Identifying Data Transfer Objects in EJB Applications

Alexandar Pantaleev
Ohio State University
pantalee @cse.ohio-state.edu

Abstract

Data Transfer Object (DTO) is a design pattern that is
commonly used in Enterprise Java applications. Identifica-
tion of DTOs has a range of uses for program comprehen-
sion, optimization, and evolution. We propose a dynamic
analysis for identifying DTOs in Enterprise Java applica-
tions. The analysis tracks the reads and writes of object
fields, and maintains information about the application tier
that initiates the field access. The lifecycle of a DTO is rep-
resented by a finite state automaton that captures the rele-
vant run-time events and the location of the code that trig-
gers these events. We implemented the proposed approach
using the JVMTI infrastructure in Java 6, and performed a
study on a real-world Enterprise Java application which is
deployed for commercial use. Our results indicate that the
dynamic analysis achieves high precision and has accept-
able overhead.

1 Introduction

Data Transfer Object (DTO) [6, 1, 25] is a design pat-
tern that is commonly used in distributed systems in gen-
eral and Enterprise Java applications in particular. Every
method call made to a business object in an enterprise sys-
tem is potentially remote. In older Enterprise JavaBeans
(EJB) applications such remote invocations use the network
layer regardless of the proximity of the client to the server,
creating network overhead. Such method calls may perme-
ate the network layers of the system even if the client and
the enterprise application layer are both running in the same
Java Virtual Machine (JVM). When multiple attribute val-
ues need to be obtained, using multiple calls to getX meth-
ods (one per attribute) is highly inefficient.

A DTO, also called a transfer object or a value object,’
encapsulates a set of values, allowing remote clients to re-
quest and receive the entire value set with a single remote
call. In EJB applications, in most cases a DTO is an exact

'Note that a DTO is different from the GoF Value Object pattern [11].

Atanas Rountev
Ohio State University
rountev @cse.ohio-state.edu

replica of the state of an entity bean; such beans serve as the
liaisons between the application layer and the database.

The goal of our work is to define a dynamic program
analysis that identifies classes which implement the DTO
pattern. The identification of DTOs is useful in several
contexts. First, it can assist program comprehension by
pointing out instances of this Enterprise Java pattern; this
can also be used to create additional documentation (e.g.,
JavaDoc comments). Second, DTOs may involve serializa-
tion, which can create performance bottlenecks [20, 17]. As
a performance optimization, identified DTOs can be sub-
jected to customized serialization mechanisms (i.e., type-
aware serialization and acyclic-graph serialization [27, 22]).
Finally, identifying DTO instances is an important step to-
wards software evolution for migrating Java Enterprise ap-
plications based on the older EJB 2 specifications to the new
EJB 3 model. In EJB 3, entity beans can be detached from
the persistence context related to a database, modified else-
where in the application, and merged back to the respec-
tive persistence context. As DTOs in older EJB applications
usually mirror the state of entity beans, it is highly desirable
to simplify the design by using the same entity bean object
to represent state throughout the application layer stack.

Contributions. Our work has two specific contributions:

e Dynamic analysis. We propose a dynamic analysis for
identifying DTOs in Enterprise Java applications. The
analysis tracks the reads and writes of object fields,
and maintains information about the application tier
that initiates the field access. The lifecycle of a DTO
is represented by a finite state automaton (FSA) that
captures the relevant run-time events and the location
of the code that triggers these events.

o Experimental study. We implemented the proposed ap-
proach using the JVMTI infrastructure in Java 6, and
performed a study on a real-world Enterprise Java ap-
plication — the J2EE Certificate Authority, which is
deployed for commercial use on a number of web sites.
Our results indicate that the dynamic analysis achieves
high precision and has acceptable overhead.

> Web Tier

9
Qe
:
A
I
=
—

HTML

A

@

DTOs

Y

DTO: Entity
EJB Ti > >
er Beans | >

Database

]

JVM / Application Server Context

Figure 1. Structure of a JEE application.

2 Background and Problem Statement

A Java Enterprise Edition (JEE) application consists of
layers, or tiers. The data tier manages the organized infor-
mation that the application needs. The usual participants
in this tier are database management systems and LDAP
repositories. The next layer is the EJB tier, which contains
the entire business logic of the application — it manipulates
data obtained from the data tier and passes along the results.
The web tier, which is not always present, obtains the pro-
cessed data from the EJB tier and presents it to the client’s
web browser. This structure is depicted in Figure 1.

