
Dynamic Analysis of Inefficiently-Used Containers

Shengqian Yang1 Dacong Yan1 Guoqing Xu2 Atanas Rountev1

1Ohio State University, USA 2University of California, Irvine, USA

ABSTRACT

The goal of this work is to identify suspicious usage of con-
tainers, as an indicator of potential performance inefficien-
cies. To analyze container-related behavior and performance,
we propose a dynamic analysis that tracks and records the
flow of element objects to/from container objects. The ob-
served interactions among containers and their elements is
captured by a container-element flow graph. This graph is
then analyzed by three detectors of potential container inef-
ficiencies, based on certain patterns of suspicious behavior.
In a promising initial study, this approach uncovered a num-
ber of performance problems in realistic Java applications.

Categories and Subject Descriptors

F.3.2 [Logics and Meaning of Programs]: Semantics of
Programming Languages—Program analysis; D.2.5 [Soft-

ware Engineering]: Testing and Debugging—Debugging
aids

General Terms

Algorithms, measurement, performance

Keywords

Container, performance, inefficiency

1. INTRODUCTION
Object-oriented applications commonly suffer from signif-

icant performance problems. Experience shows that many
such bottlenecks are caused by runtime bloat, a term refer-
ring to excessive memory usage and computation to accom-
plish simple tasks [7]. The underlying problem often comes
from inappropriate design/implementation choices. Com-
pilers typically cannot remove such bloat, because they lack
understanding of the higher-level application semantics.

An important aspect of bloat is the inefficient use of con-
tainers [14, 10, 6]. Languages such as Java and C# provide

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WODA ’12, July 15, 2012, Minneapolis, MN, USA
Copyright 2012 ACM 978-1-4503-1455-8/12/07 ...$15.00.

numerous container data types, and they are heavily used
by programmers. Containers can be misused in many ways.
For example, each concrete implementation of an abstract
data type may have different performance tradeoffs. Choos-
ing the most appropriate implementation is challenging, and
techniques exist to assist with this choice [10, 6]. Another
typical inefficiency is the unnecessary invocation of container
operations. For example, a container can be overpopulated
if many elements are added to it, but only few of them are
ever retrieved. While a static analysis has been proposed to
detect some of these potentially-redundant operations [14],
it does not consider interactions between containers, and
cannot take advantage of the full wealth of run-time infor-
mation in order to provide focused reports to the user.

A fundamental limitation of existing analyses of container
inefficiencies is that they consider each container individu-
ally without modeling container interactions (i.e., how ob-
jects flow from one container to another). Understanding
such interactions is necessary for developers to identify many
types of container inefficiencies. For example, in our studies,
we found a number of cases where an intermediate container
is created only to transfer elements to/from other contain-
ers. Eliminating this intermediate container can sometimes
result in a noticeable performance improvement.
Our Proposal. We propose a new technique to analyze the
run-time behavior of containers, in relationship with other
containers and the elements that flow between them. This
approach provides a global view of the container-related be-
havior of the program. At the core of this dynamic anal-
ysis is the construction of a container-element flow graph
(CEFG) in which nodes represent container objects and edges
represent the flow of elements to/from containers. Nodes
and edges are annotated with frequency information. Us-
ing this graph, various analyses can be developed to de-
tect container-related inefficiencies. We describe three such
detector analyses. The approach was implemented in the
Jikes Research Virtual Machine [5]. Our initial experience
is very promising: by inspecting the generated analysis re-
ports, we found and fixed significant container-related per-
formance problems in several Java applications.

