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Abstract

There is a growing need for parallel algorithms and their implementations, due to

the continued rise in the use of multi-core machines. When trying to parallelize a se-

quential program, software engineers are faced with the problem of understanding and

removing inhibitions to parallelism in the context of high-level program constructs

that are used to implement modern software. This thesis describes a dynamic analysis

to analyze potential parallelism in Java software, based on coarse-grain parallelism

among method calls. We find that this automated analysis, when applied to 26 se-

quential Java programs, provides characterization and insights about potential paral-

lelism bottlenecks. We also perform case studies on several of the analyzed programs,

locating specific elements in the implementation that impede potential parallelism,

and altering these elements to find greater potential parallelism. Our studies indicate

that the dynamic analysis could provide valuable feedback to a software engineer in

support of program understanding and transformations for parallelism.
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Chapter 1: Introduction

There has been a great deal of recent work in creating parallel algorithms. In the

latter half of the past decade, it has become increasingly important to construct par-

allel software in not only the domains of scientific and high-performance computing,

but in desktop software as well. Inspired by the transition of the hardware industry

towards multi-core systems, this trend will not subside, and will likely only become

more pressing as the need for software that can take advantage of multi-core hardware

in more and more problem domains increases.

The classic challenges of designing parallel software include the difficulty of think-

ing in terms of a parallel solution to a sequential problem and in comprehending the

scope of interactions of separate algorithms that make up a single solution. Further,

given an existing, sequential program, it is often not apparent what design changes

could be made to create a parallel version of that same program. A substantial

number of previous works have introduced automated methods to measure potential

parallelism in existing algorithm implementations [1,4,6,10]. The focus of these works

has been to define a model of parallelism – that is, assumptions about what code can

execute simultaneously with other code, and rules for under what circumstances an

instruction would be executed – and then provide a means of describing the discov-

ered potential parallelism of existing programs, perhaps through a number or plot

describing the execution.
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Much of this prior work investigates potential parallelism at a low level; that is, it

explores the relationships of individual instructions or statements during a program

execution and examines how they would be executed in the work’s model of paral-

lelism. Other work chooses specific control structures in a program implementation,

such as loops [6], and focuses on analyzing potential parallelism at that level. Al-

though it is very useful to understand potential parallelism at a low level for the sake

of optimizations, there is more room to explore parallelism at a higher level.

It is the goal of the work in this thesis to explore potential parallelism at a level

that corresponds to the parallelism tools that exist in the Java programming language

today, such as threads, and in this way provide means of describing potential paral-

lelism that would be readily available to a software designer using Java. The starting

point of our work is an automated tool, created by Prof. Rountev, for analyzing se-

quential Java programs and characterizing their potential parallelism. The tool uses

a method-based model of parallelism that corresponds with the options of how a soft-

ware designer would choose to divide work among threads. This approach represents

an optimistic view of what speedup could be achieved by a parallel version of the

same program, redesigned at a high level to take advantage of the implementation’s

potential parallelism.

The first contribution of this thesis is an extensive experimental study of applying

the tool to 26 sequential Java benchmarks from four well-known benchmark suites:

SPEC JVM98, Java Grande, Olden (Java version), and DaCapo. This study provides

initial insights about the amount of potential parallelism in these benchmarks. Our

second contribution is an extension of the analysis which characterizes the contri-

bution of different sources of data dependences on the potential parallelism. When

2



applied to the 26 benchmarks from the first study, the extended analysis reveals which

categories of memory locations are the most likely inhibitors of parallelism. The third

contribution of this thesis is several case studies of Java programs, in which the anal-

ysis tool is used to guide semantics-preserving transformations of these programs and

to evaluate their effect on their potential parallelism.

The remainder of this thesis is organized as follows. In Chapter 2, we review the

problems that give rise to this work, two models of parallelism, and a conceptual

method of measuring parallelism in sequential Java programs. In Chapter 3, we

introduce an implementation of this potential parallelism measurement and present

measurements of 26 sequential Java benchmarks. In Chapter 4, we look at several

benchmarks more closely and perform alterations to reveal greater theoretical speedup

by identifying and removing impediments to parallelism in their implementation,

while respecting their original semantics. Related work is discussed in Chapter 5.

Finally, Chapter 6 summarizes the results and contributions of this work as well as

possible directions of future study.
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Chapter 2: Background

In this chapter we discuss a dynamic analysis of potential parallelism. This anal-

ysis, applied to Java programs, presents a means of describing the potential paral-

lelism in a single-threaded Java application. Although the analysis applies to Java

programs, it is fundamentally inspired by Kumar’s analysis of potential parallelism in

FORTRAN programs [4]. The analysis algorithm itself was designed and implemented

by Prof. Rountev. Starting with this analysis, we have (1) performed an experimen-

tal study of applying the analysis to sequential Java benchmarks, (2) designed and

implemented analysis extensions to characterize the effects of various sources of data

dependences on the potential parallelism, and (3) performed case studies in which

the analysis is used to guide and evaluate semantics-preserving transformations for

increasing potential parallelism. For the subsequent discussion, it is expected that

the reader be familiar with program instrumentation techniques in general.

In summary, the analysis augments an existing, single-threaded Java application,

such that its original semantics is preserved, but that it also gathers data about

dependences between program statements. The result of the augmentation is that

the program, in addition to its original output, generates data describing the ideal

potential parallel processing for the original, unaltered program. This augmentation

is implemented by instrumenting the original program such that extra code is added

to track and record relevant events such statement executions, method invocations,

and the uses (both reads and writes) of distinct program variables, fields, and array

4



elements. From the data gathered, determinations can be made as to whether there

are dependences between instructions. The output of the analysis is a speedup score,

which, roughly speaking, describes the ratio of the logical time it takes for the original

program’s code to execute, to the logical time that it would take for that program to

execute in an ideal environment in which all potential parallelism of the code could be

exploited. (The concepts of logical time, ideal execution environment, and potential

parallelism will be described in detail later in this section.) There are both static and

dynamic aspects of this analysis, including the instrumentation of the program and

the gathering of data from its execution.

2.1 Goal of the Analysis

The goal of this analysis is to create objective, repeatable means of measuring

characteristics of Java programs. Measuring characteristics such as data dependences

(through local variables, static and instance fields, and array elements) can then pro-

vide some insight as to the structure and behavior of a program and how its imple-

mentation’s execution time could be affected by dependences. The analysis measures

data to reflect the code’s inherent ability to have as many statements be executed

as early as is possible; this is to say that, based on some models of ideal execution

environment and a model of parallelism, the analysis determines the earliest time that

each statement can be executed based on its control and data dependences on the

statements that would be executed before it in a sequential-execution environment.

5



2.2 Models of Parallelism

To be able to analyze a program in a way such that we can describe characteris-

tics such as dependences between program statements and the potential parallelism

inherent in its implementation, we must first review what dependences are and what

it means to think of a sequential Java program in a parallel manner.

2.2.1 Dependences

Dependences between statements are the restrictions that cause the execution time

of those statements to be decided by one statement preparing data for, or allowing the

execution of, the other. The analysis of potential parallelism determines the time that

a statement can execute by taking control dependences and data dependences into

account and finding the earliest logical time at which the statement can be executed

with respect to said dependences, and with respect to the model of parallelism as will

be described in Section 2.2.4. How these dependences are determined is described

below.

Control Dependences and Potential Parallelism

In its most basic form, control dependence represents a relationship of two program

statements in which the execution of the former statement determines that the latter

will be executed. A formal definition of control dependence can be found in [3].

Control dependences are typically introduced into a program by conditional structures

such as if or while. The importance of control dependences in evaluating the potential

parallelism in Java programs is that, no matter how many independent portions of a

program are to be executed in parallel, if there is a control dependence of statement
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B on statement A, statement B’s execution will be delayed to after the time at which

statement A has executed.

Data Dependences and Potential Parallelism

Every program statement reads from some number of memory locations and writes

to at most one memory location. In this document, we will use a representation of

Java code in which a typical statement can read from at most two memory locations

and write to at most one. Speaking informally and generally, this intermediate repre-

sentation used in the Soot analysis framework [11], called Jimple, represents complex

Java statements that contain multiple expressions as multiple statements that contain

each a single expression, but retain exactly the semantics of the original statements.

More formally, the details of this language are presented in the Jimple grammar given

in Appendix A.

In a strictly sequential-execution environment, whenever a statement is executed,

the memory locations from which it is reading are “ready” by the nature of sequential

execution, which is to say that the values at these input locations have already been

calculated in preparation for this statement to be executed. Likewise, the memory

location that the statement writes to (if any) in a sequential execution is in a state

such that the statement can write to it and there are no concerns regarding program

correctness over the value that will be placed in this location.

However, in an environment in which parallel execution is possible, statements

that access the same memory locations become data dependent on one another. To

preserve the semantics of a sequential execution of a program, the parallel version’s

statements cannot be executed until the memory locations that it accesses are in an

7



analogous state to the one that they would have been in during the sequential exe-

cution of the program. This gives rise to the three classic types of data dependences,

which we will review below.

Flow Dependences

In a flow dependence, statement B reads from some memory location that was

written to by a prior-executed statement A. Statement B must wait until after

statement A’s write is complete to perform its read.

An example of a flow dependence exists in Figure 2.1, between the statements at

lines 3 and 4. Since statement 3 writes to the local variable b, and statement 4 reads

from that location, statement 4 is flow-dependent on statement 3.

3: b = 6;

4: c = a + b;

Anti-Dependences

In an anti-dependence, statement B writes to a location from which a value was

read by a prior-executed statement A. Statement B must wait until after statement

A’s read is complete to perform its write.

An example of an anti-dependence exists in Figure 2.1, between the statements at

lines 5 and 6. Since statement 6 writes to the local variable b, and statement 5 reads

from that location, statement 6 is anti-dependent on statement 5.

5: d = a + b;

6: b = 7;

Output Dependences

In an output dependence, statement B writes to some location that was written

to by a prior-executed statement A. Statement B must wait until after statement

A’s write is complete to perform its own write.

8



An example of an output dependence exists in Figure 2.1, between lines 4 and 8.

Since statement 4 writes to the local variable c, and statement 8 also writes to that

location, statement 8 is output-dependent on statement 4.

4: c = a + b;

...

8: c = a + e;

2.2.2 An Abstract Execution Environment

Let us now define the ideal execution environment and model of parallelism used

by the analysis, so that we may speak more firmly as to how the analysis makes

decisions about dependences and potential speedup. As in Kumar’s work, we assume

the existence of an ideal machine on which we can execute our program under test.

This hypothetical machine has several key properties:

1. It has as many processors as necessary to run any number of simultaneous
program statements

2. It can manage simultaneous statement executions in such a way that there is
no overhead in joining these separate “processes”

3. It can manage memory in such a way that there is no overhead in sharing
memory

The fact that no such machine can exist is irrelevant, as we are not trying to auto-

mate some process that would speed up a program, but instead we are using this ideal

machine as architecture-independent means of measuring program characteristics.

To lead into the explanation of the model of parallelism that we are using, let us

first describe the concepts of speedup and logical time. The speedup could be thought

of as the ratio of an original program’s execution in real-world physical time to the

improved physical execution time of a parallel version of that program. However,

it is unsuitable to define speedup in this way for the purposes of our analysis for
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two reasons. First, it is impractical because the analysis does not yield a parallel

version of the program to run. Second, such a measurement would be dependent on

the machine on which it is executed and the resource usage of other tasks that the

machine is performing at the time of execution. Instead, we define a unit of logical

time to be the amount of time that it takes for a single statement to be executed. We

can then describe speedup as the ratio of the number of statements executed in an

unaltered execution of the program, to the logical time at which the last statement

would be executed in a parallel version of the program in which control and data

dependences are respected. We can describe the execution time of any particular

statement with a timestamp, that logical time at which it is executed.

Note that a compound statement can be made up of multiple expressions, perhaps

including expressions such as some combination of method invocations and arithmetic

operations. For the purpose of determining the logical time of execution for a com-

pound statement, we consider it to be broken apart into separate statements that

correspond to each of its component expressions, and instead of assigning a single

logical execution time to the compound statement, we assign logical execution times

to the simpler intermediate statements. This separation will be discussed further in

Section 2.4.3.

Again, this abstraction of time is meant to provide a means of reasoning about

time that is independent of a physical machine. A desired consequence of considering

all statements to execute in a single unit of time is that a statement that performs

simple addition between two operands would take the same single unit of logical time

as a multiplication of those operands. Although a physical machine would typically

10



execute such instructions in different amounts of physical time, such hardware-specific

differences can be ignored here.

2.2.3 Fine-Grain Parallelism

We can now further describe our model of parallelism. There can be multiple

approaches for defining a model of parallelism with different purposes, so we will

discuss two separate approaches here.

The first model, as used in Kumar’s work [4], is a fine-grain approach. In this

approach, statements are considered to be the smallest building blocks of parallel

execution. This is to say that the program can be thought of as a series of statements,

and when the next statement is going to be scheduled, it can be scheduled at the

earliest time at which its dependences have been satisfied, with no other restrictions.

Based on these definitions of dependences, we can now further describe statement

scheduling in the fine-grain model. Given the restrictions that we have discussed,

the ideal machine, which is aware of what statements will execute during a run of a

program, is free to schedule all instructions at the earliest logical time at which their

dependences are satisfied. A statement that would be among the last to execute in a

long sequential execution of the program, but that has no dependences on statements

that would be executed earlier in that sequential execution, could be scheduled to

execute at a very early logical time in the fine-grain model.

An application of this model could be in considering instruction-level parallelism

on the scale of one or several methods in a program. Note that in this fine-grain ap-

proach, two in-order program statements with no data dependences could be sched-

uled at the same time. Later in this chapter, we will discuss a different model in

11



1: int a, b, c, d, e, f;

2: a = 5;

3: b = 6;

4: c = a + b;

5: d = a + b;

6: b = 7;

7: e = 8;

8: c = a + e;

9: d = b + e;

10: f = 9;

Figure 2.1: Example code for intraprocedural fine-grain parallelism.

which the execution of the second may be required to wait for the execution of the

first, thus introducing program structure as a factor in scheduling.

Fine-Grain Examples

Let us explore our model of fine-grain parallelism through viewing example code

and describing the logical execution times of the statements therein. Although the

example code is contrived, it serves to explain the relationships of both read and write

accesses to memory locations.

Suppose we have the block of Java code given in Figure 2.1. The execution times

of the statements can be found in Table 2.1. In this example, we see that in the fine-

grain model, a statement that would be executed late in a sequential execution of the

code, such as statement 10, can be executed early in a parallel execution. We also see

that statements with dependences on statements that have other dependences, and

so on, are the statements that are executed later in a parallel execution.

Let us now consider an example that crosses the boundaries of two methods.

Suppose we begin with Method1 being called in the Java code given in Figure 2.2.

12



Stmt Time Explanation

2 1 No dependences, can execute immediately

3 1 No dependences, can execute immediately

4 2 Flow dependence on a and b, written at time 1 by statement 1 and 2

5 2 Same as statement 4

6 3 Anti-dependence on b, read at time 2 by statement 4 and 5

7 1 No dependences

Output dependence on c, written at time 2 by statement 4
8 3 Flow dependence on a, written at time 1 by statement 2

Flow dependence on e, written at time 1 by statement 7

Flow dependence on b, written at time 3 by statement 6
9 4 Output dependence on d, written at time 2 by statement 5

Flow dependence on e, written at time 1 by statement 7

10 1 No dependences

Table 2.1: Timestamps for intraprocedural fine-grain parallelism.