The EJB tier usually provides various means for clients
to access it. There are interfaces to both clients within the
same JVM (i.e., the web tier) or remote clients. Thus it
is possible for a user to access the functionality of a well-
designed JEE application by going to the web site of the
application and browsing its web tier, or by running a desk-
top application designed specifically for that purpose, which
connects directly to the EJB tier through Java RMI or a sim-
ilar remoting mechanism.

2.1 Uses of Data Transfer Objects

The information that a client (be it the Web tier or a
remote application) receives from the EJB tier could be a
primitive value, a Java Collection object, or a DTO that is
specific to the particular enterprise application. The client
may also create DTOs and pass them to the EJB tier in or-
der to decrease the network overhead. A DTO may even
be created in one tier (EJB, web, or remote client), carry its
state to another tier, and then the same object may be used
to carry new state back to the tier where it was created. This
more complex pattern is referred to as Updatable DTO.

The single most important part of the definition of a DTO
is that it must be capable of being passed over the wire. In-
deed, there are multiple explanations and/or definitions of
the DTO design pattern [6, 1, 25], but the only property
they all strictly require of a DTO class is that it must imple-

public class UserDataVO implements Serializable {
private String username;
private String subjectDN;
private int caid;
private String subjectAltName;
private String subjectEmail;
private String password;
private int status;
private int type;
private int endentityprofileid;
private int certificateprofileid;
private Date timecreated;
private Date timemodified;
private int tokentype;
private int hardtokenissuerid;
private ExtendedInformation extendedinformation;
public void setUsername (String user) { ... }
public String getUsername() { ... }
public void setDN(String dn)
public String getDN() { ... }
public int getCAId() { ... }
public void setCAId(int caid) { ... }

Figure 2. A DTO example from EJBCA.

ment either interface java.io.Serializable or (in extremely
rare cases) java.io.Externalizable. Figure 2 shows a part of
a DTO class from the EJB Certificate Authority (EJBCA
[9]) application used in our experimental study.

2.2 DTO Lifecycle

A DTO passes through several states during its lifecy-
cle. In State 1, the object has just been created, and it does
not yet carry any application-specific state, meaning that its
fields have not been initialized. Populating the just-created
DTO with application state by initializing its fields leads to
State 2. When in State 1 or State 2, the DTO exists within
the same JEE tier (we will refer to it as Tier 1); this is usu-
ally the EJB tier. The fields of the DTO may be accessed
and/or modified in Tier 1 after initialization for various rea-
sons, for example reading a field indicating the application-
specific status of the DTO.

The DTO enters State 3 when it is passed to an object
belonging to a different tier (Tier 2). The application state
carried by the DTO is read and/or written in Tier 2. The
DTO then might be passed back to State 4 in Tier 1, where
its data is read and potentially modified again. In fact, the
object can “oscillate” between State 3 and State 4. Finally,
when the use-case ends, the DTO is prepared for garbage
collection (in either Tier 1 or Tier 2) and enters State 5. The
FSA for this lifecycle is shown in Figure 3.

2.3 Problem Definition

The goal of our work is to perform dynamic analysis
of the execution of a JEE application in order to identify

Tier 1

Tier2
read or

write fields

prepare for

garbage
collection

read or
write fields

/

read or
write fields

read or
write fields

prepare for
read or garbage
write fields collection

Figure 3. Lifecycle of a DTO.

classes whose instances implement the DTO pattern. To
achieve this goal, the analysis tracks the lifecycle events of
potential DTO objects, and matches the observed sequence
of events (on per-object basis) with the DTO FSA. The key
research questions that need to be answered are as follows:

e What specific kinds of run-time information should be
collected during the dynamic analysis, and how should
this information be used to identify DTO objects?

e What is the false positive rate? That is, how often does
the analysis observe objects whose behavior matches
the DTO state transition diagram, even though these
objects do not actually implement the DTO pattern?

e What is the false negative rate? In other words, how
many DTO objects violate the pattern described above,
and therefore are not reported by the analysis?

e What is the run-time overhead of the analysis?