2. REPRESENTING THE FLOW OF ELE-

MENTS AMONG CONTAINERS

2.1 Container-Element Flow Graph
Containers and Elements. A container is a data struc-
ture whose purpose is to store other objects (element ob-
jects), and to allow container clients to add and retrieve

these elements. For our language-independent problem def-
inition, a container object is an instance of some predefined
abstract data type T . We assume that T provides opera-
tions whose semantics is to add elements to the container,
as well as operations for retrieving these elements.
Basic Events. The run-time interactions of an element ob-
ject e with containers can be represented by abstract oper-
ations add(c, e) and retrieve(c, e) where c is some container
object. Other run-time behavior relevant to e can be ab-
stracted as events create(e), use(e), and assign(e). Event
create(e) represents the execution of the statement that cre-
ates e. Event use(e) shows that e was used for some purpose
unrelated to containers. The precise definition of “use” will
depend on the language; for example, as discussed shortly,
in Java one such use is the reading or writing of some field
of e. Finally, event assign(e) shows that (a reference to) e
is assigned from one memory location to another. Examples
include an assignment from one local variable to another,
parameter passing, returning a reference from a call, and
assignments from/to local variables to/from heap locations.
Flow Events. The lifetime of an element object e can be
represented as a sequence lifetime(e) of such events. This
sequence can be used to define certain flow events which
occur when an operation add(c, e) is observed.

(1) Create-to-Add Flow. Flow flow (e, c) occurs when el-
ement object e reaches container object c directly from the
statement that created e, without going through any other
containers. More precisely, in lifetime(e), there must exist
a subsequence of events starting with create(e), ending with
add(c, e), and containing only assign(e) intermediate events.
Furthermore, any intermediate assign , as well as the final
add , must obtain e from a memory location that is written
by the previous assign in the subsequence (or, in the case of
the first assign , by the create). This subsequence represents
the flow of e through memory locations (on the stack and
on the heap) due to assignments, calls, and returns.

(2) Retrieve-to-Add Flow. Flow event flow(c1, e, c2) oc-
curs if there exists a subsequence of lifetime(e) starting with
retrieve(c1, e), ending with add(c2, e), and containing only
assign(e) events. Any assign , and the final add , must ob-
tain e from a location that is written by the previous assign
in the subsequence (or by the retrieve , for the first assign).
This event shows that e was in c1, was retrieved from it, and
from there reached c2 without going in/out of another con-
tainer. Similarly, flow(c, e,use) occurs when e is retrieved
from container c, and flows to a statement that uses e, with-
out passing in/out of other containers along the way.

Consider an event flow(c1, e, c2) starting with retrieve(c1, e)
and ending with add(c2, e). An interesting case is when this
flow is pure. Suppose that there exists an event flow(c1, e,use)
which starts from the same retrieve(c1, e) and occurs before
the moment of time when add(c2, e) occurs. This means
that in the period of time between retrieving e from c1 and
adding e to c2, e was not merely propagated, but actually
served some useful purpose. In this case, flow(c1, e, c2) does
not represent pure flow. As discussed later, by identifying
pure flow events, we can detect certain inefficiencies.

(3) Retrieve-to-Other Flow. It is possible that an element
e obtained from a container c never flows into another con-
tainer. To account for this, we introduce flow(c, e,other)
events. Suppose that for some retrieve(c, e), there do not
exist any flow(c, e, c2) starting from this retrieve event. Cor-
responding to each such retrieve(c, e), we define a flow event

flow(c, e,other). Furthermore, if some flow(c, e,use) starts
from the same retrieve event, the retrieve-to-other flow is
not pure. In cases where this flow is pure, this means that
e was obtained from c but never used for anything.
Graph Nodes and Edges. The events described above
serve as basis for the container-element flow graph. Ev-
ery run-time object—element or container—is represented
by a graph node. Various abstractions can be used, and
our current implementation uses the standard approach of
representing an object by the allocation site that created it.
Each node n is annotated with a count objs(n) of the num-
ber of objects represented by n. For every n representing
container objects c, a count adds(n) shows the number of
add(c, e) events. A count retrieves(n) is defined similarly.
For every container node n, a node other(n) is added to
represent events flow(c, e, other), as described below.

If a node n1 represents element objects e and a node n2

represents container objects c, an edge from n1 to n2 indi-
cates that flow(e, c) occurred. The edge is annotated with
the count flows(n1, n2) of such flow events.

If n1 represents container objects c1 and n2 represents
container objects c2, an edge from n1 to n2 shows that
flow(c1, e, c2) was observed for some e. The edge is an-
notated with the count flows(n1, n2) of such flow events.
Furthermore, another count pure(n1, n2) shows how many
of these events represent pure flow.

