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ABSTRACT
Stencil computations are at the core of applications in a number
of scientific computing domains. We describe a domain-specific
language for regular stencil computations that allows specification
of the computations in a concise manner. We describe a multi-
target compiler for this DSL, which generates optimized code for
GPUa, FPGAs, and multi-core processors with short-vector SIMD
instruction sets, considering both low-order and high-order stencil
computations. The hardware differences between these three types
of architecture prompt different optimization strategies for the com-
piler. We evaluate the domain-specific compiler using a number of
benchmarks on CPU, GPU and FPGA platforms.

1. INTRODUCTION
Stencils represent an important computational pattern used in sci-
entific applications in a variety of domains including computational
electromagnetics [33], solution of PDEs using finite difference or
finite volume discretizations [30], and image processing for CT and
MRI imaging [8, 10]. A number of recent studies have focused on
optimizing stencil computations for multicore CPUs [7, 12, 13, 32,
34] and GPUs [22–24]. High-order stencils involve weighted aver-
ages over multiple neighboring points along each dimension. They
are at the core of several large-scale scientific codes, such as those
using Lattice Boltzmann methods (e.g., fluid flow simulation) [37],
Finite-Difference Time Domain methods (e.g., seismic wave prop-
agations, electromagnetic radiations) [20], image processing (e.g.,
edge detection) [28], and others. Overture [26] is a toolkit for solv-
ing partial differential equations over complex geometry, and uses
high-order approximations for increased accuracy, leading to high-
order stencil computations. Similarly, the Chombo library [6] uses
high-order stencil operations in discretizing high-order derivatives.

Previous work has shown that pattern-specific compilation strate-
gies for stencils are needed to address a variety of stencil spe-
cific performance bottlenecks, including parallelization, commu-
nication, data reuse, etc. [11, 15–17, 28, 29] and several domain-
specific optimization frameworks have been provided [4, 7, 28, 34].
There is increasing interest in developing domain-specific frame-
works for high-performance scientific computing due to the di-
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versity of current and emerging parallel architectures, as exempli-
fied by large-scale projects such as the Center for Domain-Specific
Computing [2] and the ExaStencils project [1,19]. In addition to the
benefit of a DSL (Domain Specific Language) for user productivity,
a significant advantage is that semantic properties derivable from
the high-level abstractions can be utilized to develop powerful spe-
cialized compiler optimizations that can be tailored to the charac-
teristics of different target architectural platforms. Using the Sten-
cil Domain Specific Language (SDSL) we proposed [14] to provide
a target-independent description of the computation. This paper
presents an overview of target-specific optimization strategies for
multi-core CPUs with short-vector SIMD instructions [16, 31]; for
GPUs [17]; and for FPGAs [27, 39].

The rest of the paper is organized as follows. Sec. 2 presents a
brief overview of the features of the SDSL multi-target domain-
specific compiler. Sec. 3 introduces the SDSL language. We then
present optimization challenges and possible optimization strate-
gies to overcome them in Sec. 4 for multi-core CPUs, in Sec. 5 for
GPUs, and in Sec. 6 for FPGAs.

2. OVERVIEW OF THE SDSL COMPILER
SDSL programs can be automatically optimized for CPUs, GPUs
and FPGA execution. Fig. 1 outlines the SDSL compiler workflow
and its various backends.
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Figure 1: The SDSL Ecosystem

We have implemented target-specific backends within the SDSL
compiler: one for CPUs and one for GPUs. To enable seamless in-
teroperability with vendor compilers for other architectures, and to
enable optimization using source-to-source compilers, a third back-
end produces affine C code describing the computation. This back-
end exploits the regular nature of programs that can be expressed
in SDSL to generate regular (affine) C code which can then be
analyzed and optimized by polyhedral compilers such as PolyOpt
or Pluto. Two optimization strategies discussed below, supporting
high-order stencil for CPUs [31] and general stencils for FPGAs,
are implemented by using the affine-C backend and invoking Poly-
Opt on the generated source code.



The SDSLc compiler can produce three code variants. (1) The un-
optimized affine C code is C99 compliant and is meant to be pro-
cessed further by polyhedral optimization tools such as Pluto [35]
and PolyOpt [25]. (2) The optimized CPU code is C99 compliant
and uses vector intrinsic functions for x86 and 32-bit ARM CPU.
The code is optimized with nested/hybrid split-tiling [16] in con-
junction with dimension-lift-and-transpose [15] data layout trans-
formations. (3) The optimized GPU code is generated in CUDA
C by the OverTile backend [17]. OverTile generated code can be
autotuned using a simple script included with the sdslc distribution.

SDSL code can be embedded in C, C++, and MATLAB, as dis-
cussed below. Optimized MATLAB code is generated as C func-
tions called via MEX.

3. THE SDSL LANGUAGE
SDSL (Stencil Domain Specific Language) is a domain-specific
language for expressing stencil computations. SDSL is loosely
based on the RNPL [21] and SNPL languages used for rapid pro-
totyping of partial differential equation solvers, although the re-
semblance is mostly cosmetic and no code is shared between the
projects. The purpose of SDSL is to provide a programming lan-
guage that allows for the specification of non-trivial stencil compu-
tations in a form that enables the generation of high- performance
implementations that can be obtained in a performance-portable
manner on multiple platforms.

Implementing high-performance stencil computations require both
domain-specific and target-specific optimization strategies. For a
compiler to automatically apply these strategies, the entire compu-
tation of interest must be analyzable without ambiguity. Traditional
compiler analysis issues such as memory aliasing, loop trip count
computation, induction variable analysis, etc. can prevent aggres-
sive optimizations from being performed for safety/correctness rea-
sons. Domain-specific languages can be designed so that programs
can be successfully analyzed and transformed by the compiler. In
SDSL, to achieve portable high-performance on multi-core CPUs,
GPUs and FPGAs, program and data layout transformations must
be applied by the compiler. Consequently we have designed the
SDSL language to ensure that:
• the entire stencil computation (this includes time iterations,

boundary conditions, and the operations applied on each voxel)
can be modeled in the polyhedral program representation;
• the data space accessed by stencils is fully described at the

SDSL level, enabling data layout transformations;
• general-purpose programming is allowed outside the stencil re-

gions, that is SDSL is an embedded DSL;
• time-iterated stencils using data-dependent convergence check-

ing are supported.

