensor listeners (a total of 709

apps). The static analysis identified 18 apps for which the code exhibited the sensor

leak patterns described earlier. Table 3.1 shows measurements for these apps. The

first six apps are from F-Droid (also available at https://presto-osu.github.io/

Sentinel) and the rest are from Google Play. Column “Class” shows the number of

classes in the app. This number includes classes in libraries that are included in the
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Table 3.1: Applications, paths, and tests.

App size L paths L ∩R paths Tests Leaks Time

Application Class Stmt Node Edge P1 P2 P1 P2 P1 P2 P1 P2 (sec)

Mtpms 37 3148 20 38 7 8 6 6 1 1 1 1 0.1
Drismo 325 24592 425 645 1740 719 320 512 1 1 0 1 1.2
Geopaparazzi 1467 149469 283 534 615 721 24 24 1 1 1 1 2.6
Itlogger 296 30516 30 77 24 44 7 24 1 1 1 1 0.6
AIMSICD 921 79438 59 137 73 72 4 2 1 1 1 1 0.8
Coregame 44 1988 3 7 2 2 2 2 1 1 1 1 0.1

NightVisionCamera 408 44399 74 93 5 25 0 16 0 1 0 – 0.6
Voxofon 2637 184406 451 1084 4011 994 0 2 0 1 0 1 7.4
VRVideoPlayer 334 24296 13 29 5 8 2 2 1 1 0 0 0.5
MobinCube 502 67186 975 1165 12735 83209 3155 3907 3 5 0 0 16.9
CSipSimple 1319 111659 57 223 750 402 0 100 0 1 0 1 9.4
Calculator Vault 2025 137364 220 694 49064 13837 1128 3108 2 2 2 2 137.7
Comebacks 160 21246 67 96 46 50 0 16 0 1 0 – 0.3
Pushups 956 87545 627 1401 13731 2364 0 2 0 1 0 0 2.9
Dogwhistier 2415 181626 125 302 2257 1739 25 27 1 1 1 1 48.1
Hideitpro 3315 227087 807 1610 5171 1460 1058 1347 2 2 2 2 10.5
LikeThatGarden 1678 115092 634 1748 575773 201332 8165 21425 1 1 1 1 72.2
MyMercy 907 74914 258 629 286 400 0 5 0 1 0 – 11.7

app. Our analysis considers the code in all these classes and makes no distinction

between app code and code in third-party libraries. Column “Stmt” contains the

number of Soot IR statements for these classes. Columns “Node” and “Edge” show

the total number of SG nodes and edges, respectively.

The next six columns show measurements for the number of SG paths. Under “L

paths” are included the number of paths with matching open and close symbols—that

is, paths from languages L1 and L2 (Section 3.2.2) limited by parameter k = 4 and

without duplicated edges (Section 3.2.4). For many applications, the number of such

paths is in the thousands. Executing test cases for each such path may be expensive.

However, it is possible to reduce this number significantly by performing our static

sensor analysis. The analysis identifies GUI event handlers and lifecycle callbacks
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that trigger acquire and release symbols; based on this, it determines L1 or L2 paths

that exhibit the sensor leak patterns. Columns “L ∩ R paths” show the numbers

of paths that match the leak patterns. Clearly, significant reduction in the number

of paths can be achieved. For further reduction, we use three filtering techniques

to select the “guilty” window and to choose minimal-length paths (Section 3.2.4).

Columns “Tests” shows the actual number of test cases generated by Sentinel after

this filtering. Again, significant reduction is observed, ultimately producing only a

few test cases per app. These measurements demonstrate that static analysis of app

code can successfully identify only a small subset of possible GUI event sequences

that need to be executed at run time.

Columns “Leaks” show the number of executed test cases that resulted in an

observed run-time leak. It is a common practice that an application has a template

activity and some other activities are subclasses of this activity. If this parent activity

has a defect, all of its subclasses will have the same defect. Therefore, when we report

the results for columns “Tests” and “Leaks”, we exclude test cases and leaks caused by

the subclasses of the same defective parent activity class. Columns with “–” represent

test cases that could not be executed, as described shortly. As can be expected, not

every executed test case leads to leaking behavior, due to the conservative nature of

static analysis. For 12 apps, the test cases exposed sensor leaks. Later we discuss

examples of test cases that did not have leaks. It is worth noting that the apps listed

in the table are not “toy” projects: in particular, the apps from Google Play are

among the most popular in their categories and have many thousands of downloads

from users. These results show that even popular applications can contain sensor

leaks and our test generation approach can expose these leaks successfully.
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Test generation time, in seconds, is shown in column “Time”. It includes callback

analysis of acquire and release effects, path checking, and test case generation. These

measurements indicate that the cost of code analysis and test generation is practical.

Non-executable test cases. Three generated test cases could not be executed

(“–” table entries). Our tests use an explicit intent to open the first activity in

a test case. This is a typical approach for unit testing for Android, but in those

three cases the activity crashes when opened. We also attempted, unsuccessfully, to

trigger these activities using GUI sequences that start from the main app activity.

For MyMercy, such a sequence requires a pre-existing medical account, which we are

not able to obtain. For NightVisionCamera and Comebacks, the problematic activity

is supposed to display a full-screen ad when the user clicks on an ad banner, but we

were unable to trigger these ads on our device or in the emulator.

The results in Table 3.1 differ slightly from the ones in an earlier published version

of this work [86]. Some differences are due to minor changes in the underlying GATOR

tool (e.g., revised handling of 〈activity-alias〉 tags in XML files), and one difference

is due to an inaccuracy in our manual investigation of run-time leaks.

3.5 Case Studies

This section briefly presents several case studies of apps described in Table 3.1.

To understand the underlying reasons for the analysis reports, we examined manually

the app code. For F-Droid apps, we examined the publicly-available source code. For

Google Play apps, we used the jadx DEX-to-Java decompiler to study the app code.
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Calculator Vault This app was already discussed; the relevant source code is pre-

sented in Figure 3.1. In the graph from Figure 3.2, the path with labels open(w3),

acquire(s), close(w3) is reported as a P1(w3, s) path. We verified this leak on our

Pixel phone. When the widget referenced by variable sc was clicked, the accelerom-

eter sensor was enabled. This sensor remained turned on even after we exited both

UnlockActivity and SettingActivity by clicking the BACK button: the Android

debug bridge showed that the listener was still listening to changes from the sensor,

which was clearly a leak.

CSipSimple This VoIP app was also discussed earlier and was illustrated in Fig-

ure 3.4. Activity InCallActivity will be started by an Android intent broadcast

when there is an incoming or an outgoing call. When this activity is launched, life-

cycle callback onCreate will be invoked and its callee method startTracking will

acquire the proximity sensor. The activity does release the sensor in stopTracking,

which is invoked by callback onDestroy. However, if a user presses the HOME but-

ton during the call and navigates to other applications, e.g. browsing a web page

or looking up a contact, the acquired sensor will still be held by InCallActivity

even though it is not responding to user interactions. The corresponding P2 path

was reported by the static analysis and was verified on the Pixel phone used in our

experiments.

Geopaparazzi This F-Droid app, which is also available in Google Play, is used for

engineering and geologic surveys. Figure 3.7 shows the simplified code for the leak.

