
Analysis of Flow of Control for Reverse Engineering of

Sequence Diagrams

A Thesis

Presented in Partial Fulfillment of the Requirements for

the Degree Master of Science in the

Graduate School of The Ohio State University

By

Olga Nicole Volgin, B.S.

* * * * *

The Ohio State University

2005

Master’s Examination Committee:

Atanas Rountev, Adviser

Sandra Mamrak

Approved by

Adviser

Department of Computer
and Information Science

ABSTRACT

During software lifecycle, the design documentation and implementation often

diverge. This is especially true in iterative development processes and in legacy

systems. System enhancement based on inaccurate documentation may result in

costly software design and implementation flaws. Consequently, reverse engineering

of system design could be beneficial during enhancement and maintenance. Important

aspects of software design are represented using UML sequence diagrams, which are

considered to be one of the core design artifacts. Recent introduction of the next

generation UML presents new challenges for reverse engineering of sequence diagrams.

One such challenge is the mapping of the flow of control in the code to the UML

sequence diagram primitives.

The work presented here addresses this problem through a static analysis algo-

rithm for representing flow of control in sequence diagrams. We analyze control-flow

graphs and map them to the UML primitives. We also propose a series of trans-

formations on the resulting structure that are intended to improve readability and

comprehension of the diagrams. These transformations reduce nesting while preserv-

ing the meaning of the diagrams. The simplification of the diagrams makes them

easier to read and comprehend. We present an experimental study that evaluates the

practicality of our analysis on several Java library components and the benefits of the

transformations in reducing nesting in reverse-engineered sequence diagrams.

ii

ACKNOWLEDGMENTS

I would like to thank my advisor Nasko Rountev for the opportunity to work on

this project. His guidance throughout this project was invaluable and the feedback

on the thesis was very helpful.

I also would like to thank Sandra Mamrak, who is my former advisor as well the

other committee member, for the opportunity to be a part of the Acuity Project for

the last two years.

Additionally, I would like to thank Miriam Reddoch for her contribution to this

work with the implementation of the CFG generation and for being such a pleasant

person to work with.

I am also very grateful to all of my family and friends for providing support and

encouragement throughout this process. I would like to especially thank Mike Gibas

for being so supportive and helpful.

iii

VITA

June 1, 1977 .Born - Moscow, Russia

Jannuary 1999 - December 1999 Engineering Co-op,
Applied Innovation Inc.,
Columbus, OH

June 2000 . B.S. Computer Science and Engineer-
ing, The Ohio State University, Magna
Cum Laude

July 2000 - September 2002Member of Technical Staff,
Lucent Technologies,
Columbus, OH

September 2002 - May 2004 Graduate Research Assistant, Acuity
Project, The Ohio State University

FIELDS OF STUDY

Major Field: Computer Science and Engineering

iv

TABLE OF CONTENTS

Page

Abstract . ii

Acknowledgments . iii

Vita . iv

List of Figures . vii

Chapters:

1. Introduction . 1

2. UML 2.0 . 7

2.1 Running Example . 7

2.2 UML 2.0 Overview . 7

3. Representation of Intra-Method Flow of Control 15

3.1 Data Structure Description . 15

3.2 Fragment Descriptions . 18

4. Control Flow Analysis - Basics . 24

4.1 Phase I: Preprocessing . 24
4.1.1 Control Flow Graphs and Post-dominators 24

4.1.2 Loops . 28
4.1.3 Branch Successors . 30

4.1.4 Loop Successors . 33
4.2 Phase II: Fragment Construction 39

v

5. Control Flow Analysis - Advanced Issues 47

5.1 UML Deficiencies . 47
5.2 Proposed UML 2.0 Extensions . 50

5.2.1 Notation for Multiple Returns 50
5.2.2 Exceptional Behavior . 52

5.3 Data Structure Additions . 53
5.4 Phase I: Preprocessing . 53

5.4.1 Post-dominance . 53
5.4.2 Control Dependence . 55

5.4.3 Identifying Paths Leading to Exceptional Behavior 57

5.4.4 Processing of Multiple Method Exits 58
5.5 Phase II: Fragment Construction 60

6. Phase III: Fragment Transformations . 64

6.1 Clean-up Transformations . 65
6.1.1 Removal of Empty Alt, Opt, and Loop Fragments 65

6.1.2 Removal of Implicit Break Fragments 66
6.1.3 Replacing an Alt Fragment with an Opt Fragment 68

6.2 Readability Transformations . 69
6.2.1 Moving of Nested Alt Cases 69

6.2.2 Moving of Fragments Surrounded by an Opt Fragment . . . 70
6.2.3 Removing an Opt Fragment Enclosed by a Case 72

6.2.4 Generalized Removal of Opt Fragment 73

7. Empirical Study . 75

8. Related Work and Conclusions . 83

Bibliography . 87

vi

LIST OF FIGURES

Figure Page

2.1 Sample classes based on package java.text 8

2.2 Java code for the running example 9

2.3 Sequence diagram for the running example 10

3.1 Fragment data structure for the running example 16

4.1 CFG for the running example . 26

4.2 Fragment data structure for the running example, replica of Figure 3.1
for convenience . 27

4.3 Post-dominator tree for the running example 28

4.4 Post-dominator tree for loop L in the running example 32

4.5 Java code illustrating the computation of loop successors 35

4.6 Control flow graph illustrating the computation of loop successors . . 36

4.7 Loop information for the three loops 37

4.8 Algorithm for fragment construction 45

4.9 Algorithm for fragment construction 46

5.1 Sample classes based on standard package java.util.zip 48

5.2 Java code illustrating multiple returns and exceptional behavior . . . 49

vii

5.3 Sequence diagram illustrating the proposed UML extensions 51

5.4 Fragment structure generated for method read 54

5.5 Control flow graph illustrating computation of control dependence . . 56

5.6 Controlling edge information for method exits for CFG in Figure 5.5 . 56

5.7 Algorithm for fragment construction 62

5.8 Algorithm for fragment construction 63

6.1 Illustration of the removal of empty fragments 67

6.2 Illustration of the removal of implicit break fragments 69

6.3 Replacing an alt fragment with an opt fragment 70

6.4 Moving of nested alt cases . 71

6.5 Moving of fragments surrounded by an opt fragment 72

6.6 Removing an opt fragment enclosed by a case 73

6.7 Generalized removal of opt fragments 74

7.1 Changes in average nesting depth from Table 7.2 79

viii

CHAPTER 1

Introduction

As software evolves during its lifetime, the documented system design and im-

plementation often diverge. As a result of the lack of complete and current design

documentation, system understanding and enhancement may become challenging.

This is especially true for complex legacy systems. The investments made into such

systems during their lifetime make them valuable and difficult to replace. Conse-

quently, the software continues to be enhanced and maintained for many years. In

this process of evolution, the implementation may diverge from the documented sys-

tem design making the documentation incomplete or outdated. Over the years, the

enhancement and maintenance of such systems may become progressively difficult,

especially in the absence of the original designers and developers.

System documentation and implementation may also deviate in the process of

iterative development that is becoming more widely used. In an iterative process,

system development is organized in short-termed iterations where the system is grown

incrementally one iteration at a time. Each iteration involves analysis, design, coding,

and testing phases. However, the design created in the beginning of an iteration often

may change as the implementation raises new issues. As a result, the documentation

created in the beginning of an iteration may not reflect the system design produced

1

at the end of an iteration. Because the design and implementation of each subsequent

iteration are dependent on the previous ones, it is useful to extract the system design

at the end of each iteration in order to ensure that the design and implementation of

the following iteration are based on accurate design documentation from the previous

iteration [7]. To overcome the difficulties in system development and enhancement

caused by inadequate documentation, tools for extracting system design from code

could be especially useful. Such tools would provide a consistent and cost-effective

way of producing the latest design documentation based on existing implementation.

Software is often documented using the standardized notation provided in the

Unified Modeling Language (UML). UML is used for specification, visualization, and

documentation of the design of software systems. It provides the means for repre-

senting the system design using various types of diagrams. The type of diagram that

is especially useful in modeling a system’s dynamic behavior is the UML sequence

diagram. Sequence diagrams are included in the UML as a notation for illustrating

the requests of actors on the system and the operations that are initiated by them

on system objects [7]. Sequence diagrams clearly depict the flow of control during

object interactions in a visual manner. As a result, they are often used in analysis

and design of software systems. Sequence diagrams abstract away intricacies of the

code while showing the messages exchanged between objects and their temporal se-

quencing. Due to its capabilities to depict the sequence of events and to show the

lifetime, creation, and destruction of objects, sequence diagrams are considered as

one of the core UML design artifacts. An example of a sequence diagram is presented

in Figure 2.3.

2

It is possible to forward engineer or reverse engineer sequence diagrams. During

forward engineering, the sequence diagrams are generated during the system design

stages. The skeleton of the code is then automatically generated from the sequence

diagrams. It is also possible to reverse engineer sequence diagrams, in which case,

the diagrams are automatically extracted from source code and consequently repre-

sent the existing design of the system. Reverse engineering of sequence diagrams for

complex systems is useful because it provides insights into object interactions existing

in the system. Utilization of tools for reverse engineering of sequence diagrams would

provide a cost-effective way of automatically generating up-to-date design documen-

tation with uniform level of detail presented in consistent notation. The resulting

sequence diagrams would make it easier to understand the system and also would

provide the latest design documentation useful for system maintenance and enhance-

ment. Although existing tools provide the means for reverse engineering of UML

class diagrams, they either do not have the capability to reverse engineer sequence

diagrams, or such capabilities are limited.

The context of this work is the RED (reverse engineering of UML sequence

diagrams) tool. Incorporated in this tool are several analyses for reverse-engineering

of sequence diagrams that utilize the latest UML 2.0 notation. In comparison with

the earlier versions of the UML (1.x), the UML 2.0 standards utilize more expressive

notation for the representation of system design. The new UML 2.0 specification

introduces the notion of interaction fragments. These fragments represent different

aspects of flow of control, and are used as the building blocks of the sequence dia-

grams. The latest UML notation makes it possible to express optional, alternative,

3

repetative, and breaking behavior in sequence diagrams. Figure 2.3 presents a se-

quence diagram that uses the UML 2.0 notation. Reverse-engineering of sequence

diagrams is a complicated task requiring several analyses addressing various aspects

of the problem. Our RED tool utilizes the UML notation and incorporates several

such analyses including the control flow analysis presented in the scope of this work.

This analysis focuses on method-level interactions and will later be incorporated into

a larger inter-method analysis. The control flow analysis presented here focuses on

the problem of mapping method-level flow of control to UML 2.0 primitives. In this

work, the UML 2.0 primitives are represented in a form of a data structure that em-

bodies the UML notation. Other analysis in RED along with visualization tools will

use the data structure created as result of the control flow analysis to eventually gen-

erate sequence diagrams. The input to our control flow analysis is the method-level

control-flow graph (CFG) and the output is the data structure representing the flow

of control for the method.

The elements of the data structure correspond to the UML interaction fragments.

The data structure is generated as the result of a multi-phase analysis of a method-

level control flow graph. A control-flow graph consists of nodes corresponding to code

statements and edges that represent the possible flow of control between the nodes.

In first phase of our analysis, the CFG is analyzed to identify important aspects of

flow of control such as loops and branches. This information is then utilized in the

second phase of our analysis that uses an algorithm for mapping intra-method flow

of control represented in the CFG to UML 2.0 fragments. As result of this step, we

create the fragment data structure representing the method-level flow of control. An

example of our data structure is shown in Figure 3.1.

4

The fragment structure produced by the control flow analysis may contain some

redundant fragments not contributing useful information to the resulting sequence

diagram. Additionally, the fragment structure may also contain deep nesting of frag-

ments that reduces its readability and comprehension. In order to simplify the data

structure and improve readability and comprehension, we introduce several fragment

transformations. These transformations improve the fragment structure while pre-

serving its meaning. The redundancies in the fragment structure are eliminated by

clean-up transformations. These transformations remove any empty fragments that

do not contribute useful flow of control information to the resulting sequence dia-

grams. The readability transformations improve the comprehension of the sequence

diagrams by reducing the nesting of fragments.

The empirical study presented in this work uses 21 Java library components to

evaluate the analysis cost, the occurrence and distribution of fragment nesting, and

the effectiveness of the readability transformations on the reduction of nesting. The

study demonstrates that fragment nesting is prevalent in real Java components and

suggests that the readability transformations can successfully reduce the nesting and

potentially improve the comprehension of resulting sequence diagrams. The running

times of the analysis are low, which strongly indicates that it can be used to analyze

complex real-world systems.

The contributions of this work include:

• The first general algorithm for mapping intra-method flow of control to UML

2.0 interaction fragments

• Transformations for improving diagram structure and readability

5

• Extensive experimental evaluation of the benefits of the transformations and

the cost of our control-flow analysis

The rest of the thesis is organized as follows. Chapter 2 introduces the UML 2.0

notation. The details of the fragment structure are presented in Chapter 3. The

algorithm for mapping intra-method flow of control to UML interaction fragments is

described in Chapter 4. Chapter 5 addresses additional issues related to flow of control

for methods with multiple returns and exceptional behavior. The transformations for

simplifying and improving the readability of the fragment structure are detailed in

Chapter 6. Chapter 7 presents the empirical study that evaluates the efficiency and

effectiveness of our analysis. Chapter 8 concludes the thesis with the description of

related work and conclusions on the contributions of this work.