An illustrative example. We now illustrate the main concepts
of the SDSL language using the example in Fig. 2. The program
begins with a declaration of two int parameters, dim0 and dim1 on
lines 1 and 2. These parameters are used to define a 2-dimensional
grid of size dim1 x dim0 on line 3. Line 4 declares floating point
griddata in the shape of the grid defined on line 3. This data
is also declared to exist at two different offsets from the current
timestep, 0 and 1. Lines 5-9 define a 5-point stencil as a pointfunc-
tion named five_pt_avg. This function takes an argument p, the
grid data used to calculate the stencil. five_pt_avg averages 5
neighboring points in one timestep of p and writes the result to a
point in the next timestep of p. Lines 11-23 define an iterative loop
with a convergence check. The iterate construct on line 11 spec-
ifies that the iterative loop should run, at most, 1000 times. Lines

12-28 define a stencil computation over subsets of the problem do-
main. Lines 13-16 specify the value of the edges of grid data a to be
the same at both timesteps at which a is defined. Line 17 specifies
that the point function five_pt_avg be applied at every point over
the interior of a. Lines 20-22 define a reduction to be performed
at every point on a. The reduction variable is max_diff, and it
contains the largest difference between a value of an element of a
at two successive timesteps. Finally, line 23 defines a convergence
condition for the iterate and specifies how frequently this check
is to be performed. In this program the condition is that the largest
difference between successive time values of an element of a is less
than .00001 and that this condition should be checked every 4 itera-
tions. The check every clause is essential to forward algorithmic
knowledge to the compiler: if the convergence check needs only
be computed every 4 iterations, then time-tiling techniques can be
safely employed. The algorithm developer is in charge of ensuring
the computation has enough numerical stability to possibly com-
pute more time iterations than strictly needed, which in turn leads
to powerful optimizations being applicable by the compiler.

1 int dim0;
2 int dim1;
3 grid g [dim1][dim0];
4 float griddata a on g at 0,1;
5 pointfunction five_point_avg(p) {
6 float ONE_FIFTH = 0.2f;
7 [1]p[0][0] = ONE_FIFTH *([0]p[-1][0]
8 + [0]p[0][-1]+[0]p[0][0]+[0]p[0][1]+[0]p[1][0]);
9 }

10
11 iterate 1000 {
12 stencil jacobi_2d {
13 [0][0: dim0 -1] : [1]a[0][0] = [0]a[0][0];
14 [dim1 -1][0:dim0 -1] : [1]a[0][0] = [0]a[0][0];
15 [0: dim1 -1][0] : [1]a[0][0] = [0]a[0][0];
16 [0: dim1 -1][ dim0 -1] : [1]a[0][0] = [0]a[0][0];
17 [1: dim1 -2][1: dim0 -2] : five_point_avg(a);
18 }
19
20 reduction max_diff max {
21 [0:dim1 -1][0:dim0 -1] : fabs([1]a[0][0]-[0]a[0][0]);
22 }
23 } check (max_diff < .00001f) every 4 iterations

Figure 2: Jacobi 2D in SDSL

Embedding SDSL in C/C++. Every embedded section of
SDSL begins with #pragma sdsl begin and is terminated using
#pragma sdsl end. Optionally, this pragma may contain a gpu()
clause specifying parameters used by the OverTile [4] backend for
CUDA C code generation. The main arguments are:
• block:<comma separated list of integers>: A comma

separated list of integers specifying the GPU thread block size
for generated code. There must be one integer in the list for
each spatial dimension of the grid in the SDSL code.

• tile:<comma separated list of integers>: A comma sep-
arated list of integers specifying the number of elements to be
computed per thread. There must be one integer in the list for
each spatial dimension of the grid in the SDSL code.

• time:<integer>: A single literal integer value specifying the
time tile size in the generated code.

Embedding SDSL in MATLAB. Many programs for scien-
tific computation and visualization are written in MATLAB, but
running MATLAB code is often time-consuming. A general tech-
nique to accelerate MATLAB is using the MEX interface to execute
optimized native code. Compute-intensive stencil code in a MAT-
LAB program can be rewritten in SDSL. The resulting MATLAB



code can be compiled by sdslc to generate a MEX source file con-
taining a C or CUDA implementation of the SDSL functions and
necessary MEX glue code. The generated MEX function can be in-
dependently optimized for different architectures. SDSL code em-
bedded in MATLAB is defined by the same syntax and semantics
as SDSL code embedded in C/C++.

In order to allow easy integration of eSDSL into C/C++ programs
and MATLAB programs, we do impose restrictions on how the data
structures interfacing between the rest of the program and the eS-
DSL segment are declared. Typically, contiguous memory regions
of scalar types (e.g., float, double, etc.) are required for the fields
storing the data; and integer types are required for parameters such
as the grid size or the number of time iterations. It is also expected
that the implementation of the stencil pointfunctions do not contain
any side-effect generating instructions nor any function calls.

4. OPTIMIZATIONS FOR CPUS
4.1 General Stencils
Challenges Faced. Vector operations with ISAs like SSE re-
quire the loading of physically contiguous data elements from mem-
ory into vector registers and the execution of identical and inde-
pendent operations on the components of vector registers. Stencil
computations pose challenges to efficient implementation on these
architectures, requiring the use of redundant and unaligned loads
of data elements from memory into different slots in different vec-
tor registers. The DLT data layout transformation of Henretty et
al. [15] was developed to overcome the fundamental data access
inefficiency on current short-vector SIMD architectures with sten-
cil computations, but coupling it with time-tiling techniques poses
challenges on the acceptable tile shapes and overall strategy, as
summarized below.