3 Dynamic Analysis for DTO Identification

DTOs always carry state, and sometimes also implement
application logic. Our approach is focused on the state,
which makes it unnecessary to track method call/return or
entry/exit events. To identify DTOs, the analysis tracks field
accesses (reads and writes) for objects of potential DTO
classes, together with the location of the code that triggers
the events. The relevant run-time events are observed with
the help of the Java Tool Interface (JVMTI), which provides
a portable and standardized infrastructure for implementing
our dynamic analysis.

Processing at class loading. Classes that are DTO candi-
dates are all Java classes that (1) belong to the enterprise ap-
plication, and (2) implement interface java.io.Serializable.

ClassLoad event
caught

Class part of
JEE application?

Class
Serializable?

Flag all class fields
to send read / write
events

7.}

Figure 4. Processing at class loading.

The analysis intercepts all class load events within the ap-
plication server’s JVM, considers whether the loaded class
is a DTO candidate, and if so, tags all its fields. Tagging
enables run-time events related to tagged fields: whenever a
field in such a class is accessed (read or written) anywhere
within the same JVM, a JVMTI event is generated and pro-
cessed by our analysis. Events are generated for a tagged
field regardless of whether the field is static (i.e. the field
directly pertains to a DTO candidate class) or instance (i.e.
the field belongs to an object that is an instance of a DTO
candidate class). Figure 4 illustrates this component of the
analysis.

Processing of field reads and writes. When a field read
or a field write event is observed, the analysis identifies the
object that caused that event and the location (i.e., applica-
tion tier) of that object. Figure 5 summarizes this process-
ing. To find the object that caused the event, the analysis
obtains a handle to the call stack of the current thread. A
traversal of the stack frames, starting from the most recent
one, identifies the first method that belongs to an applica-
tion class different from the class that the field belongs to.
The receiver object of that method is the one accessing the
candidate DTO.

The analysis has to consider the state of the run-time call
stack because it is very common for DTOs to implement
getter and setter methods. If a field is read through a getter,
or written through a setter, the top call stack frame would be
within the context of a method belonging to the same class
as the field. However, we are interested in the object that
caused the field read or write to happen in the first place.

Note that the traversal of the call stack must identify a
method that belongs to an application class. This is nec-
essary due to the frequent use of reflection in JEE ap-
plications and application servers. We match the cur-
rent frame method’s class against the packages of the JEE
application to ensure that we do not identify the cause

¥

Try accessing the custom
data structure related
1o the feld's object

Obtain the next

method belongs
to JEE app?

method belongs
1o the class of
the field?

Set the "moved"
flag of the fields's
object

i the methoa
"

Figure 5. Processing of field reads/writes.

of the field read/write event as a java.lang.Class object,
java.lang.reflect. Method object, or some other irrelevant
object which is only used as part of a mechanism internal
to the application server.

Once the analysis pinpoints the method causing the field
read/write event, it determines the tier that contains the
method’s declaring class, and thus the tier that accesses the
DTO candidate. This determination is done using precom-
puted lists of class names for each application tier. A simple
static analysis of the package hierarchy of the JEE applica-
tion can be used to create such lists. JEE applications usu-
ally follow a strict package hierarchy, with web tier classes
consolidated into a package (or a package hierarchy), EJB
tier classes consolidated in another package hierarchy, etc.
The application is even deployed as a combination of differ-
ent modules — for example, a web module is deployed as
a .war archive, and is strictly separated from other modules.
We use that information to find the location of the object (or
class, if the method is static) that caused the field read/write
event. That location (i.e., application tier) is also the current
location of the DTO candidate.

The analysis maintains information about a DTO can-
didate object, including the fully-qualified class name, the
location of its creation, as well as a flag indicating whether
the object has moved to a different location during its life-
time. When a field read/write event is observed and the cur-
rent location of the DTO candidate is identified, the analysis
checks whether this is the first such event ever to happen for
that object. If this is the case, the object has just been cre-
ated, and is entering State 2 of its lifecycle. The location
(i.e., tier) of its creation is recorded as the object’s current
location.

If this is not the first such event, the object has already
been accessed. If this is not a DTO, its current location

Object Free
event caught

!

obtain data structure
related to object

Object is a DTO.

object moved
from the location
ofits creation?