6

CHAPTER 2

UML 2.0

2.1 Running Example

This section introduces the example illustrating the important aspects of our con-

trol flow analysis for reverse engineering of sequence diagrams. The example pre-

sented here will be referenced in this and subsequent chapters. The code introduced

in Figure 2.1 and Figure 2.2 was selected because of its relevance to the key aspects

of our analysis. It is based on several methods of class MergeCollation found in

standard package java.text. However, it was modified to better illustrate ideas pre-

sented in this work. The sequence diagram corresponding to the code can be found

in Figure 2.3.

2.2 UML 2.0 Overview

As described in Chapter 1, sequence diagrams abstract away details of the code

and represent temporal sequencing of messages exchanged between objects. Histori-

cally UML sequence diagrams have been widely used as one of the core software design

artifacts, but the UML specification lacked the capabilities to represent some of the

7

public class MergeCollation {
public void example(PatternEntry e) { ...}
private final void fixEntry(PatternEntry entry) { ...}
private Vector patterns;

private byte[] statusArray = new byte[8192];

...

}

public class PatternEntry {
public String getChars() { return chars; }
private String chars;

...

}

Figure 2.1: Sample classes based on package java.text

more complex design intricacies. The latest evolutionary UML 2.0 standard intro-

duces new, richer control flow primitives, which allow to better document alternative,

optional, repeating, and breaking behavior.

In order to represent this behavior, UML 2.0 introduces new primitives called

interaction fragments. These entities are the building blocks of the diagram and they

represent various types of interactions. The interaction fragments relevant in the

scope of this work include message, opt, alt, loop, and break. An example of each

fragment type can be found in Figure 2.3. The detailed description of each type of

UML 2.0 fragment follows.

The message fragment represents a message exchanged between two objects where

one of the objects sends the message and the other receives it. An illustration of a

message fragment is getChars() in Figure 2.3. An object of type MergeCollation is

the message sender and the object e of type PatternEntry is the receiver object. A

8

[1] void example(PatternEntry e)

[2] {
[3] int i = -1;

[4] String s = e.getChars();

[5] if (s != null) {
[6] i = s.charAt(0);

[7] } else {
[8] i = patterns.indexOf(e);

[9] }

[10] for (; i >= 0; --i) {
[11] if (statusArray[i] !=0) {
[12] PatternEntry e1 = (PatternEntry) patterns.elementAt(i);

[13] if (e1 != null) {
[14] fixEntry(e1);

[15] break;

[16] }
[17] }
[18] patterns.removeElementAt(i);

[19] }
[20] return;

[21] }

Figure 2.2: Java code for the running example

9

sd example

s:String:MergeCollation patterns:Vector

example(e)

LOOP L

BREAK L

e:PatternEntry

ALT

s = getChars()

i=charAt(0)

i=indexOf(e)

OPT e1= elementAt(i)

fixEntry(e1)

removeElementAt(i)

Figure 2.3: Sequence diagram for the running example

10

message fragment is represented by an arrow in a sequence diagram and corresponds to

the appropriate method invocation in the code. Although the UML specification [10]

treats the end points of the message as two separate fragments, in our approach this

distinction is irrelevant and consequently a message exchanged between two objects

is treated as a single message fragment.

The message fragment is the most primitive fragment type in the UML notation.

Message exchanges are at the core of the UML sequence diagrams. The remaining

fragment types are used to express the conditions guiding the possible paths of ex-

ecution. The UML notation represents these paths by enclosing fragments affected

by a condition inside the fragment affecting it. As a result, nesting of fragments is

necessary to correctly represent the flow of control. Figure 2.3 provides an illustration

of fragment nesting. Any non-message fragment can nest any number of fragments.

Consequently, nested fragments may enclose other fragments thus resulting in multi-

ple nesting levels of fragments. Neither the number of fragments enclosed by another

fragment nor the depth of fragment nesting are limited.

The opt fragment was introduced in UML to represents optional behavior. The

contents of the opt fragment are executed only when its guarding condition evaluates

to true. Otherwise the execution of the opt operand is skipped. In most programming

languages, the opt fragment corresponds to an if block. For instance, in Figure 2.3,

the opt fragment is created to reflect the corresponding if block in the code, which

is guarded by the condition (statusArray[i] !=0). The fragments enclosed by the

opt are executed only when the condition evaluates to true.

The alt fragment expresses two or more mutually-exclusive alternatives in behav-

ior. Each one of the alternatives is represented by a separate path of execution and

11

an implicit or explicit guarding condition. Because each one of the paths corresponds

to a different execution scenario, it is represented by a different sequence enclosed by

the alt fragment. In the diagram the different alternatives, also referred to as cases,

are separated by a dashed line. Figure 2.3 provides an illustration of an alt fragment.

For a case of an alt fragment to be executed, its guarding condition must evaluate to

true. If one of the alternative operands does not have a guard, an implicit true guard

is implied. An alt fragment can be used to represent a switch statement found in

most programming languages. Each one of the cases of the switch statement is nor-

mally guarded by a condition. However, there may also be the default case, which

is executed when the guarding conditions of all other alternatives evaluate to false.

Another example of code resulting in the creation of an alt fragment in the sequence

diagram is a if (c1) then ...else ... statement. In this situation, the statement

represents two distinct alternatives where one of the alternatives is guarded by the

condition c1 and the other guarded by the condition (!c1). An illustration of such alt

fragment is presented in Figure 2.3. In this example, the first alternative is guarded

by the condition (s!=null) and contains the message corresponding to the method

invocation charAt(0) on a String object, while the second alternative is implicitly

guarded by the condition (s==null) and encloses the method call indexOf(e) on a

Vector object. An opt fragment described earlier can be considered as a special case of

an alt fragment. In this case the opt fragment can be represented by an alt fragment

with two alternatives. One of the paths of execution includes the contents of the opt

fragment, while the other alternative skips the contents of the opt fragment and is

therefore empty. Since in this case one of the alternatives is empty, it contributes no

12

flow of control information to the sequence diagram and thus opt fragment is used

instead.

In order to represent the behavior of loops, UML 2.0 introduced the loop fragment.

The contents of the loop fragment can be executed repeatedly until the guarding

condition of the fragment evaluates to false. Additionally, the execution of the loop

can be terminated by a break, which is described shortly. In Figure 2.3 the loop is

guarded by the condition (i>=0) and contains an opt and a message fragments. The

execution of the loop is terminated when either the loop guarding condition evaluates

to false or the condition (e1!=null) for the break fragment nested inside the opt

evaluates to true.

As mentioned earlier, the UML 2.0 notation also includes the break fragment,

which represents a breaking scenario from one of the surrounding fragments. In

Java, a break statement without a label transfers control to the innermost enclosing

switch, for, while, or do...while statement. This statement then immediately

completes normally [5]. The UML 2.0 break fragment is suited to represent this sce-

nario. Similarly to an opt fragment, the operand inside the break fragment is executed

only when its guarding condition evaluates to true. However, if the break fragment

is entered, the execution of the remainder of the enclosing fragment is skipped. Af-

ter completing the execution of the break fragment, the path continues immediately

following the one of the fragments enclosing the break fragment. The illustration of

a breaking scenario can be found in Figure 2.3, where the iteration of the enclosing

loop is terminated by the break fragment. The contents of the break fragment are

executed if the condition (e1!=null) evaluates to true. Then the execution proceeds

13

to execute the fragment immediately following the enclosing loop fragment, which in

this case corresponds to the method exit.

14

CHAPTER 3

Representation of Intra-Method Flow of Control

3.1 Data Structure Description

The UML notation described in Chapter 2 provides a powerful way of document-

ing system design in the form of sequence diagrams. However, when creating a tool

for reverse-engineering sequence diagrams, it is important to design a data structure

that embodies the UML notation. This data structure would store the flow of control

information discovered in the process of program analysis in a format easily convert-

ible to the visual representation of the reverse-engineered diagram. We designed such

a data structure and Figure 3.1 provides its visual representation for the example

presented in Figure 2.2.

The building blocks of the data structure are entities corresponding to the interac-

tion fragments in UML 2.0. Consequently, our data structure incorporates message,

opt, alt, break, and loop fragments. Additionally, our data structure includes a con-

venience top fragment which is used to indicate the boundary for a method. Each

one of the fragments mentioned above is described in detail in Section 3.2.

In order to accomodate fragment nesting necessary for representation of flow of

control, the data structure is designed to be similar to a tree. All fragment types,

15

PatternEntry:getChars()

TOP

OPT

ALT

cond: statusArray[i] !=0

cond: s != null

Vector:elementAt(i)

String:charAt(0)

Vector:indexOf(e)

LOOP

cond: e1 != nullBREAK

MergeCollation:fixEntry(e1)

BreakOutOf: LOOP 1

1

1

1

2

1

BREAK 1
BreakOutOf: LOOP
cond: i<0

cond: i>= 0

Vector:removeElementAt(i)

Figure 3.1: Fragment data structure for the running example

16

with the exception of message fragments, enclose one or more ordered sequences of

fragments. For example, the opt fragment in Figure 2.3 encloses the message fragment

corresponding to the invocation expression patterns.elementAt(i), followed by the

break fragment. The corresponding opt fragment in our data structure contains an

ordered sequence of fragments, with the message fragment followed by the break

fragment. It is important to note that the appropriate order of fragments is always

preserved to correctly reflect the flow of control. The nesting depth of fragments is

not limited because the nesting observed in existing code can often be quite deep.

However, it is also possible for a fragment to not enclose other fragments. Certain

such fragments that do not contain useful information will be eliminated during the

transformations described in Chapter 6.

For each fragment, the sequence of its nested fragments represents all possible

run-time paths of execution. The actual run-time patterns depend of the conditions

of the execution, but the nested fragments represent all possibilities. These nested

fragments can be considered as ordered children of the enclosing fragment in the data

structure. For example, the opt fragment discussed above has two children. However,

it is also possible for the fragments to have no children. This happens when the

contents of the fragment do not correspond to important aspects of flow of control

and therefore are not represented by fragments.

The nesting relationships seen in the data structure not only mirror the original

flow of control, but also correspond to the structure of the resulting sequence diagram.

17

3.2 Fragment Descriptions

Each sequence diagram represents a scenario depicting interactions between var-

ious objects. The data structure for the scenario consists of the fragments that are

enclosed by a container representing the method boundary. In order to represent the

outermost boundary, a convenience top fragment was introduced. The top fragment

is not directly present in UML 2.0 notation. However, for the purposes of under-

standing and consistency it was introduced as a special container fragment type. Due

to intra-method nature of our analysis in the scope of this work, the top fragment

always represents the method-level boundary. Although the top fragment does not

represent a diagram element, it serves as the container for all the method-level frag-

ments. In our tree-like data structure, the top fragment is always at the root and

therefore it may never be nested inside another fragment. All the fragments at the

top level of the method (i.e., not nested inside any other fragment) are children of the

top fragment. For our running example, the ordered sequence of the top fragment’s

children includes the message fragment, the alt fragment, and the loop fragment. The

top fragment is implemented by a TopFragment class which stores this information

as an ordered sequence of fragments.

The message fragment type defines the simplest fragment type that represents a

message sent from one object to another. In a sequence diagram, a message fragment

would correspond to an arrow between the lifelines of two objects. As mentioned

earlier, message fragments may not nest other fragments. However, they are them-

selves always nested inside another fragment. Although message fragments are the

most primitive in their structure, they represent information that lies at the core

of sequence diagrams. Message fragments are implemented by a CallFragment class

18

that stores information associated with a call such as the corresponding invocation

expression and the compile-time target method for the call.

In our data structure, the opt fragment type corresponds to the opt fragment of

the UML 2.0 notation introduced in Chapter 2. An opt fragment is used to rep-

resent optional behavior observed in the system. An opt fragment may be nested

inside another non-message fragment and can also enclose any number of fragments.

The implementation of opt fragments uses OptFragment class. This class stores the

guarding condition of the opt as well as the ordered list of all the children nested

inside the fragment.

Also introduced in Chapter 2 is the UML alt fragment, which is used to designate

a choice of behavior from multiple alternatives. The UML alt fragment corresponds to

the respectively named fragment in our data structure. Because of possibility of two

or more alternative paths of execution, the alt fragment needs to store the sequence

corresponding to each alternative separately. Consequently, this fragment stores a

list of sequences, where each ordered sequence contains the fragments corresponding

to the appropriate path of execution. Each one of the alternative sequences will

be referred to as a case. Although the number of cases is not limited, it must be

greater than one. An alt fragment containing just a single case is equivalent to an opt

fragment. Each case may contain as many or as few nested fragments as the execution

path dictates. In the running example presented in Figure 2.3, the if statement at

line 5 defines two alternatives, where each one of the cases contains a single method

call. The data structure for the running example presented in Figure 3.1 reflects

this through an alt fragment with two distinct cases, each one containing a fragment

sequence with the message fragment appropriate for the case. In our data structure,

19

alt fragments are implemented by an AltFragment class. Unlike all other non-message

fragments (which contain just a single sequence of nested fragments) this class stores

a list of fragment sequences, with each one representing one of the possible execution

paths. For each one of the paths, the class also stores the corresponding guarding

condition. Similarly to other fragments with the exception of the top fragment, each

alt fragment is always nested inside another non-message fragment.