If a node n represents container object c, an edge from
n to other(n) shows that for some e, event flow(c, e, other)
was observed. The edge is annotated with the count of such
flow events, as well as the number of them that are pure.
Detailed Example. The example in Figure 1 is derived
from the pmd benchmark in the DaCapo suite [1, 2]. This
example is based on a case study discussed in Section 4.
Method filterSource is invoked to filter out certain ele-
ments in list source (created at line 3). First, the elements
of source are added into an intermediate list interim. In
order to avoid duplicated elements, a set unique of unique
elements is maintained (and checked at line 19). After in-

terim is constructed, doFilter selects only the even integers
in it, adds them to another list (created at line 29), and re-
turns this list back to filterSource. Finally, the elements
after filtering are used to construct yet another list after-

Filter which is used as the return value of filterSource.
The CEFG for this example is shown in Figure 2. Node ni

corresponds to the allocation site at line i in Figure 1. Count
objs shows the number of objects created by this node. A
container node n shows the total number of add and retrieve
operations observed for objects represented by n. An edge
is annotated with the number of corresponding events.

The edge from n5 to n3 shows the flow of one hundred
Integer elements to the source list created at line 3. These
objects then flow into n13 and n14 (unique and interim)
due to the loop at lines 17–23. As part of this loop, every
element of source is used as a parameter in a call to con-

tains (line 19). For the purpose of the example, assume that
this method uses the value of the parameter to perform the
membership test. This use of the elements of source means
that the flows from n3 to n13 and n14 are not pure, which is
reflected by counters pure on the corresponding edges.

Inside doFilter, the hundred elements of n14 are used in
a call to intValue, which is represented by counters pure
on the edges to other(n14) and n29. Fifty of them flow to
res, represented by n29; the remaining fifty do not flow into

1 static List source;
2 public static void main(String []args) {
3 source = new ArrayList();
4 for (int i = 0 ; i < 100 ; i++) {
5 Integer integer = new Integer(i);
6 source.add(integer);
7 }
8 List result = filterSource();
9 System.out.println(result.toString());
10 }
11 public static List filterSource() {
12 Filter filter = new Filter();
13 Set unique = new HashSet();
14 List interim = new ArrayList(source.size());
15 List afterFilter = new ArrayList();
16 Iterator iterator = source.iterator();
17 while (iterator.hasNext()) {
18 Object eachAxisNode = iterator.next();
19 if (!unique.contains(eachAxisNode)) {
20 unique.add(eachAxisNode);
21 interim.add(eachAxisNode);
22 }
23 }
24 afterFilter.addAll(filter.doFilter(interim));
25 return afterFilter;
26 }
27 class Filter {
28 public List doFilter(List src) {
29 List res = new ArrayList(src.size());
30 Iterator iterator = src.iterator();
31 while (iterator.hasNext()) {
32 Object element = iterator.next();
33 if ((Integer)element).intValue() % 2 == 0) {
34 res.add(element);
35 }
36 }
37 return res;
38 }
39 }

Figure 1: Detailed example.

any containers, which corresponds to the edge from n14 to
other (n14). Due to the call to addAll at line 24, the fifty
elements from n29 flow to list afterFilter (node n15), and
this flow is pure, as indicated by the counters on the edge to
n15. The edge from n15 to other (n15) is due to the call to
toString at line 9; for illustration purposes, we assume that
this method retrieves all elements of n15 and uses them.

In this example, the pure flow from n29 to n15 presents a
typical case of inefficiency. List afterFilter is used as an
intermediate container with no benefit to the execution, and
can be eliminated (i.e., filterSource can directly return the
result of the call to doFilter at line 24). In our study of the
actual pmd application, we found an even more interesting
problem. The filtering is based on a set of filters, and this
set is often empty—that is, all elements of interim (n14)
have pure flow to afterFilter (n15). Creating specialized
code for this case can lead to substantial improvements.