64



1 class SensorManagerL implements

2 SensorEventListener {

3 SensorManagerL sml;

4 SensorManager sm;

5 static SensorManagerL getInstance(...) {

6 if (sml == null) {

7 sml = new SensorManagerL();

8 sm = (SensorManager)

9 getSystemService(SENSOR_SERVICE);

10 sml.startSensorListening();}

11 return sml; }

12 void startSensorListening() {

13 Sensor accel = sm.getDefaultSensor(

14 Sensor.TYPE_ACCELEROMETER);

15 sm.registerListener(sml, accel); ... }

16 void stopSensorListening() {

17 sm.unregisterListener(sml);}

18 void onSensorChanged(...) {...} }

19 class GeoPaparazziActivity extends Activity {

20 SensorManagerL sml;

21 void onCreate(...) { init(); ... }

22 void init() {

23 sml = SensorManagerL.getInstance(); } }

Figure 3.7: Example derived from Geopaparazzi.

The app uses a wrapper class SensorManagerL to process all sensor-related opera-

tions. (We use this name for brevity; in reality, this is app class eu.hydrologis.geo-

paparazzi.SensorManager.) The class implements the singleton pattern. At line

15, method startSensorListening registers a listener for the accelerometer. This

method is called during the singleton object creation (line 10). Callback method

onCreate of the GeoPaparazziActivity calls init, which instantiates the singleton

and acquires the sensor. The only method that releases the sensor is stopSensorList-

ening (line 16). However, this method is not called by any app component. Once

the activity turns on the accelerometer sensor, it can only be turned off by killing the
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app. We have verified this behavior in our test platform and confirmed that it leads

to a sensor leak.

mTpms This app from F-Droid is a motorcycle tire pressure monitor system reader.

It uses the device’s light sensor to detect changes of ambient light. It will change the

background and text to dark colors when it detects that the level of ambient light

is below a certain threshold. In the onCreate method of the main activity, the app

obtains the sensor object for the light sensor and registers a listener for it. However,

there is no app code that unregisters this listener. Therefore, the light sensor will

be turned on when this application is launched from the Android Launcher and will

remain on unless this application is killed. This behavior was confirmed on our Pixel

phone.

False positives The false positives shown in Table 3.1 are in apps Mobincube,

Pushups, VillageVR, and Drismo. In the first three cases, there are classes containing

methods which override the same methods in their superclasses. The subclass meth-

ods acquire sensors and leak them. However, these subclasses are never instantiated

to objects at run time. Due to the use of class hierarchy analysis, when our analysis

encounters an invocation of the superclass method, it incorrectly determines that the

called method could be from the defective never-instantiated subclass. This impre-

cision causes the false positives. This is a well-known limitation of class hierarchy

analysis [20]. There is wide variety of options for more precise call graph construction

for object-oriented languages [32, 75, 79] and using some of these techniques would

eliminate these false positives. One could argue that such code is a “time bomb” that
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could affect future versions of the app, and therefore should be reported and elimi-

nated. However, since we were unable to trigger the leaks at run time, we counted

these cases as false positives. The last case, the false positive in Drismo is caused by

a limitation in the WTG construction of GATOR. In Drismo, the defective activity

acquires a sensor resource in onCreate and releases it in the onBackPressed callback,

which is the event handler callback for the hardware BACK button. However, the

onBackPressed callback is not considered in GATOR. Therefore, Sentinel cannot

detect the release effects in this onBackPressed callback, causing a false positive. If

this WTG limitation is eliminated, this false positive will be eliminated as well.

3.6 Conclusions

This work demonstrates that sensor leaks in Android apps can be naturally ex-

pressed as CFL-R properties and it is possible to automatically generate effective

tests for sensor leaks in Android apps. This machinery models the interleaving of two

important aspects of app behavior: UI changes due to opening and closing of win-

dows, and sensor changes due to registration and de-registration of listeners. Both

leaks beyond window lifetime and leaks in suspended state are easy to express in this

model. Exploration of CFL paths can be done efficiently and can produce useful leak

reports. Experimental studies indicate that analysis precision is high and that sensor

leaks in realistic Android apps can be successfully detected.
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CHAPTER 4: Refactoring of Energy-Inefficient Scheduled
Tasks

In this chapter, we focus on energy inefficiencies due to the improper usage of

Android’s AlarmManager service. AlarmManager is an Android system service that

allows an application to schedule an alarm (at a fixed time) or repeating alarms (at

fixed time intervals). This service is widely used by applications to perform tasks such

as checking for updates and uploading application data to remote servers. However,

because such alarms are scheduled at fixed times, they may cause excessive device

wake ups which are energy-inefficient. Because of this, in current Android releases,

AlarmManager is no longer recommended for this type of tasks. Starting from Android

8.0, using AlarmManager to start a background service is no longer allowed. Instead,

the recommendation to developers is to use the SyncManager or JobService system

services. Due to legacy reasons, there are still large numbers of applications using

AlarmManager for scheduled tasks, which may cause energy drain on user’s devices.

We propose a static analysis to detect the patterns of usage of AlarmManager.

The results of this analysis are then used by our code refactoring component to

automatically patch the application to use JobService. By measuring the power

consumption of original applications and refactored applications, we demonstrate

that this approach can help reduce the energy consumption of these applications.
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4.1 Background

4.1.1 Relevant Features of Android’s AlarmManager

This section describes the relevant features of Android’s AlarmManager system

service. It is a common practice that Android apps perform periodic tasks in the

background. For example, a weather app may update the current weather every

hour, and an e-mail app may synchronize user’s mailbox every 15 minutes. For these

types of tasks, early versions of Android include the AlarmManager system service,

which provides similar features to timers in modern desktop OS. Figure 4.1 shows an

example of an application using AlarmManager.

Intent and PendingIntent Before discussing the usage of AlarmManager, we need

to consider Android’s Intent and PendingIntent features, which are essential parts

of inter-component communication. According to the Android development refer-

ence [6], an Intent is an abstract data structure used to describe the operation that

should be performed. This information can be used, for example, in APIs such as

startActivity and startService, which launch new activities and services, respec-

tively. An Intent is either explicit or implicit. An explicit Intent contains an explicit

description of the component to be launched—for example, the specific activity class

to be run. An implicit Intent does not contain this information; instead, it must have

other information such as the action and category for the operation, which allows the

system to determine the best available component for this operation. When schedul-

ing an alarm using AlarmManager, only explicit Intent will be accepted. Line 13 in

Figure 4.1 shows an example of creation of an explicit Intent, which has a target

component SyncAlarmReceiver.
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A PendingIntent is a wrapper around an Intent and its target action. It is used

when the application needs to send a request to system services or another application

to perform an action at a later time. For example, when an application schedules an

alarm using AlarmManager, a PendingIntent object is required. When the alarm

is due, AlarmManager will perform the action defined by this PendingIntent. Lines

14–15 in Figure 4.1 show the creation of a PendingIntent object which wraps the

Intent object created at line 13, which defines the action of sending a broadcast to

SyncAlarmReceiver.

BroadcastReceiver In an Android app, an alarm is usually used to trigger a

BroadcastReceiver or a Service. A callback method onReceive is defined in a

subclass of BroadcastReceiver. This method will be invoked by the Android frame-

work when this broadcast receiver is triggered. Due to its simplicity, this is the

most common usage of AlarmManager. Line 18 in Figure 4.1 shows an example of a

broadcast receiver.

Compared to BroadcastReceiver, a Service is more complex, as it has its own

lifecycle and interfaces for inter-component communication. When Service is used in

an alarm, a subclass IntentService is commonly used by developers. A subclass of

IntentService contains a callback method onHandleIntent, which will be invoked

by the Android framework when an Intent is fired to this IntentService.