1: void Method1(X m1x) { 7: void Method2(X m2x) {

2: m1x.a = 1; 8: int z = m2x.a;

3: Method2(m1x); 9: z = z + 1;

4: m1x.b = 2; 10: m2x.a = z;

5: int y = m1x.a; 11: m2x.c = z; }

6: int w = m1x.b; }

Figure 2.2: Example code for interprocedural fine-grain parallelism.

The execution times for the statements are given in Table 2.2. Again in this

example we see that a statement at the end of the execution, at line 6, can have an

earlier timestamp if it does not depend on the execution of any statement that has a

later timestamp. Additionally, we see that some statements such as the one on line 5

can have a dependence on a statement from another method (the one on line 10) and

as such have its execution delayed until after the statement from the other method is

executed.
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Stmt Time Explanation

1 1 Method invoked

2 2 Flow dependence on m1x from method invocation

3 2 Flow dependence on m1x from method invocation

4 2 Flow dependence on m1x from method invocation

5 6 Flow dependence on m2x.a from statement 10
Flow dependence on m1x from method invocation

6 3 Flow dependence on m1x.b from statement 4
Flow dependence on m1x from method invocation

7 2 Method invoked

8 3 Flow dependence on m1x.a from statement 2
Flow dependence on m2x from method invocation

9 4 Flow and output dependence on z from statement 8

10 5 Flow dependence on z from statement 9
Anti-dependence on m2x.a from statement 8

Output dependence on m1x.a from statement 2
Flow dependence on m2x from method invocation

11 5 Flow dependence on z from statement 9
Flow dependence on m2x from method invocation

Table 2.2: Timestamps for interprocedural fine-grain parallelism.

2.2.4 Method-Based Coarse-Grain Parallelism

A second model is a course-grained approach. In general, instead of treating

individual program statements as the atomic units that are run in parallel, a higher-

level structure such as a method is treated as the portion of the program that can be

run in parallel with other portions of the program. The analysis uses this method-

based coarse-grain parallelism.

In the method-based model, we can still have an arbitrarily large number of state-

ments executing at one time in our ideal execution environment, just as in the fine-

grain approach. In contrast to the fine-grain approach, in the method-based model,

all statements inside a single method invocation are assumed to execute sequentially.
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This means that, in addition to control dependences determined by control state-

ments, there is an implied dependence of each of the method’s in-order program

statements on the previous one, such that the latter statement cannot execute until

the former has completed. This, of course, means that control dependences within

a method are satisfied in a parallel execution by respecting them just as they would

be in a sequential execution. In terms of the ideal execution environment, this could

be thought of as granting a method exactly one of the infinite processors on which

to run, and all of the statements in the method must execute sequentially on that

processor. As such, this model is less optimistic than the fine-grain one, in which

there is no such limitation on statements inside one method.

Where the parallelism comes into play in this model is when methods are called,

regardless of whether they are static / non-static, or void / non-void. Once a method

M2 is invoked, the statements in that new method invocation can be executed in

parallel to the statements in the calling method M1; the execution time of the first

statement in the callee is the unit of time just after that of the statement in M1 which

called it. In terms of the ideal execution environment, this process can be thought

of as a second of the ideal machine’s processors being made available exclusively to

execute the statements in the callee M2, again in a sequential manner inside that

method. Statements from both the caller and the callee method can be executed at

the same time; in this way, we allow parallelism based on the program design structure

of methods. Further parallelism can be exploited by invoking more methods at the

same time; if the original caller M1 calls a different method M3, or another instance

of method M2, then all of these methods can be executing statements in parallel. If
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callees such as M2 or M3 call other methods as well, then all of these methods can

be executing statements at the same time.

Although the method-based model enjoys the potential for statements from sep-

arate method invocations to be executed at the same logical times, the model does

limit the potential parallelism in certain ways. As in the fine-grain model, control

and data dependences can delay a statement’s execution. Note that these limitations

through dependences mean that although the statements in a single method invo-

cation are executed in sequence, it is not necessarily the case that any statement’s

execution time will be one unit of time after the statement in that method whose

execution preceded it. Also a consequence of respecting data dependences is that,

when we have a method M1 calling another non-void method M2, and M1 assigns

the return value of M2 to a some variable, there is a dependence introduced between

the assignment operation in M1 and the computational result of M2. Although the

assignment of the return value is scheduled to take place at the logical time at which

the method call to M2 returns, statements in M1 following the call to M2 are free to

be scheduled to execute in parallel with it, provided that they are not data dependent

on its return value.

An application of this model could be designing software at the method level to

take advantage of multi-threading.

Coarse-Grain Examples

Let us explore coarse-grain parallelism through a pair of examples. Suppose we

have the block of Java code given in Figure 2.2, which is again entered via a call

to Method1; this means we have the same code and the same calling context as in
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the previous fine-grain parallelism example, but we are instead using the coarse-grain

model.

Stmt Time Explanation

1 1 Method invoked

2 2 Sequential control dependence on method invocation
Flow dependence on m1x from method invocation

3 3 Sequential control dependence on prev. statement
Flow dependence on m1x from method invocation

4 4 Sequential control dependence on prev. statement
Flow dependence on m1x from method invocation

5 7 Sequential control dependence on prev. statement
Flow dependence on m2x.a from statement 10

Flow dependence on m1x from method invocation

6 8 Sequential control dependence on prev. statement
Flow dependence on m1x.b from statement 4

Flow dependence on m1x from method invocation

7 3 Method invoked

8 4 Sequential control dependence on method invocation
Flow dependence on m1x.a from statement 2

Flow dependence on m2x from method invocation

9 5 Sequential control dependence on prev. statement
Flow and output dependence on z from statement 8

10 6 Sequential control dependence on prev. statement
Flow dependence on z from statement 9

Anti-dependence on m2x.a from statement 8
Output dependence on m1x.a from statement 2

Flow dependence on m2x from method invocation

11 7 Sequential control dependence on prev. statement
Flow dependence on z from statement 9

Flow dependence on m2x from method invocation

Table 2.3: Timestamps for coarse-grain parallelism.

The execution times of the statements are given in Table 2.3. The execution times

of statements 3 and 4 increase relative to the prior example (Fine-Grain Parallelism,

Example 2; the timetable thereof is presented in Table 2.2) because of sequential
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control dependence on prior-executed statements from Method1; in the fine-grain

model, statements 2, 3, and 4 could all have been executed at the same time.

The execution times of the statements in Method2 must now be delayed relative to

the prior example because they are dependent on the execution time of statement 3,

which is later in this example. Consequently, statement 8’s execution timestamp has

been increased by one. Next, although statements 9 and 10 are control dependent on

their predecessor statements, their execution times only raise by one over that of their

predecessor statements, just as in the prior example, because the introduced control

dependences are dependences on the same statements as their data dependences are.

Finally, the execution time of statement 11 goes up, because although it is flow-

dependent on statement 9, it is also control dependent on statement 10, so it must

be executed after statement 10.

Returning to the scope of Method1, statement 5’s execution time increases by one

from the prior example simply because it is flow-dependent on statement 10, which has

a greater execution time in this example. Although statement 5 is control dependent

on statement 4, the flow dependence supersedes the control dependence, because

the dependence dictating the latest execution time is the one that is considered.

Finally, statement 6 must execute at the given later time now, because of its control

dependence on statement 5.

Let us also consider another coarse-grain example with more interprocedural de-

pendences, with the code given in Figure 2.3, in which the statements have timestamps

as given in Table 2.4. Note that this example diverges from the others in that we

call method Method2 multiple times. This means that some statements are executed
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1: void Method1(X m1x) { 9: void Method2(X m2x) {

2: m1x.a = 1; 10: m2x.b = m2x.a;

3: m1x.c = 2; 11: int n = m2x.c;

4: Method2(m1x); 12: int p = 3;

5: m1x.a = 3; 13: m2x.b = n; }

6: Method2(m1x);

7: int y = Method3(m1x); 14: int Method3(X m3x) {

8: m1x.b = y; } 15: m3x.a = 1;

16: return m3x.a; }

Figure 2.3: Second example code for coarse-grain parallelism.

twice; for those that are, the statement is listed twice in Table 2.4, with its line num-

ber and which particular execution it is, listed in the leftmost column. Thus this

example explores dependences through memory locations accessed multiple times by

statements in separate invocations of the same method. For the sake of removing

noise from Table 2.4, only a subset of dependences are listed.

Observe that any invocation of Method2 writes to m2x.b. It is thus the case that

two invocations of Method2 that are attempted to be executed concurrently will have

their potential parallelism limited by output dependences through m2x.b. Note that

the second invocation of Method2 must actually wait until the first has finished to

proceed, based on the writes to m2x.b at the end of the first invocation and the

beginning of the second invocation.

Also note that here we see a method Method3 returning a value that is stored in

a local variable of Method1. While the void method call at line 4 was able to execute

at time 4 and the following statement at line 5 was able to be executed immediately

afterward, such timely control flow is not possible here at the analogous line pair of

7 and 8. This is because the non-void method call and subsequent assignment to a
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Stmt and Time Explanation
Invocation

1 1 Method invoked

2 2 Sequential control dependence on method invocation

3 3 Sequential control dependence on prev. statement

4 4 Sequential control dependence on prev. statement

5 6 Anti-dependence on m2x.a from statement 10/1st

6 7 Sequential control dependence on prev. statement

7 11 Flow dependence on return value of Method3

8 13 Output dependence on statement 13/2nd

9, 1st 4 Method invoked

10, 1st 5 Flow dependence on m1x.a from statement 2

11, 1st 6 Flow dependence on m1x.c from statement 3

12, 1st 7 Sequential control dependence on prev. statement

13, 1st 8 Output dependence on m2x.b from 10/1st

9, 2nd 7 Method invoked

10, 2nd 9 Output dependence on m2x.b from statement 13/1st

11, 2nd 10 Flow dependence on m1x.c from statement 3

12, 2nd 11 Sequential control dependence on prev. statement

13, 2nd 12 Output dependence on m2x.b from 10/2nd

14 8 Method invoked

15 10 Anti-dependence on m2x.a from statement 10/2nd

16 11 Flow dependence on m2x.a from statement 15

Table 2.4: Timestamps for the example from Figure 2.3.
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local variable on line 7 requires the return value of Method3 to complete. As such,

the time for the completion of the statement on line 7 is the same as the time that

the call to Method3 returns. The statement on line 8 can be executed after this time.

2.3 An Overview of the Dynamic Analysis

The analysis of potential parallelism has been designed and implemented by Prof.

Rountev in Java, using the Soot framework’s instrumentation capabilities. The imple-

mentation of the analysis tool consists of two distinct components: a dynamic analysis

of the program that collects data regarding dependences and potential speedup in the

Java program under test, and a static analysis and instrumentation of that program.

In this section, we will discuss the dynamic portion of the analysis.

After the program under test has been augmented with the instrumentation de-

scribed in Section 2.4, we can execute the instrumented version to gather data about

its potential parallel properties. The means by which the analysis gathers this data

is the Tracker, a class that is loaded alongside the program under test, and to which

calls are made from the instrumented program under test.

First, let us describe an addition to the original program that allows us to record

data from the instrumented program. The program under test is manually modified

to add a wrapper around its main() method. This wrapper method is very simple; it

just includes a call to activate the Tracker and initialize its recording features, then a

call to the application’s original main() method, and then finally a call to shut down

the Tracker and report the data that it has collected.
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As has been mentioned above regarding the instrumentation, calls have been in-

serted into the program code so that data regarding method calls, statement exe-

cutions, and the like are passed to the Tracker for storage. In this way, the data-

recording is encapsulated in a new component, separate from the instrumented pro-

gram under test.

2.3.1 Finding Dependences

We can find dependences by adding extra variables to the program under test

and using them to describe characteristics of that program, such as when memory

locations were accessed or when a statement was executed.

Finding Data Dependences

The analysis tracks data dependences via shadow variables, as inspired by Kumar’s

work in [4]. A shadow variable is an extra variable, of which there are two varieties

(write shadows and read shadows), that is inserted into the augmented program. The

analysis makes use of both read shadow variables and write shadow variables to keep

track of the respective access times at which program variables have been read and

written. An original variable may have one of both types of shadows, and any one

shadow only expresses a read or write access time for one specific original variable. In

general, all class fields, both static and instance, have read and write shadows, as do

all array elements. Also, the analysis considers dependences through local variables,

but only when those local variables are assigned the return value of a method call.

The reason that dependences through local variables that take return values from

methods are considered is that, to be consistent with the method-based coarse-grain

model, the use of a return value from a method must be restricted to take place after
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the completion of that method. Thus, a statement A that is placed sequentially inside

a method Y after a statement that calls some other method X should not be able to

execute until after the call to X is completed, if A contains the return value of X as a

local variable in the set of values that it reads. This manner of tracking dependences

through local variables, combined with the method’s sequential statement execution

within a single method, requires only write shadows for local variables, as will be

described further in Section 2.4.3.1

The analysis uses these shadow variables to decide the earliest time at which a

statement could be executed. Consider that an arbitrary statement may read zero

or more input memory locations, and write to zero or one output memory locations.

The statement’s input memory locations make up its read set, whereas the statement’s

output locations make up its write set. From the inputs and outputs in these sets,

it is straightforward to determine the proper shadow variables that are relevant in

finding data dependences; there is a one-to-one mapping from an arbitrary program

variable/field/array element to its read or write shadow. For any operation, the

execution time of the statement can be no earlier than the timestamp value contained

in any of the shadow variables for memory locations in the read set or the write set,

plus one. As mentioned earlier, the addition of one represents the fact that the

memory location to which the shadow corresponds has been accessed at the time

given in the shadow, and at least one unit of logical time must pass before this

subsequent access to it may be performed.

1Soot’s Jimple representation does not use the formal parameters of a method inside the method
body; the formals are simply assigned to locals at the very beginning of the method. Thus, it is not
necessary to have shadows for formal parameters.
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Finding Control Dependences

The analysis considers control dependence as follows. Inside a method, each time a

statement is executed, the analysis increases the value in a control shadow variable.

This control variable is a single extra variable added to the scope of a method that is

used to track control dependences for each statement in that method. The execution

time of a statement can be no less than the control value when that statement is

executed, plus one. (Data dependences can increase this value further, as described

above.) The addition of one to the control value is a result of the fact our model

represents the sequential execution of two subsequent statements in a method, and at

least one unit of logical time must pass from one statement’s execution to the next.

In a world of completely sequential statement execution and no data dependences,

control would be analogous to a program counter; in a world with some degree of

parallel statement execution and with data dependences delaying statement execu-

tions, control can be thought of as a descriptor specifying the earliest logical time at

which a statement can be executed. If data dependences do not delay the execution

of the statement, then its timestamp will be decided strictly by the control value,

and its timestamp will be set to control + 1, and control will be set to control +

1. If data dependences are a factor in the statement’s execution time, then control

can be set to a larger value than control + 1.

Let us now explain how control dependence is observed across method boundaries.

When a method is invoked, it is passed the control value of the parent method at

the call site — that is, the value of control when the statement calling the new

method is executed. This means that the first statement of the called method and

the subsequent statement in the parent method can potentially be executed at the
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same logical time, with the caveat that data dependences may influence the execution

time of either one of those statements. Thus it can be seen that this concept is the

core of the method-based parallelism model; once a method is called, its statements

can execute at the same logical time as statements from other methods.

Using the logic described for control and data dependences, we have explained

how the analysis determines the time at which a statement can execute. From this

point, it is straightforward to explain how the values for read and write shadows are

calculated. Initially, both types of shadows can be set to zero, since no operations

have been performed on them and there have been no dependences detected yet.