2.2 Building the Graph for Java Programs
Containers and Their Operations. We chose to focus
on several widely-used container types in the Java libraries
that implement interfaces List, Set, and Map. Calls to op-
erations from these types are mapped to add and retrieve
events. This mapping is straightforward, but a few oper-
ations require more complex treatment. For example, the
call to addAll in Figure 1 is considered to be a sequence of
retrieve(c1, e) events, for all elements e of the container c1

returned by doFilter, followed by a sequence of add(c2, e)
where c2 is the container referenced by afterFilter.

n 5

o b j s = 1 0 0

n 3

o b j s = 1 , a d d s = 1 0 0

r e t r i e v e s = 1 0 0

f l o w s = 1 0 0

n 1 3

o b j s = 1 , a d d s = 1 0 0

r e t r i e v e s = 0

p u r e = 0

f l o w s = 1 0 0

n 1 4

o b j s = 1 , a d d s = 1 0 0

r e t r i e v e s = 1 0 0

p u r e = 0

f l o w s = 1 0 0

n 2 9

ob j s=1 , adds=50

r e t r i e v e s = 5 0

p u r e = 0

f l ows= 50

o the r (n14)

p u r e = 0

f l ows= 50

n 1 5

ob j s=1 , adds=50

r e t r i e v e s = 5 0

p u r e = 5 0

f l ows= 50

o the r (n15)

p u r e = 0

f l ows= 50

Figure 2: Flow graph for the pmd example.

Iterators in Java can be used to access or modify a con-
tainer. For the container types we analyze, there are several
related iterator types, and operations in these types are ac-
counted for by the analysis. For example, the call to next

at line 18 in Figure 1 is equivalent to a retrieve(c, e) event
for the underlying container c.
Tracking the Flow of Element Objects. A create(e)
event is simply the execution of the allocation site that cre-
ates e. Any subsequent assignments in which a (reference
to) e is assigned from one memory location to another are
tracked. The run-time dependences between such assign(e)
events (via the memory locations that store the references
to e) are also tracked. This is needed to identify occurrences
of events flow (e, c), flow(c1, e, c2), and flow (c, e, use) based
on the definitions from Section 2.1.

To identify occurrences of use(e) events, we consider state-
ments that make use of a variable v that references object e.
For example, field accesses via v.fld and calls via v.m() are
considered uses of e. Other examples include array accesses
v[i], expressions v instanceof X, comparisons v==v2 or
v!=v2, and uses of v as a parameter of native calls.

Whenever create , add , or retrieve is observed, the related
counter for the corresponding graph node is incremented. In
addition, for an add(c, e), the tracking information is used
to determine the source of e (its allocation site, or another
container) and whether e has been used since the start of
this flow. The flows and pure counters on the graph edge
are incremented correspondingly. Additional counters are
used to account for elements that have been retrieved but
have not yet reached another container, in order to record
flow(c, e,other) events and their purity.

2.3 Analysis Implementation
The proposed analysis for Java programs is implemented

in Jikes RVM 3.1.1 [5], using techniques similar to existing
work [16, 12]. The decision to implement the analysis inside
a virtual machine was made for convenience of implementa-
tion; the technique can be easily implemented with offline
bytecode instrumentation instead.
Shadow Locations. Each memory location containing an
object reference could potentially refer to an element object.
To track the source of this object, each location has a corre-
sponding shadow location. The shadow stores a reference to
a tracker object, which itself contains (1) a reference to the
CEFG node for the source of the element object, and (2) a
boolean flag for tracking use events. The CEFG node is ei-
ther the node for the allocation site that created the element
object, or the node for the allocation site of the container
from which this element object was retrieved last.