4.1.2 AlarmManager

Figure 4.1 shows an example of AlarmManager usage. Application Moloko is a

mobile client application for web site rememberthemilk.com [72] which maintains

user’s to-do lists. The app has over 1 million installs from the Google Play store.
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1 class AlarmManagerPeriodicSyncHandler {

2 void setPeriodicSync(long startUtc, long intervalMs) {

3 AlarmManager aM = (AlarmManager) context.getSystemService(Context.ALARM_SERVICE);

4 long nowUtc = System.currentTimeMillis();

5 if (startUtc < nowUtc ) {

6 startUtc = nowUtc;

7 PendingIntent syncIntent = createSyncAlarmIntent(context);

8 aM.setRepeating(RTC_WAKEUP, startUtc,

9 intervalMs, syncIntent);

10 }

11 }

12 PendingIntent createSyncAlarmIntent(Context context) {

13 Intent intent = new Intent(context, SyncAlarmReceiver.class);

14 return PendingIntent.getBroadcast(context, 0, intent,

15 PendingIntent.FLAG_UPDATE_CURRENT );

16 }

17 }

18 class SyncAlarmReceiver extends BroadcastReceiver {

19 void onReceive(Context context, Intent intent) {

20 final Account account = AccountUtils.getRtmAccount(

21 context.getApplicationContext());

22 if (account != null) {

23 if (SyncUtils.isReadyToSync(context.getApplicationContext())) {

24 SyncUtils.requestScheduledSync( account );

25 }

26 } else {

28 MolokoApp.get( context.getApplicationContext() ).stopPeriodicSync();

29 }

30 }

31 }

Figure 4.1: Example derived from the Moloko application.

Method setPeriodicSync retrieves an instance of AlarmManager (line 3) and then

creates an intent which points to the broadcast receiver SyncAlarmReceiver (line 13).

A pending intent is created for this intent and is used to schedule a repeating alarm

using API setRepeating at lines 7–9. Argument RTC WAKEUP means the timer is using

the real time clock in milliseconds as reference. This alarm will wake up the device

if necessary. Argument startUtc defines the time in real time clock when this alarm

should be fired in the first time. Argument intervalMs defines the milliseconds of

repeating interval. In this example, callback onReceive in SyncAlarmReceiver will

be invoked every intervalMs milliseconds.
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4.1.3 Energy Impact

Smartphones such as Android devices have limited battery capacity. To re-

duce energy consumption, when the screen is off, Android will aggressively put the

CPU into sleep state, which pauses execution on all CPU cores. When schedul-

ing an alarm using AlarmManager, developer can specify the type of the alarm.

There are four types available: RTC, RTC WAKEUP, ELAPSED REALTIME, and

ELAPSED REALTIME WAKEUP. The prefix ”RTC” means the the supplied de-

lay is using current real time clock as reference, which can be retrieved using API

System.currentTimeMillis(). The other prefix ”ELAPSED REALTIME” means

the time since device boot up will be used as reference, which can be retrieved using

SystemClock.elapsedRealtime(). The type name with ”WAKEUP” suffix means

that these alarms will wake up the device if the device CPU is in sleep state. The other

two types, RTC and ELAPSED REALTIME, will not wake up the device. Instead,

they will be fired when the device is woken by other events. The energy consumed by

executing these alarms are related to the CPU time of each alarm and the frequency

with which each alarm is fired. If several alarms with ”WAKEUP” are fired within a

small time window, they will consume less energy than the case if they are fired one

by one with significant time intervals between them.

Figure 4.2 illustrates frequent device wake ups in two scenarios. A red bar in

this figure indicates the device is woken by an alarm and is executing a background

task. The upper part of the figure represents a device with multiple apps, where each

app schedules its alarms at an arbitrary time or time interval. The bottom part of

the figure represents a device with same set of apps installed; however, the alarms

are ideally scheduled in small time windows. In this case, the background tasks are
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Figure 4.2: Illustration of different wake up patterns

executed together. On an Android device, the second case will consume less energy

compared to the first one.

There are multiple factors that contribute to differences in energy consumption.

When tasks are scheduled together (batched) in the second case, the total execution

time of the CPU is smaller than the first case because most CPUs used in mobile de-

vices are multi-cores, which can process multiple tasks at the same time. The smaller

execution time results in less energy consumption. For periodic background tasks, it

is common to see these tasks use hardware resources such as device sensors/GPS, or

transferring data over the network. These hardware resources exhibit a tail energy
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effect. When one of these types of resources is requested and released, the hard-

ware will keep consuming energy for a short time before being completely turned off.

This behavior has been discussed in prior work [10, 36, 46]. In this case, batching

background tasks in a short window will help reduce energy consumption.

4.1.4 Android JobService

In Android 5.0, Google introduced JobService, a subclass of Service, which is

better suited for background tasks. A JobService defines a job that can be sched-

uled to be executed in the background, using system service JobScheduler. Be-

sides the start delay and repeating interval which can be specified for alarms with

AlarmManager, JobService can be scheduled with other requirements such as re-

quiring Wi-Fi connection or expecting that the device is charging using AC power.

When the requirements of a job are satisfied, the system will execute it. As a result,

the corresponding callbacks defined in class JobService will be invoked. Compared

to alarms managed by AlarmManager, jobs are no longer executed at fixed times.

Android will try to batch and defer executing the jobs, in order to preserve energy.

In the official Android documentation, JobService is recommended for background

tasks instead of the traditional BroadcastReceiver with AlarmManager [84].

Figure 4.3 shows an example of JobService usage derived from the Muzei app.

We use this app to illustrate how this Android feature could be used in app code.

DownloadArtworkJobService is a subclass of JobService. Its purpose is updating

the current wallpaper every 15 minutes. It is scheduled for execution in convenience

method schedule. This method retrieves an instance of JobScheduler (line 5). To

74



1 public class DownloadArtworkJobService extends JobService {

2 DownloadArtworkTask mTask = null;

3 static final int JOB_ID = 100;

4 static schedule(Context context) {

5 JobScheduler js = context.getSystemService(Context.JOB_SCHEDULER_SERVICE);

6 JobInfo.Builder builder = new JobInfo.Builder(JOB_ID,

7 new ComponentName(context, DownloadArtworkJobService.class))

8 .setPeriodic(15*60*1000);

9 JobInfo info = builder.build();

10 js.schedule(info);

11 }

12 @Override

13 boolean onStartJob(final JobParameters params) {

14 mTask = new DownloadArtworkTask(this) {

15 @Override

16 protected void onPostExecute(Boolean success) {

17 super.onPostExecute(success);

18 jobFinished(params, !success);

19 }};

20 mTask.execute();

21 return true;

22 }

23 @Override

24 boolean onStopJob(final JobParameters params) {

25 if (mTask != null) {

26 mTask.cancel(true);

27 }

28 return true;

29 }

30 }

Figure 4.3: Example derived from the Muzei application.

specify the requirements of the job, a JobInfo object which describes such require-

ments is required. Lines 6–9 shows an example of a JobInfo object. Line 7 specifies

a request to create an instance of class DownloadArtworkJobService and to start

it (i.e., to invoke callback onStartJob on it). Line 8 defines that this creation/s-

tart action should be repeated every 15 minutes. In the running example, the job is

scheduled by calling the schedule API from JobScheduler (line 10).

Each JobService class contains two callbacks: onStartJob (line 13) and onStopJob

(line 24). Callback onStartJob will be invoked when the job is beginning execution

and should contain code that performs the actual background tasks. Similarly to
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the onReceive callback in a BroadcastReceiver, onStartJob is executed on appli-

cation’s UI thread, which is not suitable for long-running tasks. It is recommended

to offload such tasks to a second thread and to return true from onStartJob. This

return value indicates to the underlying Android framework that the job has not

yet completed execution. The system will then hold a wake lock on behalf of this

app to allow tasks on other threads to be executed. The application can call API

jobFinished to notify the system that the job has finished execution. The system

will then remove the wake lock.