Figure 6. Processing at garbage collection.

should always be the same as the location of its creation.
If the object a DTO, however, it may change its location,
which means it might be entering State 3 of the DTO life-
cycle. If the location of the DTO candidate is different from
the location of its creation, the “moved” flag is set to true,
which essentially means that the object is marked as a DTO.

Processing at garbage collection. When a DTO candi-
date is being garbage collected, the analysis observes the
corresponding event and processes it as outlined in Figure 6.
At this time no information about the object is accessible —
including its class name — so we have to rely on our cus-
tom data structure for all information related to that object.
At this stage the analysis simply checks whether the object
that is being garbage collected has moved from the loca-
tion of its creation, and if so, the object’s class is reported
as a DTO class. Our implementation ensures that we ob-
serve a garbage collection event for every DTO candidate
by aggressively forcing garbage collection through JVM’s
internal mechanisms.

4 Implementation Details

We used the Java 6 version of the JVM Tool Inter-
face (JVMTI) to implement the dynamic analysis outlined
above. JVMTI provides the various capabilities we need,
as well as the required event hooks to the internal work-
ings of a Java 6 JVM. Our code is written completely in
C, and interfaces with the JVM through the Java Native In-
terface mechanism, of which JVMTI is an extension. The
JVMTI capabilities that our tool requires (and enables) are
the ability of the JVM to generate field read events, field
write events, object free events, and the capability for our
agent to set and get object tags.

JVMTI provides the useful capability for agents to set
and get object tags, which we use extensively. Unfortu-
nately, there is a constraint on the use of JVMTI object tags
— an object tag is a single integer, which is supposed to
be used by agents as an internally-generated (possibly auto-
incrementing) key. A single integer of 32 bits cannot fit all

the information tracked about an object. Since our agent is
written in C, we simply use for the object tag (of type inte-
ger) the memory address of an instance of our custom data
structure. The analysis allocates memory for an instance
of its custom data structure the first time an object is used,
and populates the object’s tag with the memory address of
that instance. During the lifetime of the object, the agent
casts the tag from an integer to pointer and vice versa as
needed. Finally, when the object is being garbage collected,
the analysis also deallocates the memory used by the asso-
ciated data structure.

We did consider tracking method entry and exit events
instead of field read and write events. Since our goal is
DTO detection, which can be achieved through tracking
state changes and their location, both sets of events would
be able to produce results suitable for interpretation. How-
ever, there is an important difference in the implementation
of these event hooks in JVMTI. Once the capability of send-
ing method entry/exit events is enabled, every single such
event (i.e. every call stack push or pop) is reported, which
introduces very significant overhead. On the other hand, it
is possible to flag only certain fields, and manipulating only
those fields would trigger field read/write events. To eval-
uate run-time overhead, we performed a simple test with
only method entry/exit events enabled. The EJB applica-
tion server took over two hours to initialize and start, with
no enterprise applications running or even deployed. As a
result of this test, we decided to track state changes through
the much more lightweight field read/write events.

A useful optimization that JVMTI provides automati-
cally is its sending garbage collection events only for ob-
jects which have had their tag set. This functionality ensures
that events are sent when objects tracked by our analysis are
garbage collected, but no overhead is incurred for any other
objects. We have not made any other efforts to optimize
the implementation of the algorithm or the data structures.
Clearly, there is ample room for improvement in terms of
optimizations, which will be pursued in our future work.

5 Experimental Study

The dynamic analysis was evaluated on EJBCA [9] —
the J2EE Certificate Authority version 3.4.1, running on the
JBOSS Application Server version 4.0.5 [13]. EJBCA is a
J2EE 1.3 (EJB 2.0) application consisting of approximately
seven hundred Java classes. It was chosen for our exper-
iments because of its size, robustness, source code avail-
ability under the Lesser General Public License (LGPL),
and the fact that it is an industrial-strength enterprise ap-
plication that has been successfully deployed on a num-
ber of web sites. JBOSS currently is the most widely
used Java Enterprise application server, and its source code
is available under the LGPL. We used HSQLDB — the

Java-based database engine that is bundled with JBOSS
— for the database layer. The machine used for the ex-
periments has an AMD Athlon XP 2200+ CPU running at
1798.751 MHz with 1 GB RAM, under Ubuntu 6.06 LTS
GNU/Linux. JBOSS, together with EJBCA and HSQLDB,
was run through Sun’s Java 6 JVM.