Data layout transformation and tiling. The DLT transfor-
mation is a key enabler to high-performance on short-vector SIMD
architectures. Fig. 3 illustrates the DLT transformation for a one-
dimensional vector of 24 elements for an ISA with a vector length
of 4. Whereas B[0:3] form an aligned vector before transformation,
after the DLT transformation, B[0], B[6], B[12], and B[18] form
the first four elements Bdlt[0:3] in the transformed layout. The next
four contiguous elements Bdlt[4:7] in the transformed layout corre-
spond to B[1], B[7], B[13], and B[19], etc. Thus the sum of aligned
vectors, Bdlt[0:3]+Bdlt[4:7]+Bdlt[8:11], computes < B[0]+B[1]+
B[2],B[6]+B[7]+B[8],B[12]+B[13]+B[14],B[18]+B[19]+
B[20]>.

Thus the fundamental problem with vectorized addition of contigu-
ously located elements in memory is overcome in the transformed
layout where operands that need to be combined are located in the
same slot of different vectors rather than in different slots of the
same vector. Details on the code generation technique for DLT-
transformed arrays may be found in [15], including issues such as
how elements at the DLT boundaries are handled.

Nested Split-Tiling. Inter-tile dependences between adjacent
tiles along both the time and spatial dimensions makes it infeasible
to use DLT with classical parallelogram-shaped time-tiling because
DLT causes spatially separated data elements (for example, B[0],
B[6], B[12], B[18] in Fig. (3)) to be gathered together in a single
vector and therefore must be operated upon concurrently.

In nested split-tiling, a d-dimensional loop spatial loop nest is re-
cursively split-tiled along each dimension. The outermost spatial

(a) Original Layout

A B C D E F G H I J K L M N O P Q R S T U V W X

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

(d) Transformed Layout

A G M S B H N T C I O U D J P V E K Q W F L R X

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

(b) Dimension Lifted (c) Transposed

A G M S

B H N T

D J P V

E K Q W

F L R X

C I O U

V

V

N

A B C D E F

G H I J K L

M N O P Q R

S T U V W X

V

N

V

Stencil code:

for (i = 1; i < 24; ++i)
A[i] = B[i-1]+B[i]+B[i+1];

Figure 3: Data layout transformation for SIMD vector length of 4

loop at level d is split-tiled, producing a loop over upright tiles and
a loop over inverted tiles. Inside each of these loops, loop level
d− 1 is split-tiled, giving four tile loop nests. Split-tiling is per-
formed recursively in each new loop nest until the base loop level 1
is reached and there are 2d total loop nests corresponding to all pos-
sible combinations of upright and inverted tiles on each dimension.
Nested split-tiling of a 2D code is illustrated in Fig. 4(a)

Fig. 4(a) depicts, on the left, a series of upright (‘A’) and inverted
(‘B’) tiles in the i dimension. All upright ‘A’ tiles may be exe-
cuted concurrently, followed by all inverted ‘B’ tiles. Below these
tiles are representative cross-sections of an upright and inverted tile
showing the nested split-tiles in the j dimension. These tiles are
labeled such that all tiles with the same number, (‘1’, ‘2’, ‘3’, or
‘4’) may be executed concurrently, and tiles with a lower number
must be executed before tiles with a higher number.

The pseudocode in Fig. 4(a) shows the loop nests responsible for
producing the diagram. Nested inside the sequential tt loop are two
parallel ii loops corresponding to the ‘A’ and ‘B’ tiles shown in the
diagram. Nested inside the ‘A’ loop are parallel j j upright (‘1’) and
inverted (‘2’) tile loops corresponding to the tiles shown in the left
cross-section, Similarly, the ‘B’ loop contains nested parallel ‘3’
and ‘4’ loops corresponding to the right cross-section. A barrier
follows each j j tile loop to enforce tile execution order and ensure
that no dependences are violated.

Nested split-tiling enables parallelization of all spatial loop nests
in a stencil, however (1) it imposes a lower bound on the size of
upright tiles for a given time tile size, or equivalently, (2) it imposes
an upper bound on the time tile size given an upright tile’s size. In
nested split-tiling, upright tiles must be sized such that they retain
their characteristic trapezoidal shape. If the base of the upright tile
is not large enough for a given time tile size, the sloping lines will
eventually form a tip. At this point tile execution cannot extend any
further in time.

Hybrid Split-Tiling. For higher dimensional problems, the lower
bound on upright tile size causes tiles to overflow cache for even
small time tile sizes. We overcome the tile size constraints of nested
split-tiling with a hybrid of standard tiling on the outermost space
loops and split-tiling on the inner loops. Hybrid split-tiling for a 2D



for tt

  parfor ii // (A) Upright i

    parfor jj // (1) Upright j

      for t { for i { for j {}}};

    barrier();

    parfor jj // (2) Inverted j

      for t { for i { for j {}}};

    barrier();

  parfor ii // (B) Upright j

    parfor jj // (3) Upright j

      for t { for i { for j {}}};

    barrier();

    parfor jj // (4) Inverted j

      for t { for i { for j {}}};

    barrier();

1
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Upright i, Inverted j
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(a) 2D nested split-tiling

for tt

  for ii // (A) (B) (C) (D) Traditional i 

    parfor jj // (1) Upright j

      for t { for i { for j {}}};

    barrier();

    parfor jj // (2) Inverted j

      for t { for i { for j {}}};

    barrier();
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(b) 2D hybrid split-tiling

Figure 4: 2D nested and hybrid split-tiling.

stencil is illustrated in Fig. 4b. The pseudocode contains a single ii
loop nested in the tt loop which corresponds to the four traditional i
dimension tiles ‘A’, ‘B’, ‘C’, and ‘D’ shown in the diagram. These
tiles must be executed in sequence from ‘A’–‘D’. Nested inside the
ii loop is the split-tiled j j loop which has the same upright / in-
verted tile structure as the split-tiled inner loops described in the
previous section.