As mentioned in Chapter 2, the break fragment to UML 2.0 can represent a break-

ing scenario from the immediately surrounding fragment. However, this definition is

overly restrictive and does not allow to represent some scenarios found in real code.

For example, the Java language extends the notion of breaks by introducing labeled

breaks. Labeled breaks represent a breaking scenario where the control is transferred

to an enclosing labeled statement, which then immediately completes its execution.

The enclosing statement could be any one of the surrounding statements, not neces-

sarily the immediately surrounding statement.

Using the UML 2.0 definition of a break fragment, it becomes impossible to ex-

press scenarios utilizing the functionality of labeled breaks such as the one described

above. In order to accommodate this situation, we propose an extension to the UML

standards that generalizes the definition of the break fragment. The new definition

expands the original concept and redefines the break fragment allowing it to break out

of not only the immediately surrounding fragment, but also across multiple fragment

boundaries. The UML notation can be easily modified to represent this more general

scenario by labeling the corresponding enclosing fragments and using the label when

displaying the break fragment. This generalization of the break fragments allows to

represent the transfer of flow of control across one or multiple fragment boundaries.

20

Due to the representation benefits and ease of use, we have decided to use the

generalized break fragment in our data structure. In order to make this possible, we

store the flow of control information necessary to identify the successor of execution;

this information is the outermost fragment from which the break exits. A break frag-

ment may not break out of the top fragment. Instead, the method exit is represented

using a return fragment, which will be described in Section 5.2. For that reason, top

fragment may not be the immediate parent of a break fragment. In our running ex-

ample, there is one explicit break fragment that terminates the execution of the loop

when condition e1!=null evaluates to true. However, a break fragment is also used

in our analysis to describe the implicit (or normal) loop exit. The implicit loop exit

occurs when the guarding condition of the loop evaluates to false and the execution

of the loop terminates. The loop exit can be either the very first or very last element

in the loop’s fragment sequence and must not have any nested fragments.

Due to this detail of our algorithm, the data structure for the running example

presented in Figure 3.1 includes two break fragments, where BREAK1 represents the

normal loop exit and BREAK2 represents the explicit loop exit.

In the data structure, the break fragments are implemented by a BreakFragment

class. A break fragment is quite similar to an opt fragment because both of these frag-

ments represent optional behavior. However, the difference between the two fragment

types is more in the semantics than the representation. The opt fragment represents

optional behavior after which the normal execution continues. The break fragment, on

the other hand, represents the situation where once the contents of the fragment are

executed, the execution continues at a point outside the boundary of the surrounding

fragment. A break fragment also stores the guarding condition leading to execution of

21

the fragment contents. Because the break fragment can lead to exit from any of its en-

closing fragments, with the exception of the top fragment, field BreaksOutOf in class

BreakFragment stores the outermost fragment from which the break exits. For exam-

ple, both break fragments in our running example lead to exit from LOOP1, and we

have BreaksOutOf(BREAK1)=LOOP1 and BreaksOutOf(BREAK2)=LOOP1. Sim-

ilarly to other non-message fragments, a break fragment is always enclosed inside

another fragment and internally may contain any number of nested fragments.

Chapter 2 also introduces loop fragments. The contents enclosed inside a loop

fragment will be repeatedly executed until either the guarding condition evaluates to

false, or the condition guarding some break fragment enclosed inside the loop evaluates

to true. As discussed above, in our analysis the normal loop exit is represented by

a break fragment. In case of either implicit or explicit break, the loop is terminated

before the rest of its contents are executed. Therefore, both of these breaking scenarios

can be classified as loop exits and represented as break fragments.

In our data structure, loop fragments are implemented by a LoopFragment class.

Similarly to other fragments, the loop fragment implementation stores the ordered

sequence of fragments that represents the fragments nested inside of the loop. A

loop fragment is always nested inside another non-message fragment. An example

of a loop fragment is presented in the data structure for the running example in

Figure 3.1. The loop fragment contains in its fragment sequence the implicit break

fragment followed by the opt and message fragments in that order.

The data structure described contains all the necessary building blocks for rep-

resenting its contents as UML 2.0 sequence diagrams. This data representation,

combined with the fragment construction algorithm described in Chapters 4 and 5,

22

and additional analyses to be implemented in the future, will eventually provide all

the functionality necessary for complete reverse-engineering of sequence diagrams in-

volving multiple methods. The design of such analyses is beyond the scope of this

work.

23

CHAPTER 4

Control Flow Analysis - Basics

4.1 Phase I: Preprocessing

Our control flow analysis performs a traversal of the control flow graph (CFG) of

the method under consideration. The analysis maps subgraphs of the CFG to the

various interaction fragments described in Section 3.2. In order to make this possible,

we define the concepts of branch successor and loop successor in Section 4.1.3 and

Section 4.1.4, respectively. The definition of these concepts is based on common

terminology defined in Section 4.1.1 and Section 4.1.2.

4.1.1 Control Flow Graphs and Post-dominators

A control flow graph (CFG) is a static representation of the flow of control of

a procedure or a method. In a CFG, the nodes correspond to statements and the

edges signify the possible flow of control between the nodes. Figure 4.1 illustrates the

control flow graph for the running example. The CFG was chosen as input to our

analysis due to the fact that the CFGs are language independent, which makes our

analysis applicable to systems written in any programming language as long as the

control-flow graph can be generated. Also, in the process of reverse-engineering, the

24

source code may not always be available. Since control-flow graphs may be generated

from bytecode or object code, the reverse-engineering analysis may be performed even

in the absence of source code.

For any given control-flow graph G, we assume that there exists exactly one entry

node. An entry node of G is a node that does not have any predecessors. We also

assume that G has at least one exit node, which is a node that does not have any

successors. In the control-flow graph for the running example, node 1 is the entry

node, and node 12 is the exit node. In Java programs, method exits correspond to

either return or throw statements. Generally, a CFG may have multiple exits. How-

ever, for simplicity, this chapter considers control flow analysis of CFGs containing

a single exit node which corresponds to a return statement. Chapter 5 builds upon

the ideas described here and presents issues related to CFGs containing multiple exit

nodes and paths leading to throwing of exceptions. For the purposes of the simplified

analysis of this chapter, it is assumed that each CFG has a single entry node and

a single exit node. Additionally, each CFG node must be reachable from the entry

node and each node must reach the exit node.

Next, we describe the standard concept of post-dominance, which is necessary for

identification of branch successors and loop successors. Consider a control-flow graph

G containing a single exit node reachable from all nodes of G. Node p post-dominates

node n if every path from n to the exit node must go through node p. A node

does not post-dominate itself. Node i immediately post-dominates node n if i post-

dominates n and any node n1 such that n1 �= n and n1 �= i that post-dominates n also

post-dominates i. For every node with the exception of the exit node, there exists a

unique immediate post-dominator. The immediate post-dominance relationships can

25

3: s != null

2: s = e.getChars()

1: i = -1

4: e = s.charAt(0) 5: i = patterns.indexOf(e)

7: statusArray[i] !=0

6: i>=0

 8: e1 = patterns.elementAt(i)

11: fixEntry(e1)

9: e1 != null

12: exit

10: patterns.removeElementAt(i)

FT

T

F

T

F

T

F

Figure 4.1: CFG for the running example

26

PatternEntry:getChars()

TOP

OPT

ALT

cond: statusArray[i] !=0

cond: s != null

Vector:elementAt(i)

String:charAt(0)

Vector:indexOf(e)

LOOP

cond: e1 != nullBREAK

MergeCollation:fixEntry(e1)

BreakOutOf: LOOP 1

1

1

1

2

1

BREAK 1
BreakOutOf: LOOP
cond: i<0

cond: i>= 0

Vector:removeElementAt(i)

Figure 4.2: Fragment data structure for the running example, replica of Figure 3.1
for convenience

27

12

3

11976

2

81054

1

Figure 4.3: Post-dominator tree for the running example

be expressed in the form of a post-dominator tree where the exit node is the root of

the tree and each parent node is the immediate post-dominator of its children.

Figure 4.3 represents the post-dominator tree for the running example. Node 12

(the exit node) is at the root of the tree because by definition the exit node post-

dominates every other node in a control-flow graph. The immediate post-dominance

relationship can be observed between any two nodes in the tree that have a parent-

child relationship. For example, node 6 is the immediate post-dominator of node 4.

There are various algorithms for computing post-dominator tree; our implementation

uses the simpler of the two algorithms by Lengauer and Tarjan [8].

4.1.2 Loops

The Java programming language yields only reducible control-flow graphs, while

some other programming languages allow non-reducible control flow structures. How-

ever, irreducibility is rare and its analysis is of secondary importance. For that reason,

in our analysis, only reducible intra-method control-flow graphs are handled. The key

28

property of reducible CFGs is the absence of jumps into the middle of loops from the

outside of the loop. A control-flow graph G is reducible if and only if its edges can

be partitioned into two disjoint groups, the forward edges and the back edges. The

forward edges form an acyclic graph in which every node can be reached from the

entry node of G. An edge (x, y) is classified as a back edge iff node y is an ancestor

of x in a depth-first spanning tree rooted at the entry node. The back edges can be

identified using depth-first traversal of the CFG. In a reducible control-flow graph, a

loop is a strongly connected subgraph L with the following properties:

• There is exactly one node n ∈ L that has an incoming edge (n′, n) and n′ /∈ L. In

this case, node n is the header node for L, which will be denoted as header(L).

• The set of nodes in L includes the exact set of CFG nodes that are reach-

able from header(L) and reach some node n′ which is the source of a backedge

(n′, header(L)). This set of nodes is denoted as body(L).

The definition of a header node implies that any given node can be the header

node for at most one loop. Additionally, for any two loops L1 and L2, the sets body(L1)

and body(L2) are either disjoint or one is a proper subset of the other. The second

scenario represents the situation where one loop is nested inside the other loop.

In our implementation, we use the approach described in [1] to determine the loop

structure of a reducible CFG. In order to identify loops and their nesting relationships

from analysis of the CFG, it is first necessary to perform a depth-first traversal to

identify the back edges. Targets of the back edges correspond to the loop header

nodes. Next, for every loop Li with the corresponding header(Li), it is necessary to

determine the nodes belonging to the body of the loop. This process requires the

29

examination of all backedges whose target is header(Li). For a given header node h,

consider all backedges (n,h). Starting with n, we identify all nodes reaching n without

going through h. Those nodes belong to body(L). Additionally, node header(L) always

belongs to the body(L).

In addition to identifying all loops Li, their header(Li), and body(Li), it is also

necessary to identify the nesting relationships of the loops. A loop L1 is said to be

nested in a loop L2 if there exists another loop L2 such that header(L1) �= header(L2)

and header(L1) belongs to body(L2), yet header(L2) does not belong to body(L1). For

each loop, we identify additional information that is used in the analysis:

• Enclosing loop encl loop(Li) is the smallest loop Lj �= Li such that body(Li) ⊂
body(Lj). If Li is a top-level loop, meaning it is not enclosed inside any other

loop, then encl loop(Li)=none.

• For each CFG node n encl loop(n) is defined as the smallest loop Li such that

n ∈ body(Li). For n not enclosed inside any loop, encl loop(n)=none.

4.1.3 Branch Successors

A CFG node is considered to be a branch node if it has two or more outgoing edges.

During the analysis, either opt or alt fragment is created to represent the possible

branching behavior. The details associated with the type of fragment created are

described in Section 4.2. In both cases there is more than one possible alternative

path of execution and at some ”merge point” these paths come together and the

execution continues. For a branch node n, the branch successor of n is the node from

which the analysis will continue after processing the fragment created for n. From

this point forward, the branch successor for node n will be denoted as branch succ(n).

30

An example of a branch node and its branch successor can be found in Figure 4.1,

where node 3 has two outgoing edges. Both alternatives have distinct paths that

come together at a merging point, in this case node 6. The node where the different

alternative paths meet designates the end of the branching behavior and it is the

starting point of the next fragment that will be constructed. Therefore, for branch

node 3, branch succ(3)=6. Using this information, our analysis will create an alt

fragment for this branch node in Phase II of our analysis described in Section 4.2.