Analysis precision. We tested various uses of EJBCA by
accessing the web tier from a web browser. The results can
be summarized as follows. There were a total of 132 classes
that implement java.io.Serializable and are part of EJBCA,
and whose bytecode was loaded from disk by the JVM for
potential execution. Since we had no other way of detect-
ing the actual EJBCA DTOs, and because documentation is
almost nonexistent, we had to manually inspect the source
code of every potential DTO class (i.e., each of these 132
classes) and decide whether that class was a DTO or not
based on our experience with JEE applications. After this
manual analysis, 13 out of the 132 classes were deemed to
be DTO classes. Of those 13, 11 were actually used by
EJBCA when the test cases were executed. (The other two
remained loaded and prepared, but unused — no objects
were instantiated from them at any point.) Ideally, the dy-
namic analysis would report these 11 classes.

The dynamic analysis reported 11 classes, of which 10
were DTO classes as determined by he manual examina-
tion of the code. These 10 classes demonstrated various
levels of complexity of behavior. There were classes that
were true DTOs and nothing more — they only had fields,
constructors, getters, and setters. There were classes that
implemented java.lang.Comparable in addition to being
DTOs, which means they had additional logic for compari-
son. There were classes that had many fields, with the corre-
sponding getters and setters, but also had methods capable
of returning additional information based on the values of
the fields and complex hashing algorithms. Finally, there
was a class org.ejbca.util. Query that had four fields, two of
which were Vector references, but it never returned them
directly. The fields of that class were only used to answer
certain boolean queries through corresponding methods.

The single false positive that our analysis reported was
org.ejbca.util. Query. This class may actually be consid-
ered a DTO. It was reported by the analysis because its in-
stances move between the JEE tiers. The problem is that
these Query instances never allow other objects to have di-
rect access to their fields through setter and getter methods,
and as such the class does not fit the “standard” definition
of a DTO. Thus, in the manual examination of the code it
was classified as a non-DTO class. However, the purpose
of this class is still to carry data between the tiers, and it
allows some access (albeit very circumspect) to this data.
Arguably, this class implements the DTO pattern “in spirit”.

Of the 11 classes that were manually determined to be
DTOs and were also used during the execution of the test

cases, 1 class was not reported by the analysis — that is,
this was a false negative. The reason the class was not re-
ported is because it was wrapped by another DTO class.
The agent detected the wrapper DTO, not the inner one, be-
cause the cause for all reads/writes for the inner DTO is ac-
tually the wrapper DTO, according to the analysis algorithm
(the wrapper is different from the inner DTO, but it still is
a part of EJBCA, and belongs to the same tier). Conse-
quently, according to the dynamic analysis, the inner DTO
has never moved because all locations that cause field reads
and writes (i.e., methods of the wrapper DTO) are part of
the same tier as the inner DTO.

In summary, the analysis correctly identified 10 DTOs,
and had one false positive and one false negative. These
promising results indicate that DTO identification can be
performed with high precision using the proposed run-time
analysis techniques.

Analysis cost. We measured the start-up time of JBOSS
with EJBCA deployed with and without our agent running
in the background. The purpose of this test is to estimate
the startup overhead due to our analysis. The application
server started completely in 1 minute and 32 second without
our agent, and in 2 minutes and 56 seconds with it. These
results correspond to run-time overhead of about 91%.

We also ran a batch of test use-cases against the RMI
interface of EJBCA to track the execution time with and
without our agent. We used this method to estimate the
overhead, as opposed to tracking the times for the web use-
cases, because of the event-driven structure of our analysis.
When testing web use-cases, both the web tier and the EJB
tier are located within the same JVM. Due to the HTTP ses-
sion objects the web tier keeps for individual users, it would
be nearly impossible to draw hard lines between the sepa-
rate test use-cases in terms of memory and processing time,
unless we tracked the time it took every single method to
execute and return. As discussed earlier, tracking method
entry/exit events incurs impractical overhead. We chose in-
stead to test the RMI interface of the EJB tier only, and
to track the execution time on the client side. Because of
the remote client, in this experiment our analysis did not re-
port any DTOs — from its perspective, no objects were ever
moved to a client tier. However, the analysis still responded
to all relevant events and performed all stages of the algo-
rithm, resulting in a meaningful estimate of overhead.