Standard tiling does not impose any constraint on tile sizes along
spatial dimensions as a function of the time tile size. Thus, standard
tiles may be compacted to a much smaller size to compensate for
the larger tile sizes required by split-tiled dimensions. This allows
for a substantially reduced multidimensional tile footprint.

In order to perform combined data layout transformations for SIMD
vectorization with parallel tiling for data locality, we use a multi-
stage process to integrate dimension-lift-and-transpose (DLT) with
multi-level split-tiling. Arguments to the transformation algorithm
are computed using a static analysis on the stencil DSL input pro-
gram, as described in [16].

Experimental validation. The effectiveness of the both nested
split-tiling and hybrid split-tiling applied in conjunction with the
dimension-lifting transformation was experimentally evaluated in
detail in [16]. We compare performance to the diamond-tiling sys-
tem used by Pluto [4], the cache-oblivious tiling system used by
Pochoir [34], and the Intel C Compiler v13.0, all running on Intel
Core i7-2600K (Sandy Bridge micro-architecture) which is a quad-
core core x86-64 chip running at 3.4 GHz; double-precision peak
performance is 27.2 GFlop/s/core (108.8 GFlop/s aggregate). The
following stencil codes were used as benchmarks (with the names
used to refer to them in parentheses): Jacobi 1D (jac-1d-3), Ja-
cobi 2D (jac-2d-9), Jacobi 3D (jac-3d-7), Laplacian 2D (lapl-2d),
Gradient 2D (grad-2d) Heat 1D/2D/3D (heat-nd) distributed with
Pochoir [34]. All array dimensions were set to be significantly
larger than last level cache on all micro-architectures. For all sten-

cils, the footprint of each array was set to 488.28MB of double-
precision data; this was achieved using 1D arrays with 64 ∗ 107

scalar elements, 2D arrays with 80002 elements, and 3D arrays
with 4003 elements. The number of time steps was set to 100 for
all benchmarks. Tile sizes were autotuned for Pluto with diamond
tiling, as well as for our split-tiling and overlapped tiling work.
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Figure 5: Intel Core i7-2600K AVX Performance

4.2 High-Order Convolution Stencils
Challenges faced. We use the example in Fig. 6 to illustrate the
fundamental issues with high-order stencils that we tackled in [31].
The code in Fig. 6(a) is a generic convolution stencil that sweeps
over a 2D array OUT, where at each point (i, j), a weighted sum
of a n× n (n = 2× k + 1) neighborhood around (i, j) in array IN
is computed using a weight matrix W of size n× n. Stencil com-
putations are generally considered to be memory-bandwidth bound
since their arithmetic intensity is not usually sufficiently greater
than the machine balance parameter, i.e., the ratio of peak main



for (i=k; i<N-k; i++)
for (j=k; j<N-k; j++) {
OUT[i][j] = 0;
// Compact representation shown below.
// Loops (ii,jj) are fully unrolled for
// each value of k generated in Fig. 1(b)
for (ii=-k; ii<=k; ii++)

for (jj=-k; jj<=k; jj++)
OUT[i][j] +=

IN[i+ii][j+jj]*W[k+ii][k+jj]; }

(a) 2D stencil prototype
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Figure 6: Implementation and performance of the base codes

for (i=k; i<N-k; i++)
for (j=0; j<2*k; j++)
{ OUT[i][j+k] = 0; STMT(-k, -k+j) }

for (j=2*k; j<N-2*k; j++)
{ OUT[i][j+k] = 0; STMT(-k, k) }

for (j=N-2*k; j<N; j++)
STMT(j-N+k+1, k)

where STMT(lb,ub) is:
for (ii=-k; ii<=k; ii++)
for (jj=lb; jj<=ub; jj++)

OUT[i][j-jj] += IN[i+ii][j]*W[k+ii][k+jj];

(a) Reordered 2D stencil prototype
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Figure 7: Implementation and performance of the base and optimized codes

memory bandwidth to peak computational performance [38]. How-
ever, the arithmetic intensity of a stencil is directly related to its
order k.

A 3×3 2D stencil, that is k = 1 in Fig. 6(a), involves nine multipli-
cations and eight additions at each data point OUT[i][ j] assuming
all weight coefficients are distinct, i.e., 17 floating-point operations.
Each data element IN[i][ j] is used in computing nine neighboring
points of OUT (excluding the boundary). Thus if full reuse of data
elements is achieved in the last level cache, i.e., the cache capacity
is greater than approximately 2× k×N words, the total bandwidth
requirement per floating-point computation would correspond to
an average of one word loaded from main memory and one word
stored to memory per 17 floating-point operations, i.e., 16 bytes
of data transfer across the memory bus per 17 operations, giving
a bytes/flop requirement below 1. The machine balance parameter
for most multicore systems today is much lower, e.g., around 20
GB/s bandwidth and upwards of 100 GFLOPs peak performance
giving a bytes/flop ratio below 0.25.

Next let us consider a higher order stencil. Higher order stencils
arise when higher order differences are used to discretize high order
derivatives in PDE solvers, for example Overture from LLNL [26].
For a convolution with a 5×5 stencil (corresponding to k = 2), the
arithmetic intensity increases, giving a machine balance require-
ment of 16/50, probably still memory-bandwidth bound on current
multi-core systems. However, a 7×7 stencil’s machine balance re-
quirement will be roughly half of that for the 5× 5 stencil. So we
can expect that as the order of the stencil increases, the computa-
tion becomes less memory-bandwidth bound. We might therefore
expect that the achieved performance of the stencil code should
monotonically increase with the order of the stencil. However the
measured performance shown in Fig. 6(b) shows a different trend.
While performance does indeed increase from a 3×3 (k = 1) sten-
cil to a 5× 5 (k = 2) stencil, there is a drop in performance as we
further increase the order of the stencil. Performance was tested on
an Intel i7-4770k processor using code compiled with ICC -O3, us-

ing N = 12000. For each value of k, a distinct C code is generated
and compiled. This C code is obtained by fully unrolling the ii and
j j loops so as to have the standard implementation with all neigh-
bor points accumulated in a single statement. The same approach
is used to generate Fig. 7(b) from the template in Fig. 7(a).