Then, for a given statement execution, a read or write shadow variable for a memory

location accessed by the statement will be updated by assigning that statement’s

execution timestamp value to it.

2.3.2 Shadow Definitions Example

Here we will revisit our example of coarse-grain parallelism, and include the def-

initions of the shadow variables for the local variables and fields used in the code.

Write shadows will be prefixed with ws , and read shadows will be prefixed with rs .

The special control shadow variable will simply be named control.

Class instance fields have shadows that are defined as fields of the object. For

each method, control is a local variable, initialized with the value of control from

its caller at the site of its invocation. Local variables have locally-defined shadows,

on the condition that they take a return value from a method; otherwise, they have

no shadows (as is the case for y, z, and w from the example).
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1: class X { 12: void Method2(X m2x) {

2: public int a, b, c; 13: int control = ... // caller’s value

3: public int ws_a, ws_b, ws_c; 14: int z = m2x.a;

4: public int rs_a, rs_b, rs_c; } 15: z = z + 1;

16: m2x.a = z;

5: void Method1(X m1x) { 17: m2x.c = z; }

6: int control = ... // Initialize to caller’s control value

7: m1x.a = 1;

8: Method2(m1x);

9: m1x.b = 2;

10: int y = m1x.a;

11: int w = m1x.b; }

Figure 2.4: Coarse-grain example with shadow declarations.

The instrumentation that manages the values in these shadow variables will be

presented in Section 2.4.4.

2.4 Static Analysis and Instrumentation

The static analysis is performed on the program under test to add shadow variables

and the method invocations that are performed during a later dynamic analysis of that

program. There are three main categories of instrumentation processes performed on

the program, which can best be explained by describing them individually.

2.4.1 Class-Level Instrumentation

The behavior of the static analysis on the class level is fairly straightforward:

for each class, its fields will be given both read shadow variables and write shadow

variables, which are new fields of that class with the same access levels. This means

that all reads and writes to any class field can be tracked by the dynamic analysis.

The shadows of instance fields are instance fields themselves (e.g., as in Figure 2.4);

the shadows of static fields are, of course, static fields.
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int m(objType1 a, ojbType2 b)

{

// Local declarations

// Some statements

return retVal; // there may be several of these, not necessarily one

}

Figure 2.5: A general, uninstrumented method m().

2.4.2 Method-Level Instrumentation

On the method level, there are a number of changes made by the instrumentation

to prepare the target program for the dynamic analysis. These changes include:

1. Create shadow variables for local variables

2. Add administrative variable control

In Steps (1) and (2), the analysis adds more locally-scoped variables to the method.

In Step (1), the analysis creates write shadow variables for the original local variables.

Note that the only locals that need shadows are those that receive return values from

method calls, so it is possible that no locals will be given corresponding shadows in

this step. Further, these locals only require write shadows, as will be discussed shortly

in Section 2.4.3. In Step (2) the analysis adds a control shadow variable that helps

to track statement execution time by respecting the sequential program’s statement

execution order, as described in 2.2.4.

This instrumentation can be summarized by the generalized examples in Fig-

ure 2.5, an uninstrumented method, and Figure 2.6, an instrumented method.

ComputeStatementT ime is a method of the dynamic analysis that determines the

logical time at which a statement can be executed; it will be defined in Section 2.4.3.
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int m(objType1 a, ojbType2 b)

{

// Original local declarations

int c; // an example

int retVal; // contains the return value

// Extra administrative local

int control;

// Declare shadow variables for locals

// that take method return values

int ws_c;

int ws_retVal;

control = DynamicAnalysis.GetLastTimeStamp();

// Original statements, plus instrumentation

DynamicAnalysis.ComputeStatementTime(control, ws_retVal);

return retVal;

}

Figure 2.6: The general, instrumented method m().

2.4.3 Statement-Level Instrumentation

There can be many different types of statements in an arbitrary Java program,

from simple assignments of literal values to local variables, to assignment of paren-

thesized compound mathematical expressions to class instance fields, to method in-

vocations that take an arbitrary number of parameters, and so on. The analysis must

take all of these types of statements into account when performing instrumentation,

such that it can generate timestamps properly for each of them. Handling such a

great variety of statement types could be a fairly complicated task, but fortunately

Soot provides us with a simple means of addressing the entirety of this variety such

that we can perform all of the functions described in the base analysis design, while

changing none of the semantics of the original program.

Soot represents the Java bytecode as statements of certain forms; there are few

enough of these forms that it is manageable for the analysis to explicitly take each one
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into account. As mentioned previously, the Jimple grammar in Section 6 describes

the composition of a Java statement in terms of Jimple statements, the intermediate

Java representation language used by Soot.

The instrumentation of a statement adds the necessary bookkeeping code to cal-

culate the statement’s execution time, based on the data that it reads and writes, and

on program control. We will use the following auxiliary functions to help describe the

instrumentation of the original program’s statements. Let ComputeStatementTime

be defined as the function

ComputeStatementTime(control , read set ,write set)
= Max (control ,MaxSet(read set),MaxSet(write set)) + 1

where Max (...) takes any number of integral parameters and returns the maximum

of all of these integers. Similarly, MaxSet(...) takes a set of integers and returns the

maximum of all of these integers, or 0 if the set is empty. Let us also use the helper

function GetLastTimeStamp. Every call to ComputeStatementTime has the side-

effect of setting a persistent last calculated timestamp integer variable to that

function’s return value. Let GetLastTimeStamp merely return this value.

Performing the Instrumentation

Of the possible Jimple statements, the below types are of interest to the static

analysis. In the descriptions of the statements’ instrumentation, let the read shadow

of some variable named data be denoted as rs data. Likewise, let the write shadow

of some variable named data be denoted as ws data.

Static Field Read

Statement Type

A read of a static field
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Form

local := static field

How it is instrumented

1: control := ComputeStatementTime(control, {}, {ws_static_field})

2: rs_static_field := Max(control, rs_static_field)

3: <original statement>

There are two considerations that will decide the earliest execution time of this

statement. The first is the control value at the time the statement is executed,

and the second is the write shadow for the static field. The timestamp for this

statement is thus the maximum of these values, plus one. Instrumentation is inserted

to calculate this maximum and assign it to the control variable, which represents

when this statement can be executed. If the static field’s read shadow is of lesser

value than this statement’s timestamp, then the read shadow is updated to be this

timestamp. Since this operation is a read, the read shadow for the field does not play

a role in delaying the statement’s execution.

Let us also discuss the contribution of the local to this statement’s instrumenta-

tion. Recall that locals will have write shadows (and not read shadows) if and only if

they take the return value of a method call. Since this statement represents a write

to a local, if it has a write shadow, one may think that is is necessary to update

that shadow to the just-computed new value of control. However, such an update

is unnecessary since all subsequent reads-from/writes-to this local variable will be

assigned larger timestamps, due to the sequential nature of intraprocedural control

flow (which is achieved with the use of control at each timestamp computation).

Static Field Write

Statement Type
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A write of a static field

Form

static field := local or
static field := constant

How it is instrumented

1: control := ComputeStatementTime(control,

{rs_static_field}, {ws_static_field, ws_local})

2: ws_static_field := control

3: <original statement>

The static field cannot be written until after the last write and the last read to

the field. Additionally, if the RHS of the assignment is a local variable, the static

field cannot be written until after that local was written. The write shadow for the

field will be set to the execution time of this statement, to reflect that the field was

written at this time, and that subsequent accesses should not be allowed to take place

until this new value has been written into the static field. It is possible that there

will be no ws local if the RHS of the assignment is a constant, or if the RHS is a

local variable that is not given a write shadow.

Let us also discuss the contribution of the local to this statement’s instrumenta-

tion. Recall that locals will have write shadows (and not read shadows) if and only

if they take the return value of a method call. Since this statement represents a read

from a local, the statement has to “wait” until the value of the local becomes available

(i.e., until the method that provides this value returns to the caller).

Instance Field Read

Statement Type

A read of a field of a class instance

Form
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local1 := local2.field

How it is instrumented

1: control := ComputeStatementTime(control, {}, {ws_local2, local2.ws_field})

2: local2.rs_field := Max(control, local2.rs_field)

3: <original statement>

The instance field cannot be read until after the last write to the field, as provided

by the ws field write shadow field of the object pointed-to by local2. Additionally,

the local2 pointer must have been set to the proper object before the read, so the

read must take place after the assignment of the appropriate object reference to

local2. It is possible that local2 does not have a shadow, in which case only the

field’s write shadow (i.e., local2.ws field) is taken into account.

Instance Field Write

Statement Type

A write of a field of a class instance

Form

local1.field := local2 or
local1.field := constant

How it is instrumented

1: control := ComputeStatementTime(control, {local1.rs_field},

{ws_local1, ws_local2, local1.ws_field})

2: local1.ws_field := control

3: <original statement>

The local field cannot be written until after the last write and the last read to the

field. Additionally, if the RHS of the assignment is a local variable, the instance field

cannot be written until after that local was written. The same applies to the local

variable used in the LHS. The write shadow for the field will be set to the execution

time of this statement, to reflect that the field was written at this time, and that
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subsequent accesses should not be allowed to take place until this new value has been

written into the local field. (As before, it is possible that there will be no ws local1

and/or ws local2.)

Array Element Read

Statement Type

A read of an element in an array

Form

z := x[y]

In this form of statement, z is a local, x is a local pointing to an array on the
heap, and y is either a constant or a local. Let rs <x[y]> and ws <x[y]> refer to the
read and write shadows of x[y], respectively.

How it is instrumented

1: control := ComputeStatementTime(control, {}, {ws_x, ws_y, ws_<x[y]>})

2: rs_<x[y]> := Max(control, rs_<x[y]>)

3: <original statement>

The array element cannot be read until after the last write to that element. Addi-

tionally, the array pointer x must have been set to the proper array before the read,

and the index value stored in y must have been set as well. (As before, it is possible

that there will be no shadows for ws x and/or ws y.)

Array Element Write

Statement Type

A write to an element in an array

Form

x[y] := z

How it is instrumented

1: control := ComputeStatementTime(control,
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{rs_<x[y]>}, {ws_x, ws_y, ws_z, ws_<x[y]>})

2: ws_<x[y]> := control

3: <original statement>

The array element cannot be written until after the last write and the last read

to that element. Additionally, the write shadows of x, y, and z should be taken into

account (if they exist). The write shadow for the array element will be set to the

execution time of this statement, to reflect that the element was written at this time,

and that subsequent accesses should not be allowed to take place until this new value

has been written into the array element.

Method Call

Statement Type

An invocation of a method, either void or non-void

Form

myMethod() or
myMethod(param1, ...) including this as a parameter, or
returnVal = myMethod(...) or
returnVal = myMethod(param1, ...) including this as a parameter

How it is instrumented

A method call is instrumented differently depending on whether there is an as-

signment to returnVal, as will be explained below.

Assuming that there is no assignment to a returnVal, the instrumentation would

be the following:

1: control := ComputeStatementTime(control, {}, {ws_param1, ...})

2: <original statement>

Assuming that there is an assignment to a returnVal, the instrumentation would

instead be:
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1: control := ComputeStatementTime(control, {}, {ws_param1, ...})

2: <original statement>

3: ws_returnVal = GetLastTimeStamp()

The method invocation requires a unit of logical time to complete, so the control

value is increased before the call, to the maximum of the control value and the

parameters’ write shadows, plus one. This time simply represents the earliest time

at which all of the parameter values are available, and at which program control can

reach the statement. In the case that we have a return value assignment, the write

shadow of that return value is set to the last calculated timestamp, which represents

the time at which the method invocation completes, and thus the time that this return

value becomes available.

Note that the coarse-grain model we have proposed assumes that all calls are

non-blocking; that is, all method invocations can run in parallel with their callers.

It would be possible to consider some calls to be blocking — preventing the further

execution of statements in the calling method until the called method returns — and

the instrumentation that would be performed on a blocking void method call would

be as follows.

1: control := ComputeStatementTime(control, {}, {ws_param1, ...})

2: <original statement>

3: control := GetLastTimeStamp()

// And finally, if and only if there is a return value assignment

// in the <original statement>...

4: ws_returnVal := control

The difference is that here, in Statement 3, we need to make certain that the

control value after the call is equal to the value of the last timestamp calculated in

the called method, which enforces the serial nature of the blocking call by pushing

back the execution time of subsequent statements from the caller to after this last

timestamp.
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Void or Non-Void Return

Statement Type

A return statement in a method, either of the void type or some non-void type

Form

return or
return local or
return const

How it is instrumented

1: ComputeStatementTime(control, {}, {ws_local})

2: <original statement>

Given our non-blocking model for parallel method calls, the effect this code

has is that ComputeStatementTime updates the last calculated timestamp to

the timestamp of the return, so that the calling method can obtain it through

GetLastTimeStamp. That is, this statement’s instrumentation enables the instru-

mentation for a method call to assign the proper timestamp to the write shadow of a

local that takes a method call’s return value, because it sets the

last calculated timestamp to the time at which the method call has completed.

Identity Statement

Statement Type

A statement added as part of the Jimple representation for parameter passing.

Form

local := parameter

How it is instrumented

We instrument all of the consecutive identity statements in a method together.

There can be zero or more identity statements at the beginning of a method, after

the declaration of local variables.
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1: <first original statement>

2: <second original statement>

... // n total identity statements

n+1: control := GetLastTimeStamp()

Identity statements are Jimple statements in which a value is assigned from a

formal parameter (including the implicit parameter this) to a local variable. They

appear at the very beginning of the method body. We do not increment control, and

instead just assign to it the latest timestamp that had already been calculated (at

the call site). Note that the instrumentation that initializes control will be inserted

at the start of the method even if there are no identity statements there. An identity

statement can also occur at the beginning of a catch block to represent the caught

exception; such occurrences are handled similarly.

Other Statements

Statement Type

Any other statement type

Form

This may include types of statements such as
local1 := local2 or
local := local2 + local3, or
local := const, and others.

How it is instrumented

1: control := ComputeStatementTime(control, {}, {ws_RHS_1, ws_RHS_2})

2: <original statement>

Statements other than the ones described before this section are of minimal im-

portance to the analysis, and it suffices to record their execution times by observing

in-method sequential control flow and the write shadow ws RHS of any input operand
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that may appear in the statement. (By the way that Soot decomposes Java state-

ments into Jimple, there will be at most two input operands in this statement.) It

can be the case that there is no write shadow for the right-hand side, such as in the

case that it is a constant, and then this write shadow drops out of the calculation.

2.4.4 Calculating Shadows Example

Here we present an example of instrumented code as described in Section 2.4.3

by building on the example from Section 2.3.2. That code demonstrated where the

shadows are initially declared; Figure 2.7 adds the instrumentation to calculate shad-

ows for each statement. For simplicity of presentation we use the formal parameters

m1x and m2x in the code even though, as discussed earlier, in reality the Jimple

representation uses local variables in their place (initialized by identity statements).