If a job is running for too long, or its requirements are not longer satisfied (e.g,

being plugged to AC power is no longer true), callback onStopJob will be called to

notify the application that the job should be stopped. The code for this callback

should stop the tasks that are currently executing. For short tasks that can be

safely executed on the UI thread, the developer can put them within the onStartJob

method and return false from this method. This notifies the system that the job

has finished and there is no need to acquire and hold a wake lock for this job.

In the running example, object mTask (line 14) is created in callback onStartJob

as an instance of DownloadArtworkTask class. This class is a subclass of AsyncTask,

an Android component that offloads task to other threads instead of the UI thread.

Callback onPostExecuted, which will be invoked on the DownloadArtworkTask in-

stance when its execution completes, in turn contains a call to jobFinished (line 18)

to notify the system that the job is finished. Callback onStopJob contains a call to

cancel to force the DownloadArtworkTask defined by mTask to stop executing. Com-

pared to a BroadcastReceiver, JobService provides better wake locks management

and is better suited for periodic background tasks.
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4.1.5 Energy-Inefficient AlarmManager Patterns

In this work, we use following conditions to define an energy-inefficient usage of

AlarmManager:

• The scheduled alarm will wake up the device

• The scheduled alarm has fixed triggering time or has fixed repeating interval,

which does not give system the flexibility to batch the alarms

If a device has multiple applications that satisfy these conditions, the device will

likely not be put into sleep for a long time. Section 4.5 presents experimental results

that shows this behavior on a real device.

In a preliminary study, we manually examined the source code of 82 open source

apps that use AlarmManager. From this study, we concluded that apps that use

BroadcastReceivers to get alarms from AlarmManager can be feasibly refactored

automatically using static code analysis and rewriting. While some apps do use

Services (i.e. IntentServices) to get alarms with AlarmManager, their more com-

plicated lifecycle makes automated refactoring infeasible. Therefore, we decided

to target the following pattern of AlarmManager: (1) an application uses either

RTC WAKEUP or ELAPSED REALTIME WAKEUP when scheduling an alarm

with AlarmManager; (2) the APIs used in alarm scheduling are set, setExact, or

setRepeating, which prevent the system from batching the alarms; (3) the target of

the scheduled alarm is a BroadcastReceiver.

When an application has an alarm scheduled in this patten, this may cause energy

inefficiency. In this work, we designed a static analysis to detect instances of this

pattern, as well as a code rewriting component to perform automated code refactoring
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to convert these AlarmManager usages to JobService usages. The evaluation of our

approach shows that it reduces device wake ups and improves battery consumptions.

4.2 Semantics of Relevant Android Constructs

In order to design static analyses targeted at the energy-inefficiency patterns dis-

cussed earlier, the run-time semantics of Android AlarmManager usage is necessary.

In this section, we present the definition of these semantics.

4.2.1 Plain Java and Plain Android

We define the run-time semantics of Android AlarmManager usage based on similar

semantic definitions for “plain” Java and “plain” Android, which are derived from

prior work [63, 74, 92].

Plain Java As our main focus is the semantics of individual statements of a method

body, we elide irrelevant language features such as the modeling of the type system.

These features are well understood and have been explained in prior work.

A Java program consists of a set of classes; “classes” here refers to both classes

and interfaces. Each class defines fields, methods, and constructors. The fields are

denoted by f ∈ Fld. The body of a method contains local variables x ∈ Var and

statements. The syntax of statements can be defined by:

s ::= x := new c | x := y | x := y.f | x.f := y

As typically done in reference analysis for Java, we omit conditional statements

and loops. We use set Obj to represent heap objects, map Env to define the relation-

ship between local variables and these heap objects, and map Heap to represent the
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object fields’ values. Figure 4.4 illustrates the domains and functions used to define

the semantics of plain Java.

o ∈ Obj heap objects
ν ∈ Env = Var→ Obj environments
P ∈ Heap = Obj× Fld→ Obj heaps

〈P , ν, x := new C〉 → 〈P , ν[x 7→ o]〉
〈P , ν, x := y〉 → 〈P , ν[x 7→ ν(y)]〉
〈P , ν, x := y.f〉 → 〈P , ν[x 7→ P(ν(y), f)]〉
〈P , ν, x.f := y〉 → 〈P [(ν(x), f) 7→ ν(y)], ν〉

Figure 4.4: Semantic domains and functions

The rules show the updates to Env and Heap due to different statements. The

notation of ν[x 7→ o] means that x is (re)mapped to o in the map ν. In the rule for

x := new C, o represents that a new heap object o ∈ Obj is created, and this object

is an instance of class C.

Plain Android Prior work [74, 92] defined the semantics of Android GUIs and

features like activities, menus, etc. These definitions are not directly related to the

AlarmManager usage, however, we use their definition as basis of our semantics. The

semantics of Android AlarmManager usage is described below.

4.2.2 Semantics of AlarmManager

Intent and PendingIntent

As explained in Section 4.1.1, applications use instances of PendingIntent to

specify alarm targets. Each PendingIntent warps an instance of Intent. We use

a semantic definition for Intent and PendingIntent derived from prior work [96].
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Instances of Intent and PendingIntent and the sets of all such instances are denoted

as follows

in ∈ Intent ⊂ Obj intents
pi ∈ PendingIntent ⊂ Obj pendingintents

There are several categories of API calls related to Intent and PendingIntent

creation and manipulation. For AlarmManager usages, we only consider a subset of

these APIs, as defined by the following abstract syntax:

s ::= . . . x := new Intent(y) | x := buildpending(y)

Statement x := new Intent(y) represents that a new instance in ∈ Intent is

created and assigned ‘to variable x. Because only explicit Intents can be used

in AlarmManager, we only consider this constructor for Intent as it is the only

way to create an explicit Intent. As shown at line 13 in Figure 4.1, parameter

y is a Java Class object (or an equivalent String object). This target class is a

BroadcastReceiver, a Service, or an Activity. In the rest of this chapter, we use

Class to represent the set of all Class objects. Statement x := buildpending(y) rep-

resents the creation of a new PendingIntent. Here y refers to an instance of Intent.

Operation buildpending returns the newly constructed instance of PendingIntent.

To express the semantics, we extend the definition of heap as follows:

Heap = . . . ∪ (Intent× {target} → Class) ∪ (PendingIntent× {target} → Intent)

The artificial field target ∈ Fld of an Intent instance represents its target class.

The artificial field target ∈ Fld of a PendingIntent instance represents the warped

Intent instance. The semantic effects of the relevant statements are:
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[NewIntent] 〈P , ν, x := new Intent(y)〉 → 〈P [(o, target) 7→ ν(y)], ν[x 7→ o]〉
[BuildPending] 〈P , ν, x := buildpending(y)〉 → 〈P [(o, target) 7→ ν(y)], ν[x 7→ o]〉

Here o denotes a new o ∈ Obj that is created as a result of the operation.