The problem is that while the burden on the memory subsystem is
reduced for higher order stencils, register pressure worsens. For a
3× 3 stencil, as explained in greater detail later in the paper, six
registers are needed to achieve three-way register reuse in the di-
rection of stencil movement (the j loop). For a 5×5 stencil, there
is an opportunity to achieve a 5-way register reuse, but 20 registers
are required to implement this reuse. Greater reuse is achieved at
the cost of some register spilling and the overall performance im-
proves. Hardware counters in Fig. 6(c) show the total number of
load instructions executed per FLOP decreases when we go from
k = 1 (3×3 stencil) to k = 2 (5×5 stencil).

A 7×7 stencil offers the potential for 7-way register reuse, but the
register pressure is over 42. The net result is that the code gen-
erated by the Intel ICC compiler for this case is less effective in
exploiting register reuse, as shown by the hardware counter mea-
surements in Fig. 6(c). Performance continues to drop as we further
increase the stencil order, while greater arithmetic intensity implies
performance should be improving.

Register reuse framework for high-order stencils. We
developed a solution to the increased register pressure for higher
order stencils, by exploiting the freedom to reorder the associa-
tive/commutative operations of the stencil computations [31]. The
weighted contributions from the neighboring points can be accumu-
lated in any order. However, changing just the order of operations
among the set of accumulations to a single element of OUT is not
useful. Instead, we need to judiciously interleave stencil accumu-
lations to multiple target elements. A transformed code template,



Variant Gather-Gather Gather-Scatter Scatter-Gather Scatter-Scatter Compact

Diagram
INloads n 1 n 1 dn/2e

OUTloads 0 n−1 0 n−1 bn/2c
OUTstores 1 n 1 n dn/2e

REGS n2−n+2 n+2 n+2 n2−n+2 2 · (dn/2e)2 +2

Table 1: Expected IO and register pressure of different retiming variants for the 2D (n×n) stencil of Fig. 6 (n = 2k+1)

representative of the kind of operation reordering generated by our
framework, is shown in Fig. 7(a).

In contrast to the original code in Fig. 6(a), which may be seen as an
all-gather stencil (all contributions to a target element are gathered
together in a single set of operations), the code in Fig. 7(a) may
be viewed as a scatter-gather stencil. The code shown in Fig. 7(a)
performs exactly the same set of operations as the code in Fig. 6(a),
but in a different order of interleaving initialization and accumula-
tion to elements of OUT. Within the loop over rows (i), the code
contains a prologue loop that performs updates to some of the left
columns of OUT, the main middle loop that performs the bulk of
updates, and a final epilogue loop that performs updates to some of
the right columns of OUT. Considering a 3×3 stencil, for a given
point (i, j) of the outer two loops, here we have a 3×1 “read-set” of
three elements from IN each making contributions to each element
of a 1×3 “write-set” of OUT. For a n×n stencil, the transformed
version involves a n× 1 read-set updating a 1× n write-set in an
all-to-all fashion. The main benefit is that now the register pressure
is approximately n registers instead of n2. The performance of the
modified stencil is shown in Fig. 7(b), and is compared with the
base code over which it shows substantial performance improve-
ment. Fig. 7(c) shows hardware counters for the modified code.
It can be seen that the loads/flop ratio is considerably lower than
the original code, while the ratio of stores/flop is slightly higher.
In essence, a highly asymmetric all-gather stencil with minimal
stores but many more loads has been transformed into a more bal-
anced stencil that performs more stores, but is able to achieve a
substantial reduction in the number of loads.

Consider again the stencil code in Fig. 6(a). A rectangular iteration
space over the range [k : N−k−1][k : N−k−1] is traversed, apply-
ing a stencil operation at each point in that space. The stencil can
be characterized by a read-set and a write-set. For the version of
code in Fig. 6(a), the read-set has an offset range of [−k : k][−k : k]
around [i][ j], while the write-set is a single point, with offset range
[0 : 0][0 : 0]. In general, the stencil can be viewed as a many-to-
many set of edges from points in the read-set to points in the write
set. The stencil in Fig. 6(a) is an all-gather or gather-gather (gather
in both dimensions) stencil, i.e., at iteration point [i, j], we read
from IN[i− k : i+ k][ j− k : j+ k] and write to OUT[i][ j]. For the
all-scatter or scatter-scatter stencil, at iteration [i, j], we read from
IN[i][ j] and write to all points in OUT[i− k : i+ k][ j− k : j+ k].

For the gather-gather stencil, the total computation may be viewed
as a set of edges in a bipartite graph from IN[0 : N− 1][0 : N− 1]
to OUT[k : N− k−1][k : N− k−1]. Any order of execution of the
set of computation edges in this bipartite graph is valid. This can

be done by creating an arbitrary modified stencil that has exactly
the same set of edges as the original stencil, but is moved around
in the Cartesian space. Consider a bipartite graph with the read-set
vertices on one side and the write-set vertices on the other. Initially,
for an all-gather stencil, we have n× n points of IN[−k : k][k : k]
and a single output point OUT[0][0] with an edge from each input
point to the single output point. The edges can be moved around
as long as the orientation is not changed, i.e., the shift between the
source point on OUT and the sink point on IN is preserved. For
example, the edge from IN[−1][−1] to OUT[0][0] can be shifted to
go from IN[0][−1] to OUT[1][0] or from IN[0][0] to OUT[1][1] or
from IN[1][0] to OUT[2][1], etc.