Note that the calls to ComputeStatementTime immediately before the return

statements appear to be unnecessary, since for them there do not exist matching

calls to GetLastTimeStamp at the corresponding call sites. However, consider the

example where a method M1 calls a non-void native method M2, which in turn calls

a void method M3. Both M1 and M3 will be instrumented, but of course M2 cannot

be instrumented. The call site inside M1 that calls M2 will need to obtain the last

timestamp, and this timestamp may have to be established at the time when M3

returns to M2, by the instrumentation of the return statement in M3.
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1: class X {

2: public int a, b, c;

3: public int ws_a, ws_b, ws_c;

4: public int rs_a, rs_b, rs_c;

5: X() {

6: ws_a = ws_b = ws_c = 0; // this is only for illustration;

7: rs_a = rs_b = rs_c = 0; } } // fields are initialized to 0 by the JVM

8: void Method1(X m1x) {

9: int control = GetLastTimeStamp();

10: control = ComputeStatementTime(control, {m1x.rs_a}, {m1x.ws_a});

11: m1x.ws_a = control;

12: m1x.a = 1;

13: control = ComputeStatementTime(control, {}, {});

14: Method2(m1x);

15: control = ComputeStatementTime(control, {m1x.rs_b}, {m1x.ws_b});

16: m1x.ws_b = control;

17: m1x.b = 2;

18: control = ComputeStatementTime(control, {}, {m1x.ws_a});

19: m1x.rs_a = Max(control, m1x.rs_a);

20: int y = m1x.a;

21: control = ComputeStatementTime(control, {}, {m1x.ws_b});

22: m1x.rs_b = Max(control, m1x.rs_b);

23: int w = m1x.b;

24: ComputeStatementTime(control, {}, {});

25: return;

}

26: void Method2(X m2x) {

27: int control = GetLastTimeStamp();

28: control = ComputeStatementTime(control, {}, {m2x.ws_a});

29: m2x.rs_a = Max(control, m2x.rs_a);

30: int z = m2x.a;

31: control = ComputeStatementTime(control, {}, {});

32: z = z + 1;

33: control = ComputeStatementTime(control, {m2x.rs_a}, {m2x.ws_a});

34: m2x.ws_a = control;

35: m2x.a = z;

36: control = ComputeStatementTime(control, {m2x.rs_c}, {m2x.ws_c});

37: m2x.ws_c = control;

38: m2x.c = z;

39: ComputeStatementTime(control, {}, {});

40: return;

}

Figure 2.7: Course-grain example with instrumentation.
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Chapter 3: Measurements and Characterization of Potential

Parallelism

3.1 Initial Measurements

The analysis has been applied to a set of 26 Java benchmark programs to eval-

uate their potential parallelism, in the manner described in Chapter 2. The set of

benchmarks analyzed were taken from SPEC JVM98, the Java Grande Sequential

Benchmark set v2.0, a Java version of the Olden benchmarks, and the DaCapo 2006-

MR2 Benchmark Suite.

3.1.1 Experimental Setup

Preparing the benchmark programs for analysis required the construction of a

harness script and a slight modification to each of the benchmarks so that the har-

ness script could instrument and execute them all in a uniform manner. For most

benchmarks, it also required the choice of what input or problem size would be used

for that program, which was typically chosen from a set of inputs provided with the

benchmark release.

The Benchmarks Used In This Thesis

While many of the benchmarks provided in the above-mentioned suites were of

value to this analysis, some were not, and so there had to be a distinction between

benchmarks that were included in the experimental suite and those that were not.
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Since the purpose of the analysis was to analyze sequential programs, it was the case

that the analysis would not have any applicability to any multi-threaded programs in

these suites, so those were not included in the experiments.

The SPEC JVM98 benchmark suite includes mostly single-threaded applications

that are “real-world” programs or that featured an algorithm used frequently in the

real world, and so it was relevant to include these benchmarks in the analysis. All of

the SPEC JVM98 benchmarks were used in this thesis except mtrt, a multi-threaded

raytracer, and check, a program with the simple purpose of checking implementation

behaviors of the JVM. The single-threaded raytrace benchmark was used in the

place of mtrt.

The Java Grande Sequential Benchmark Suite, version 2.0, includes three main

“sections” of benchmarks: Low Level Operations, Kernels, and Large Scale Applica-

tions. The Large Scale Applications were chosen to be included in this thesis because

they were most similar to higher-level software systems, the likes of which are in-

tended to be the target of this analysis. These benchmarks were obtained from the

Edinburgh Parallel Computer Centre’s website.

The Java Olden benchmarks were all included, since each of the seven is sequential.

Note that these benchmarks are a Java version of the Olden benchmarks, and that

they were used in [8] and were obtained from the authors of that work.2

Finally, the DaCapo benchmarks included 11 programs, of which four are multi-

threaded; all sequential programs were included in the analysis. It should be noted

that at the time of this writing, although the DaCapo website indicates that only

three of the benchmarks are multi-threaded, it is the case that the DaCapo eclipse

2We would like to thank Mark Marron for providing this benchmark code.
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benchmark uses multi-threading as well, and thus it was not included in the analysis.

This benchmark set was introduced in [2] and its release was obtained from the

DaCapo Benchmark Suite website.

Note that both Java Grande and SPEC JVM98 include a raytracer benchmark.

For the sake of clarity in this document, when the context does not indicate which

raytracer is under discussion, we will distinguish between these by referring to them

with the shorthand Spec raytrace and JG raytracer.

Alterations to the Benchmarks

Each benchmark required a set of minor adjustments to fit into the test envi-

ronment. The chief modification to each was the inclusion of a new class called

WrapperMain. This class consists of one main() method that invokes whatever ap-

propriate method or combination of methods is necessary to execute the benchmark.

In the case of most of the benchmarks, this was a very simple wrapper that invoked

a main() method or a surrogate thereof in that program.

Many of the benchmarks relied on a test harness provided by their benchmark suite

to be initialized with a proper configuration at the start of execution. Oftentimes the

provided harness would call a benchmark setup method that would load or create

any input data required by the benchmark, and in some other cases, the input data

location was specified in a set of static fields. Typically, preparing a benchmark

for execution under the analysis involved minor alterations to the benchmark’s setup

method or the main workload method to point to the proper input files and directories.

42



Input and Problem Sizes

The SPEC JVM98, Java Grande, and DaCapo benchmark suites contain a notion

of separate input sizes, in which the benchmarks could be executed on different input

data sets. In general, this meant that it was possible to measure speedup for a

benchmark for input sizes that caused that program to perform different amounts of

work. The SPEC JVM98 suite included three different input size choices, including 1,

10, and 100, with 1 as the smallest and 100 as the greatest, although these sizes were

not strictly proportional to the integers 1, 10, and 100. The Java Grande Sequential

Benchmark suite’s Section 3 benchmarks included two input sizes A and B, with A

as the smaller size and B as the larger size. The DaCapo benchmarks had a range

of inputs from Small to Default to Large, sometimes even including an Extra Small

input, with the Default and Large inputs occasionally being the same for some of the

programs. In contrast, the Java Olden benchmarks only had one default input size

provided.

For most of the benchmarks, it was found that one of the problem sizes that was

released standard with the benchmark suite represented an appropriate amount of

work for that benchmark to process, in measuring its speedup. In general, when

possible, these input sizes were selected in such a manner so that a benchmark would

not repeat the same work multiple times on the same input data. In cases where a

larger input size simply meant that the benchmark was performing the same work

multiple times, to no different end than just processing that set of data just once,

typically a smaller input size that performed a set of work once would be selected. (An

example of such repetitive work would be the SPEC JVM98 compress benchmark’s

problem size 100, which loops over the same input five times.)
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We selected input sizes for the benchmarks based on the amount of work being

performed on the input. For a small number of benchmarks, we found that there were

enough statements being executed for the minimum problem size that the analysis

was overflowing the int values used to represent the timestamps. Thus, we manually

reduced the size of those programs’ input to yield a shorter execution to measure. This

limitation is purely artificial and will be removed in future versions of the analysis

through the use of long timestamp values. The four relevant benchmarks are listed

in Table 3.2.

Table 3.1 describes the nature of the benchmarks. The problem sizes used are

listed in Table 3.3, and those that are denoted as having custom input are explained

in Table 3.2.

In the case of one benchmark, DaCapo’s bloat, it was found that the bench-

mark’s input was its own compiled code. This presented a challenge to the analysis,

in that instrumenting the bloat benchmark would effectively change the input on

which it was running, thus making it difficult to compare the instrumented and unin-

strumented executions of the program. The benchmark was instead provided a class

from JLex 1.2.6, JLex.CMinimize, which was around the same size (in bytes) as the

original small input EDU.purdue.cs.bloat.trans.ValueNumbering.

The Harness Script

The benchmarks suites were set up so that they could be instrumented and ex-

ecuted all from one Perl script. The script was placed in the root directory of the

testing environment, and each benchmark was placed in a subdirectory at that loca-

tion. Each benchmark directory contained the instrumented benchmark, as well as a

configuration file called config.txt, which described the full name of its WrapperMain
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Table 3.1: Benchmarks: nature of computation.
Benchmark Nature

SPEC JVM98

compress An LZM file compression utility
db A database using flat files
jack A parser generator
javac A Java compiler
jess A rule-based expert system

mpegaudio An MPEG-3 audio stream decoder
raytrace A basic raytracer with shadows, reflection, refraction

Java Grande Sequential - Section 3

euler Computational fluid dynamics
moldyn A molecular dynamics simulation

montecarlo A Monte Carlo simulation of stock prices
raytracer A basic raytracer with shadows, reflection, refraction
search Alpha-beta pruned search of “Connect Four” game

Java Olden

bisort A bitonic sort of a set of N numbers
bh An n-body Barnes-Hut computation

em3d Models electromagnetic waves through objects in three dimensions
health Simulates treatment of patients in Columbian health care system
power Models a power network, sets prices to maximize

economic efficiency of consumption
tsp A randomized algorithm to solve the Traveling Salesman problem

voronoi Generates a random set of points and creates
a Voronoi diagram from them

DaCapo

antlr An LL parser generator
bloat A Java bytecode optimization and analysis tool
chart Plots PDF line graphs
fop Parses XSL-FO and creates a corresponding PDF

jython Interprets Python
luindex Indexes a set of documents
pmd Analyzes Java classes for source code problems
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Table 3.2: Custom problem size adjustments.
Benchmark Alteration

bloat Replaced input bloat class file with JLex class file
em3d Reduced: Nodes from 4000 to 2000,

and Connections from 500 to 250
euler Reduced interpolation scale factor from

Size A of 8 to 4
moldyn Reduced the data size from Size A

of 8 to 6
JG raytracer Reduced canvas size from Size A of

150x150 pixels to 75x75 pixels

class as well as any arguments it may require, including the size argument mentioned

earlier in this section. The hand-altered version of the original benchmark was stored

in a subdirectory called original off the benchmark’s directory.

The harness script would then invoke Soot to process a benchmark using the

instrumentation described in Section 2.4 and then execute a dynamic analysis of the

benchmark to calculate speedup.

3.1.2 Initial Experiments With The Analysis

As mentioned previously, the chief output of the dynamic analysis is a speedup

value, the ratio of logical time to execute the program in our coarse-grain parallel

model respecting all dependences, to the logical time to execute the program sequen-

tially. The computed speedups for the benchmarks are given in Tables 3.3. The

analysis output differs slightly from run to run (on the same analyzed program), due

to non-deterministic aspects of the execution introduced by the JVM — for example,

the order of class loading and initialization through static initializer methods, and

the finalizer invocations due to garbage collection. Our experiments show that the
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variations in speedup values from run to run are neglibigle. The table shows the

median speedup value out of three runs.

As can be expected, the instrumented versions of the benchmarks take additional

time and memory to execute when compared to the benchmarks in their original,

unaltered form. These running times and memory requirements are presented in

Table 3.4. Finally, the number of classes and methods in each benchmark is also

provided in Table 3.4 as a summary of the programs’ relative sizes.

Execution durations were measured by running the program three times; the me-

dian value of the resulting run durations is shown in the table. Memory usage for the

instrumented programs was measured by periodically calling the Java runtime’s mem-

ory methods, and subtracting Runtime.freeMemory() from Runtime.totalMemory().

Memory usage for the uninstrumented, original benchmarks was determined by giving

the benchmarks very lightweight instrumentation: each method was given an extra

statement at the beginning that called into a dynamic analysis with the sole purpose

of performing a memory check; this lightweight instrumentation has been treated as

negligible for our memory measurement purposes. The memory measurements in the

table are the median ones out of three runs.

Additionally, the numbers of application classes were determined by using Soot’s

Scene.v().getApplicationClasses() method at instrumentation time. All of the

methods in these application classes were then counted as well, through each

SootClass’s getMethods() method. Classes that were part of the dynamic analysis

bookkeeping code were excluded, but the WrapperMain classes were included, since

they now served as the main “driver” for each benchmark.
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All experiments were performed on a Dell PowerEdge R300 with a Quad Core

Intel R© Xeon R© X3363, 2.83GHz, 2x6M Cache, 1333MHz FSB and 8Gb of RAM.

The execution environment was running a Linux 2.6.18 operating system. All ex-

periments were executed on a Java HotSpot 64-Bit Server VM, build 1.6.0 11-b03.

The Java libraries used were from this 1.6.0 11 release for Linux, and they were fully

instrumented along with the benchmarks.

Table 3.3: Benchmarks: speedup and running time.
Original Inst. Inst. :

Benchmark Size Computed Running Running Original
Chosen Speedup Time Time Slowdown

(seconds) (mm:ss)
compress 10 1.2178 00.422 00:38.634 91.65

db 100 1.1634 05.522 01:50.456 20.00
jack 1 1.6865 00.615 00:06.349 10.33
javac 10 2.7790 00.755 00:05.730 7.59
jess 100 5.1821 01.478 02:23.981 97.41

mpegaudio 1 1.6375 00.501 00:35.925 71.69
Spec raytrace 100 2.4110 00.951 01:34.665 99.58

euler custom 1.6424 01.415 15:24.547 653.17
moldyn custom 1.8223 00.516 00:15.294 29.63

montecarlo size A 1.2712 03.057 01:01.782 20.21
JG raytracer custom 1.2211 00.574 00:25.270 44.00

search size A 1.5775 02.071 08:20.895 241.83

bh default 47.4109 01.539 05:42.893 222.81
bisort default 1.1340 00.311 00:04.591 14.79
em3d custom 3.9550 00.780 01:19.723 102.19
health default 116.9337 01.491 00:29.075 19.49
power default 134.1112 00.489 01:04.321 131.63
tsp default 38.1510 01.793 00:25.456 14.20

voronoi default 32.0687 01.814 01:22.891 45.70

antlr small 1.6256 00.666 00:07.762 11.65
bloat custom 5.1387 03.049 01:26.205 28.28
chart small 2.0019 02.396 00:46.716 19.50
fop default 2.3843 02.346 00:38.942 16.60

jython small 2.2108 01.707 00:29.387 17.21
luindex small 3.9669 00.950 00:28.103 29.57
pmd small 2.0089 00.787 00:03.416 4.34
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Table 3.4: Benchmarks: memory consumption and size of program.
Original Inst. Inst. : Number Number

Benchmark Memory Memory Original of of
Usage Usage Memory Classes Methods
(MB) (MB) Usage

compress 9.8 71.4 7.3 23 164
db 25.5 155.0 6.1 15 164
jack 5.6 51.5 9.2 68 445
javac 6.9 38.1 5.5 183 1300
jess 7.0 1107.1 157.5 161 804

mpegaudio 2.3 16.5 7.1 63 441
Spec raytrace 10.4 380.7 36.8 35 294

euler 35.1 20.6 0.6 5 31
moldyn 0.6 1.3 2.0 5 23

montecarlo 83.2 509.3 6.1 15 182
JG raytracer 1.2 3.7 3.2 13 73

search 11.0 2416.6 220.2 6 32

bh 14.6 2983.7 203.7 8 63
bisort 8.1 8.3 1.0 3 17
em3d 24.5 49.7 2.0 6 29
health 78.9 92.1 1.2 6 21
power 4.5 209.3 46.0 7 33
tsp 128.3 129.8 1.0 3 17

voronoi 154.5 763.2 4.9 7 67

antlr 4.1 44.1 10.8 229 2683
bloat 24.0 613.1 25.6 388 4260
chart 16.4 259.3 15.8 1145 13448
fop 20.2 171.9 8.5 3588 26135

jython 14.7 93.3 6.4 1497 13881
luindex 3.1 33.3 10.9 350 2740
pmd 3.3 19.3 5.9 1824 14391
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3.1.3 Overhead

At this time, the analysis has been partially optimized for speed, but not for

memory usage. The focus of the work has been on creating a functional version of

the analysis to gather speedup information. For performance gains, the analysis uses

some instrumentation optimization techniques, such as examining basic blocks and

reducing sequences of certain types of instrumentation statements into one statement

(an example is shown later). There is room to improve the memory overhead of the

analysis, in that it currently stores persistent handles to array shadow variables and

effectively prevents their garbage collection, and future work could improve upon this.