Scheduling an Alarm

When scheduling an alarm using AlarmManager, the type of alarm, start delay,

and alarm target need to be provided. If it is a repeating alarm, the time interval is

also needed. To help ease the design of static analysis, we introduce an artificial class

Alarm in our semantic definitions. For each invocation to AlarmManager scheduling

method, a new instance of this class is artificially created. In fact, a similar object

will be created “behind the scenes” in the system framework at run time. Instances

of Alarm and the set of all such instances are denoted by

ao ∈ Alarm ⊂ Obj artificial alarm object

We also extend the definition of the heap as follows:

Heap = . . .∪
(Alarm× {type} → Int) ∪
(Alarm× {delay} → Int) ∪
(Alarm× {interval} → Int) ∪
(Alarm× {pending} → PendingIntent)

Here type, delay, interval and pending are four artificial fields of a Alarm

object. Field type represents the type of the alarm, which should be an integer with

value from the four integer constants defined in class AlarmManager: RTC, RTC WAKEUP,

ELAPSED REALTIME, and ELAPSED REALTIME WAKEUP. Fields delay and interval also

have integer values. They represent the start delay of the scheduled alarm, and an
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interval for a reoccurring alarm, respectively. For alarms only occur once, this field

will be 0. Field pending refers to an instance of PendingIntent that represents the

target of the alarm.

There are two categories of APIs for alarm scheduling: ones that schedule a single

alarm and ones that schedule repeating alarms. We use abstract operation set to rep-

resent both set and setExact APIs and use setRepeaing to represent setRepeating

API. The abstract syntax can be defined as follows:

s ::= . . . | set(t, d, p) | setRepeating(t, d, i, p)

Here each operation set and setRepeating implicitly creates an instance of an

artificial Alarm class. We only use these artificial instances for defining the abstracted

semantics and the static analysis based on it. Parameter t refers to the type of the

alarm, which can be one of four integer constants mentioned earlier. We use set

AlarmType ⊂ Int to represent the set of possible type values. Parameter d refers to

the start delay of the alarm and parameter i refers to the time interval for repeating

alarms. Both of these two parameters are integers, denoted by set Int. Parameter

p refers to the target of the alarm, which is an element of set PendingIntent. The

semantic effects for these operations are defined as follows:

[Set] 〈P , ν, set(t, d, p)〉 → 〈P [(o, type) 7→ ν(t),
(o, delay) 7→ ν(d),
(o, pending) 7→ ν(p)], ν〉

[SetRepeating] 〈P , ν, setRepeating(t, d, i, p)〉 → 〈P [(o, type) 7→ ν(t),
(o, delay) 7→ ν(d),
(o, interval) 7→ ν(i),
(o, pending) 7→ ν(p)], ν〉

Here o denotes a new o ∈ Alarm that is created as a result of the operation.
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4.3 Static Reference Analysis

In this section, we illustrate the static analyses we designed to detect inefficient

AlarmManager usage. The first part of the description illustrates a static analysis

that models the propagation of AlarmManager related objects. The second part

illustrates the defect detection based on the results of reference analysis and callback

sequence traversals. Both of these analyses are based on the three-address Jimple

representation used in the Soot static analysis framework [77].

Given the semantics defined in Section 4.2, we aim to develop static reference

analysis for creation and propagation of Intent, PendingIntent as well as the arti-

ficial Alarm object. For the simplified semantics of plain Java, the reference analysis

can be solved by using a constraint graph. Each node in the graph corresponds to

a local variable x ∈ Var, a field f ∈ Fld or an object allocation new C. Each edge

represents the constraints on values. For an assignment statement x := y, there is an

edge y → x, which means the value of x contains the value set of y. Similarly, for an

object allocation statement x := new C, there is an edge new C → x, which means

the value of x contains the allocated object instance of C. Such an analysis is usually

classified as flow-insensitive, context-insensitive and field-based analysis [43, 75]. Our

analysis of alarms is an extension of this standard analysis.

Figure 4.5 shows the conceptual input to the analysis for the running example

shown in Figure 4.1. This program representation is based on the abstract semantics

presented earlier.
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1 long nowUtc = System.getCurrentTimeMillis();

2 startUtc = nowUtc;

3 c = SyncAlarmReceiver.class

4 Intent i = new Intent(c)

5 PendingIntent syncIntent = buildpending(i)

6 t = RTC_WAKEUP;

7 setRepeating(t, startUtc, intervalMs, syncIntent)

Figure 4.5: Abstract program representation.

4.3.1 Constraint Graph

Figure 4.6 shows the constraint graph of the running example based on the pro-

gram representation from Figure 4.5. Some nodes are postfixed with numbers which

correspond to line numbers in Figure 4.1.

Operation Nodes We use the term operation nodes to denote the nodes that

represent abstract actions, due to statement of the form x := op(y). An operation

node will have an incoming edge from the node of parameter y; for actions that

take more than one parameter, there will be a separate edge for each parameter. If

there is a return value for the operation, and this value is assigned to x, there is

a corresponding outgoing edge to the node for x. Let OP denote the set of such

operation nodes.

Object Nodes Intent, PendingIntent and Alarm objects are created in program

statements. Let IN be the set of Intent nodes created by x := new Intent(y), PI be

the set of PendingIntent nodes created by x := buildpending(y), and AM be the
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getCurrentTimeMillis1

nowUtc

startUtc

setRepeating7

new Intent4

i

Class:SyncAlarmReceiver.class

c

buildpending5

syncIntent intervalMs

type:RTC_WAKEUP

t

Figure 4.6: Example of a constraint graph

set of Alarm nodes. We will also we use INT to represent integer nodes and CL to

represent Class object nodes.

4.3.2 Constraint Analysis

In this subsection, we define several inference rules, which are the basis for the

reference analysis. Relation flowsto ⊆ {IN∪PI∪INT∪CL}×{Var∪Fld∪OP} represents

the flow of objects and integer values to local variables, fields, and operation nodes.

The inference rules for this relation are

n1 ∈ IN ∪ PI ∪ INT ∪ CL n2 ∈ Var n1 → n2

n1 flowsto n2
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n2 ∈ Var ∪ Fld n3 ∈ Var ∪ Fld ∪ OP n2 → n3 n1 flowsto n2

n1 flowsto n3

For example, in Figure 4.6, Class constant Class : SyncAlarmReceiver.class

flows to operation node newIntent4 via node c, which represents a local variable.

Type constant type : RTC WAKEUP flows to operation node setRepeating7 via variable

node t.

Intent and PendingIntent As stated earlier, instances of explicit Intent and

PendingIntent are created through operations. Both Intent and PendingIntent

have an artificial field target which points to the parameter passed to the operation

at object creation. To capture this behavior, we use relation targets ⊆ (IN × CL) ∪

(PI×IN). For semantic rules [NewIntent] and [BuildPending], the inference rules

are defined at follows:

c ∈ CL c flowsto newintent newintent → n

i ∈ IN i flowsto n i targets c

i ∈ IN i flowsto buildpending buildpending → n

p ∈ PI p flowsto n p targets i

Here i denotes a newly created Intent object and p denotes a newly created

PendingIntent object.

Scheduling an Alarm Operations set(t, d, p) and setRepeating(t, d, i, p) will

schedule alarms based on the provided parameter values. Nodes that flow to op-

eration nodes set and setRepeating determine the behavior of the alarms. For a

PendingIntent node, we would like to know the target Class object it points to.
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Therefore, record the quadruple of type, delay, interval, and target as a static ab-

straction of a run-time alarm object. We use AM ∈ INT× INT× INT× CL to denote

the set of all recorded quadruples.

t1 flowsto set
d2 flowsto set p3 flowsto set p3 targets in in targets cl

(t1, d2, 0, cl) ∈ AM

t1 flowsto setRepeating
d2 flowsto setRepeating i3 flowsto setRepeating

p4 flowsto setRepeating p4 targets in in targets cl

(t1, d2, i3, cl) ∈ AM

Analysis Algorithm The computation of a solution to these constraints is done in

several steps. The first step is to construct the constraints graph from the application

code. The second step is to compute the creation of nodes n ∈ IN ∪ PI and their

reachability to set and setRepeating operation nodes. The third step is to determine

the set AM.