The identification of the branch successor varies slightly depending on whether

or not the branch node is enclosed inside a loop. Consider a branch node n with

outgoing edges (n,ni) such that encl loop(n)=none. Then, the branch successor for n

is defined as the lowest common ancestor of all ni in the post-dominator tree for the

CFG. Generally, any common ancestor of nodes ni corresponds to a merging point

that each one of the nodes can reach in the CFG. The lowest common ancestor in the

post-dominance tree is the merging point ”closest” to n. For example, consider branch

node 3, which has two outgoing edges (3,4) and (3,5) and its encl loop(3)=none. By

considering nodes 4 and 5 on the post-dominator tree depicted in Figure 4.3, it can

be observed that node 6 is the lowest common ancestor of those nodes and therefore

6 is the branch successor for node 3.

The other possibility is that the branch node n is enclosed by a loop, i.e., encl loop(n)

�= none. For example, branch node 7 has two outgoing edges (7,8) and (7,10), and

it is enclosed inside loop L with header(L) corresponding to the CFG node with the

condition (i >= 0). In this case, the notion of the branch successor has meaning only

in the context of flow of control inside the loop. For that reason, the method-level

post-dominator relationships cannot be used to compute the branch successor. A loop

31

9

6

8

10

7

Figure 4.4: Post-dominator tree for loop L in the running example

may have any number of edges that lead to loop exit. These edges may include the

normal loop exit as well as any number of exit edges resulting from breaks found inside

the loop. Thus, these loop exit edges must not be considered when performing branch

successor analysis for branch nodes inside a loop. To make that possible, it is first

necessary to identify such edges for a loop L as exit edges(L). The set exit edges(L) for

a loop L is {(n1,n2) | n1 ∈ body(L) ∧ n2 /∈ body(L)}. Each such edge e is associated

with the loop from which it is breaking. Due to the presence of labeled break state-

ments in Java, it is possible for a break edge to exit not only from the immediately

surrounding loop, but also from any of its surrounding loops in cases where deep loop

nesting is present. Therefore, an exit edge e belonging to set exit edges(L) could be

associated with both L and/or some loop enclosing L. For loop L in our example,

exit edges(L)={(6,12),(9,11)}. For each loop exit edge e, we define breaks from(e) as

the largest loop L′ such that e is in exit edges(L′). When determining branch suc-

cessors for a branch enclosed in loop L, the edges in exit edges(L) must be ignored.

To formalize this, we introduce the notion of post-dominance inside a loop. Node n2

post-dominates node n1 inside loop L if every path from n1 to header(L) that does not

exit the loop goes through n2. Using this definition, we can define the post-dominance

32

tree for loop L as the post-dominance tree for the subgraph containing the set of edges

{(n,m) | n,m ∈ body(L)}, where header(L) is the subgraph’s exit node. For any two

nodes n1,n2 ∈ body(L), if node n2 post-dominates node n1 in the loop, then during

any iteration of L if n1 is executed and eventually header(L) is reached, then n2 is

also reached after n1 during the same iteration. The loop post-dominator tree for the

loop in the running example is depicted in Figure 4.4. For a branch node n such that

encl loop(n)=L, only outgoing edges (n,ni) that do not belong to exit edges(L) are

considered. This is the case because all edges belonging to exit edges(L) break out

of L and are represented as break fragments. If for a given node there are at least

two outgoing edges that do not lead to an exit from L, then the branch successor

for n is the lowest common ancestor of all such ni in the post-dominator tree of L.

If there is only a single edge (n,ni) /∈ exit edges(L), then n is not considered as a

branch node in reference to the flow of control in the loop and therefore there is no

branch successor. The definition of branch successor for n ensures that the branch’s

merge point belongs to the same loop and the same loop iteration as n. Node 7 is

an example of a branch node such that encl loop(7) = L. The two outgoing edges

for node 7 are (7,8) and (7,10). Both nodes 8 and 10 belong to body(L). In order to

determine branch succ(7), it is necessary to find the lowest common ancestor of nodes

8 and 10 on the post-dominator tree of loop L represented in Figure 4.4. Node 10 is

the lowest common ancestor of nodes 8 and 10, and therefore branch succ(7)=10.

4.1.4 Loop Successors

Loop fragments are created during our analysis when a loop header is encountered.

In this section we use a more complicated example to illustrate the loop successor

33

computation. Figure 4.5 represents Java code for this example and Figure 4.6 shows

the CFG corresponding to the code. From this point forward, the loops in the figure

will be referred to as L1, L2, or L3 corresponding to the outermost, middle, and

innermost loop respectively. In order to correctly build the contents of the loop

fragments and continue the analysis at the point following the loop, it is necessary

to identify the node at which the construction of the next fragment should begin.

Intuitively, the merge point of all the possible ways to exit a loop is the point where

the construction of the fragment following the loop should begin. For example, for

node 2 in Figure 4.6 the analysis will create a loop fragment corresponding to loop

L2. The fragment following the loop will be constructed starting from node 8. This

node is the merge point of the three edges leading to the loop exit: (2,8), (3,8), and

(6,8).

In order to identify the point following a loop in our fragment construction in

Phase I we compute the loop successor, denoted by loop succ(L), for each loop L.

First, we need to identify the set of edges for each loop L such that each edge e in the

set breaks out of L, but e’s target is in L’s immediately surrounding loop, L′. These

edges correspond to one of the following:

• Normal loop exit

• Regular break statements nested inside L, but not inside of one of L’s nested

loops

• A labeled break statement inside L or one of the loops enclosed by L such

that the target of the label is L. Such break would terminate the execution

34

...

label1:

while(cond1)

{
label2:

while(cond2)

{
if (cond2 1)

break;

while (cond3)

{
if (cond3 1)

break;

if (cond3 2)

break label2;

}
m1();

}
m2();

}
m3();

...

Figure 4.5: Java code illustrating the computation of loop successors

of L as well as the loops it may enclose and would continue the execution at

loop succ(L)

• A labeled continue statement inside L or one of the loops it encloses, where

the target of the label is L′. This scenario terminates the iteration of L and

continues with the execution of the next iteration of L′.

Figure 4.5 illustrates some of the possible types of edges described above. The set

of loop exit edges whose target belongs to the body of the immediately surrounding

loop is denoted as jump(L). This set corresponds to the subset of exit edges e for L

35

1: cond1

2: cond2

T

F

T

F

3: cond2_1

4: cond3

5: cond3_1

6: cond3_2

7: m1()

8: m2()

9: m3()

T

T

T

F

F

F

F

T

…...

…...

Figure 4.6: Control flow graph illustrating the computation of loop successors

36

header(L1)=1

encl loop(L1)=none

exit edges(L1)= {(1,9)}
jump(L1)= {(1,9)}

header(L2)=2

encl loop(L2)=L1

exit edges(L2)= {(2,8),(3,8),(6,8)}
jump(L2)= {(2,8),(3,8),(6,8)}

header(L3)=4

encl loop(L3)=L2

exit edges(L3)= {(4,7),(5,7),(6,8)}
jump(L3)= {(4,7),(5,7)}

Figure 4.7: Loop information for the three loops

such that breaks from(e)=L. Only edges jumping to the immediately surrounding loop

are considered because edges that cross boundaries of more than one loop represent

the continuation of an iteration of some loop surrounding L one or more levels up

and therefore are not of interest in the computation of L’s loop successor. The set

of jump edges for each one of the loops is listed in Figure 4.7. Note that for L3 edge

(6,8) jumps not only out of loop L3, but also loop L2 and therefore is included in L3’s

set of exit edges, but not included in L3’s set of jump edges.

Similarly to the process of branch successor determination, two possible cases need

to be considered when computing loop successors. One of the possibilities is that the

loop L being considered is not nested inside another loop (i.e., encl loop(L)=none).

For this case, all the targets of edges in jump(L) are considered. The loop successor is

determined by finding the lowest common ancestor for all such targets in the method-

level post-dominator tree. In our example, L1 is not enclosed by another loop and

37

the target of it jump exit edge is node 9. With just a single exit edge, the lowest

common ancestor for node 9 in the method-level post-dominator tree is the node

itself. Therefore, loop succ(L1)=9. If we consider the loop L in our running example,

it also is not enclosed by another loop and its jump edges are (6,12) and (9,11). The

targets of the two edges are nodes 11 and 12, whose lowest common ancestor in the

post-dominator tree presented in Figure 4.3 is node 12. Therefore, loop succ(L)=12.

The second possibility is that the loop is enclosed inside another loop (i.e.,

encl loop(L)=L′). Similarly to branch successors, in this case only the flow of control

that does not exit L′ is considered in the loop successor computation. The loop

successor represents the earliest possible merge point of all the paths leading to the

exit from L such that the execution continues in the current iteration of L′. The

loop successor for L is determined by considering the targets of all edges in jump(L),

and finding their lowest common ancestor in the post-dominator tree of L′. In our

example, this case is illustrated by loop L2. The targets of all the jump edges for this

loop correspond to node 8. Therefore, loop succ(L2)=8. However, it is possible for

the targets of edges in jump(L) to correspond to different nodes. In that case, the

lowest common ancestor of those nodes in the loop post-dominator tree is identified

as the loop successor.

In some rare cases, it is possible to have jump(L)= ∅. For example, this can happen

in the case when the only way to exit out of a nested loop is through a labeled break

that jumps across multiple loop boundaries. In such a case, loop succ(L)=none.

Although this case is highly unusual, it is handled by the fragment construction

algorithm presented in the following section.

38

4.2 Phase II: Fragment Construction

The computation of branch and loop successors presented in the previous section

provides the information necessary to perform the fragment construction by apply-

ing the algorithm presented in Figure 4.8 and Figure 4.9 to the control-flow graph

of a method. The algorithm recursively traverses the control graph, creating inter-

action fragments corresponding to the control-flow structure. For example, during

the traversal of the CFG corresponding to the running example, the algorithm would

create a message fragment when it encounters method invocation getChars() on a Pat-

ternEntry object. The fragment structure produced by the algorithm for the running

example is represented in Figure 4.2. This figure is a replica of Figure 3.1 and was

duplicated in this chapter for convenience. Our algorithm for fragment construction

is based on two important assumptions. One of the assumptions is that the control-

flow graph for the method being analyzed is reducible. The notion of reducibility

was discussed in detail in Section 4.1.2 and our analysis of loops is dependent on this

assumption. The second assumption is that each control-flow graph node includes

no more than one method invocation and that branch nodes do not correspond to

method invocations. For example, method invocations where parameters themselves

are calls such as m1(m2()) need to be modified by introducing an auxiliary variable

aux and two statments aux=m2() and m3(aux). Similar strategy can be employed

to branches containing method invocations. The second assumption can be trivially

satisfied through such use of auxiliary variables and statements.

The fragment construction occurs in method processSequence where the control-

flow graph is traversed starting from the start node. The traversal terminates when

the stop node is encountered or when a CFG node with no successors is reached. To

39

illustrate this point, consider the running example. Initially, the method processSe-

quence is called with the CFG entry node (i.e. node 1) as the start node and CFG exit

node (i.e. node 12) as the stop node. The fragments corresponding to the method’s

flow of control are constructed as the algorithm traverses the CFG and identifies the

subgraphs corresponding to the fragments. At some point during the traversal the

algorithm will reach node 7 corresponding to a branch. To create the appropriate

opt fragment, method processSequence will be invoked from method processOpt with

start=7 and stop=10. The stop node here corresponds to branch succ(7) determined

in Phase I of our analysis (described in Section 4.1). The details of opt fragment con-

struction are described later in this section. Each recursive call to processSequence

corresponds to a new level of fragment nesting. Each fragment produced by the

method is appended to the fragment sequence (seq) of the immediately surrounding

fragment. The fragments at the top level belong to the fragment sequence of the top

fragment. Each other fragment belongs to the fragment sequence of its immediately

surrounding fragment, which could be either opt, alt, loop, or break fragment.

The main loop of the algorithm (lines 6-31) populates the sequence of the frag-

ment under consideration with the appropriate nested fragments. When a new node

n is encountered in the CFG traversal, it is first determined whether n belongs to a

loop L′ different from the currently enclosing loop L (L could be none). In case where

encl loop(n) �= L, n must be the header node for loop L′ that is either enclosed inside

L or it is the top-level loop not nested inside another loop (when L = none). In order

to create this loop fragment, the method processLoop is called. This method creates

a new loop fragment and adds it to the current fragment sequence belonging to the

fragment immediately enclosing the loop. The method then recursively populates the

40

contents of the new loop fragment by calling processSequence method with the nested

loop’s header node as the start node. As result of this processing, the new loop con-

tains all the appropriate nested fragments is created. The algorithm then continues

with the traversal starting from the successor of the newly created loop L′. Note

that when processSequence is called to process the contents of a loop fragment, the

stop node is not used. Instead, the traversal is stopped when the loop header node

is reached via a backedge. This traversal termination is ensured by the algorithm

through the checks performed at lines 11 and 30. During the CFG traversal for the

running example, when node 6 is encountered as the next node n under considera-

tion, it is determined that n=header(LOOP1) and that encl loop(start)=none while

encl loop(n)=LOOP1. In order to process the loop, processLoop is called, which in

turn invokes the method processSequence with parameters start=6 and stop=none.

Method processSequence then processes the CFG nodes belonging to the body of

the loop and appends the resulting break and opt fragments to the loop’s fragment

sequence.