For local variables, the shadows are created by adding
symbolic registers to the internal representation used by
the VM compiler. For instance fields, shadow locations are
added inside the corresponding objects. For static fields
and array elements, various tables are used, and indices into
these tables are based on the field ID or the array index.
Run-time Construction of the CEFG. Each container
allocation site is assigned a unique ID at instrumentation
time, and this ID is written in the header of each container.
Upon add(c, e) or retrieve(c, e), the ID stored in c is used
to find the corresponding graph node. When retrieve(c, e)
occurs, some memory location x starts referring to the re-
trieved element e. A reference to a tracker object (which
itself refers to the graph node for c) is written to the shadow
for x. Subsequent assignments y = x copy the shadow of x
into the shadow of y. When the reference to e flows into an
add event, the shadows are used to determine the graph node
corresponding to the container from which e was retrieved,
and flow(c1, e, c2) is recorded. Events flow (c, e, use) are de-
tected in a similar fashion, and bookkeeping for them is done
through a boolean flag inside the tracker object. To handle
containers and elements accessed by multiple threads, locks
are used on tracker objects and CEFG elements.
Run-time Overhead. Although our prototype implemen-
tation is not optimized in any significant way, it exhibits
practical cost. The median running time overhead is 9.6×,
and the median memory overhead is 2.0×. These overheads
are lower than those for similar analyses with fine-grain flow
tracking (e.g., [16, 12]), and are acceptable for performance
tuning and debugging tasks.

3. DETECTING POTENTIAL CONTAINER

INEFFICIENCIES
The CEFG could be used as the basis for detector anal-

yses to identify containers that may be inefficiently used.
To illustrate this approach, this section describes three such
analyses, but additional detectors could be developed in fu-
ture work. Each detector defines graph-based metrics to find
and rank suspicious containers. The three detectors are pa-
rameterized by a threshold value for their metrics; a value
of 0.5 was used in all our experiments.
Detection of Intermediate Containers. Consider the
case when element objects e exhibit pure flow from one con-
tainer c1 to another container c2. This is a potentially in-
teresting case because c1 or c2 may be considered to be an

intermediate container whose existence is primarily moti-
vated by the need to replicate information available in the
other container, without actually using this information for
something useful. For example, in Figure 2, elements are
retrieved from n29 and added to n15 without any uses. In
this case we can eliminate the creation of either n29 or n15.

This analysis can be implemented as follows. For any
CEFG edge connecting two container nodes, we consider the
ratio (flows − pure)/flows . If this ratio is small (i.e., close
to zero), most of the flow is pure, which raises the following
question: if the flow is primarily used to populate the target
container, and not to perform useful work, is the existence of
both containers justified? When this ratio is smaller than a
predefined threshold, the edge is reported as suspicious. The
detector produces a ranked list of suspicious edges, ordered
by the value of the flows counter.

A special case of this analysis are edges from a container
node n to the corresponding node other (n). When the flow
along such an edge is mostly pure, most elements retrieved
from the container are never used and also are never added to
other containers, which may be a symptom of inefficiencies.
Detection of Underutilized Containers. This detector
analysis identifies container allocation sites that allocate a
large number of container objects, while very few element
objects are added to them. These containers are under-
utilized in that they are created for the purpose of storing
element objects, but end up storing only a very small num-
ber of them. Such containers consume more memory than
strictly necessary, due to the overhead of maintaining inter-
nal container data structures [8]. The cost of building and
then garbage collecting these data structures can sometimes
be problematic, and this cost may not always be justified.

For each container node n, the detector computes the ratio
adds(n)/objs(n). If this ratio is smaller than the predefined
threshold, n is reported as a producer of potentially under-
utilized container objects. The reported nodes are ranked
by the number objs(n) of allocated objects.
Detection of Overpopulated Containers. Consider a
different scenario, where a large number of elements is added
to a container—i.e., it is utilized substantially. However,
there can still be inefficiency associated with this container
if the program performs only a small number of retrieve op-
erations (e.g., smaller than the number of add operations)
[14]. The very reason the program stores objects in contain-
ers is to allow container clients to retrieve these elements.
The fewer times such retrievals occur, the less justified the
work and memory needed to populate a container.

This analysis computes, for a container node n, the ra-
tio retrieves(n)/adds(n). When the ratio is smaller than a
threshold, the containers represented by n are considered to
be potentially overpopulated. The analysis ignores nodes n
with adds(n) = 0, since they are clearly underutilized. The
reports are ranked by the number of add operations.