The running time of the batch of remote tests without
our agent was 4 minutes and 53 seconds. The correspond-
ing time with our agent turned on was 17 minutes and 44
seconds. These results correspond to run-time overhead of
approximately 263%. While significant, this overhead is
not prohibitive and the approach remains suitable for prac-
tical use. As mentioned earlier, no attempts were made to
optimize the performance of the analysis implementation;
future work may be able to improve this performance and

to reduce significantly the run-time overhead.

6 Related Work

Researchers have proposed a number of techniques
based on static analysis to recover design patterns from ex-
isting programs (e.g., [2, 15, 3, 21, 18, 19]). There is also
a body of work related to formalizing design patterns (e.g.,
[23, 26, 4]). Such formalizations can later be used to match
structural patterns in the source code of a program to the
structure of a design pattern. However, many design pat-
terns in general, and the DTO pattern in particular, have sig-
nificant behavioral aspects that static analysis cannot cap-
ture precisely. For example, in order to model precisely the
temporal sequence of events that constitutes a pattern in-
stance, a static analysis may have to employ expensive algo-
rithms with flow/context/path sensitivity, which creates sig-
nificant scalability challenges for real-world Enterprise Java
applications. As another example, dynamic features such
as reflection and dynamic class loading (commonly used
in enterprise Java applications) present a serious challenge
for static analysis. Even though some existing work has
addressed scalability problems related to analysis of FSA-
based properties for large programs (e.g., [10, 8]) as well
as handling of dynamic features (e.g., [24, 16]), the cur-
rent state of the art does not provide enough evidence that
static analysis of patterns in EJB application can achieve
correctness and precision at a practical cost. Thus, we be-
lieve that for such applications the use of dynamic analysis
is a more natural choice, at least until more advances are
made in static analysis research.

Wendehals and Orso [28] propose an approach that com-
bines static and dynamic analysis. A static analysis ex-
amines structural properties in order to identify pattern-
instance candidates. A dynamic analysis considers a set
of such candidates and checks whether the run-time inter-
actions match the behavioral properties of the pattern. A
FSA is used to match the observed method calls to the ex-
pected behavior. This approach is similar to our work in
that it uses a predefined FSA-based abstract pattern specifi-
cation to capture relevant program behavior and match it to
design patterns. More generally, there is a body of work on
performing dynamic analyses based on properties expressed
by finite state automata (e.g., [5, 7, 12, 14]). Our work uses
a similar technique, with the focus being on (1) reads and
writes of fields, and (2) the application tier that initiates the
read or write, as determined by examining the run-time call
stack. Most existing approaches target properties related to
method entry/exit events, with or without information about
the identity of the receiver object. However, our experience
with JVMTI indicates that such an approach may be im-
practical for JEE applications due to the complexity of the
underlying middleware (i.e., a JBOSS application server),

which leads to substantial run-time overhead.

7 Conclusions and Future Work

JEE applications present various challenges for software
understanding, testing, debugging, verification, and opti-
mization. The identification of DTOs is one of numerous
software engineering problems in this domain. We propose
a dynamic analysis which tracks FSA properties related to
the access patterns for object state and the movement of ob-
jects between application tiers. Our preliminary results in-
dicate high analysis precision, achievable at practical cost.

Future work includes various optimizations of the im-
plementation, as well as improving the completeness and
precision of the algorithm. An example optimization is
compressing most of the information used to track an ob-
ject into a single byte. Another example is avoiding false
negatives of the type described previously (a DTO wrap-
ping another DTO) by tracking the classes that cause a field
read/write event, and matching them against the list of al-
ready found DTOs. More generally, in future work we plan
to consider dynamic analyses for JEE applications for vari-
ous FSA-based properties.

References

[1] D. Alur,J. Crupi, and D. Malks. Core J2EE Patterns, Second
Ed. Prentice Hall PTR, 2003.

[2] G. Antoniol, R. Fiutem, and L. Cristoforetti. Design pattern
recovery in object-oriented software. In International Work-
shop on Program Comprehension, pages 153-160, 1998.

[3] E. L. A. Baniassad, G. C. Murphy, and C. Schwanninger.
Design pattern rationale graphs: Linking design to source.
In International Conference on Software Engineering, pages
352-362, 2003.