If it is determined that n is not a header a new loop, the next check at line 13

identifies whether n is a method call and therefore should be represented as a mes-

sage fragment. A message fragment may not contain nested fragments and therefore

it does not require recursive processing. Because a method call node may only have

a single outgoing edge in a CFG by the assumptions stated earlier, the next node to

be processed will be its successor, which is set at line 22 of the algorithm. In case

of the running example, when method call getChars() is encountered, a new message

fragment is created and appended to the sequence of the fragment immediately sur-

rounding it, which in this case is the top fragment. Note that due to the presence of

41

polymorphism in object-oriented languages, it is often the case that there are several

possible run-time targets for a method call. Consequently, during static analysis each

method invocation could correspond to several polymorphic calls on different receiver

objects. In the scope of this work, polymorphism is not addressed and each method

invocation corresponds to a single message fragment.

For a node n enclosed inside a loop L, lines 16-19 of the algorithm identify its out-

going edges belonging to exit edges(L). These edges lead to the loop exit and therefore

the algorithm will create corresponding break fragments. For each such edge (n, m),

method processBreak is called, and a new break fragment is appended to the current

fragment sequence. The break fragment is recursively built by calling processSequence

with m as the start node. The stop node for processing of breaks is the loop successor

for the loop L from which edge (n,m) breaks out (i.e. breaks from(n,m)). For exam-

ple, when outgoing edges for node 9 are analyzed, it is determined that edge (9,11)

leads to exit from LOOP1. In this case, processBreak is called in order to build the

corresponding break fragment, which in turn invokes processSequence with start=11

and stop=12 since 12 is loop succ(LOOP1).

Lines 20-30 of the algorithm process the remaining outgoing edges for n not leading

to loop exits. At this point we also determine the next node at which the traversal

will continue once the current fragment is built. Lines 23-25 of the algorithm address

the creation of an opt fragment. If n has two outgoing edges and the target of at

least one of the edges is branch succ(n), then optional behavior is encountered. This

scenario is represented by an opt fragment which is created by processOpt. In this

method, a new opt fragment is appended to the current fragment sequence and is

populated with the contents of the path not leading directly to the branch succ(n).

42

It is possible for both outgoing paths for n to contain no control-flow information

leading to the creation of fragments. Consequently, the fragment sequence of the opt

fragment may be empty. Such an opt fragment would not contain any information

valuable in the creation of a sequence diagram and therefore will be eliminated in

Phase III of our analysis, which is described in Chapter 6. The opt fragment in the

running example is created as the result of the analysis of node 7. For this node, the

algorithm identifies that out of the two outgoing edges for this branch node, the edge

(7,10) leads to the branch successor. In order to create the opt fragment, method

processOpt is called, which in turn invokes processSequence with parameters start=8

and stop=10, since branch succ(7) = 10.

In our analysis, the necessity to create an alt fragment is identified at lines 26-28

of the algorithm where the remaining edges not leading to loop exits are processed. If

node n has two outgoing edges and the target of neither edge is branch succ(n), or if

n has more than two outgoing edges, the alt fragment is created by calling processAlt.

This method creates an alt fragment and processes each one of the outgoing edges

for n. A separate fragment sequence corresponding to each case is created for each

outgoing edge (n,mi). Method processSequence recursively processes each case using

the mi as the start node and branch succ(n) as the stop node. In the running example,

branch node 3 leads to the creation of an alt fragment. Method processAlt creates

a separate case for the two outgoing edges by calling processSequence twice with

start corresponding to the target of the outgoing edges (3,4) and (3,5) and stop

corresponding to branch succ(3) (node 6).

An opt fragment can be considered as a special case of an alt fragment. The

previously described process for the creation of an opt fragment is not a necessary part

43

of the algorithm. Instead, processAlt could be used to process the optional behavior

with the resulting alt fragment having two cases with one them being empty. This

special alt fragment could then be processed in Phase III (described in Section 6.1)

and transformed into an opt fragment. Although both approaches yield the same

result, the approach described above was chosen to explicitly identify opt fragments

as part of the algorithm.

44

input Control-flow graph G and data described in Section 4.1
output Top fragment t constructed by main

proc main
[1] create empty top fragment t
[2] create empty fragment sequence s inside t
[3] processSequence(s,G.start,G.exit)

proc processSequence(seq, start, stop)
[4] L := encl loop(start)
[5] n := start
[6] while n �= stop and n �= none
[7] if encl loop(n) �= L
[8] n must be header node of some loop L′

[9] processLoop(seq,L′)
[10] n := loop succ(L′)
[11] if n = start then n := none
[12] continue with next iteration for [6]
[13] if n contains a call
[14] append a new message fragment to seq
[15] breaks := ∅
[16] if L �= none
[17] breaks := {m | (n,m) ∈ exit edges(L) }
[18] for each m ∈ breaks
[19] processBreak(seq,n,m)
[20] rest := {m | (n,m) ∈ G ∧ m /∈ breaks}
[21] if rest = ∅ then next := none
[22] if rest = {m} then next := m
[23] if rest = {m1,m2} and (m1 = branch succ(n) or m2 = branch succ(n))
[24] processOpt(seq,n,rest)
[25] next := branch succ(n)
[26] else if rest = {m1, . . . ,mk} for k > 1
[27] processAlt(seq,n,rest)
[28] next := branch succ(n)
[29] n := next
[30] if n = start then n := none
[31]end while

Figure 4.8: Algorithm for fragment construction

45

proc processLoop(seq,L)
[32] append a new loop fragment f to seq
[33] create an empty internal fragment sequence seq2 inside f
[34] processSequence(seq2,header(L),none)

proc processBreak(seq,n,m)
[35] append a new break fragment f to seq
[36] create an empty internal fragment sequence seq2 inside f
[37] L := breaks from((n,m))
[38] processSequence(seq2,m,loop succ(L))

proc processOpt(seq,n,rest)
[39] append a new opt fragment f to seq
[40] create an empty internal fragment sequence seq2 inside f
[41] for each mi ∈ rest
[42] if mi �= branch succ(n)
[43] processSequence(seq2,mi,branch succ(n))

proc processAlt(seq,n,rest)
[44] append a new alt fragment f to seq
[45] for each mi ∈ rest
[46] add new alternative ai to the alt fragment
[47] create an empty internal fragment sequence seqi inside ai

[48] processSequence(seqi,mi,branch succ(n))

Figure 4.9: Algorithm for fragment construction

46

CHAPTER 5

Control Flow Analysis - Advanced Issues

5.1 UML Deficiencies

Although the second-generation UML standard provides a significant improve-

ment in the expressive power of the language, the specification still presents some

limitations in the representation of behaviors often found in existing systems. Par-

ticularly, UML 2.0 does not provide the explicit notation for representation of cer-

tain Java language features such as multiple method exits and exceptional behavior.

Figure 5.2 and Figure 5.1 show an example of code illustrating these deficiencies

throughout this chapter. This slightly modified code for method read() found in

class ZipInputStream of the standard package java.util.zip represents code that

can be found in real systems. By examining the code, it can be observed that there

are multiple ways to terminate method execution. Three return statements and two

throw statements in this method result in method exit. It is also not clear which one

of the return statements represents the ”normal” method exit. The inability of UML

to express these language features is a problem for systems written not only in Java,

but also other object-oriented languages. The addition of the notation for expressing

this behavior in UML could prove to be beneficial in documenting system design.

47

public class ZipInputStream extend InflaterInputStream {
public int read(byte[] b,int off, int len) throws IOException {..}
private void readEnd(ZipEntry e) {..}
private ZipEntry entry;

private static final int STORED = ...;

private static final int DEFLATED = ...;

...

}

public class InflaterInputStream extends FilterInputStream {
public int read(byte[] b,int off, int len) throws IOException {..}
private InputStream in;

...

}
public class ZipException extends Exception {
public ZipException(String s) { .. }
...

}

Figure 5.1: Sample classes based on standard package java.util.zip

48

public int read(byte[] b, int off, int len) throws IOException {
if (entry == null)

return -1;

switch (entry.method) {
case DEFLATED:

len = super.read(b, off, len);

if (len == -1)

readEnd(entry);

return len;

case STORED:

len = in.read(b, off, len);

if (len == -1)

throw new ZipException("unexpected EOF");

return len;

default:

throw new InternalError("invalid compression method");

}
}

Figure 5.2: Java code illustrating multiple returns and exceptional behavior

49

5.2 Proposed UML 2.0 Extensions

5.2.1 Notation for Multiple Returns

Similarly to other programming languages, Java allows for multiple exits from a

method. In our analysis, each one of the returns is considered to be a ”premature”

method exit with the exception of a single ”normal” exit. There is no methodology for

systematically distinguishing between the ”normal” exit and the ”premature” exits.

Instead, the distinction between the two can be performed by utilizing an arbitrary

heuristic in the analysis. The particular heuristic used in the scope of this work is

described shortly. An example of a premature exit as determined by our heuristic

can be found in Figure 5.2. The return guarded by the condition entry==null is a

premature return leading to premature termination of method execution.

Currently, there is no UML notation for representing premature method exits in

sequence diagrams. Although it is possible to express the premature returns as break

fragments breaking out of the method boundary, this representation would not follow

the definition of breaks as described in [5]. Consequently, it would be beneficial to

introduce new notation for accurate presentation of system design in the presence

of multiple method exits. This could be accomplished by the addition of the new

return fragment, making it possible to accurately represent the scenarios leading to

premature method exits. The return fragment would be similar to opt or break

fragments, since the execution of the contents of each one of those fragments depends

on the value of the guarding condition. However, unlike other fragments, the return

fragment would indicate termination of method execution and return to the caller.

The proposed notation for return fragment is illustrated in Figure 5.3 and could be

easily incorporated into the existing UML notation.

50

sd read

:ZipInputStream in:InputStream

read(b,off,len)

RETURN

RETURN read(b, off, len)

OPT
readEnd(entry)

THROW

THROW

:ZipException
create

create
:InternalError

read(b,off,len)

Figure 5.3: Sequence diagram illustrating the proposed UML extensions

51

5.2.2 Exceptional Behavior

The Java programming language also provides the exception handling mecha-

nism for situations where a program either violates the semantic constraints of the

language, or handles the consequences of exceptional conditions as defined by the

programmer. When a program throws an exception, non-local transfer of control oc-

curs from the point where the exception is thrown to the point where it is caught [5].

Representation of such exceptional behavior can be particularly difficult because in

some cases a thrown exception could propagate several levels up the call chain prior

to being caught. Figure 5.3 shows an example of ZipException being thrown, which

occurs when the condition len==-1 evaluates to true.

Currently, UML does not provide notation for representing the flow of exceptional

behavior in sequence diagrams. Because of the challenges associated with the rep-

resentation of exceptional behavior (in particular showing where the exceptions are

caught), exceptional behavior is not represented in the scope of this work. How-

ever, with only minor changes, UML notation to show the throwing of exceptions

in sequence diagrams could be introduced. A new throw fragment could be used to

represent the behavior occurring between the point where the abnormal scenario is

recognized and the point where the exception is thrown. Although this exception

fragment is not part of our work, its introduction would require only trivial changes

to our algorithm and data structure described in Chapters 3 and 4. The exception

fragment shown in Figure 5.3 is an illustration of the possible UML representation

for the throwing of exceptions.

52

5.3 Data Structure Additions

To accommodate the analysis and representation of multiple returns from a method

in our analysis, return fragments were introduced to our data structure. A return

fragment is similar to a break fragment, since both represent optional behavior that

subsequently changes the flow of control. While the inclusion of this new fragment

type in our analysis and data structure required only minor changes, the benefits of

differentiation between breaks and returns in design documentation can be poten-

tially significant. While break fragment indicates an exit from an enclosing fragment,

return fragment denotes a method exit. We implement return fragments using a Re-

turnFragment class. Similarly to the break and opt fragments, the return fragment

stores an ordered sequence of its nested fragments as well as the guarding condition.

The return fragment is always nested inside another non-message fragment. Fig-

ure 5.4, based on example in Figure 5.2, provides an illustration of return fragments.

One of the return fragments in the figure, RETURN1, does not contain any nested

fragments, while fragment RETURN2 encloses a message fragment.

5.4 Phase I: Preprocessing

5.4.1 Post-dominance

In a control-flow graph containing multiple exit nodes such as the one presented

in Figure 5.5, the notion of post-dominance is not defined. In order to compute post-

dominance relationships within such a CFG, there must be a single exit node reachable

from each node in the control-flow graph. In the presence of multiple method exits,

it is necessary to add an artificial exit node that succeeds all other exit nodes. As

a result of this minor change, all exit nodes in the CFG are post-dominated by this

53

TOP

RETURN cond: entry.method == STORED

InputStream:read(b,off,len)

OPT 1

2

cond: len == -1

RETURN 1 cond: entry == null

InflaterInputStream:read(b,off,len)

ZipInputStream:readEnd(entry)

Figure 5.4: Fragment structure generated for method read

54

new exit node and the computation of the post-dominator tree can be performed in

the same way as described in Section 4.1.1.