4.3.3 Analysis Output

The purpose of the static analysis it to provide information for the subsequent au-

tomated code refactoring. For code refactoring, the scheduling of an energy-inefficient

alarm can be determined by the tuples from set AM created at set and setRepeating

operation nodes. The program statement for such an operation node is reported if

(1) the alarm type is either RTC WAKEUP or ELAPSED REALTIME WAKEUP, (2) the delay

or interval is a fixed constant value, and (3) the target is a BroadcastReceiver.

We output all quadruples in set AM, together with their creating alarm-scheduling

statements. This output is supplied to the automated code refactoring step.
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4.4 Automated Code Refactoring

The purpose of the proposed automated code refactoring is to reduce excessive de-

vice wake ups, by converting energy-inefficient alarms scheduled with AlarmManager

into JobServices scheduled with JobScheduler. For a single application, the refac-

toring process consists of the following steps.

4.4.1 Instrument PendingIntent Creation

While the static analyses described in Section 4.3 can identify the correct target

class of the PendingIntent, it is still necessary to retrieve and record the creation of

every PendingIntent object at run time. There are two main reasons: (1) callback

onReceive in BroadcastReceiver requires an instance of Intent as a parameter;

(2) the developer may put customized information in an Intent to be used by the

target class later, which cannot be reliably tracked by static data flow analysis. For

AlarmManager usage, there are three APIs that can be used for PendingIntent object

creation:

• PendingIntent getBroadcast(Context, int, Intent, int)

• PendingIntent getService(Context, int, Intent, int)

• PendingIntent getActivity(Context, int, Intent, int)

As we focus on refactoring energy-inefficient alarms targeting BroadcastReceiver,

only getBroadcast is considered. The instrumentation process for the creation of

PendingIntent instances is straightforward. We insert a new class named PrestoJob-

ServiceFramework into the application code. In this class, we create a static method

which has exactly the same signature as the getBroadcast API. We then maintain a
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1 static PendingIntent getBroadcast(Context context,

2 int requestCode,

3 Intent intent,

4 int flags) {

5 PendingIntent ret = PendingIntent.getBroadcast(

6 context, requestCode, intent, flags);

7 getInstance().intentMap.put(ret, intent);

8 return ret;

9 }

Figure 4.7: Recording of created pending intents.

map intentMap to record the relationship between PendingIntent and the Intent

it warps. This map is latter used when scheduling the equivalent JobService.

Figure 4.7 shows the inserted static method. In its definition, it first calls the orig-

inal PendingIntent allocation API (line 5). Before returning the allocated instance

of PendingIntent (line 8), it uses intentMap to save the relationship between the

PendingIntent and the wrapped Intent (line 7). The intentMap is a WeakHashMap,

which will not prevent garbage collection of its keys and should not cause memory

leaks.

4.4.2 Refactoring the Scheduling of Alarms

When generating an output quadruple (t, d, i, cl), the call site of this alarm schedul-

ing is also included. We use this call site information to perform code refactoring,

which convert the alarm scheduling into a JobService scheduling. There are several

APIs that can perform alarm scheduling. Here we use the most common API set as

example; its signature is void set(int, long, PendingIntent).
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1 void set(int type,

2 long triggerAtMillis,

3 PendingIntent operation) {

4 long exactDelay = extractExactDelay(type, triggerAtMillis);

5 Class<?> tgtJobService =

6 getClassObjFromStr(getJobServiceForPendingIntent(operation));

7 scheduleJobServiceOneShot(getInstance().context,

8 exactDelay, operation, tgtJobService);

9 }

10 static void scheduleJobServiceOneShot(Context context,

11 long startDelay,

12 PendingIntent pi,

13 Class<?> jobserviceClass) {

14 JobScheduler js = context.getSystemService(Context.JOB_SCHEDULER_SERVICE);

15 int jobID = pickJobID(js, pi);

16 JobInfo.Builder builder = new JobInfo.Builder(jobID,

17 new ComponentName(context, jobserviceClass));

18 builder.setMinimumLatency(startDelay);

19 PersistableBundle bundle = new PersistableBundle();

20 Intent i = getInstance().intentMap.get(pi);

21 packIntent(bundle, i);

22 builder.setExtras(bundle);

23 JobInfo info = builder.build();

24 js.schedule(info);

25 }

Figure 4.8: Example of inserted method.

The inserted PrestoJobServiceFramework class contains a method that has the

same signature as set. This new method will perform the necessary preparation for

JobService scheduling and will schedule the constructed JobService, as explained

later. We replace calls to set with calls to this new method.

Figure 4.8 shows the simplified implementation of this method. The signature

is the same as that of set (line 1). The method first converts the start delay

used in alarm scheduling into the format used in JobService scheduling by call-

ing helper method extractExactDelay (line 4). It then retrieves the Class object of

the constructed JobService using helper method getJobServiceForPendingIntent

and calls the helper method scheduleJobServiceOneShot to perform the actual

JobService scheduling (lines 5–8).
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Unlike the scheduling of an alarm, which puts time and target information in the

parameter of the scheduling API, JobService requires a JobInfo object when using

the scheduling API. This object records necessary information such as start delay and

whether this is a recurring job. A JobInfo builder is created with the necessary target

and start delay setup (line 16–18). Because the original Intent object is required

by each alarm target, we retrieve the original Intent from the intentMap and pack

it into the JobInfo using helper method packIntent (line 19–22). The packing

and unpacking is achieved by using APIs in Android’s Parcelable interface, which

are implemented by Intent objects. The JobInfo is then built by the builder and

scheduled through the schedule API (line 24). In this manner, an inefficient alarm

is converted into a JobService. The next subsection describes how to construct an

equivalent JobService for the target of the original alarm.

4.4.3 Construction of JobService for an Alarm

In order to convert an energy-inefficient alarm, a JobService is constructed for

each cl for a quadruple (t, d, i, cl) in the static analyses output (Section 4.3). Since

the target classes of reported alarms are all subclasses of BroadcastReceiver, which

has only one callback method onReceive, one way to perform the JobService con-

struction is to create a blank subclass of JobService and invoke the onReceived

method of the targeted BroadcastReceiver directly. This behavior ensure that the

BroadcastReceiver will still have the same behavior as it did before the code refac-

toring.

Figure 4.9 shows a simplified JobService class constructed for the running exam-

ple from Figure 4.1. When the system starts the JobService SyncAlarmReceiverRef,
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1 class SyncAlarmReceiverRef extends JobService {

2 boolean onStartJob(JobParameters jobParameters) {

3 PersistableBundle bundle = jobParameters.getExtras();

4 Intent i = PrestoJobServiceFramework.unpackIntent(bundle);

5 BroadcastReceiver target = new SyncAlarmReceiver();

6 target.onReceive(this.getApplicationContext(), i);

7 return false;

8 }

9 boolean onStopJob(JobParameters jobParameters) {

10 return false;

11 }

12 }

Figure 4.9: Example of constructed JobService for Moloko app.

the onStartJob callback method will be called. The packed Intent object is re-

trieved from parameter jobParameters, which wraps the JobInfo object created at

JobService scheduling (lines 3–4). An instance of original the SyncAlarmReceiver

class will be created and its onReceive callback method will be invoked with the cur-

rent application context and the unpacked Intent object. The onStartJob callback

returns false to indicate that this JobService does not need a system-managed wake

lock to run in the background.