4. CASE STUDIES
To understand the suspicious containers identified by the

detectors, we performed case studies on Java programs used
in [16, 15]. Various interesting patterns of container-related
inefficiencies were detected. For illustration, we discuss a
subset of these case studies that exhibit a diversity of run-
time symptoms. With one exception, the problems described
below have not been reported by any prior work. The extent
and variety of these container-related inefficiencies provide

strong motivation for performing dynamic analyses of con-
tainers (e.g., based on the CEFG or similar abstractions).
pmd. In the pmd benchmark from DaCapo [1, 2], there ex-
ists a performance problem related to intermediate contain-
ers. The example in Figure 1 is based on this problem. In
class DefaultStep, two ArrayLists are created every time
evaluate is called. The first list is populated with elements
and is then transferred to a method which filters certain un-
necessary elements. After filtering, all remaining elements
are added to the second list. The filtering is performed based
on a set of filters. However, sometimes this set does not con-
tain any filters; thus, all elements added to the first list flow
to the second one, and this flow is pure. The detector of
intermediate containers (Section 3) reports this problem as
the top-ranked suspicious graph edge. There is a simple
specialization to address this inefficiency. A similar prob-
lem reported by the detector is due to flow during which a
non-empty set of filters is applied to an often-empty set.

These examples illustrate the importance of specializing
for the “simple” case which can be performed efficiently.
While such specialization is not advisable during develop-
ment, when functionality and correctness are the primary
concerns, it becomes important during performance tuning.

Another interesting example from this benchmark is re-
lated to overpopulated containers. The top-ranked alloca-
tion site reported by the detector of overpopulated contain-
ers is for a set created in class IdentitySet. A large num-
ber of elements are added to this set, but are never retrieved
from it. The sets are used to answer membership queries. To
implement the desired semantics, both the set elements and
the query objects are wrapped in wrapper objects before be-
ing processed with the set. Although fresh wrapper objects
are created for each query, it is easy to see that these wrap-
pers can be reused across queries. This simple optimization
eliminates about three million run-time objects.

The changes described above are semantics-preserving and
very easy to implement. After these changes, the running
time of the application is reduced by 13.6% and the number
of created objects is reduced by 12.5%.
lusearch. In this benchmark from DaCapo, we examined
the top-ranked underutilized containers and focused on two
of them that were highly suspicious because no elements
were ever added to them. These are extreme cases of under-
utilized containers, because the cost of creating and garbage
collecting them is not justified by any actual use. One such
container is created in class StandardTokenizer and is used
to store parse exceptions. In cases when no parse exceptions
occur, this container remains empty. A similar situation is
observed for an allocation site in class QueryParser. The
natural solution is to create these containers on demand
rather than up front. This is another example of special-
ization that can be introduced during performance tuning,
when the cost of up front container creation can be quanti-
fied by our analysis, and the programmer’s effort to intro-
duce a specialized on-demand solution can be justified.

The top-ranked overpopulated container is a Vector cre-
ated in class QueryParser. This container is used to store
the clauses that form a search query. In the case when there
is a single clause in the query, the container is still populated
with this clause, but nothing is retrieved: in the code, this
one clause is returned directly, which makes the container
redundant. The creation of the container can be postponed
until there is an attempt to add a second clause; at this time,

both the first and the second clause are added. This change
and the changes described earlier reduce the running time
by 4.8% and the number of created objects by 3.4%.
bloat. For the bloat benchmark from DaCapo, the top-
ranked overpopulated container is a set created by an allo-
cation site in class RegisterAllocator. This set is used to
compute the union of two existing sets. Once populated,
the union set is used only to compute the size of the union,
and its elements are not retrieved. However, there is a more
efficient way to compute this size. A counter can be initial-
ized to the size of the larger of the two given sets. Iteration
over the smaller set can check each element for member-
ship in the larger set, and the counter can be incremented
appropriately. Of course, it is easier for the programmer
to write code that explicitly constructs the union set and
simply calls size() on it, but this convenience comes with a
performance penalty. This way of thinking is not uncommon
for Java programmers: the container types are easily avail-
able in the standard libraries, and it is tempting to think of
them as primitive types, with little or no consideration for
the cost of their operations. In fact, this way of thinking is
often encouraged by the way Java (and similar languages)
are taught to students, where emphasis is put on code sim-
plicity and reuse. However, performance considerations will
have to come into the picture sooner or later.