5.4.2 Control Dependence

To determine paths leading to ”premature” exits in our analysis, it is necessary

to identify the edges that once taken lead to the early exit. These controlling edges

represent the decision point at a branch node where once such edge is taken, it leads

to the method exit. Consider two nodes n1 and n2 of control-flow graph G. Node

n2 is control-dependent on n1 if there exists a path from n1 to n2 such that n2 post-

dominates all the nodes in the path except n1. By this standard definition, it is clear

that n1 must be a branch node. An edge (n1, n2) is a controlling edge for node n if

both of the following requirements are satisfied:

• n is control-dependent on n1

• n post-dominates n2 or n = n2

In order to identify controlling edges for an exit node x in CFG G, we traverse G

searching for all nodes b such that x = b or x post-dominates b. Then for each such

node b we identify all edges (a, b) such that x does not post-dominate a. Each such

edge is a controlling edge for the exit node x. This simple approach for identifying

controlling edges is based on [4]. Figure 5.6 lists the sets of controlling edges for the

exit nodes in the CFG shown in Figure 5.5. The set of controlling edges for a node n

will be denoted by contr edges(n).

55

1: entry==null

T

F

T

F

2: return -1

4: len=super.read(…)

5: len == -1

6: readEnd(...)

7: return len

9: len==-1

8: len=in.read(…)

3: switch(...)

11: throw new ZipException(….)

10: return len

12: throw new InternalError(….)

T

F

Figure 5.5: Control flow graph illustrating computation of control dependence

contr edges(2)={(1,2)}
contr edges(7)={(3,4)}
contr edges(10)={(9,10)}
contr edges(11)={(9,11)}
contr edges(12)={(3,12)}

return exit edges= { (1,2),(3,8) }
throw exit edges= { (9,11),(3,12)}

Figure 5.6: Controlling edge information for method exits for CFG in Figure 5.5

56

5.4.3 Identifying Paths Leading to Exceptional Behavior

Our analysis does not consider exceptional behavior. Consequently, the paths

leading to exceptional behavior do not contribute any control flow information in the

analysis output: the control-flow subgraphs leading to an exception being thrown do

not result in generation of fragments, and therefore these paths can be ignored. The

controlling edges for throw statements are identified and stored in the set throw exit edges.

This set of edges identifies the paths not resulting in fragment creation in the frag-

ment construction phase of our analysis. This step is performed prior to processing

of the returns (described in the next section) and the subsequent fragment construc-

tion, because the post-dominance relationships used there rely on the fact that paths

leading to throw statements are ignored.

Next, we will describe the steps taken to eliminate each throw exit node from the

CFG. These steps are followed for each such exit and result in a CFG with all paths

leading to exceptional behavior eliminated for the purposes of our further analysis.

In order to distinguish a path leading to a throw method exit x, the controlling

edges for each x must be identified using the algorithm described in Section 5.4.2. The

controlling edges for x are then added to the set throw exit edges for the control-flow

graph G. This process essentially eliminates the edges for the purposes of post-

dominance relationships computation and the identification of subsequent controlling

edges for the remaining throw statements and all premature returns statements. Note

that the post-dominator information and controlling edges must be recomputed after

the elimination of each one of the controlling edges leading to a throw exit.

The algorithm described above is be repeated for each throw exit node. As the

result of this process, the controlling edges for throw statements are eliminated and

57

these exits become unreachable from the entry node of the control-flow graph. Es-

sentially, the possible exceptional behavior of the code under analysis is eliminated.

Figure 5.6 lists the controlling edges for throws exits ignored in our further analysis.

5.4.4 Processing of Multiple Method Exits

Once the controlling edges leading to throw statements are eliminated, it is nec-

essary to identify the information needed for handling of multiple method exits. This

information is used in Phase II of our analysis which is described in Section 5.5.

There, return fragments are created in correspondence to ”premature” method exits.

It is often the case that a method may contain multiple method exits making it un-

clear which return statement should be designated as the normal exit node. Since

there is no obvious way to determine the normal exit, a heuristic is applied to desig-

nate one of the exits as the normal exit, while others are assumed to be premature.

In our approach, we identify the normal exit as the return statement in the CFG

that is reached by greatest number of nodes containing method invocations. For each

exit node, we traverse the CFG backwards counting the number of calls reaching the

exit. The node with the maximum number of calls reaching it is designated as the

”normal” exit. In case of a tie, the return node found later in the code is chosen as

the normal return. In the CFG presented in Figure 5.5, node 7 would be identified

as the normal exit because is it reached by two method calls. Return nodes 2 and

10 would be identified as premature exits because they are reached by 0 and 1 calls

respectively.

Once the normal exit is identified, certain information necessary for processing

of premature returns in the subsequent analysis is determined. This computation

58

uses the information regarding the controlling edges for throw statements. This is

important because the computation of controlling edges for premature exits may

differ depending on whether the paths leading to throw statements are considered.

For example, consider Figure 5.5. If the edge leading to throw node 11 is ignored, the

controlling edge for return node 10 is (3,8). However, if that path is considered, the

controlling edge for node 10 is the edge (9,10). Since in our analysis the exceptional

behavior is not considered, edge (3,8) should be controlling edge for the return node

10. For this reason, the processing described in Section 5.4.3 is a necessary preliminary

step.

The computation of controlling edges for each premature return node requires

the following steps. For each such return node, compute its controlling edge using

the algorithm described in Section 5.4.2. Then, we add each such edge in the set

return exit nodes associated with the CFG. Next, the post-dominator tree must be

recomputed while ignoring the edges currently in return exit nodes. This is necessary

because during each subsequent computation of controlling edges for the next return

node, it must be ensured that those edges are identified properly. As result of the

computations described, the information regarding controlling edges for premature

exits is computed and stored in the set return exit edges. This information is then

used in Phase II for return fragment construction.

59

5.5 Phase II: Fragment Construction

The changes described in the previous section effect the analysis of loops, loop

successors, and branch successors. In a CFG with multiple returns and throw state-

ments, these computations are based on the control-flow graph with the eliminated

controlling edges for ”premature” returns and for all throws.

The addition of the return fragment also requires modifications to the fragment

construction algorithm described in Section 4.2. The modified algorithm is presented

in Figure 5.7 and Figure 5.8 and it allows us to create return fragments whenever a

controlling edge leading to a premature exit is encountered. Additionally, it handles

the presence of throw statements by ignoring the paths leading to the exceptions

being thrown. The line numbers that include modifications to the original algorithm

are shown in bold.

At lines 15 and 16, sets returns and throws are identified. These sets correspond

to outgoing edges for the current node n leading to return or throw exits respectively.

At lines 17 and 18, for every outgoing edge for n leading to a premature exit, a

new return fragment is created by calling method processReturn. There, the return

fragment is added to the fragment sequence of the surrounding fragment and all nodes

starting with node m are placed inside the return fragment. For example, consider

the CFG for our example presented Figure 5.5. When the algorithm encounteres node

3, it identifies the edge (3,8) as the controlling edge for a premature return. Method

processReturn is then called, which then invokes processSequence with start = 8

and stop = none. As result, nodes 8 and 9 will be processed. However, after the

elimination of the path leading to the throw fragment, node 9 does not contain control-

flow information of interest. Therefore, only the message fragment corresponding to

60

node 8 is enclosed in the new return fragment. The resulting return fragment is

represented in the data structure in Figure 5.4.

Additional changes to the algorithm at line 21 ensure that edges leading to prema-

ture returns and throw statements are not processed inside the loop. The modification

at line 24 excludes such edges from being counted as outgoing edges from the cur-

rent node. Consequently, the newly created opt and alt fragments enclose proper

fragments and the next node to be processed is identified correctly.

61

input Control-flow graph G and data described in Section 5.4
output Top fragment t constructed by main

proc main
[1] create empty top fragment t
[2] create empty fragment sequence s inside t
[3] processSequence(s,G.start,G.exit)
proc processSequence(seq, start, stop)
[4] L := encl loop(start)
[5] n := start
[6] while n �= stop and n �= none
[7] if encl loop(n) �= L
[8] n must be header node of some loop L′

[9] processLoop(seq,L′)
[10] n := loop succ(L′)
[11] if n = start then n := none
[12] continue with next iteration for [6]
[13] if n contains a call
[14] append a new message fragment to seq
[15] returns:= {m | (n,m) ∈ return exit edges }
[16] throws := {m | (n,m) ∈ throw exit edges }
[17] for each m ∈ returns
[18] processReturn(seq,m)
[19] breaks := ∅
[20] if L �= none
[21] breaks := {m | (n,m) ∈ exit edges(L) ∧ (n,m) /∈ returns ∧ (n,m) /∈ throws }
[22] for each m ∈ breaks
[23] processBreak(seq,n,m)
[24] rest := {m | (n,m) ∈ G ∧ m /∈ breaks ∧ (n,m) /∈ returns ∧ (n,m) /∈ throws }
[25] if rest = ∅ then next := none
[26] if rest = {m} then next := m
[27] if rest = {m1,m2} and (m1 = branch succ(n) or m2 = branch succ(n))
[28] processOpt(seq,n,rest)
[29] next := branch succ(n)
[30] else if rest = {m1, . . . ,mk} for k > 1
[31] processAlt(seq,n,rest)
[32] next := branch succ(n)
[33] n := next
[34] if n = start then n := none
[35]end while

Figure 5.7: Algorithm for fragment construction

62

proc processLoop(seq,L)
[36] append a new loop fragment f to seq
[37] create an empty internal fragment sequence seq2 inside f
[38] processSequence(seq2,header(L),none)

proc processBreak(seq,n,m)
[39] append a new break fragment f to seq
[40] create an empty internal fragment sequence seq2 inside f
[41] L := breaks from((n,m))
[42] processSequence(seq2,m,loop succ(L))

proc processOpt(seq,n,rest)
[43] append a new opt fragment f to seq
[44] create an empty internal fragment sequence seq2 inside f
[45] for each mi ∈ rest
[46] if mi �= branch succ(n)
[47] processSequence(seq2,mi,branch succ(n))

proc processAlt(seq,n,rest)
[48] append a new alt fragment f to seq
[49] for each mi ∈ rest
[50] add new alternative ai to the alt fragment
[51] create an empty internal fragment sequence seqi inside ai

[52] processSequence(seqi,mi,branch succ(n))

proc processReturn(seq,m)
[53] append a new return fragment f to seq
[54] create an empty internal fragment sequence seq2 inside f
[55] processSequence(seq2,m,none)

Figure 5.8: Algorithm for fragment construction

63

CHAPTER 6

Phase III: Fragment Transformations

The fragment structure produced as the result of Phase II of the analysis may not

be the optimal representation for a given method. Redundant information or unnec-

essary nested fragments may make the resulting diagrams less readable and harder to

understand. The fragment transformations introduced in this chapter were developed

to improve the fragment structure resulting from the previous phases of the analy-

sis. The purpose of these transformations is to simply the structure without altering

its meaning. There are two main goals that are achieved by the transformations.

First, the clean-up tranformations eliminate any redundancies present in the out-

put of Phase II. Next, the readability transformations further simplify the fragment

structure with the goal of reducing nesting of the fragments. Such reduction of nest-

ing is intended to help with readability and comprehension of the reverse-engineered

sequence diagrams.

The clean-up transformations, described in Section 6.1, eliminate any fragments

not contributing meaningful information to the diagram. For example, an empty

opt fragment does not provide any control-flow information in a sequence diagram

due to lack of message exchanges in the context of the guarding condition of such

a fragment. The clean-up transformations can be considered as a post-processing

64

phase of the algorithm that eliminates any redundant information from the fragment

structure.

The readability transformations reduce the nesting of fragments by employing

various techniques described in Section 6.2 to move the nested fragments one level up

in the fragment structure. These techniques have proven to be successful in reducing

nesting of fragments as described in Chapter 7. All the transformations in this chapter

are semantics-preserving and our experimental results suggest that they could be very

beneficial in improving readability and understanding of sequence diagrams.

The transformations are performed in the following sequence. First, the clean-up

transformations are performed in the order in which they are described. If during any

one of those transformations the fragment structure is changed, the entire sequence

of transformations is repeated. This process continues until there are no longer any

changes in the fragment structure. This concludes the clean-up transformation phase.

Next, the readability transformations are performed in the order in which they are

described later. The process is also iterative. If any one of the transformations causes

a change in the fragment structure, the entire sequence of transformations is repeated.

This iterative process continues until there are no changes in the fragments structure.

All clean-up and readability transformations are described in detail below.

6.1 Clean-up Transformations

6.1.1 Removal of Empty Alt, Opt, and Loop Fragments

In the process of fragment construction, the algorithm often creates empty frag-

ments that do not contribute any control flow information to sequence diagrams.