A gather-scatter stencil is formed by shifting the edges so that the
footprint on IN is only [0][−k : k] but this changes the footprint in
OUT to [−k : k][0]. Many other configurations are possible; the only
constraint is that all stencil edges are retained with their original
orientations. Table 1 shows different stencils equivalent to the 9-
point gather-gather stencil. The read-set vertices are as the solid
purple circles and the write-set elements are the beige annuli.

The different stencil shapes differ in their register requirements as
well as the number of loads and stores from memory required as-
suming REGS registers are available. For the gather-gather stencil,
the write-set is a single element, all of whose updates happen in a
single step. Thus a single register is needed for the write-set, and
the IO cost is one store per iteration space point. The read-set has n2

elements of which n2− n will be reused at the next iteration point
[i][ j + 1]. In order to achieve this reuse, n2 − n registers will be
needed. At each iteration space point, a new set of n input values of
IN will be loaded. The register requirement and the number of loads
and stores are summarized in Table 1 for various equivalent sten-
cils, including scatter-scatter, gather-scatter, scatter-gather, and
a non-symmetric compact stencil with a read-set and write-set of
four elements in a 2×2 configuration.

Overview of the approach. Our end-to-end optimization pro-
cess involves the following steps, and is further described in [31]:
1. Extract an internal representation of the input code using poly-

hedral compilation concepts.
2. Create a space of abstract scatter/gather alternatives along with

different unrolling factors for the program.
3. For each point in the space, analytically compute the expected

I/O per loop iteration and the expected register count needed to
exploit full reuse along the loop.

4. Prune the space of candidate variants based on their arithmetic
intensity relative to the original code using our analytical model.
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Figure 8: Performance as rate of stencil applications per second

5. For each point remaining, scatter/gather the appropriate dimen-
sion, unroll, generate C code, and perform complementary op-
timizations for vectorization.

6. Perform auto-tuning to find the best performing variant on the
target machine.

Experimental validation. Comprehensive experimental eval-
uation is presented in [31], we summarize here results on a four-
core Intel Core i7-4770K CPU (Haswell micro-architecture) run-
ning at 3.5GHz with AVX2 SIMD instruction set including fused-
multiply-add (FMA) instruction. Its theoretical peak is 112 GF/s
(224GF/s if using only FMA instructions). All benchmark variants,
including the reference codes, were compiled with ICC 13.1.3 us-
ing the -std=gnu99 -Wall -O3 -fp-model fast=2 -fma -over
ride-limits -wd13383 -xHost -openmp flags. We used a set
of synthetic high-order stencil benchmarks with varying stencil size
and number of neighbors with non-zero weight. We generated 2D,
3D and 4D stencils, with either a diamond-shaped set of non-zero
coefficients in the weight matrix (others outside the diamond are
necessarily zero), or the full weight matrix being with all non-zero
coefficients within a n-cube. Benchmarks are named xD-{d,f}-yy
where x is the dimension and yy size, i.e., the furthest non-zero
weights in any direction. Diamond stencils are represented with d
and full stencils with f.

Fig. 8 shows performance in stencils computed per second. Based
on results of the Stream benchmark, the practical peak rate for any
stencil is 1100 MStencil/s. If perfect reuse of all data in the bench-
marks was possible, we would expect the rate of stencils/s to remain
flat until the problem becomes compute bound, however we ob-
serve that the reference codes demonstrates a rapid decrease as the
stencil size increases, and since the GFLOP/s of these benchmarks
is not near peak performance of the machine the codes have become
artificially bound. A key observation is that with our approach, the
rate of stencil application is essentially maintained even when the
order is increased, meaning more accurate discretizations (possibly
converging faster) can be used without performance penalty.

5. OPTIMIZATIONS FOR GPUS
Challenges faced. Efficient GPU programs typically involve
the scheduling of hundreds of threads per streaming multi-processor
to hide memory latency. The streaming multi-processors schedule
threads at the granularity of warps, which comprise 32 threads on

previous and current generation architectures. The thread scheduler
time-shares the streaming multi-processors between all currently
active warps, and thread context switches incur no overhead.

Several sources of inefficiency can arise when developing GPU
applications. GPU devices provide a very high off-chip memory
bandwidth (up to 192 GB/sec for the GTX 580), but this band-
width is only achievable with coalesced access. Data from the
off-chip memory is transferred to the GPU device in contiguous
blocks and therefore high bandwidth can be achieved only when
requests by concurrent threads in a warp fall within such contigu-
ous blocks. When non-contiguous memory locations are accessed
by threads, the achieved bandwidth is much lower than the peak,
leading to stalling and wasted compute cycles. Branch divergence
is another source of inefficiency. Threads within a warp that follow
different control paths are serialized, again leading to wasted com-
pute cycles. Traditional approaches to time tiling of stencil com-
putations to enhance data reuse for CPUs do not translate well to
GPUs because they lead to uncoalesced memory access and diver-
gent branching of threads. Another challenge comes from shared
scratch-pad memory implemented as a banked memory system. If
concurrently executing threads in a block make requests to shared
memory locations in the same bank, a bank conflict occurs and
the requests are serialized. Therefore, to achieve optimal usage of
shared memory, concurrently executing threads should access data
from different banks. We have described an automated code genera-
tion approach to overcome these challenges, for the class of stencil
computations [17]. A brief overview is presented in the following.

Overview of the approach. Tiling for stencil computations
is complicated by data sharing between neighboring tiles. Cells
along the boundary of a tile are often needed by computations
in surrounding tiles, requiring communication between tiles when
neighboring tiles are computed by different processors. To com-
pute a stencil on a cell of a grid, data from neighboring cells is
required. These cells are often referred to as the halo region. In
general, to compute an N ×M block of cells on a grid, we need
an (N +n)× (M+m) block of data to account for the cells we are
computing as well as the surrounding halo region, where n and m
are constants derived from the shape of the stencil. For GPU de-
vices, the halo region needs to be re-read from global memory for
every time step as surrounding tiles may update the values in these
cells. This limits the amount of re-use we can achieve in scratch-



pad memory before having to go back to global memory for new
data. The new cell values produced in each time step must also be
re-written to global memory as other tiles may require the data in
their halo regions. In addition to the cost of going to global mem-
ory for each time step, global synchronization is also required to
ensure all surrounding tiles have completed their computation and
written their results to global memory before new halo data is read
for each tile.