It is possible that there are further opportunities to improve performance and memory

usage, including but not limited to more sophisticated instrumentation techniques.

As can be seen, at this time there is a noticeable overhead for both the execution

duration and the memory usage in instrumenting many of the benchmarks. For the

set of benchmarks used in this thesis, the median slowdown (ratio of instrumented

runtime to un-instrumented runtime) is 28.92, and 15 of the 26 benchmarks have

a slowdown less than a factor of 30. The median memory overhead is a factor of

6.75, with 17 of the benchmarks showing a memory overhead of less than a factor of

10. Although this overhead is noticeable when compared to the original executions

of the benchmarks, it is typical of instrumented programs to exhibit these kinds of

costs. Further, it is not strictly necessary to run the analysis on very large inputs

to programs, which would incur high execution durations and memory usage; it can

be the focus of this analysis to find the potential parallelism through an execution

of the “core” algorithms in a benchmark, in which case executing those algorithms a
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limited number of times can reveal the same speedup as executing those algorithms

many times.

In regards to the optimizations that have been included in the analysis, an example

of their general form can be seen in Figure 3.1. In this code, the three original

statements S1, S2, and S3 are all sequentially-executing members of a basic block,

and each operates on a read set and write set that have no shadow variables. In

such a case, the calls to ComputeStatementTime can be removed and replaced with

a call to ComputeStatementTime Enhanced , which acts much in the same way that

ComputeStatementTime does, but takes a second parameter n that represents the

number of ComputeStatementTime calls that have been removed.

// Unoptimized Instrumentation

// All statements have no shadows for the read and write sets

1: control := ComputeStatementTime(control, {}, {})

2: <Original statement S1>

3: control := ComputeStatementTime(control, {}, {})

4: <Original statement S2>

5: control := ComputeStatementTime(control, {}, {})

6: <Original statement S3>

// Optimized Instrumentation

1: control := ComputeStatementTime_Enhanced(control, 3)

2: <Original statement S1>

3: <Original statement S2>

4: <Original statement S3>

Figure 3.1: Optimizing the instrumentation.
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3.1.4 Discussion of Experimental Results

Our first observation is that the majority of these speedups, as determined by the

analysis described in Chapter 2, are not remarkable: all of the benchmarks outside of

the Java Olden suite have a speedup in the range from one to six. While a program’s

users would certainly appreciate a performance increase by a factor in that range,

the speedup value by itself does not seem to indicate many opportunities for seriously

improving the performance of those programs. Further, as was discussed in Chapter 2,

the speedup value in our coarse-grained model of parallelism represents an ideal value

that could not actually be achieved on general-purpose hardware; this means that if a

programmer were to attempt to parallelize one of these benchmarks while keeping the

implementation’s inherent dependences intact, the resulting parallel program would

have performance gains less than the speedup given in Table 3.3. To have a hope

of finding greater performance gains, we will need to find a way to unearth greater

speedup values from these programs, and this means that we will want to find a way

to find the dependences that are limiting these speedup values.

In contrast, the Java Olden benchmarks appear to have a very high potential for

speedup, with many in the double digits, and with the power and health benchmarks

reporting speedups of over 100. This stark contrast suggests that there is a funda-

mental difference between implementation of the benchmarks in the Java Olden suite

and those of the benchmarks in the other suites. Perhaps the Java Olden authors

specifically programmed their implementations so that they would be readily paral-

lelizable, as in fact the authors did write separate parallel versions of these programs,

or perhaps the nature of these Java Olden computations is such that they are much

more inherently parallelizable than other algorithms. Another explanation for this
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high difference in speedups could be that the other benchmarks make use of utili-

ties like file wrapper classes or other library data structures that impose additional

parallelism-inhibiting dependences, and perhaps Java Olden does not do this.

Another observation is that the speedups of certain benchmarks do not necessarily

relate to the inherent potential parallelism in the problems that they solve. For

example, for the basic feature sets of the SPEC JVM98 and Java Grande raytracers,

the author would expect to see a much higher speedup, since ray tracing is fairly

easy to parallelize by hand, and the generic algorithm involves many non-dependent

reads and non-dependent writes. We will explore the ray tracing problem further in

Chapter 4 and find a way to reveal its hidden potential parallelism.

3.2 Contribution of the Java Libraries

In the above experiments, we have measured the potential parallelism of the bench-

marks, including all of the code that is executed during a run of a program. Although

these numbers are interesting and can be a starting point for future experiments, we

can gather more data about the potential parallelism of a given program by recog-

nizing that it is composed of two separate segments: user code and library code. We

can separate the two by performing the same analysis as in Section 3.1, but using

the original Java libraries instead of using their instrumented counterparts. The chief

intent for such experiments would be to find the potential parallelism in the user code

itself, which is under the control of the application designer, as opposed to that in

the Java libraries, which is typically not under the control of an application designer.

In examining the benchmarks in this way, while it can be expected that the analysis
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would run more quickly if the library code is ignored, further questions arise, including

what compromises this approach may bring to the correctness of the analysis.

3.2.1 Experiments With Instrumented Benchmarks and Unin-

strumented Libraries

Table 3.5: Analysis with uninstrumented libraries.
Speedup: Speedup: Speedup Running Memory

Benchmark All Code Libraries Change % Time Usage
Inst. Uninst. Reduction % Reduction %

compress 1.2178 1.2172 -0.1% 58.8% 1.4%
db 1.1634 1.0673 -8.3% 77.4% 25.4%
jack 1.6865 1.1720 -30.5% 78.6% 85.0%
javac 2.7790 2.7216 -2.1% 63.3% 77.0%
jess 5.1821 5.4902 5.9% 52.4% 14.9%

mpegaudio 1.6375 1.6299 -0.5% 87.3% 68.1%
raytrace 2.4110 2.4417 1.3% 46.8% 21.4%

euler 1.6424 1.6402 -0.1% 55.7% 1.8%
moldyn 1.8223 1.8221 0.0% 0.4% 48.2%

montecarlo 1.2712 1.5439 21.4% 47.8% 7.5%
raytracer 1.2211 1.2210 0.0% 11.1% 9.1%
search 1.5775 1.5775 0.0% 48.0% 17.0%

bh 47.4109 51.9712 9.6% 34.7% 21.0%
bisort 1.1340 1.1339 0.0% 3.1% 0.3%
em3d 3.9550 4.0588 2.6% 43.7% 0.0%
health 116.9337 47.1535 -59.7% 71.6% 16.5%
power 134.1112 134.8474 0.5% 60.4% 22.4%
tsp 38.1510 36.5441 -4.2% 6.7% 0.3%

voronoi 32.0687 32.1207 0.2% 32.2% 9.7%

antlr 1.6256 1.4013 -13.8% 55.7% 46.4%
bloat 5.1387 20.2789 294.6% 76.2% 77.7%
chart 2.0019 35.9533 1696.0% 77.5% 45.7%
fop 2.3843 1.9229 -19.4% 81.6% 79.0%

jython 2.2108 1.3617 -38.4% 56.2% 44.9%
luindex 3.9669 6.0863 53.4% 67.0% 62.5%
pmd 2.0089 4.3735 117.7% 56.9% 83.2%

As can be seen in Table 3.5, the savings in running time are consistently very

large. The DaCapo benchmarks, which are in general the largest of the benchmarks
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used in this thesis, show the greatest changes in speedup. These results indicate

that the instrumentation of library code is necessary, since without it the speedup

measurements could be quite different from the actual speedups that could be com-

puted with instrumented libraries. Although the speedups listed in the table give us

information about the potential parallelism in the benchmarks’ user code, the results

do not indicate any strong correlations in the relationships of speedups of user code

versus speedups of entire programs.

3.2.2 Compromises to Accuracy

It is to be expected that the correctness of the analysis would be affected by

running it on instrumented benchmarks with uninstrumented libraries, as compared

to the original analysis, in which all of the code executed was being instrumented,

and thus measured. The most obvious limitation is simply that dependences in the

libraries cannot be measured, and so any data of contributions they have to inhibiting

speedup would be lost; note that this can be a desirable affect if one intends to

measure solely the contribution of user code to the program’s speedup. However, it

is important to consider any other effects that using uninstrumented code may have

on the results of the analysis. Let us consider these effects here.

The following factors could influence correctness:

1. On the method level, is there some manner in which methods interact that relies
on invalid assumptions when instrumented code calls into uninstrumented code?

2. Also on the method level, could there be any issues if uninstrumented code calls
back into instrumented code?

3. On the statement level, is there some way that shadows could be updated
incorrectly in the mixed-code execution?
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We will consider these factors in the remainder of Section 3.2.2, and in summary,

we will find that there are two concerns regarding accuracy. One issue is that calls

back from uninstrumented code into instrumented code can unintentionally serial-

ize these instrumented code calls at times when they should be treated as parallel

calls, as is described in Calls From Uninstrumented Code into Instrumented

Code, below. The other concern is that high coupling between user code classes can

result in inaccurate behavior under certain circumstances, which is elaborated on in

Uninstrumented Code and Shadow Variables, below.

In considering these factors, we will describe the instrumented code’s reference to

the dynamic analysis through a DynamicAnalysis object. This object simply provides

the hooks that the instrumented code needs at the time of a dynamic analysis. One

important feature that the DynamicAnalysis provides is the

DynamicAnalysis.LastTimeStamp, which corresponds to the

last calculated timestamp described in Section 2.4.3.

Calls from Instrumented Code to Uninstrumented Code

With uninstrumented libraries, it is important to consider the behavior of the

analysis in the case that instrumented code calls into uninstrumented code. Let us

examine the general form of an instrumented method, at the level of method instru-

mentation, to get an idea of the scope of its effect on the relationship of instrumented

and uninstrumented methods. Recall that the general instrumentation for a method

is presented in Figure 2.5 (an uninstrumented method) and in Figure 2.6 (its in-

strumented version). Additionally, it is relevant to review the instrumentation for a

method call, which is defined in Section 2.4.3 and revisited for the purpose of this

section in Figure 3.2.

56



// Uninstrumented, generic method call

someVal = m(a, b);

// Instrumented, generic method call

control_caller = DynamicAnalysis.ComputeStatementTime(control_caller, ws_a, ws_b);

//Note that DynamicAnalysis.lastTimeStamp is set by the above statement

someVal = m(a, b);

ws_someVal = DynamicAnalysis.GetLastTimeStamp();

//Gets the lasTimeStamp value set by the return of the callee

Figure 3.2: Instrumenting a call to method m().

From this overview of the instrumentation, it can be seen that there are few ties

between method calls. The chief interaction of methods on this level is through

DynamicAnalysis.lastTimeStamp. It is this variable that determines the callee’s

control value when it is invoked, and through this variable that the write shadow

for the local on the left-hand side of a statement invocation (if any) is determined.

In calling from an instrumented method into an uninstrumented method, the unin-

strumented method does not receive the lastTimeStamp value, but it does not have

a control variable to track, so this causes no unexpected loss in correctness; rather,

this is the expected effect of analyzing an instrumented program with uninstrumented

libraries. However, when the uninstrumented method call returns, it does not update

the write shadow of the left-hand side (if any) of the invocation statement; this write

shadow is instead set to the previously calculated ComputeStatementTime(control,

method parameters ...), thus creating a “unit cost” of one unit of time for the unin-

strumented method call. This loss in accuracy is also not unexpected and is thus

acceptable.
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Another tie between method calls is exceptional control flow, but the relevant

instrumentation does not impede correctness when interleaving instrumented and

uninstrumented method calls. All of the high-level, original try-catch semantics of

an instrumented method is preserved: exceptions that were caught and handled in a

method are still dispositioned in the same manner, and exceptions that were thrown

up from a method still do this. As such, any exceptions thrown from uninstrumented

code back into instrumented code result in the same high-level control flow that they

would have if all of the code were instrumented.

Calls From Uninstrumented Code into Instrumented Code

It is conceivable that library code can call back into user code, which means that

we need to consider the behavior of uninstrumented code calling instrumented code.

Fortunately, for the purposes of our measurements, we can assume that the dynamic

analysis begins with an instrumented WrapperMain method and/or an instrumented

benchmark top-level method, since this is the design of the experimental setup. This

means that no matter where a program is in its execution, if there is a call from

uninstrumented to instrumented code, then, at some earlier point, instrumented code

has been executed.

When an instrumented method (IM) is executed, it will initialize its control value

equal to the DynamicAnalysis.lastTimeStamp. For the first instrumented method

called after a sequence of uninstrumented method (UM) calls, the lastTimeStamp

would be relatively out of date (that is, smaller), as compared to its value at that

point if all of the code had been instrumented. This lastTimeStamp was set at

some earlier point in execution, just before the transition from instrumented code
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to uninstrumented code, and although this value is out of date, this behavior is a

reasonable and expected impact on correctness.

However, there is some issue with the processing of the lastTimeStamp if an unin-

strumented method calls a sequence of multiple instrumented methods, as in the fol-

lowing example: (1) InstrumentedMethod1 calls UninstrumentedMethod1, (2) Unin-

strumentedMethod1 calls InstrumentedMethod2, then (3) UninstrumentedMethod1

calls InstrumentatedMethod3, . . ., then (10) UninstrumentedMethod1 calls Instru-

mentatedMethod10. The behavior of this code, assuming all code is instrumented

and all methods return void, is given in Figure 3.3. In this case, each time UM1 sets

lastTimeStamp, its new value is one greater than its previous value.

IM1 sets DynamicAnalysis.lastTimeStamp

IM1 calls UM1

UM1 sets its control value to DynamicAnalysis.lastTimeStamp

// start at the value n

UM1 sets DynamicAnalysis.lastTimeStamp // to the value n + 1

UM1 calls IM2

IM2 sets its control value to DynamicAnalysis.lastTimeStamp

IM2 returns and sets DynamicAnalysis.lastTimeStamp to its updated control value

UM1 sets DynamicAnalysis.lastTimeStamp // to the value n + 2

UM1 calls IM3

IM3 sets its control value to DynamicAnalysis.lastTimeStamp

IM3 returns and sets DynamicAnalysis.lastTimeStamp to its updated control value

UM1 sets DynamicAnalysis.lastTimeStamp // to the value n + 3

UM1 calls IM4

IM4 sets its control value to DynamicAnalysis.lastTimeStamp

IM4 returns and sets DynamicAnalysis.lastTimeStamp to its updated control value

...

UM1 sets DynamicAnalysis.lastTimeStamp // to the value n + 9

UM1 calls IM10

IM10 sets its control value to DynamicAnalysis.lastTimeStamp

IM10 returns and sets DynamicAnalysis.lastTimeStamp to its updated control value

Figure 3.3: Behavior with all code instrumented.
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IM1 sets DynamicAnalysis.lastTimeStamp // start at the value n

IM1 calls UM1

UM1 calls IM2

IM2 sets its control value to DynamicAnalysis.lastTimeStamp

IM2 returns and sets DynamicAnalysis.lastTimeStamp to its updated control value

UM1 calls IM3

IM3 sets its control value to DynamicAnalysis.lastTimeStamp

// n + some amount determined in IM2

IM3 returns and sets DynamicAnalysis.lastTimeStamp to its updated control value

UM1 calls IM4

IM4 sets its control value to DynamicAnalysis.lastTimeStamp

// n + some amount determined in IM2 and IM3

IM4 returns and sets DynamicAnalysis.lastTimeStamp to its updated control value

...