The detector of intermediate containers highlighted an-
other problem with this computation. Based on the re-
ports, it became clear that the elements of the two sets be-
ing unioned can flow only to the union set, and this flow is
pure. In fact, these sets are created only to serve as wrap-
pers around existing sets, and they are redundant when the
size of the union is being computed. They can be easily elim-
inated without affecting program semantics. By rethinking
the implementation and introducing these two rather simple
optimizations, we achieved 15.6% reduction in running time
and 14.0% reduction in the number of allocated objects.
ps. In this DaCapo benchmark, the detector of intermediate
containers reports a large number of potentially problematic
nodes. We examined the five top-ranked nodes, and deter-
mined that all of them are due to improper use of stack
containers. As one example, a computation that determines
the stack size is implemented by transferring the elements
to a temporary stack, and then transferring them back to
the original stack. As another example, similar problems
are observed when an element needs to be retrieved from
a particular position in the stack, although the stack API
already provides an efficient way to achieve this. Acciden-
tally, some of these problems have been identified in [15]
by an unrelated static analysis. However, that analysis is
not designed specifically to address container-related ineffi-
ciencies, and identifies another symptom of the underlying
problem. Our dynamic detector of intermediate containers
strongly suggests that the element flow between the stack
containers is suspicious. After eliminating the inefficiencies
related to these five container allocation sites, the running
time of the benchmark is reduced by 13.5% and the number
of allocated objects is reduced by 56.0%.
soot. Soot, a Java optimization framework, extensively uses
containers. We ran soot-2.2.3 using as input the bytecode of
the antlr DaCapo benchmark. Among the top five reports
from the detector of intermediate containers, three alloca-
tion sites in class TypeVariable stood out. Upon exami-
nation, it became clear that there is a substantial amount

of data transfer between containers. A LinkedList is used
to store the parents of a type variable. This information
is needed as part of a type analysis of local variables. In
several places such a list is used to create an intermediate
TreeSet, which is then updated by adding or removing ele-
ments, and finally translated back into another LinkedList
which is remembered as the collection of parents. It is not
clear that it is necessary to use both lists and sets for this
functionality. We changed the code to use and remember
only sets, while being careful to preserve the semantics.

A similar case exists in class SmartLocal, where the ele-
ments of a list are purely copied into a set to ensure that
each element is unique. This set is not modified further
and is used only to check membership. By addressing these
problems related to intermediate containers, the modified
program shows 4.0% reduction in running time and 3.1%
reduction in the number of allocated objects.

5. RELATED WORK
Detecting Container-Related Inefficiencies. The work
in [4] and [13] focuses on container usage in order to detect
memory leaks. Some dynamic analyses make container se-
lection recommendations: Shacham et al. [10] apply a set
of rules to adaptively select Java containers for memory
improvements, while Jung et al. [6] combine profiling and
machine learning to take into account the architecture and
the input data when making suggestions. The work in [14]
uses a static analysis to infer container semantics and report
suspicious containers. However, applications of this analy-
sis are limited to detecting underutilized and overpopulated
containers, and do not consider interactions between con-
tainers. In addition, it is impossible to use this technique
to find hot inefficiently-used containers (i.e., containers that
are more likely to be bottlenecks), which is a typical problem
for all static analyses of performance problems.

As described in Section 1, this existing work focuses on the
usage of a single container, and thus may miss opportunities
of detecting inefficiencies that involve multiple containers, or
the flow of elements outside of containers. In addition, the
CEFG proves a unified view that could be used for various
other analyses of container-related performance problems.
Detecting Run-time Bloat. Mitchell et al. [9] analyze the
program data flow to detect bloat, and their later work [8]
computes health signatures to locate memory-demanding
data structures. Dufour et al. [3] use a blended escape
analysis to find excessive use of temporary data structures.
Jolt [11] identifies program regions that make extensive use
of temporary objects. Xu et al. [12] employ abstract slicing
to find low-utility data structures based on the numbers of
instructions executed to produce and use a run-time value.
The work in [16] profiles the program to track reference prop-
agation in order to uncover low-benefit object allocations.