After these steps, the application will have it energy-inefficient alarms converted

to JobServices. In the next section, we demonstrate the reduction of energy con-

sumption caused by these refactoring steps.

4.5 Evaluation

We implemented the static detector of inefficient AlarmManager usage and au-

tomated static code refactoring component using the Soot analysis framework [77].

92



We crawled the entire F-Droid [21] repository and downloaded the top 100 apps from

each category from Google Play Store [29]. The static detection was performed on the

entire subset of these apps that have uses of AlarmManager, 41 apps were reported

to satisfy the definition of inefficient AlarmManager usage defined in Section 4.1.5.

When testing these apps on a real device, there were 3 apps that failed to start or

required a paid subscription. These apps were removed from our test sets. The final

set of refactored apps contained the remaining 38 apps.

The evaluation was conducted on a Google Nexus 5X device with Android 7.1.2

installed. The device was factory reset before the evaluation. We first installed

all original 38 apps to the device and performed necessary initial setups to allow

applications to finish scheduling their alarms for background tasks. The device was

then charged to 100% battery and connected to Wi-Fi and placed still on a table

for 12 hours. Due to the fact that the battery level can only be measured using

Android APIs when device is woke up, we instrumented each app to send a log with

the current battery level to the Android log system when it wakes up the device due

to an alarm. This approach is preferable to measuring the battery level at a fixed

interval, which would inevitably cause more device wake ups, causing imprecision in

battery level measurements. These logs were then collected and analyzed. After these

steps were completed, we performed a factory reset to remove all installed apps and

then installed the refactored 38 apps. We performed the same setup steps, connected

the device to the same Wi-Fi, charged the device to 100% battery, and placed at

same location for another 12 hours. These apps also had the same instrumentation

for logging purposes.
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Figure 4.10: Battery level comparison

Figure 4.10 shows the battery level comparison with the two sets of apps installed

on the device, over a 12-hour period. The solid line represents the changes of battery

level when device was installed with original test apps. The dotted line represents

the changes of battery level when device was installed with the refactored apps. As

shown in the figure, the smoothness of the two lines is different. This is caused by

the different device wake up intervals for the two sets of apps. The original apps

wake up the device every 3–7 minutes while for the refactored apps this number is

10-20 minutes. In this case, there are fewer data points in the logs generated with

refactored apps, compared to the ones generated with original apps. The figure also

shows that after the refactoring process, the battery drop is reduced. At the end of
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Figure 4.11: Device wake up comparison

the 12 hours testing period, the original apps consumed nearly 7% of battery capacity

while the refactored apps consumed 5%. We also calculated the average discharge

rate of 12-hour test for these two sets of apps. The average discharge rate of the set

of original apps is 15.50mA while the average discharge rate of the set of refactored

apps is 10.95mA.

Figure 4.11 shows the device wake ups for the period of 02:00:00 to 04:00:00 of

the 12 hour test period. Each vertical line in the figure represents a device wake

up. As it can be concluded from the figure, the wake ups are much more frequent

for the set of original apps than for the set of refactored apps. With the original

apps, roughly every 5 minutes there is a device wake up. For the modified apps, this
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number is around 15 minutes. In this figure, we did not show the entire 12 hour

testing period as the subfigure for the original apps would be too dense. For the

entire 12 hours, there are 919 device wake ups caused by the set of original apps. For

the set of refactored apps, this number is 100. The reduced device wake ups explains

the reduced battery consumption of the refactored apps.

4.6 Conclusions

This work shows that energy inefficiency in AlarmManager usage can be detected

using static analysis and can be eliminated by automated code refactoring. The refac-

tored apps have the same functionality but cause significantly fewer device wake ups

when they are installed and running together. As a result, battery drain is slowed

down. This work illustrates how static analysis and code rewriting can be benefi-

cial when evolving Android apps to reflect the evolution of the underlying Android

framework.
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CHAPTER 5: Related Work

5.1 Energy Analysis for Android

The problem of optimizing the energy consumption of mobile devices has been

the subject of various studies over the last few years. Some optimization techniques

consider the screen’s energy consumption and reduce it by modifying the app’s color

scheme [47, 53]. The network usage is another significant consumer of energy and

some profiling techniques have been proposed to characterize this usage [71]. Another

source of energy inefficiencies is the misuse of background services and Android APIs

with energy impact [15, 52].

There exists work on energy profiling in order to discover energy inefficient An-

droid apps. Xinbo and Ziliang [88] developed a software-based profiler to measure

the energy consumption of different programming language and runtime system in

Android. Their results show that the latest Android ART runtime has less energy

consumption than traditional Android dalvik runtime. Nucci et al. [64] developed a

software-based energy profiler for Android apps which can achieve accurate results

when compared to a hardware energy monitor. Other work in this area [34, 46, 67, 68]

uses dynamic analysis to characterize the energy consumption on a given app. While

these profilers can help debug energy-inefficient apps, they cannot directly identify the

underlying problems based only on the profiling results, since an increase in energy

consumption does not necessarily imply the presence of an energy bug or inefficiency.
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Some researchers have used crowdsourcing techniques to obtain data from a large

number of devices, which allows more reliable identification of apps that cause bat-

tery drain [60, 66]. As with any profiling techniques, there is a significant challenge in

obtaining representative samples of run-time executions on real devices. Triggering

such executions by the developers is further complicated by the event-driven nature

of Android apps. One advantage of static detection is that it allows for problems to

be detected early and without run-time information.

Leak Detection There are various techniques for detecting leaks in Java programs.

Torlak and Chandra [80] designed a static interprocedural analysis to discover re-

sources leaks (e.g., for I/O streams). Kondoh and Onodera [42] performed static

analysis on Java programs with JNI to uncover leaks in error handling code. Static

detection of memory leaks for Java has also been considered (e.g., [90]).

GreenDroid [55] uses Java PathFinder to traverse UI event handler callbacks,

based on a UI model constructed manually, in order to uncover resource leaks dy-

namically. A similar approach by Banerjee et al. [10] uses a modified version of

Dynodroid [58] to perform dynamic analysis of resource leaks. Their later work [11]

uses an instrumentation utility to instrument potential defective Android applications

to collect runtime method traces to pin-point energy related leaks. Zhang et al. [98]

used dynamic taint analysis to detect design flaws related to network operations.

However, like any dynamic taint analysis approach, this approach introduces rela-

tively high run-time overhead. Jun et al. [41] developed a dynamic leak detector

for Android activities and fragments, based on UI traversal and memory profiling;

this technique was not used to analyze energy-related leaks. One limitation of these
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techniques is the difficulty of achieving high code coverage in run-time execution of

Android apps [18]. Furthermore, some techniques [10] require physical measurement

of voltage and current of the device, which is not easy to achieve in practice. Static

analysis provides a viable alternative/complement to such dynamic approaches.

Researchers have also developed static leak detectors for Android apps. Guo

et al. [33] use static analysis to find resource-related API invocations in event han-

dler callbacks and to reason about possible resource leaks. As the authors of that

prior work state, the limitations of their control-flow analysis lead to false negatives.