UM1 calls IM10

IM10 sets its control value to DynamicAnalysis.lastTimeStamp

// n + the given pattern

IM10 returns and sets DynamicAnalysis.lastTimeStamp to its updated control value

Figure 3.4: Behavior with UM1 method uninstrumented.

However, in the case that the uninstrumented code is actually uninstrumented,

we have the behavior given in Figure 3.4. Here we see that a sequence of calls from

uninstrumented code into instrumented code treats all individual calls back into in-

strumented code in a sequential manner, because an instrumented method expects

the method that calls it to “reset” DynamicAnalysis.lastTimeStamp both after a

method call and before the subsequent method call. To reiterate this in another fash-

ion, the first time instrumented code is called from uninstrumented code, its behavior

relative to DynamicAnalysis.lastTimeStamp is as would be expected in an execu-

tion in which all code is instrumented. However, once the instrumented code returns

back into the uninstrumented code, a further call from the this uninstrumented code
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into instrumented code will be treated as occurring sequentially after the first call

into instrumented code, due to the fact that the DynamicAnalysis.lastTimeStamp

value inherited by the second call into instrumented code is the same value set when

the first call into instrumented code returns. This behavior is not immediately ob-

vious and its potential serialization of instrumented code should be understood in

performing analyses with uninstrumented code.

Uninstrumented Code and Shadow Variables

It would seem that there are few difficulties involved in how individual statement

types are instrumented, in relation to executing uninstrumented code. (This is aside

from how return statements are executed, which is taken into account in the preceding

discussion.)

As described in Section 2.4.3, the instrumentation around individual statement

types can either update the local control value, and/or update shadow variables,

and/or update DynamicAnalysis.lastTimeStamp. In regards to correctness when

using uninstrumented libraries, the update of a local control value is not an issue,

as this value does not directly cross method call boundaries; the value contained

therein is referenced by other method invocations only through the use of

DynamicAnalysis.lastTimeStamp, which has been discussed previously.

At the first glance, updating shadow variables for local variables, static fields,

instance fields, or array elements in a program with both instrumented and uninstru-

mented code does not seem to be a major issue, although this requires some thought.

In instrumented code, the shadows are updated as expected, although they may not
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be updated to an appropriately recent (that is, sufficiently large) timestamp if unin-

strumented code has called into instrumented code, as mentioned in the preceding

discussion.

However, it is possible to imagine that uninstrumented code can write to memory

locations that have shadows, without updating those shadows. For example, suppose

class A Inst is instrumented, and class B Uninst is not instrumented, in Figure 3.5.

As in this example, it appears to be possible to have an uninstrumented class write to

an instrumented class’s field without updating any relevant shadows. Fortunately, it

would seem to not be the case that any library classes would have knowledge of user

code classes and be bound to them in this manner. Therefore, this possibility should

not be an issue when leaving the libraries uninstrumented. It is more realistic, how-

ever, that an uninstrumented user code class may interact with an instrumented user

code class in this manner, and as such there would be a risk of affecting the analysis’

accuracy if the set of user code classes were to be only partially instrumented. Al-

though “good design principles” would typically outlaw such coupling among classes,

it is possible that the correctness of the analysis could be slightly influenced by such

cases.

import mypackage.A_inst;

class A_inst { class B_uninst {

public static int x; public void SomewhatContrived()

public static int rs_x, ws_x; {

} A_inst.x = 5;

} }

Figure 3.5: Two separate class files, one instrumented, one not.
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3.2.3 A Note About Native Methods

As has been mentioned above, the entirety of the Java code in the libraries was

instrumented for the analysis in Tables 3.3 and 3.4. However, it was not possible to

instrument native methods that are called by the libraries using the same mechanism

that instrumented the Java libraries and user code. Therefore, we have decided

to treat any native methods calls as not influencing the dependences of the rest of

the program, and as executing in unit time. The consequences of this decision are

essentially the same as invoking uninstrumented Java methods, as has been discussed

in this section.

3.3 Characterizing the Effects of Categories of Dependences

Above, we have explored the effects of all dependences — through static fields,

instance fields, array elements, and local variables. It may be of further interest to

characterize the effects of dependences through these individual categories of mem-

ory locations, which could help in understanding who much responsibility these broad

categories bear in impeding potential parallelism. Here, we measure each benchmark

with a modified version of the analysis, in which none of the dependences through

either static fields, or through instance fields, or through array elements is considered.

This will give us set of “ceiling values” for the potential parallelism available for that

specific implementation of the benchmark, for that particular input. The highly opti-

mistic speedup values returned will give us an idea of what sort of speedup might be

achieved if a means were found to overcome the dependences in the given executions.
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Table 3.6: Speedup: ignoring static/instance/array dependences.
Benchmark Original Speedup With Dependences Ignored Through:

Speedup Static Fields Instance Fields Array Elements
compress 1.2178 1.2179 3.3394 1.2326

db 1.1634 1.1634 25.6631 1.2148
jack 1.6865 1.7585 2.1232 1.7585
javac 2.7790 3.1422 20.9654 2.7340
jess 5.1821 5.1822 56.7372 5.1821

mpegaudio 1.6375 1.6375 2.1105 1.8718
Spec raytrace 2.4110 2.4110 121.7878 2.4110

euler 1.6424 1.6424 3.9534 1.8349
moldyn 1.8223 118.0800 1.8354 1.8223

montecarlo 1.2712 1.2712 298.4316 2.7018
JG raytracer 1.2211 1.2211 1.2692 1.2211

search 1.5775 1.5775 1.5775 1.5775

bh 47.4109 47.4130 47.6490 47.5226
bisort 1.1340 1.1341 1.1341 1.1340
em3d 3.9550 3.9550 5133.9577 3.9582
health 116.9337 116.9339 125.8781 116.9339
power 134.1112 134.1069 14168.5087 173.5981
tsp 38.1510 38.1509 40.8376 38.1509

voronoi 32.0687 32.0709 33.3974 32.0709

antlr 1.6256 1.6256 3.7026 1.6754
bloat 5.1387 5.1073 18.3595 6.0848
chart 2.0019 2.0173 5.8526 2.0053
fop 2.3843 2.3839 4.5079 2.3845

jython 2.2108 2.2144 2.5286 2.2118
luindex 3.9669 3.9665 7.2969 4.0359
pmd 2.0089 2.0111 4.0938 2.0161
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3.3.1 Interpretations

As may be expected, static fields do not appear to be a bottleneck to parallelism in

almost all of the benchmarks. This is reasonable, as non-final static fields can typically

be expected to represent a small minority of the total set of memory locations in a

Java program.

However, as can be seen from the results in Table 3.6, the interesting results

begin to occur when dependences through instance fields or array elements are no

longer considered. In the programs analyzed, the instance fields represent the most

consistent and significant obstruction to potential parallelism. Array elements also

presented a bottleneck, but not of the magnitude seen in instance fields. We can use

this information as a starting point for more in-depth experiments, as will be seen in

Chapter 4.

3.4 Characterizing the Effects of Essential Dependences

In Chapter 2, we discussed the three classic types of dependences: flow depen-

dences, anti-dependences, and output dependences. Of these three types of depen-

dences, only flow dependences are considered to be essential ; that is, these are the

only dependences inherent to the conceptual algorithm. In contrast, anti- and output

dependences are consequences of an implementation. Non-essential dependences can

conceivably by circumvented in a number of ways, including before execution time by

a new implementation of a program, as well as at execution time by hardware. As

such, it is of interest to characterize the effect of only essential (flow) dependences on

potential parallelism, to better describe the extent in which non-essential dependences

affect that potential parallelism.
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Here, let us introduce a modified version of the analysis that only respects flow

dependences, and by comparing it to the experiments from Section 3.1.2 that respect

all dependences, we can describe the contribution of both essential and non-essential

dependences to potential parallelism.

Table 3.7: Speedup: considering only flow dependences.
Original Speedup With Speedup Speedup

Benchmark Speedup Flow Dependences Increase Increase
Only (Absolute) (Percent)

compress 1.2178 1.2179 0.0001 0.01%
db 1.1634 1.1634 0.0000 0.00%
jack 1.6865 1.7717 0.0851 5.05%
javac 2.7790 2.8672 0.0882 3.17%
jess 5.1821 5.1968 0.0146 0.28%

mpegaudio 1.6375 1.6499 0.0125 0.76%
raytrace 2.4110 2.4112 0.0002 0.01%

euler 1.6424 1.6424 0.0000 0.00%
moldyn 1.8223 1.8224 0.0000 0.00%

montecarlo 1.2712 1.2712 0.0000 0.00%
raytracer 1.2211 1.2211 0.0000 0.00%
search 1.5775 1.5775 0.0000 0.00%

bh 47.4109 47.4255 0.0146 0.03%
bisort 1.1340 1.1340 0.0000 0.00%
em3d 3.9550 3.9550 0.0000 0.00%
health 116.9337 116.9566 0.0230 0.02%
power 134.1112 134.3901 0.2789 0.21%
tsp 38.1510 38.1520 0.0011 0.00%

voronoi 32.0687 32.0915 0.0228 0.07%

antlr 1.6256 1.7000 0.0745 4.58%
bloat 5.1387 6.3934 1.2547 24.42%
chart 2.0019 3.0245 1.0226 51.08%
fop 2.3843 2.6565 0.2722 11.42%

jython 2.2108 2.3144 0.1037 4.69%
luindex 3.9669 5.7224 1.7555 44.25%
pmd 2.0089 2.9131 0.9042 45.01%
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3.4.1 Interpretations

These measurements indicate that non-essential dependences are not severely lim-

iting the potential parallelism for many of the benchmarks. 23 of the 26 benchmarks

showed a speedup increase of less than 1.0 when ignoring these dependences, and

only three of the benchmarks showed a speedup increase of greater than 1.0. This

suggests that the nature of the implementations is such that updates or upgrades to

the algorithms that target anti- and output dependences (e.g., scalar expansion and

array expansion) could not be expected to significantly improve potential parallelism.

However, as can be seen by the percentage increase in speedup, while the overall

increase is often rather small, the relative increase as compared to the speedup re-

specting all types of dependences can be high. This is most consistently noticeable

for the DaCapo benchmarks, which also happen to be the largest programs that were

studied in this thesis. Future investigations are needed to provide more insights into

these results.
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Chapter 4: Case Studies

In this chapter, we will investigate several programs from the benchmark set

presented in Chapter 3 and attempt to find components of their implementations

that inhibit their potential parallelism. Using feedback from the analysis, assuming

that all dependences as described in the coarse-grain parallelism model are respected,

we will attempt to modify a benchmark through a series of changes to the source

code, and in doing so improve its speedup, but preserve its sequential semantics. The

benchmarks studied here have parallel versions, but the implementation details of

the parallel versions are ignored (and in fact, this author did not review the parallel

versions before performing each study) so that the analysis can be used to explore

the benchmark without “knowing any answers in advance.”

4.1 Java Grande moldyn

The first benchmark we will study is Java Grande’s sequential moldyn program. As

a small body of source code, it is very suitable to be studied first, to help demonstrate

the manner in which the analysis can aid in finding impediments to parallelism.

4.1.1 Overview of the Benchmark

The benchmark (Molecular Dynamics) simulates the interaction of particles in a

three-dimensional space over a series of iterations. Its computation is iteration-based:

in general, for each iteration, for each particle in the space, it determines the amount
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of movement for that particle, and also determines the amount of force exerted on it

by all of the other particles. It is a fairly small program, with a total of 5 classes and

23 methods (including the artificial WrapperMain added as part of the analysis’s test

harness). This limited size means that the effects of impediments to parallelism will

be easier to localize than in a larger body of source code.

4.1.2 Summary of the Case Study

The benchmark shows a modest speedup of 1.8223. However, it is conceivable that

we could reach a greater speedup if the implementation were improved. A comparison

of this speedup, which respects all dependences, to the speedup for the benchmark

as given in Table 3.3 where dependences through static fields are ignored, shows that

the program has a significantly higher speedup of 118.0800 in that case. We will find

that the key inhibition to speedup is a set of three static fields, and their usage in

one loop is serializing a large part of the computation.

4.1.3 Experiments

After noticing the large difference between the speedup with all dependences con-

sidered and the speedup when ignoring dependences through static fields, our first

step is to investigate the moldyn source code and find the static fields in its classes.

This reduces our focus to 12 static fields, all members of the md class. Seven of these

static fields are final, and thus cannot be written, so we discard the possibility of

these fields impacting the speedup.

Of the remaining five non-final static fields, one is an array, three are doubles,

and one is an integer. It seems unlikely that the array is an impediment, since

any dependences through its elements would not have influenced the speedup when
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ignoring dependences through static fields, and intuition suggests that an array is a

more parallelism-friendly datum than the remaining four scalar fields.

Code Transformation

Exploration: As described above, we have narrowed down the likely impediments

to speedup to four static fields — the doubles epot, vir, and count, and the integer

interactions; all are initialized to zero. We will start by examining their use in the

code.

Searching the program text for the variable name interactions, we find that

it appears in only one other location: a method force in the class particle. This

method is called a large number of times, representative of the entire three-dimensional

problem space, and the method’s body is a loop that has a number of iterations also

representative of the entire the three-dimensional space. In addition to performing

other calculations, it increments this md.interactions variable every loop iteration,

provided some logical test passes. Similarly, the md.epot and md.vir static fields are

updated in this loop, under the same conditions as md.interactions. A summary

of this original code is presented in Figure 4.1.

Action: First, we created a new class, a container for an integer and two doubles

— that is, the static fields that are being updated in this force method. We then

created an array with a number of these containers equal to the number of times that

the force method was called, and passed an element of this array as a parameter

into the force method. Then, instead of incrementing the static fields in the force

method, it performed the same calculations on local variables, and just before the

method returned, it assigned the values of these locals to the fields of the container

instance.
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// The benchmark’s original top-level execution method, in the md class

public void runiters() {

for (int a = 0; a < num_iterations; a++) {

/* Do some work */

for (b = 0; b < sizeOf3DSpace; b++) {

particles[b].force( /*some parameters*/ );

}

/* Do more work */

}

}

// In every call to the original force method, in the particle class,

// md’s static fields are updated

void force(/*some parameters*/) {

for (int i = 0; i < sizeOf3DSpace; i++)

{

/* Some calculations */

if (some_test) {

/* Some calculations */

md.epot += /*some calculated value, not dependent on md.epot*/;

md.vir -= /*some calculated value, not dependent on md.vir*/;

md.interactions++;

}

}

}

Figure 4.1: Benchmark moldyn, original version.
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Then, in the scope of the method that called force, after the loop that called

force, a new loop was added in which the respective fields from the array of containers

were summed. These sums were added back into the respective static fields epot, vir,

and interactions, and this modified source code is summarized in Figure 4.2.

Intent: The repeated increment operation on interactions, as well as the re-

peated addition and subtraction performed on epot and vir, would seem to serialize

the computations performed by the loop in the force method. Consequently, chang-

ing the operations on these static fields into operations on local fields, through which

the dependences can be ignored, the computation could show greater speedup.