The transformation described here removes some of the empty fragments generated

65

by the algorithm by recursively traversing nested fragment sequences. Top and mes-

sage fragments are never removed. Alt, opt, and loop fragments are removed only

if their sequences do not enclose other fragments. Loop fragments initially always

enclose at least a single nested fragment, the implicit break fragment. However, if

the break fragment itself does not enclose any fragments, in some cases it will be

removed as a consequence of the the break removal transformation described next. If

upon the removal of the break fragment the loop’s fragment sequence becomes empty,

the loop is removed as well. An alt fragment can be deleted only if all of its cases

contain empty fragment sequences. If any one case of an alt is empty, the case will

be removed as part of this transformation.

The recursive and iterative manner in which all the transformations are executed

makes it possible for fragments at the upper level of the data structure to become

empty as the empty nested fragments at the lower nesting levels are removed. Fig-

ure 6.1 provides illustration for such a scenario and this transformation in general.

Note that when the fragment OPT3 is removed, the fragment sequence of OPT2

becomes empty making it a candidate for removal in the next iteration of the trans-

formations. As seen from the example, this transformation could greatly simplify a

seemingly complex data structure.

6.1.2 Removal of Implicit Break Fragments

The data structure generated by the algorithm creates loop fragments that con-

tain not only the explicit, but also the implicit (normal) loop breaking scenarios

represented in the form of break fragments. Break fragments can occur anywhere

within the body of the loop and may signify a scenario that results in breaking out

66

OPT OPT

OPT

LOOP

BREAK

ALT

m2()

m3()

ALT

m2()

m3()

1 1

2

OPT 3

Figure 6.1: Illustration of the removal of empty fragments

of the current loop to one of the surrounding loops. The breaking scenario resulting

in a jump over several loops is made possible, for example, by the labeled break and

labeled continue statements in Java.

The transformation presented here considers break fragments that:

• Do not contain nested fragments.

• Are located as the first or last elements in the loop fragment’s fragment sequence

• Exit out of the current loop and continue the execution at the point following the

loop in the immediately surrounding fragment. This means that for the loop exit

edge e that corresponds to the break fragment, breaks from(e) = L, where L

is the immediately surrounding loop of the break fragment under consideration.

67

Such breaks can be categorized as implicit breaks because they result in the exit

from the loop in the beginning or the end of a loop’s iteration and therefore do not

represent a breaking scenario where only part of the loop body is executed prior to

the loop exit. Additionally, since we only consider breaks containing no other nested

fragments, the execution of the contents of the break does not represent any additional

flow of control information and therefore is not significant. An illustration of such a

break can be found in Figure 3.1 for our running example. In this figure, BREAK1

is an implicit break for LOOP1.

Because the breaks satisfying the criteria described above do not contribute any

meaningful information in terms of flow of control, they can be eliminated. To do so,

the data structure for each method is recursively traversed in search of loop fragments.

Once a loop fragment is encountered, all the break fragments satisfying the criteria for

removal are eliminated. The loop fragment is analyzed repeatedly to ensure that once

the breaks in the beginning and the end of the sequence are removed, there are no

other breaks eligible for removal that appear in those positions. This transformation

guarantees that the break fragments satisfying the conditions described above will

not be found in any analyzed loop fragment. Figure 6.2 provides a demonstration

of the result of this transformation on a sample fragment structure where fragments

BREAK1 and BREAK3 are removed.

6.1.3 Replacing an Alt Fragment with an Opt Fragment

As the result of the analysis in Phase II, the fragment structure may contain an

alt fragment with only a single case. However, an alt fragment containing a single

case represents an optional behavior that occurs only when its guarding condition

68

LOOP

BREAK

LOOP

BREAK

OPT

m2()

1

1

m2()

BREAK 2

2

3

LOOP

LOOP

OPT

m2()

1

m2()

BREAK 2

2

Figure 6.2: Illustration of the removal of implicit break fragments

of the case evaluates to true. Such fragment is semantically equivalent to an opt

fragment with its guarding condition corresponding to the guarding condition of the

alt fragment’s case. An example of this transformation is represented in Figure 6.3,

where the alt fragment containing a single case is replaced with an opt fragment. The

corresponding opt fragment has the appropriate guarding condition and contains all

the fragments that were nested inside the case.

6.2 Readability Transformations

6.2.1 Moving of Nested Alt Cases

This transformation applies when a case of an alt fragment contains a single

nested element, which also happens to be an alt fragment. A case of the nested alt is

69

case (cond1):

m1()

OPT

m2()

ALT OPT (cond1)

m1()

1

2

OPT

m2()

1

Figure 6.3: Replacing an alt fragment with an opt fragment

executed only when both the case-guarding condition of the surrounding alt and the

appropriate case-condition of the nested alt evaluate to true. In the example presented

in Figure 6.4, in order for the contents of the case with condition x to execute,

both conditions b and x must evaluate to true. Therefore, it would be semantically

equivalent to combine the two conditions and replace the original guarding condition

of the nested case with the new condition. Additionally, since the two conditions of

the nested and the outer case can be combined, the need for the guarding condition

of the outer case is eliminated. As a result, the cases of the nested alt can become the

cases of the outer alt fragment. Consequently, the nested alt fragment is eliminated

as well as the case of the outer alt fragment containing it. Instead, the cases originally

contained in the nested alt fragment are pushed up to the level of the surrounding

alt and the modified guarding conditions ensure that the semantics are preserved.

6.2.2 Moving of Fragments Surrounded by an Opt Fragment

This transformation reduces nesting of a fragment by identifying opt fragments

containing exclusively opt, alt, break, and return fragments. The transformation

eliminates the surrounding opt fragment while pushing the fragments nested inside it

70

ALT

case a: …..

case b:

ALT
case x:

m1()

OPT

m2()

case y:

m2()

case a: …..

case (b && x):

case (b && y):

ALT

m1()

OPT

m2()

m2()

11

1

1

2

Figure 6.4: Moving of nested alt cases

one level up. This transformation combines the guarding condition of the surrounding

opt with the conditions of each one of the nested opt, alt, return, and break fragments.

As a result, the guarding condition of each one of the nested fragments accurately

describes the circumstances under which the code inside of it will be executed. The

merging of conditions of the opt and its nested fragments eliminates the necessity to

have the opt fragment. Once the opt fragment is removed, all the alt, opt, break and

return fragments are moved up in the nesting structure, and become enclosed in the

fragment previously surrounding the original opt fragment. The nesting level of the

fragments is reduced as the result. Since this transformation is performed recursively,

the nesting level of many fragments can be significantly reduced. Figure 6.5 provides

an illustration of this transformation.

71

OPT

OPT

RETURN

m1()

ALT

m2()

m3()

1

2

OPT

RETURN

m1()

ALT

m2()

m3()

2

LOOP LOOP

Figure 6.5: Moving of fragments surrounded by an opt fragment

6.2.3 Removing an Opt Fragment Enclosed by a Case

This transformation applies exclusively to alt fragments containing one or more

cases enclosing only a single opt fragment. In this situation, the fragments enclosed

by the opt fragment are guarded by the conditions of the opt fragment and the

condition of the corresponding alt case. Therefore, it is possible to combine the

conditions of the opt fragment and the case of the alt into a single condition. This

new condition becomes the guarding condition of the alt case being transformed and

the nested fragments of the original opt fragment become enclosed by the alt case.

The completion of this transformation decreases the nesting level of the alt fragment

cases containing a single opt fragment. The transformation is illustrated in Figure 6.6.

72

OPT:

ALT

m2()

m3()

case a: …..

case b:

cond(c1)

ALT

m2()

m3()

case a: …..

case (b && c1):

Figure 6.6: Removing an opt fragment enclosed by a case

6.2.4 Generalized Removal of Opt Fragment

This transformation reduces nesting of a fragment by identifying opt fragments

containing opt, alt, break, and return fragments as well as a single subsequence of

loop and message fragments. Similarly to other transformations described earlier,

this transformation uses the technique of combining the guarding condition of the

surrounding opt with the conditions of each one of the nested opt, alt, return, and

break fragments. In order to preserve the semantics, it is also necessary to ensure

that the subsequence of loop and message fragments only occurs under the guard-

ing condition of the opt. Therefore, it is essential to enclose this subsequence by a

newly created opt fragment with the guarding condition of the original surrounding

opt fragment. The newly created opt fragment contains the loop and message frag-

ments and replaces the original subsequence of loop and message fragments in the

fragment sequence. As result of the transformation, all the alt, opt, break and return

fragments are moved up in the nesting structure, becoming enclosed in the fragment

73

OPT

OPT

LOOP

BREAK

RETURN

m2()

1

2

m2()

m3()

OPT

LOOP

BREAK

RETURN

m2()

2

m2()

m3()

LOOP LOOP

OPT 1

Figure 6.7: Generalized removal of opt fragments

previously surrounding the original opt fragment. The original loop and message

fragment subsequence becomes enclosed inside an opt fragment, which is then placed

in the appropriate location in the sequence of opt, alt, break, and return fragments.

This transformation reduces the nesting level of the opt, alt, break, and return frag-

ments, while keeping the nesting level of the loop and message fragments the same.

Figure 6.7 provides an illustration this transformation.

74

CHAPTER 7

Empirical Study

In this chapter we present the experimental results from our evaluation of the

control-flow analysis, which was implemented using the Soot framework [14]. Our

experience suggests that as the nesting of non-message fragments increases, the com-

prehension of the resulting diagram becomes more difficult. Therefore, the reduction

of the nesting in the diagrams could lead to significant improvements in its compre-

hension and readability. The goal of this study is to evaluate the efficiency of our

analysis, to determine the prevalence of nesting in existing components and to iden-

tify the potential benefits of the readability transformations described in Section 6.2

in reducing the fragment nesting.

The set of components considered in this study is described in Table 7.1. These

components typically come from reusable libraries. The components will be referred

to as the components under analysis (CUA) from this point forward. Given a CUA,

Phase I of the analysis is executed and the information necessary for the next phase

is stored. Next, Phase II (i.e., fragment construction) is performed to generate the

fragment structure. The redundant information present in the resulting structure is

eliminated by performing the clean-up transformations described in Section 6.1. The

75

final step of our analysis is the execution of the readability transformations described

in Section 6.2 and the assessment of their benefits in terms of nesting reduction.

(1) (2) (3) (4) (5) Method Nesting
Component Classes Methods Time(s) (a) (b) (c)
collator 12 157 4.84 56.10% 17.80% 26.10%
date 7 136 5.43 82.40% 5.10% 12.50%
decimal 7 136 0.77 81.60% 6.60% 11.80%
message 9 176 1.33 77.30% 5.70% 17.00%
boundaries 12 74 0.54 81.10% 13.50% 5.40%
gzip 6 41 0.21 68.30% 17.10% 14.60%
zip 14 118 0.54 72.00% 21.20% 6.80%
math 8 241 0.96 50.60% 33.20% 16.20%
pdf 24 330 0.74 78.20% 7.90% 13.90%
mindbright 60 488 2.08 69.10% 19.70% 11.30%
sql 18 60 0.32 63.30% 16.70% 20%
html 30 298 1.42 62.40% 18.50% 19.10%
jess 146 627 2.83 69.90% 8.50% 21.70%
io 21 86 0.34 74.40% 10.50% 15.10%
jflex 34 313 14.65 52.70% 21.70% 25.60%
bytecode 44 625 6.65 60.20% 19.20% 20.60%
checked 4 15 0.11 80% 13.30% 6.70%
big 1 33 0.24 57.60% 30.30% 12.10%
vector 4 38 0.18 60.50% 28.90% 10.50%
cal 6 152 0.87 67.80% 23.70% 8.60%
push 2 20 0.14 75% 20% 5%

Table 7.1: Analyzed components.

The details regarding the components used in this study are described in Ta-

ble 7.1. Columns (2) and (3) provide the number of classes and methods in the CUA

respectively. Column (4) presents the running time of the analysis in seconds for each

respective component. This time includes all three phases of the analysis executed

on a 900MHz Sun Fire 280-R machine. The maximum running time of 14.65 seconds

76

suggests that the cost of the analysis is practical. The performance of some of aspects

of the current analysis implementation could be improved and the elimination of such

inefficiencies could lead to even faster running times in the future.

For the purposes of this study, we classify each method into one of the following

disjoint categories:

(a) Methods with either no fragments or only message fragments, such as simple

get/set methods. The corresponding top fragment encloses either no fragments

or only message fragments.

(b) Methods that have message fragments, but do not have any fragment nesting. In

the corresponding fragment structure, only the top fragment would have nested

non-message fragments.

(c) Methods with fragment nesting.

The last three columns in Table 7.1 show the percentage of methods in each one of

these categories relative to the total number of methods. As the numbers demon-

strate, the majority of the methods found in these components belongs to the first

category, which is consistent with the typical object-oriented programming style.

However, fragments are typically found in 20-50% of methods and many of those

methods exhibit fragment nesting. We denote the set of methods in the third cat-

egory as Nested . The goal of the readability transformations is to reduce fragment

nesting. Since only fragments in methods belonging to Nested may be enclosed by

other fragments, the readability transformations are only applicable to this category

of methods.