To get around these issues, we use overlapped tiling [18] to reduce
the data sharing requirements for stencil computations by introduc-
ing redundant computations. Instead of forcing tile synchronization
after each time step to update the halo region for each tile, each tile
instead redundantly computes the needed values for the halo re-
gion. This allows us to efficiently perform time tiling and achieve
high performance on GPU targets.

Consider a simple 2-D Jacobi 9-point stencil like the one shown in
Figure 2. In order to compute one time step of an n×n tile, we need
to read (n+2)×(n+2) cells into scratchpad memory, compute the
stencil operation on each of the n×n points, then write back n×n
points to global memory. Now, let us consider the computation
of two time steps of the stencils on a single block, without having
to go back to global memory between the two time steps. If we
read (n+ 4)× (n+ 4) cells into memory, we can compute a (n+
2)× (n+ 2) tile of cells in the first time step, which includes the
results for our original n× n tile as well as the halo region needed
for the next time step. If we again apply the stencil operation to the
(n+2)× (n+2) tile, we correctly compute the inner n×n tile for
the second time step but the results computed in the halo region for
the second time step are not correct. However, this is not a problem
since we only care about the inner n× n region. An illustration of
this computation is presented in Figure 10.

1 for(t = 0; t < T; ++t) {
2 for(i = 1; i < N-1; ++i) {
3 for(j = 1; j < N-1; ++j) {
4 A[i][j] = CNST * (B[i ][j ] +
5 B[i ][j-1] + B[i ][j+1] +
6 B[i-1][j ] + B[i-1][j-1] +
7 B[i-1][j+1] + B[i+1][j ] +
8 B[i+1][j-1] + B[i+1][j+1]);
9 }

10 }
11 for(i = 1; i < N-1; ++i) {
12 for(j = 1; j < N-1; ++j) {
13 B[i][j] = A[i][j];
14 }
15 }
16 }

(a) (b)

Figure 9: Jacobi 9-Point Stencil. In (a), C code is shown for the
stencil, and in (b), the accessed data space is shown for one grid
point. The tan cell is the (i, j) point, and each red hashed cell is
read during the computation of the (i, j) cell.

Experimental validation. A comprehensive evaluation of the
proposed overlapped tiling technique can be found in [17]. Over-
lapped tiling was evaluated on an NVIDIA GTX 580 using the
CUDA 5.0 SDK. In general, overlap tiled codes outperformed their
CPU based counterparts, while not approaching the machine peak
of 198 GFlop/s. The GTX 580 relies upon fused multiply-add in-
structions to achieve this rate, however all benchmarks were strongly
biased towards add instructions, with a 3-10X ratio of adds to mul-
tiplies. Further, while GPU codes were optimized using overlapped

Logical Computation Actual Computation
at time t

Actual Computation
at time t+1

Elements needed at time t+1 Useless computation

Figure 10: Overlapped Jacobi 9-Point Stencil for T = 2.

tiling, other optimizations were not systematically applied. Finally,
3D stencil codes on the GPU were not time-tiled because of the sub-
stantial overhead introduced by computing the multidimensional
ghost regions.

6. OPTIMIZATIONS FOR FPGAS
Challenges faced. High level synthesis (HLS) tools for synthe-
sizing designs specified in a behavioral programming language like
C/C++ can dramatically reduce the design time especially for em-
bedded systems. While the state-of-art HLS tools have made it pos-
sible to achieve performance close to hand coded RTL designs from
designs specified completely in C/C++ [3], considerable manual
design optimization is still often required from the designer [8]. To
get a HLS friendly C/C++ specification, the user often needs to per-
form a number of explicit source-code transformations addressing
several key issues such as on-chip buffer management, choice of
degree of parallelism / pipelining, attention to prefetching, avoid-
ance of memory port conflicts etc., before designs rivaling hand
coded RTL can be synthesized by the HLS tool.

Most integrated circuits, especially for embedded systems, use on-
chip buffer memories for fast and energy-efficient access to the
most frequently used data. For FPGAs, the total data for the appli-
cation is typically much larger than on-chip memory capacity. In
contrast to general-purpose processors that use hardware-managed
caches to hold frequently accessed data, the use of on-chip buffers
with explicit copy-in and copy-out of data is a key optimization for
embedded systems [9]. By storing frequently accessed data in the
on-chip buffer, the bandwidth contention is decreased, and the over-
all performance increases significantly as the latency of accessing
on-chip data is significantly faster than off-chip accesses. A fully
automated approach for on-chip buffer management that consists
of promoting to local memory (e.g., the on-chip buffer) memory
references in the program is needed to achieve good performance
in a productive manner.

Overview of the approach. To address these problems, we
developed an automated compiler support based on the latest ad-
vances in polyhedral frameworks (e.g., [5,36]) to greatly reduce the
human design effort currently required to create effectively synthe-
sizable specification of designs using HLS tools. In particular, we
developed compiler support for source-to-source transformations to
optimize critical resources such as memory bandwidth to off-chip
memory and on-chip buffer capacity [27].

In our framework, we use a multi-stage process to automatically
optimize C programs for effective execution on a FPGA. Our ap-
proach uses design-space exploration to determine the best per-
forming program variant. Specifically, we search for best perfor-



mance through the evaluation of different rectangular tile sizes.
Our framework is built so that different tile sizes lead to different
program candidates, with distinct features in terms of the commu-
nication schedule, buffer size, loop to be tiled (e.g. when a tile size
of 1 is used for this loop), etc. Each candidate is built as follows.
1. We first transform the input program, using polyhedral loop

transformations. The objective is to restructure the program so
that data locality is maximized (e.g., the "time" between two
accesses to the same memory cell is minimized), and at the
same time the number of loops that can be tiled is maximized.
Tilable loops are tiled using a tile size given as input.