Result: The speedup improved significantly from the original value of 1.8223

to 102.7360, which is rather close to moldyn’s speedup of 118.0800 when completely

ignoring dependences through static fields. This indicates that the changes have

effectively removed the unwanted serialization through static fields.

4.1.4 Analysis of the Change

As has been established in the preceding section, the moldyn benchmark can be

modified such that it shows a much higher speedup under the analysis described in

this paper. In this section, let us briefly compare how these modifications correspond

to changes that would be practical if a software designer would actually want to

convert the original, sequential program into a parallel one.

The essence of the change is the following: instead of all of an iteration’s calls

to the force method accessing the same memory locations, each call to the force

method is given its own small section of memory to store the persistent results of its

calculations. At the end of an iteration, the work of each of the force method calls is
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// The benchmark’s modified top-level execution method, in the md class

public void runiters() {

MD_Container[] containers = new MD_Container[sizeOf3DSpace];

for (int a = 0; a < num_iterations; a++) {

/* Do some work */

for (b = 0; b < sizeOf3DSpace; b++) {

particles[b].force( /*some parameters*/, containers[b]);

}

// Now re-calculate iterations, epot, and vir

for (i=0;i<sizeOf3DSpace;i++) {

interactions += containers[i].interactions;

epot += containers[i].epot;

vir += containers[i].vir;

}

/* Do more work */

}

}

// The revised force method in the particle class,

// taking a container as a parameter

void force(/*original parameters*/, MD_Container mdc) {

for (int i = 0; i < sizeOf3DSpace; i++){

/* Some calculations */

if (some_test) {

/* Some calculations */

mdc.epot += /*some calculated value, not dependent on md.epot*/;

mdc.vir -= /*some calculated value, not dependent on md.vir*/;

mdc.interactions++;

}

}

}

// A small container to hold the data computed by a call to force()

class MD_Container {

int interactions;

double epot, vir;

MDContainer() {

interactions = 0; epot = vir = 0.0;

}

}

Figure 4.2: Benchmark moldyn, modified version.
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reassembled into one set of data — the original implementation’s three notable static

fields — and then the next iteration of the program is ready to repeat these steps. This

transformation is very similar to the standard scalar expansion optimization which

is used to eliminate loop-carried dependences that inhibit parallelism, by introducing

extra storage.

This new implementation uses more memory than the last, since it must allocate

space to store the results of the computations in the force method calls during an

iteration of processing. Exchanging a greater usage of memory in return for improved

performance is not an unusual tradeoff in making parallel programs, however, so this

could likely be an acceptable change to be made in preparation to make a parallel

version of the program.

Let us make one note about the semantics of this program and the consequences

of our change. If one is to assume that floating-point addition is associative, in which

case (a + b) + c is identically equal to a + (b + c), then this change preserves the

semantics of the original program. However, it is the case that an actual implemen-

tation of floating-point addition could potentially yield very minor differences when

re-associating addition computations in this way. Conceptually, there is no strong

reason that the original ordering of the addition computations that yields the final

values for epot and vir is “more correct” than our reordering, but we recognize the

possibility that some specific users of software may be more concerned with exactly

preserving pre-established floating-point results and that they would not be comfort-

able with even the slightest change in such a result.
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4.2 SPEC JVM98 raytrace

The SPEC JVM98 raytracer benchmark receives an unassuming speedup score

of 2.4110 in the initial analysis. This is somewhat less than could be expected, in

that the author’s understanding of a basic, one-pass raytracer algorithm is that it

has a very high potential parallelism: the features of a basic raytracer can involve

many reads from objects that compose a scene, and writes only to individual pixels

on a canvas that are not dependent on one another. Let us explore this program to

see why this implementation does not show appreciable potential parallelism on its

100-sized input.

4.2.1 Overview of the Benchmark

A raytracer is a computer graphics tool that renders a two-dimensional image

(a canvas) from a set of three-dimensional models (a scene). Typically, a simple

raytracer such as the one included in the SPEC JVM98 benchmark suite will contain

the capability to render simple geometrical objects, such as spheres or prisms, given

points of light that illuminate the objects. An eye or camera represents the point of

view that is observing the scene, including the position of the eye, the direction it is

looking, its orientation (that is, what direction is up) and the width and height of its

field of view. At its most basic level, the general algorithm involves the casting of rays

from the eye through each pixel on the canvas; the point at which the ray collides

with an object determines the color of that pixel. Finding whether this point on the

object is in shadow, relative to a given light, is determined by casting a ray from this

collision point to that point light source and determining whether any other scene

objects exist on the path of that ray in between this object and the light. Reflective
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color can be calculated by casting a ray from the object from the point of the eye ray’s

collision and finding the color of the object of what the new ray collides with; this

reflective recursion is limited to some depth so that the reflective color calculation

eventually terminates. Finally, the components of the color (the object’s color times

the intensity of the intensity of the lights that are visible to it, plus reflective color,

and color from any more advanced features) are summed to generate the color for the

given pixel in the canvas.

As described above, this raytracer should be expected to benefit heavily from

parallel processing. The algorithm writes color values to individual pixels in the final

image (a two-dimensional array) and the color of any one pixel does not affect the

color of any other pixel; the calculation of a pixel color is thus dependent upon many

reads of scene object colors and light positions, but not on values that are written

during the computation. The value of examining this benchmark is in determining

whether the analysis described in this paper can unearth this potential parallelism, or

in whether it can find an implementation bottleneck and help to explain the existence

of that bottleneck.

A parallel version of a raytracer can be made manually by simply assigning sepa-

rate program threads to separate rectangular divisions of the output canvas. Since the

potential parallelism should in theory be proportional to the number of pixels in the

canvas, it is expected that we can find more potential parallelism in this benchmark.

4.2.2 Summary of the Case Study

The sequential raytracer did not reveal much potential parallelism as it was ini-

tially implemented, but a design change did yield a noticeable increase in speedup. In
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the original implementation, the raytracer rendered the entire scene (all of the pixels)

as part of one large method call; here, we have changed the benchmark to render its

scene by dividing the workload among an arbitrary number of method calls, so that

each draws a portion of the canvas. Given our model of coarse-grain parallelism in

which individual method calls can be run concurrently, this makes it possible to view

more of the potential parallelism in the algorithm.

4.2.3 Experiments

Here, we alter the benchmark in an effort to unearth an implementation with

greater potential parallelism, and our creation of a new version with a higher speedup

indicates success in proportion to the increase in speedup. Recall that it is necessary

for any changes to have the same semantics as the original version of the program;

otherwise, finding a change in speedup has little meaning.

Code Transformation

Exploration: The design of the program involves calling one method,

Scene.RenderScene, to perform the main body of work in the benchmark.

RenderScene takes four parameters: the canvas on which to draw, the width of the

canvas, the number of sections into which the work has been divided, and the section

for which this call to RenderScene is responsible.

Action: We added multiple calls to the rendering method, the number of which

can be specified by a command-line argument. Each call to RenderScene was passed

a unique subsection of the canvas to process, and there were a number of calls equal

to the number of subsections.
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Intent: By breaking up the initially large amount of work into several smaller

portions of the problem, the theoretically parallel version of this program may be able

to run each of these rendering calls in parallel, with no dependences between them.

Result: The speedup increased noticeably as the work was divided into multiple

intervals of the canvas. Table 4.1 shows the progression of speedup along with the

number of calls made to the RenderScene method during a program execution.

Separations Speedup
of Canvas SPEC JVM98 Java Grande

raytrace raytracer

1 3.1382 1.2940

2 4.6534 2.4500

3 6.9526 2.1510

4 6.4241 3.0750

5 7.1539 3.4481

6 8.3545 4.0527

7 7.6358 5.1606

8 8.7444 5.2048

9 8.5300 6.1885

10 8.6822 6.4300

11 9.1799 7.5679

12 8.4629 7.5758

13 8.6099 8.7847

14 8.3078 8.8210

15 7.9334 8.8286

16 7.5741 11.1006

Table 4.1: Speedup from dividing the workload into separate render calls for the
raytracers.

4.2.4 Analysis of the Change

In this experiment we have attempted to simulate the separating of the canvas

drawing into separate threads by separating work among method calls. A basic

78



raytracer represents an algorithm that can theoretically be made parallel at the level of

calculating colors of individual pixels, so we expected that dividing the work into these

separate method calls would reveal more potential parallelism. We have found that

the implementation of the SPEC JVM98 raytrace is such that potential parallelism

can be revealed by moving away from an implementation in which the entire canvas

is drawn by one method call, to an implementation in which smaller portions of the

canvas a drawn by separate, non-dependent method calls. These separate method

calls could easily translate into separate threads in an actual parallel version of the

program. Although this move is approaching the per-pixel potential processing that

a theoretical algorithm could exhibit, note that in Table 4.1, we find that there are

appears to be a peak speedup value at about 11 divisions of the canvas. This means

that in our concrete raytrace implementation, the potential parallelism does not

seem to reach a maximum when the work is divided into extremely small portions,

as would be projected from the conceptual algorithm.

There are two reasons that could cause this behavior, both related to overhead.

The first is that once the canvas has been divided up into enough sections, there is not

enough work available for a given RenderScene call to process, in proportion to the

amount of code that needs to be executed to make a call to that method. There are a

number of statements, including local variable initialization, canvas section dividing,

and loop control variable incrementing and testing that will be executed during any

call to RenderScene(), and with less and less real work for the method to perform,

the greater the impact of this overhead code on speedup. The second reason could

be implementation details that create artificial bottlenecks, such as a library call or

helper method storing data in a persistent memory location to which access must be
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serialized among calls to it. While there are no immediately obvious methods that

offend in this way in this raytracer, we will see that there are some such issues in the

Java Grande raytracer in Section 4.3.

4.3 Java Grande raytracer

The Java Grande raytracer benchmark receives a low speedup score of 1.2211 in

the initial analysis, and the further experiments performed on it that ignore different

categories of dependences do not noticeably raise this score. Given the above dis-

cussion of the nature of a raytracer algorithm, these results are counterintuitive and

deserve further analysis.

4.3.1 Overview of the Benchmark

Much like the SPEC JVM98 raytrace analyzed above in Section 4.2, the Java

Grande Sequential raytracer is a basic raytracer that supports simple lighting, shad-

ows, and reflection. Its implementation is slightly different than the SPEC one, and

instead of actually reading in input from a file, the Java Grande program uses a

hard-coded input scene.

4.3.2 Summary of the Case Study

Early tests did not reveal any potential parallelism beyond the speedup value found

in the initial analysis that respected all dependences. Starting from the same point as

in the SPEC JVM98 raytrace study, we attempted to alter the benchmark code to

make multiple calls to the rendering function, thus dividing the workload by passing

each call different pixel spaces on the canvas. However, this did not increase the

potential parallelism discovered by the analysis, so this implementation of a raytracer
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appeared to have additional impediments to parallelism. It was then found that

the main impediments to parallelism were a serializing checksum computation and

the use of class instance variables as “persistent temporary variables” that the code

comments said were intended to help “speed up” sequential computation by removing

the need to declare temporary variables in class methods.

4.3.3 Experiments

In the following experiments, we incrementally alter portions of the program un-

der test and run the analysis (respecting all dependences) after each change is made,

to find the changes these alterations make to the program’s speedup score. A higher

speedup indicates that the alteration has increased the program’s potential paral-

lelism. Recall that it is necessary for these changes to have the same semantics as the

original version of the program; otherwise, finding a change in speedup is meaningless.

Unlike the moldyn benchmark, the speedups when ignoring categories of dependences

do not provide us with specific insights, so we will begin by analyzing the high-level

structure of the target program.

Change 1

Exploration: The design of the program involves calling one method,

Raytracer.render, to perform the main body of work in the benchmark. Method

render takes one parameter: an interval of the image to construct.

Action: We added multiple calls to the rendering method, which performs the

real work of the raytracer. The calls took a parameter to describe the range of the

canvas over which they would render, so each call received a unique subsection of the

canvas. The change is shown in Figure 4.3.
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//Original: Render the entire canvas in one method call

Interval interval = new Interval(/*entire problem space*/);

render(interval);

//New: Render the canvas in N method calls

Interval[] intervals = new Interval[N];

for (int i = 0; i < N; i++) {

intervals[i] = new Interval(/*vertical section of problem space*/);

render(intervals[i]);

}

Figure 4.3: Breaking up the Java Grande sequential raytracer’s workload.

Intent: By breaking up the initially large amount of work into several smaller

portions of the problem, the theoretically parallel version of this program may be able

to run each of these rendering calls in parallel, with no dependences between them.

Result: The speedup remained largely the same at 1.2210, even when the work

was divided among 10 intervals. There must be dependences that are not visible to

the high-level method that invokes the rendering method, and we will have to look

deeper into the structure of the program. For the rest of the changes, we will perform

the work over 10 separate intervals.

Change 2

Exploration: Raytracer.render iterates over every pixel in the interval, calcu-

lating its color. For each pixel, just after that pixel’s color is calculated, it adds the

numeric value of that color components (three eight-bit integers) to a

Raytracer.checksum integer instance field.

Action: We moved the checksum computation from Raytracer.render to the

method that calls render, just after all of the image has been processed.
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Intent: The addition of color components, all written into a single memory loca-

tion for every pixel, would seem to serialize the computation, and this serialization

must be circumvented. Given the nature of the checksum, its calculation could simply

be removed from the rendering method and placed at the end of the entire computa-

tion.

Result: The speedup remained mostly the same at 1.2211, even when the work

was divided among 10 intervals. There must be further dependences at work.

Change 3

Exploration: The Raytracer class has 14 instance fields, but two stand out in

the code comments: the Raytracer.tRay ray and Raytracer.L vector are described

to be “temporary” variables. Inspecting the usage of L, it does in fact appear to

be “temporary” in the sense that its value is set in the scope of a single method

call, never used again after that call returns, and not altered by any other methods

during its usage. Inspecting the usage of tRay, it does not actually appear to be a

“temporary variable” in the classic sense, since its fields are read and written outside

of the scope of a method in which they are initially defined.

Action: We removed the object-wide declaration of the L temporary variable, and

placed its declaration into the Raytracer method shade that uses it. Pseudocode for

this change is given in Figure 4.4.

Intent: In the original program, we have an object on the heap pointed to by L,

which has three fields (doubles x, y, and z). The lifetime of the values in these fields

is only within the scope of a call to shade, and the memory locations named by these

fields are repeatedly overwritten by subsequent calls to shade. This change creates
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separate objects with separate x, y, and z memory locations that correspond to the

lifetime of the values used by invocations of shade.

Under typical circumstances, it is not a justifiable action to define a class-level

temporary object, since each instance of its usage is specific to some computation

that occurs during one method call. Further, in a parallel program, it does not make

sense for one memory location to be shared among multiple processes as a place for

frequently altered temporary data.

Result: As before, the speedup remained mostly the same at 1.2210, so there must

be further dependences at work. In the code comments, the “class-scoped temporary

variables” are declared for “speedup;” this suggests that the original implementers

viewed the construction and destruction of temporary objects to be expensive enough

that removing those steps would improve the speed of the sequential computation.

Change 4

Exploration: The Sphere class has five instance fields, but just as in the Raytracer,

two stand out in the code comments: the Sphere.v and Sphere.b vectors are de-

scribed to be “temporary” variables, and in fact Sphere.v is used in that manner.

Sphere.b is actually never accessed, although if it were, it would seem that it had

been intended to follow the same usage pattern as Sphere.v.

Action: We removed the object-wide declaration of these two temporary variables

and placed their declaration into the Sphere.intersect method that uses them.

Pseudocode for this change is given in Figure 4.5.