Our work differs from all these existing approaches in that
it leverages the higher-level container semantics, tracks in-
teractions between multiple containers, and specifically tar-
gets container-related performance inefficiencies. This al-
lows programmers to quickly find and remove bloat by fo-
cusing on this important category of inefficiencies.

6. CONCLUSIONS AND FUTURE WORK
We propose to capture the flow of element objects across

container boundaries, in order to identify performance prob-

lems related to container behavior. This flow is represented
by a container-element flow graph. This graph, in its cur-
rent form or with additional metrics for nodes/edges, could
serve as the basis for various analyses of container usage.
We propose three such analyses, and discuss case studies in
which interesting container inefficiency patterns are uncov-
ered by them. Significant improvements can be achieved by
manually optimizing the reported suspicious containers.

These initial studies are promising, as they suggest that
container-focused optimization is a legitimate target for per-
formance analysis and tuning. It is important to raise the
awareness of the programmer about the cost of seemingly in-
nocent use of well-known container types. Although it may
be convenient to think of such types as if they were primitive
types, the performance implications of such thinking cannot
be ignored. The proposed approach can assist programmers,
both through the detectors presented here as well as other
detectors developed in future work, to detect and eliminate
container-related performance problems.

7. ACKNOWLEDGMENTS
We thank the WODA reviewers for their feedback. This

material is based upon work supported by the National Sci-
ence Foundation under CAREER grant CCF-0546040, grant
CCF-1017204, and by an IBM Software Quality Innovation
Faculty Award. Guoqing Xu was supported in part by an
IBM Ph.D. Fellowship Award.

8. REFERENCES
[1] S. M. Blackburn et al. The DaCapo benchmarks: Java

benchmarking development and analysis. In OOPSLA,
2006.

[2] DaCapo Benchmarks, www.dacapo-bench.org.
[3] B. Dufour, B. G. Ryder, and G. Sevitsky. A scalable

technique for characterizing the usage of temporaries in
framework-intensive Java applications. In FSE, 2008.

[4] D. L. Heine and M. S. Lam. Static detection of leaks in
polymorphic containers. In ICSE, 2006.

[5] Jikes RVM, jikesrvm.org.
[6] C. Jung, S. Rus, B. P. Railing, N. Clark, and S. Pande.

Brainy: Effective selection of data structures. In PLDI,
2011.

[7] N. Mitchell, E. Schonberg, and G. Sevitsky. Four trends
leading to Java runtime bloat. IEEE Software, 27(1), 2010.

[8] N. Mitchell and G. Sevitsky. The causes of bloat, the limits
of health. In OOPSLA, 2007.

[9] N. Mitchell, G. Sevitsky, and H. Srinivasan. Modeling
runtime behavior in framework-based applications. In
ECOOP, 2006.

[10] O. Shacham, M. Vechev, and E. Yahav. Chameleon:
adaptive selection of collections. In PLDI, 2009.

[11] A. Shankar, M. Arnold, and R. Bodik. JOLT: Lightweight
dynamic analysis and removal of object churn. In
OOPSLA, 2008.

[12] G. Xu, M. Arnold, N. Mitchell, A. Rountev, E. Schonberg,
and G. Sevitsky. Finding low-utility data structures. In
PLDI, 2010.

[13] G. Xu and A. Rountev. Precise memory leak detection for
Java software using container profiling. In ICSE, 2008.

[14] G. Xu and A. Rountev. Detecting inefficiently-used
containers to avoid bloat. In PLDI, 2010.

[15] G. Xu, D. Yan, and A. Rountev. Static detection of
loop-invariant data structures. In ECOOP, 2012.

[16] D. Yan, G. Xu, and A. Rountev. Uncovering performance
problems in Java applications with reference propagation
profiling. In ICSE, 2012.