A somewhat similar approach, with similar limitations, was proposed by Pathak

et al. [69], with the additional problem that user-provided control-flow ordering of

event handlers is needed. Wu et al. [87] developed a tool which can perform interpro-

cedural analysis on Android applications to statically identify potential leaks. The

analysis makes a variety of simplifying assumptions about the data flow and the con-

trol flow of apps, and does not appear to use any systematic static model of callback

ordering or leak pattern definitions. Similarly, Jiang et al. developed a static anal-

ysis tool [40] which can generate callback sequences of Android application in order

to identify unreleased resources. This approach also makes simplifying assumptions

about the control flow. A static analysis on Android wake lock misuses was proposed

by Liu et al. [56], however, the generation of applications’ method call sequences

is relatively simplified which may miss some feasible sequences and may cause false

negatives.
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5.2 Test Generation for Android

There are various techniques for automated testing for mobile apps. Choudhary

et al. [18] present a summary of existing testing approaches for Android. The Monkey

testing tool [61], provided by Google, generates UI events randomly. Android GUI

Ripper [3] and MobiGUITar [4] create a dynamically built GUI model and test cases

based on it. Yang et al. [95] also explore the application dynamically, but use static

analysis to determine relevant UI events for a specific activity. CrashScope [62] uses

a similar model-based approach; however, it focuses on detecting and reporting ap-

plication run-time crashes. The A3E GUI exploration tool [8] employs both dynamic

depth-first exploration, similarly to Android Ripper, as well as targeted exploration

based on a model derived from static analysis. Work by Zhang et al. [96, 97] gener-

ates UI tests based on the WTG model in order to expose resource leaks, but does

not analyze acquire/release sequences for these resources. Jensen et al. [39] gener-

ate event sequences using a UI model and event handler summaries derived from

static analysis. ACTEve [5] performs concolic testing by symbolically tracking UI

events from their origin to their handler. There are also examples of using machine

learning techniques to improve automated test generations. SwiftHand [17] achieves

code coverage by learning and exploring an abstraction of the app’s GUI. Grano

et al. [31] designed a automated test generation tool based on machine learning from

users’ reviews. Other representative tools include EvoDroid [59], Droidmate [38],

Dynodroid [58] and PUMA [35].
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5.3 Automated Refactoring for Android

There is a growing interest in using automatic code refactoring to improve An-

droid applications. Refactoring tools [49, 51] help developer to encapsulate consuming

tasks into AsyncTask and IntentService which help ease the application develop-

ment. Other work focused on energy optimization. Optimizers [14, 36, 45] show that

energy consumption caused by tail-energy of Android network access can be reduced

by batching network requests using automatically code refactoring. Banerjee and

Roychoudhury used automatically constructed event flow graph to optimize energy

related resource usage [9, 12]. It shows a significant improvement in energy effi-

ciency. Linares-Vásquez et al. introduced GEMMA [54], which automatically change

the color scheme of Android apps to reduce their energy consumption on devices with

(AM)OLED displays. A similar approach is used by Agolli et al., however, their

work [1] is focused on making the color change indistinguishable while reducing en-

ergy consumption. Li and Halfond introduced Leafactor[19], which perform refactor

on Android layout files to improve energy efficiency of UI rendering. Zhang et al.

proposed a way [100] to offload computing intensive tasks to cloud by refactoring

Android application’s source code. The results show reduced of execution time and

energy consumption.

5.4 Static Control-Flow Analysis for Android

There is a significant amount of work on security analysis [16, 22, 23, 30, 37, 48,

57, 65, 101] performs static modeling of certain aspects of Android control flow (and

the related data flow). However, none of these approaches provides a comprehensive

model of GUI control flow or provides possible sequences of callbacks. Work [8] uses
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static analysis to construct an activity transition graph and use it to perform run-

time GUI exploration. However, it does not capture the GUI effects of callbacks and

window stack changes. There are other static analyses perform modeling of callback

sequences in Android, for example, for the purposes of race detection (e.g., [50])

and static checking (e.g., [70, 99]); all these approaches employ ad hoc control-flow

modeling that lacks generality. FlowDroid [7] uses another approach to model the

event-driven control flow. This work creates an artificial main method to represent

the invocation of callbacks from Android framework to the application code. While

this approach partially models the possible sequences of event handlers, it does not

account for the full generality of GUI effects of event handlers, and does not represent

precisely the interleaving of callbacks that span multiple activities and their lifetimes.

Related work [91–94] provides a more comprehensive solution which considers the

relevant control-flow information in the window transition graph described earlier.

The modeling of window stack is also defined in this work. In addition to serving

as the basis of the resource leaks detection described in this work, the modeling of

Window Transition Graph can be potentially be useful for other purpose, as illustrated

in [85, 86, 97].
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CHAPTER 6: Conclusions

The Android platform has experienced rapid development over the recent years.

The event-based control flow and limited hardware resources bring new issues in

software development as well as new challenges in program analyses. Due to the

limited resource on Android devices, energy-related defects are of significant impor-

tance. Thus, we focused on detecting and eliminating energy-inefficiency patterns in

Android applications.

We conducted case studies on real-world energy defects and confirmed observa-

tions by other researchers that one common pattern of energy defects comes from

“missing deactivation” of energy-related resources. In Chapter 2, we focus on missing

deactivation of Android GPS resources as it can cause considerable battery drain.

We first define two patterns of GPS resource leaking behaviors. The definition is

based on formal definitions of relevant aspects of Android GUI run-time control flow,

including modeling of GUI events, event handlers, transitions between windows, and

the associated sequences of callbacks. We then propose a static analysis for detec-

tion of energy-related defects due to Android location listener leaking. The technical

foundation for this analysis is the static modeling of possible sequences of window

transitions and their related callbacks. We perform control-flow analysis of individual

callbacks and combined it with analysis of callback sequences to identify instances of

two location listener leaking patterns. We evaluate the analysis on seventeen known
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and new defects that were detected in previously-analyzed and never-analyzed appli-

cations. All but one of the reported defects are observable at run time. The evaluation

shows this approach is effective and the cost of the analysis is low.

In Chapter 3, we switch our focus to sensor resource leak defects. Similarly to the

Android GPS leak defects discussed in Chapter 2, a missing deactivation of Android

sensor listeners can cause energy draining issues. It is also clearly stated in the An-

droid developer guidelines that sensor resources should be properly released when an

application is going to idle state. We proposed a static analysis to detect potential

sensor leaks in Android apps using context-free-language reachability analysis with

automated test generation to perform verification. The analysis is performed on a

static graph model of sensor-related objects and API calls. Each node represents a

Android window and each edge is labeled by symbols representing the opening/clos-

ing of UI windows and acquiring/releasing of sensors. We defined two context-free

languages over the alphabet of symbols. Each graph path that defines a string from

these languages represents a potential leak. The static analysis identifies and report

such paths, which are then used to generate test cases to verify the leaks on a real

device. Experimental studies indicate that analysis precision is high and that sensor

leaks in realistic Android apps can be successfully detected.

There are other types of energy-inefficiency patterns that are unrelated to leaks.

One aspect is inefficient usage of energy-intensive system services. In Chapter 4, we

focus on energy-inefficiency usage of AlarmManager. Due to legacy reasons, there

are still applications that use alarms scheduled by AlarmManager to perform peri-

odic background tasks. This causes frequent device wake ups and increases battery
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consumption. We proposed a static analysis to detect such inefficient usages and de-

signed an automated code refactoring engine to convert such usages to Android jobs

managed by JobScheduler. We conducted tests on a real device and showed that

this approach reduced the device wake ups as well as the battery consumption.

In summary, the results from our work shows that static analysis is effective and

precise for detection of energy-inefficiency patterns in Android applications. Such

analysis requires no manual efforts and is efficient when performed at a large scale,

suggesting that it is suitable for practical use in static checking tools for Android.
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