[4] A. Blewitt, A. Bundy, and I. Stark. Automatic verification
of design patterns in Java. In International Conference on
Automated Software Engineering, pages 224-232, 2005.

[5] E. Bodden. J-LO: A tool for runtime-checking temporal as-
sertions. Master’s thesis, RWTH Aachen University, Nov.
2005.

[6] W.Crawford and J. Kaplan. J2EE Design Patterns. O’Reilly
and Associates, 2003.

[7] M. d’Amorim and K. Havelund. Event-based runtime ver-
ification of Java programs. In International Workshop on
Dynamic Analysis, 2005.

[8] N.Dor, S. Adams, M. Das, and Z. Yang. Software validation
via scalable path-sensitive value flow analysis. In Interna-
tional Symposium on Software Testing and Analysis, pages
12-22, 2004.

[9] EJB Certificate Authority. www.ejbca.org.

[10] S. Fink, E. Yahav, N. Dor, G. Ramalingam, and E. Geay.
Effective typestate verification in the presence of aliasing. In
International Symposium on Software Testing and Analysis,
pages 133-144, 2006.

(1]

[12]

[13]
(14]

[15]

(16]

(17]

(18]

(19]

[20]

[21]

[22]

(23]

[24]

[25]

(26]

(27]

(28]

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1995.

K. Havelund and G. Rosu. An overview of the runtime ver-
ification tool Java PathExplorer. Formal Methods in System
Design, 24(2):189-215, 2004.

JBoss Application Server. jboss .org.

M. Kim, M. Viswanathan, S. Kannan, I. Lee, and O. V.
Sokolsky. Java-MaC: A run-time assurance approach
for Java programs. Formal Methods in System Design,
24(2):129-155, 2004.

C. Kriamer and L. Prechelt. Design recovery by automated
search for structural design patterns in object-oriented soft-
ware. In Working Conference on Reverse Engineering, pages
208-215, 1996.

B. Livshits, J. Whaley, and M. Lam. Reflection analysis for
Java. In Asian Symposium on Programming Languages and
Systems, LNCS 3780, pages 139-160, 2005.

J. Maassen, R. van Nieuwpoort, R. Veldema, H. Bal, T. Kiel-
mann, C. Jacobs, and R. Hofman. Efficient Java RMI for
parallel programming. ACM Transactions on Programming
Languages and Systems, 23(6):747-775, Nov. 2001.

J. Niere, W. Schaefer, J. P. Wadsack, L. Wendehals, and
J. Welsh. Towards pattern-based design recovery. In Interna-
tional Conference on Software Engineering, pages 338-348,
2002.

G. Pappalardo and E. Tramontana. Automatically discov-
ering design patterns and assessing concern separations for
applications. In ACM Symposium on Applied Computing,
pages 1591-1596, 2006.

M. Philippsen, B. Haumacher, and C. Nester. More efficient
serialization and RMI for Java. Concurrency: Practice and
Experience, 12(7):495-518, May 2000.

J. Seemann and J. W. von Gudenberg. Pattern-based design
recovery of Java software. In Symposium on the Foundations
of Software Engineering, pages 10-16, 1998.

M. Sharp and A. Rountev. Static analysis of object refer-
ences in RMI-based Java software. IEEE Transactions on
Software Engineering, 32(9):664-681, Sept. 2006.

N. Soundarajan and J. O. Hallstrom. Responsibilities and
rewards: Specifying design patterns. In International Con-
ference on Software Engineering, pages 666-675, 2004.

V. Sreedhar, M. Burke, and J. Choi. A framework for in-
terprocedural optimization in the presence of dynamic class
loading. In Conference on Programming Language Design
and Implementation, pages 196-207, 2000.

Transfer Object Pattern. java.sun.com/blueprints/
corej2eepatterns/Patterns/TransferObject.html.
B. Tyler, J. O. Hallstrom, and N. Soundarajan. Automated
generation of monitors for pattern contracts. In ACM Sym-
posium on Applied Computing, pages 1779-1784, 2006.

R. Veldema and M. Philippsen. Compiler optimized remote
method invocation. In IEEE International Conference on
Cluster Computing, pages 127-137, 2003.

L. Wendehals and A. Orso. Recongizing behavioral patterns
at runtime using finite automata. In International Workshop
on Dynamic Analysis, pages 33-40, 2006.