2. We then promote all memory accesses to on-chip buffers in
the transformed program, and automatically generate off-chip
/ on-chip communication code. Data reuse between consecu-
tive iterations of a loop is automatically exploited. The hard-
ware constraints on the maximal buffer size are automatically
satisfied, using a lightweight search algorithm that trades off
communication volume for buffer size.

3. We conclude the code transformation process by performing
a set of HLS-specific optimizations, such as coarse-grain and
fine-grain/task-level parallelism extraction.

Promoting the entire data accessed by a program to local memory
is often infeasible, in particular for FPGA design where the on-chip
buffer resource is limited. Therefore, we want to enable the promo-
tion of all program references to an on-chip buffer, while still con-
trolling its size. We chose to solve this problem by using the gran-
ularity of the loop iteration, for any of the loops in the program.
That is, given an arbitrary loop in the program (which may very
well be surrounded by other loops), our technique will compute the
minimal on-chip buffer size requirement and associated communi-
cations to execute one iteration of this loop, while exploiting the
reuse between consecutive iterations of said loop. This implicitly
offers a lot of freedom for the on-chip buffer size. By consider-
ing the innermost loop, its size will be similar to the number of
registers required to execute the computation. By considering the
outermost loops it will be equivalent to the entire data space of the
program. Any loop in-between will trade off communication count
for on-chip buffer size (and its associated static energy).

For example, in Figure 2 if we put on-chip the data accessed by one
full row i of data, we need to store the ith row of A and B, as well as
the (i−1)th and (i+1)th rows of A, leading to a buffer requirement
of 4.N. This buffer must be filled for each iteration of the i loop,
that is roughly T.N times (total communication volume is roughly
4.N2.T ). Putting on-chip the full computation (that is, along the t
loop on line 1) leads to a 2.N2 buffer requirement, but to be filled
only once (total communication volume is reduced to 2.N2). So,
the trade-off here is between a buffer size N times smaller versus a
communication volume increase of 2.T .

Our technique operates on each array individually, and promotes
optimally (under the framework constraints) all references to this
array into a dedicated on-chip buffer for this array. Our approach
is based on the concept of parametric polyhedral sets to express
the set of data elements being used at various specific points of
the computation. Those sets correspond exactly to the data to be
communicated, reused, or stored. We then use a polyhedral code
generator to scan those sets, and properly modify the program by
inserting the code that scans communications sets, and change main
memory references in the modified source code to on-chip buffer
references. To illustrate our approach, in Figure 11 we show the
sets DS(A,~Pj,0) (left) and DS(A,~Pj,−1) (center), the data space of
the immediately preceding iteration, for a pixel at position (i, j) of

the Jacobi2D example. By computing the difference or intersection
between those sets (right), we can capture naturally the data reused
between two consecutive iterations, as well as the data that is not
alive at the previous iteration and that needs to be brought from off-
chip locations. In our compiler, we compute these sets for various
situations (e.g., buffering a pixel, a row, a tile of pixels, etc.), then
use static cost models to determine which buffering scheme leads
to the best balance between on-chip usage and communication cost,
so as to maximize performance.
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Figure 11: Computation of the Reuse (top) and
PerIterCommunication (bottom) sets

Experimental validation. A comprehensive evaluation can be
found in [27]. We summarize here our results for two complex
stencil applications from the medical imaging domain, combining
several Jacobi-like and Seidel-like 3D stencils. Table 2 reports the
performance, in GigaFlops per second, of several different imple-
mentations of the same benchmark. out-of-the-box reports the per-
formance of a basic manual off-chip-only implementation of the
benchmark, without our framework, but using the Vivado HLS tool
chain. PolyOpt/HLS reports the performance achieved with our au-
tomated framework used on top of Vivado. From a user standpoint,
the same code is written as input to the system in the out-of-the-box
and PolyOpt/HLS-E cases, but in the latter case the code compiled
by Vivado is automatically generated by PolyOpt. Hand-tuned re-
ports the performance of a manually hand-tuned version serving
as our performance reference, from Cong et al. [8]. It has been
designed through time-consuming source code level manual refine-
ments, specifically for the Convey HC-1ex machine. It demon-
strated that a 4-FPGA manual design for denoise and segmentation
systematically outperforms a CPU-based implementation, both in
terms of performance improvement (from 2× to 20×) and energy-
delay product (up to 2000×), therefore showing the great poten-
tial of implementing such 3D image processing algorithms on FP-
GAs [8].

For segmentation, we outperform the manual design, despite the
clear remaining room for improvement our framework still has, as
shown by the denoise example. We mention that semi-automated
manual design can be performed on top of our framework, to ad-
dress optimizations we do not support, such as array partitioning.

Table 2: FPGA Performance on Imaging Benchmarks

Benchmark out-of-the-box PolyOpt/HLS hand-tuned [8]

denoise 0.02 GF/s 4.58 GF/s 52.0 GF/s
segmentation 0.05 GF/s 24.91 GF/s 23.39 GF/s

7. CONCLUSION
In this paper, we have provided a brief overview of the Stencil
Domain-Specific Language (SDSL) for regular stencil computa-



tions, which allows specification of the computations in a concise
manner. We then provided an overview of the SDSL optimization
ecosystem, a multi-target compiler for this DSL that generates op-
timized code for multi-core processors with short-vector SIMD en-
gines, for GPUs, and for FPGAs. We have illustrated a selection of
key challenges in optimizing stencils on each of these architectures,
summarizing our domain-specific-target-specific strategies to gen-
erate portable high-performance for stencils from a single program
source.
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