77

We transform the methods in Nested using the transformations described in Sec-

tion 6.2. The benefits of these transformations are analyzed using various metrics

that evaluate the reduction of nesting in the fragment structure. One of the metrics

used in our evaluation is the average nesting depth, D(m), of non-message fragments

for each method. The nesting depth of a non-message fragment is defined as the

number of its enclosing fragments excluding the top fragment. Message fragments

were not considered in this metric because they do not contribute to reduced di-

agram readability due to nesting. For this analysis, the methods in Nested were

classified into three categories: (a) methods with D(m) ≤ 1, (b) methods such that

1 < D(m) ≤ 2, and (c) methods with D(m) > 2. The larger values of D(m) represent

the more complicated fragment structures corresponding to greater levels of nesting.

Note that prior to the readability transformations all methods in category (a) must

have nested fragments and therefore 0 < D(m) ≤ 1. This is true because methods

with D(m) = 0 do not belong to Nested and therefore are not transformed by the

transformations. However, as a result of the transformations, it is possible that some

of a transformed method from Nested may have D(m) = 0 if all the nesting in the

method is eliminated. Column (2) in Table 7.2 shows the number of methods in

Nested for each component. Note that this number corresponds to Column (5c) in

Table 7.1 where it is shown as the percentage of the total number of methods for the

component. Column (3) represents the distribution of methods with various average

nesting depths prior to the readability transformations. Sub-columns (3a)-(3c) corre-

spond to the appropriate categories of D(m). Columns (4a)-(4c) show the partitioning

of the categories after the transformations. Additionally, the numbers in parenthesis

demonstrate the percent change of each set compared to the appropriate category

78

0%

20%

40%

60%

80%

100%

co
lla

to
r

da
te

de
ci

m
al

m
es

sa
ge

bo
un

da
rie

s

gz
ip zi
p

m
at

h

pd
f

m
in

db
rig

ht sq
l

ht
m

l

je
ss io

JF
le

x

by
te

co
de

ch
ec

ke
d

bi
g

ve
ct

or ca
l

pu
sh

D(m)<=1 1<D(m)<=2 D(m)>2

Figure 7.1: Changes in average nesting depth from Table 7.2

in Column (3). For example, for component collator, the number of methods in

D(m) > 2 category decreased by 6 methods, which corresponds to 14.6 percent. As a

result of the transformations, the deep nesting of some methods decreased, resulting

in lower number of methods with D(m) > 2 and an increase in the number of methods

in other categories. These results suggest that the transformations can successfully

eliminate unnecessary nesting.

The results presented in Table 7.2 are shown in the form of a graph in Figure 7.1.

For each component, there are two adjacent bars demonstrating D(m) distribution

before and after the readability transformations. Out of the 15 components that could

be simplified, 11 demonstrated increase of around 10% or higher in the category where

D(m) ≤ 1. However, components date and message have shown the most significant

improvement of around 30% in this category.

79

(1) (2) (3) Before (4) After
Component # Nested (a) (b) (c) (a) (b) (c)
collator 41 27 7 7 31(+9.8%) 9(+4.9%) 1(-14.6%)
date 17 7 3 7 12(+29.4%) 3(0%) 2(-29.4%)
decimal 16 9 2 5 12(+18.8%) 2(0%) 2(-18.8%)
message 30 13 8 9 23(+33.3%) 4(-13.3%) 3(-0.2%)
boundaries 4 4 0 0 4(0%) 0(0%) 0(0%)
gzip 6 6 0 0 6(0%) 0(0%) 0(0%)
zip 8 6 2 0 7(+12.5%) 1(-12.5%) 0(0%)
math 39 33 4 2 37(+10.3%) 2(-5.1%) 0(-5.1%)
pdf 46 45 1 0 46(+2.2%) 0(-2.2%) 0(0%)
mindbright 55 47 4 4 53(+10.9%) 0(-7.3%) 2(-3.6%)
sql 12 10 2 0 12(+16.7%) 0(-16.7%) 0(0%)
html 57 39 7 11 45(+10.5%) 8(+1.8%) 4(-12.3%)
jess 136 108 18 10 116(+5.9%) 15(-2.2%) 5(-3.7%)
io 13 13 0 0 13(0%) 0(0%) 0(0%)
jflex 80 65 11 4 71(+7.5%) 8(-3.8%) 1(-3.8%)
bytecode 129 99 21 9 123(+18.6%) 6(-11.6%) 0(-7.0%)
checked 1 1 0 0 1(0%) 0(0%) 0(0%)
big 4 3 0 1 4(+25.0%) 0(0%) 0(-25.0%)
vector 4 4 0 0 4(0%) 0(0%) 0(0%)
cal 13 10 1 2 11(+7.7%) 1(0%) 1(-7.7%)
push 1 1 0 0 1(0%) 0(0%) 0(0%)

Table 7.2: Changes in the average nesting depth D(m)

The data suggests that the transformations effectively reduce the unnecessary

nesting. This is also confirmed by the reduction in the total number of non-message

nested fragments. The metric used to express the decrease in the number of non-

message nested fragments is the average number of such fragments per method,

denoted as A(m). The computation of A(m) for each component is performed by

calculating the total number of non-message nested fragments in Nested divided by

the number of methods in Nested. Table 7.3 shows A(m) for each component be-

fore and after the transformations as well as the resulting improvement. The results

80

show that the use of the readability transformations results in a significant reduction

in fragment nesting. Out of 21 components analyzed, 13 exhibit 25% or greater re-

duction in the average number of nested non-message fragments per method. Some

components (e.g. math, bytecode, and big) demonstrated over 50% reduction.

(1) (2) (3) (4)
Component A(m) before transform A(m) after transform Improvement
collator 5 3.6 27.7%
date 26.1 16.4 37.4%
decimal 20.6 13.2 35.8%
message 17.1 10.8 36.7%
boundaries 2 1.5 25%
gzip 2.2 2.2 0%
zip 2.5 2.2 10%
math 3.4 1.6 53.7%
pdf 1.6 1.4 12.5%
mindbright 2.1 1.6 25.6%
sql 1.8 1.2 31.8%
html 5.3 2.9 44%
jess 3.6 3 14.8%
io 1.4 1.3 5.6%
jflex 4 3.1 21.8%
bytecode 3.3 1.6 50.9%
checked 1 1 0%
big 2.8 0.8 72.7%
vector 1 0.8 25%
cal 9.1 5.2 43.2%
push 1 1 0%

Table 7.3: Changes in the average number of nested non-message fragments per
method

The data presented here demonstrates that the use of readability transformations

could significantly reduce the nesting in the fragment structure for most of the com-

ponents in this study. These results are promising because they suggest that the

81

transformations presented in this work could be useful for improving the comprehen-

sion and readability of reverse-engineered sequence diagrams.

82

CHAPTER 8

Related Work and Conclusions

There has been a significant amount of effort in the area of reverse engineering

of sequence diagrams or similar representations. Several of the existing approaches

employ dynamic analysis of run-time program behavior. This technique collects in-

formation during the execution of the program and then uses the data to generate

the UML diagrams. There are several drawbacks associated with this approach.

The diagrams generated as result of run-time behavior analysis can only represent

a particular path of execution that occurred for certain input values. The execution

path may represent only partial behavior of the program and the complete set of input

values necessary to exercise all aspects of object interactions may not be known. This

approach also does not permit reverse-engineering for incomplete systems or libraries

that cannot be executed as stand-alone entities. Use of diagrams that are reverse-

engineered from run-time information may be misleading to developers trying to

understand the system because such diagrams may provide an incomplete picture of

object interactions. This could result in incorrect code modifications since it is based

on incomplete information.

The Jinsight tool by De Pauw et al. [3] visualizes program behavior based on trace

information and provides various views of the run-time data. One of the views shows

83

information about invocation sequences which is represented similarly to sequence

diagrams. Oechsle and Schmitt present the JAVAVIS tool that builds sequence di-

agrams by utilizing the Java Debug Interface [9]. Richner and Ducasse [11] use

run-time analysis of Smalltalk programs to extract information about object collab-

orations. In this approach, execution sequences similar to each other are identified

by pattern matching and the important collaborations between objects are identified

with the assistance of the user. The collaboration patterns extracted by the tech-

nique are represented as sequence diagrams. All three of the above approaches do

not represent the conditions guarding the execution of messages and the repetitive

behavior resulting from loops.

Some of the existing work attempts to account for conditional and iterative behav-

ior by using pattern matching techniques. Briand et al. [2] utilize run-time traces of

program execution to generate sequence diagrams for C++ programs. They execute

instrumented source code and analyze the trace information to identify conditions

and loops that affect message sequences. The correct identification of the loops re-

lies on pattern matching techniques. After completion of the analysis, the trace is

represented as an instance of a trace meta-model, which is then transformed into an

instance of a sequence diagram meta-model.

Dynamic analysis with pattern matching for identification of loops is also used by

Systä et al. in the Shimba reverse-engineering environment for Java program [12].

They used a debugger to collect the trace data and provide line numbers for guarding

conditions of the conditional behavior. As a result, the representation of the UML-

like sequence diagrams generated by this tool contains loops and the line numbers

corresponding to the conditional statements.

84

There is also existing work on reverse engineering of UML diagrams using static

analysis techniques. Kollmann and Gogolla perform analysis of Java source code to

extract collaboration diagrams, which demonstrate object interactions similarly to

sequence diagrams [6]. Their approach involves the creation of a meta model that

reflects the information relevant to collaboration diagrams, and a traversal of the

model in order to generate the diagrams. This methodology results in the creation of

collaboration diagrams in which conditional behavior and loops are not expressed.

Tonella and Potrich also use static analysis techniques to extract both collab-

oration and sequence diagrams from C++ source code [13]. They utilize points-to

analysis techniques to generate a call graph. Their approach uses object naming based

on the points-to analysis, and creates a unique diagram object for each new expression.

However, these diagrams also do not reflect conditional or repetitive behavior.

Our approach significantly differs from the work done by other researchers in this

area. The work presented here introduces the first static analysis algorithm for map-

ping general control flow to the latest UML notation, producing a data structure that

could be easily used when generating sequence diagrams. Additionally, we introduce

a set of transformations for improving readability and comprehension of sequence di-

agrams. Our empirical study demonstrates that the analysis is efficient and effective

in creating and simplifying the UML fragment structure.

As part of our future work we will extend the analysis to allow representation of

inter-method interactions. This approach will extend the analysis presented here to

allow representation of sequence diagrams across multiple method boundaries. Intro-

duction of additional transformations could further simplify the resulting diagrams

and we would like to explore this aspect of our analysis. Additionally, currently there

85

are no tools available for visualization of sequence diagrams from textual input using

UML 2.0 notation. We would like to extend existing tools to represent the flow of

control using UML 2.0 notation, based on the output of our analysis.

86

BIBLIOGRAPHY

[1] A. Aho, R. Sethi, and J.Ullman. Compilers: Principles, Techniques, and Tools.
Addison-Wesley, 1986.

[2] L. Briand, Y. Labiche, and Y. Miao. Towards the reverse engineering of UML
sequence diagrams. In Working Conference on Reverse Engineering, pages 57–66,

2003.

[3] W. DePauw, E. Jensen, N. Mitchell, G. Sevitsky, J. Vlissides, and J. Yang. Visu-

alising the execution of Java programs. In S. Diehl, editor, Software Visualization,

LNCS 2269, pages 151–162, 2002.

[4] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The program dependence graph

and its use in optimization. ACM Trans. Prog. Lang. Syst., 9(3):319–349, 1987.

[5] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java Language Specification.

Addison-Wesley, 2nd edition, 2000.

[6] R. Kollmann and M. Gogolla. Capturing dynamic program behavior with UML

collaboration daigrams. In European Conference on Software Maintenance and
Reengineering, pages 58–67, 2001.

[7] C. Larman. Applying UML and Patterns. Prentice Hall, 2nd edition, 2001.

[8] T. Lengauer and R. Tarjan. A fast algorithm for finding dominators in a flow

graph. In ACM Trans. Programming Languages and Systems, pages 1(1):121–
141, July 1979.

[9] R. Oechsle and T. Schmitt. JAVAVIS: Automatic program visualization with

object and sequence diagrams using the Java Debug Interface (JDI). In S. Diehl,
editor, Software Visualization, LNCS 2269, pages 176–190, 2002.

[10] OMG. UML 2.0 Infrastructure Specification. Object Management Group,
www.omg.org, Sept. 2003.

87

[11] T. Richner and S. Ducasse. Using dynamic information for the iterative recovery
of collaborations and roles. In International Conference of Software Maintenance,

pages 34–43, 2002.

[12] T. Systä, K. Koskimies, and H. Muller. Shimba–an environment for reverse-

engineering Java software systems. Software–Practice and Experience, 31(4):371–
394, Apr. 2001.

[13] P. Tonella and A. Potrich. Reverse engineering of the interaction diagrams from
C++ code. In International Conference on Software Maintenance, pages 159–

168, 2003.

[14] R. Vallée-Rai, E. Gagnon, L. J. Hendren, P. Lam, P. Pominville, and V. Sun-

daresan. Optimizing Java bytecode using the Soot framework: Is it feasible? In

9th International Conference on Compiler Construction (CC’00), pages 18–34,
2000.

88