Intent: This modification has the same intent as Change 3.
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// Original Version

class Raytracer {

Vec L = new Vec(); // Vec is a triple of ’double’ values (x, y, z coordinates)

// Raytracer’s method to compute a color at a given point on a surface

private void shade( /* some parameters */ ) {

/* Some calculations */

// Values of this.L.x, this.L.y, this.L.z reset with new values

this.L.sub2(someVector1,someVector2);

// dotProduct() reads from L’s members

if (dotProduct(this.L, someVector3) >= 0) {

// normalize() writes to L’s members, returns length

double t = this.L.normalize();

/* One read from L’s members */

// Nothing else accesses L anymore

/* Some calculations */

}

}

}

// Modified Version

class Raytracer {

// No field L

// Raytracer’s method to compute a color at a given point on a surface

private void shade( /* some parameters */ ) {

/* Some calculations */

// Create a new Vec object specific to this invocation of shade

Vec L = new Vec();

L.sub2(someVector1,someVector2);

// dotProduct() reads from L’s members

if (dotProduct(L, someVector3) >= 0) {

// normalize() writes to L’s members, returns length

double t = L.normalize();

/* One read from L’s members */

// Nothing else accesses L anymore

/* Some calculations */

}

}

}

Figure 4.4: Java Grande raytracer, Change 3.
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Result: The speedup makes a very modest increase to 1.2936 with the work

divided among 10 intervals. This is the beginning of an improvement, but not on the

order of magnitude that is expected, so there must be further dependences at work.

Unlike the negligible difference between Change 3’s speedup and the original im-

plementation, here we find an improvement in speedup that demonstrates that the

practice of using an object-scoped temporary variable can measurably impede poten-

tial parallelism.

Change 5

Exploration: The Raytracer class has another instance field with a conspicuous

code comment named Raytracer.inter. It is described as the “current intersection

instance” and that “Only one is needed!” Inspecting how this field is used, it is not a

temporary variable like the others analyzed to this point, as the lifetime of the object

that it points to crosses method call boundaries.

Action: We removed the class-wide declaration of Raytracer.inter and de-

clared it in Raytracer.trace, which is responsible for defining it in the original pro-

gram. Method Raytracer.intersect uses the value of inter computed in trace, so

inter was added as a parameter to this method. Pseudocode for the original version

of the code is given in Figure 4.6, and the modifications are given in Figure 4.7.

Intent: The intersection object inter was being stored and accessed on the class

level when it could just as easily have been declared and defined local to the method

in which it was computed, and then passed as a parameter to callees that required

it. Declaring and defining the inter object locally is more friendly to potential

parallelism. This is because it allows for separate intersect calls to write to different

Isect instances, and thus separate memory locations, whereas all of the intersect

86



// Original Version

// Sphere Constructor

public Sphere( /* some parameters */ ) {

/* initialize other fields */

this.v = new Vec(); //defined once

}

// Sphere intersection detection method

public Isect Intersect( /* some parameters */ ) {

// Values of this.v.x, this.v.y, this.v.z reset with new values

this.v.sub2(someVector1,someVector2);

/* some reads from v */

}

// Modified Version

// Sphere Constructor

public Sphere( /* some parameters */ ) {

/* initialize other fields */

/* No field v */

}

// Sphere intersection detection method

public Isect Intersect( /* some parameters */ ) {

// Create a new Vec object specific to this invocation of Intersect

Vec v = new Vec();

// Assign freshly calculated values v.x, v.y, v.z

v.sub2(someVector1,someVector2);

/* some reads from v */

}

Figure 4.5: Java Grande raytracer, Change 4.
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calls had previously written to the same memory locations, which artificially serialized

them.

Result: The speedup makes a slight increase to 1.2984 with the work divided

among 10 intervals. so there must be further dependences at work.

class Raytracer {

// An Isect object contains a double, an int,

// and pointers to a scene-object and that object’s surface

Isect inter = new Isect();

// Raytracer intersection detection method

public boolean intersect(Ray ray) {

this.inter.t = /* a large, constant double value */

for (int i = 0; i < numberObjectsInScene; i++) {

if ( /* intersection is closest detected so far */ ) {

/* write to several of this.inter’s fields */

} }

}

// Raytracer method for firing a ray and finding what it hits.

// Calls intersect()

private Vec trace( /* some parameters */, Ray r ) {

//Find what the ray r intersects, if anything

boolean hit = intersect(r); //this.inter’s fields are defined

/* Perform some reads on inter’s fields */

}

// Raytracer method for determining shadow. Calls intersect()

public int Shadow(Ray r) {

if (intersect(r)) return 0; else return 1; }

}

Figure 4.6: Java Grande raytracer, Change 5, original version.
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class Raytracer {

// No field inter

// Raytracer intersection detection method

public boolean intersect(Ray ray, Isect inter) {

inter.t = /* a large, constant double value */

for (int i = 0; i < numberObjectsInScene; i++) {

if ( /* intersection is closest detected so far */ ) {

/* write to several of inter’s fields */

} }

}

// Raytracer method for firing a ray and finding what it hits.

// Calls intersect()

private Vec trace( /* some parameters */, Ray r ) {

Isect inter = new Isect();

//Find what the ray r intersects, if anything

boolean hit = intersect(r, inter); //inter’s fields are defined

/* Perform some reads on inter */

}

// Raytracer method for determining shadow. Calls intersect()

public int Shadow(Ray r) {

if (intersect(r, new Isect())) return 0; else return 1; }

}

Figure 4.7: Java Grande raytracer, Change 5, modified version.
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Change 6

Exploration: Earlier, we briefly inspected the use of the Raytracer.tRay field,

and saw that its use crossed method boundaries. Inspecting it further, it can be re-

scoped as a local in the render method. The object is used in trace, which is called

by render, as well as in shade, which is called by trace. There is some recursive use

of the object between trace and shade.

Action: We changed the declaration of Raytracer.tRay from an instance field to

a local variable of render, and added a corresponding parameter to trace and shade.

Method render now passes the object to trace, and trace passes it to render,

sometimes with further recursion from render back to trace and so on. Pseudocode

for the original version of the code is given in Figure 4.8, and the modifications are

given in Figure 4.9.

Intent: The use of tRay in the recursive sequence of trace and shade calls from

render was inadvertently serializing the multiple calls to render. Essentially, there

are a plethora of read operations and write operations on tRay’s two fields as a result

of a call by render to trace, and this means that subsequent calls to render cannot

run in parallel. That is, in the second of two calls to render, the first operation

that accesses a field of tRay must be scheduled near the time of the return of the

previous call to render, when that tRay field was last written. By making the Ray

class instance local to a call to render, which creates separate memory locations for

each render call to access, there is no longer serialization on tRay’s fields between

consecutive render calls.

Result: The speedup of the program jumped from the initial value of 1.2211 to

6.4300 for splitting the work over 10 intervals. This is an order-of-magnitude increase
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is consistent with what the author would expect from the potential parallelism in

a raytracer algorithm. Speedup values for dividing the canvas among one through

sixteen intervals are presented in Table 4.1.

4.3.4 Analysis of the Changes

This benchmark was more difficult to modify in a way that revealed more po-

tential parallelism because it had multiple contributing factors that inhibited that

parallelism. Here, we began our analysis by reviewing the source code, and we altered

what appeared to be the greatest serializing factors first: there was an opportunity

to break up the work among render calls, and there was a checksum computation

that took place after each pixel was calculated. After this low-hanging fruit was

picked, we investigated the code comments to find the purpose of individual fields

and their usage. This resulted in finding several instance fields that appeared to be

used in a parallelism-unfriendly manner, and thus their replacement with the use of

semantically equivalent local variables corresponded more closely to a parallel de-

sign. Finally, we reviewed the use of other instance fields and found that their usage

among the raytracer’s methods was local to a hierarchy of method calls — a method

would define a value and pass it to its callees, never to use that value again after

they returned. By converting these instance fields that point to long-living objects

into locally scoped variables that pointed to shorter-living objects that were passed

among method calls, we limited the wide scope of the memory locations that were

being accessed and ultimately saw a large increase in speedup.

For each change, we used the analysis as a guide to verify its effects on potential

parallelism, and in this way we converted the program into a version that was still
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sequential, but better primed to take advantage of a multiprocessing environment

if it were to be converted into a parallel program. Note that we have retained the

original program’s semantics through the entire sequence of changes, and that this was

straightforward to do because of the checksum computation built-in to the benchmark.

In a program without such a checksum, but with this many or more changes on the

path to showing more potential parallelism, it would be necessary to find another way

to easily verify that the semantics had not changed, such as automated batch tests

on a variety of inputs.
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class RayTracer {

Ray tRay = new Ray(); //A ray contains two vectors: a point P and a direction D

// Raytracer method that produces image for an interval of the problem space

public void render( /* some parameters */ ) {

Ray ray;

for (y = interval.y_start; y < interval.y_end; y++) {

for(x = 0; x < interval.width; x++) {

ray = /* A ray from the camera in the direction of this pixel */

trace( /* some parameters */, ray);

}

}

}

// Raytracer method for firing a ray and finding what it hits

private Vec trace( /* some parameters */, Ray r)

//When called by shade(), note that tRay and r point to the same object

boolean hit = intersect(r); //Does the ray hit anything?

if (hit) {

/* Read from r’s fields */

shade( /* some parameters */, r.D );

}

}

// Raytracer method for determining color at point in space

private Vec shade( /* some parameters */, Vec I) {

//Note that I and this.tRay.D currently point to the same object

/* Read from I’s fields */

/* Perform some writes to the Vec objects this.tRay.P and this.tRay.D */

if (some_test1) { /* read this.tRay and its fields */ }

if (some_test2) {

/* Read from I’s fields */

this.tRay.D = /* some vector */

trace( /* some parameters */, this.tRay);

}

if (some_test3) {

/* Read from I’s fields */

if (some_test4) this.tRay.D = /* some vector */

else this.tRay.D = /* some other vector */

trace( /* some parameters */, this.tRay);

}

}

}

Figure 4.8: Java Grande raytracer, Change 6, original version.
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class RayTracer {

//No field tRay

// Raytracer method that produces image for an interval of the problem space

public void render( /* some parameters */ ) {

Ray ray;

Ray localizedRay = new Ray(); // Add a local ray to replace tRay here

for (y = interval.y_start; y < interval.y_end; y++) {

for(x = 0; x < interval.width; x++) {

ray = /* A ray from the camera in the direction of this pixel */

trace( /* some parameters */, ray, localizedRay);

}

}

}

// Raytracer method for firing a ray and finding what it hits

private Vec trace( /* some parameters */, Ray r, Ray tRay)

//When called by shade(), note that tRay and r point to the same object

boolean hit = intersect(r); //Does the ray hit anything?

if (hit) {

/* Read from r’s fields */

shade( /* some parameters */, r.D, tRay);

}

}

// Raytracer method for determining color at point in space

private Vec shade( /* some parameters */, Vec I, Ray tRay) {

//Note that I and tRay.D currently point to the same object

/* Read from I’s fields */

/* Perform some writes to the Vec objects tRay.P and tRay.D */

if (some_test1) { /* read tRay and its fields */ }

if (some_test2) {

/* Read from I’s fields */

tRay.D = /* some vector */

//Redundant parameters passed for the sake of clarity

trace( /* some parameters */, tRay, tRay);

}

if (some_test3) {

/* Read from I’s fields */

if (some_test4) tRay.D = /* some vector */

else tRay.D = /* some other vector */

//Redundant parameters passed for the sake of clarity

trace( /* some parameters */, tRay, tRay);

}

}

}

Figure 4.9: Java Grande raytracer, Change 6, modified version.
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Chapter 5: Related Work

As has been mentioned previously, the primary source of inspiration for this work

was authored by Kumar in his analysis of potential parallelism in FORTRAN pro-

grams [4]. He introduced the notion of statements executing at a logical time, and

used a very similar model for recording data dependences. Kumar’s work differed in

several ways from ours. The focus of his work are scientific and engineering appli-

cations written in Fortran. The model of parallelism is fine-grained (i.e., individual

statements execute concurrently) and is suited for instruction-level parallelism. The

approach is designed for analysis of arrays and scalars and does not handle dynam-

ically allocated memory, pointer-based data structures, and user-defined types (e.g.,

structure types and class types). The experimental evaluation on four applications

finds a significant degree of best-case parallelism: speedups of one to three orders

of magnitude are observed, likely because these are scientific applications with loop-

based array-based computations. In contrast, we consider coarser-grain parallelism

at the method level (as appropriate for Java), and find that most of our benchmarks

do not exhibit a significant degree of potential parallelism.

Austin and Sohi took the concept of exploring fine-grain parallelism further in [1].

They introduce a Dynamic Dependence Graph (DDG) that represents a single pro-

gram execution by partially ordering its instructions based on data dependences. The

DDG’s height to total nodes ratio represents a notion similar to the concept of speedup

that is used in this thesis. Although the analysis in this paper always respects output-
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and anti-dependences, the work in [1] explores the potential parallelism in an exe-

cution by assuming that only flow dependences must always be respected, and that

register renaming and memory renaming can sometimes be used to further improve

parallelism. Since Austin and Sohi’s work is concerned with fine-grain parallelism at

the instruction level, it differs from this thesis in that it assumes that different types

of instructions will take different amounts of time to execute (for example, a multipli-

cation instruction will take more cycles than an addition instruction), whereas we are

focused on a higher coarse-grain level of parallelism and thus assume that all Jimple

statements take the same amount of time to execute.

Larus explored loop-based potential parallelism in [6]. The model of parallelism

used in that paper differs from Kumar’s and Austin and Sohi’s fine-grain approaches in

that it focuses exclusively on executing loop iterations in parallel. Like the previously

mentioned approaches, and like this thesis, Larus’s work executes a program once on

a particular input, and describes the potential parallelism properties of that single

execution. Unlike the previously mentioned approaches, but still like this thesis,

Larus’s model accepts a serialization of some part of the body of source code (all of

the code outside of loops, whereas this thesis accepts the serialization of code within

a method) and treats a certain part of that source code as a construct that can be

improved via parallelization.

Rauchwerger also explores potential parallelism in [10] and discusses the question

of how much practical parallelism can be extracted from it. His paper distinguishes

dependences that cannot be circumvented (flow and control) as essential dependences,

from all others as resource dependences. In addition to the manner used the previously

mentioned papers and this thesis, which uses what he terms a “greedy” scheme in
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which statements are scheduled to execute at the earliest logical time possible, his

work also introduces a “lazy” scheme in which statements are scheduled to run at

the latest time possible. Like Austin and Sohi, his work makes use of a dynamic

dependence graph crafted over an execution. Like this thesis, the Rauchwerger paper

assumes that statements execute in unit time; unlike this thesis, which assumes calls

to native methods do not access data that has been shadowed, it treats system calls as

potentially accessing any data computed by the time of the call, and thus artificially

serializes the computation around them.

Postiff also makes an explicit distinction between essential and non-essential de-

pendences in [9]. In the context of instruction-level parallelism (ILP), he finds that an

impractically large, but finite, instruction window is not good enough to find parallel

instructions, which tend to be further apart than even a very optimistic finite-sized

window can hold. He suggests that a multiprocessor is needed to unearth the paral-

lelism between these remote instructions, and this relates to this thesis’ motivation

to explore method-based coarse-grain parallelism in programs.

Also in the context of ILP, Wall presents a model [12] of architecture-level depen-

dences such as registers, memory locations, and branches, and discusses the means

by which a processor or compiler could expose parallelism in the presence of such

dependences. He found that ambitious models of parallel hardware did not expose

great instruction-level parallelism, and that having a large but finite number of pro-

cessors (in the range of 256) did not significantly affect instruction-level parallelism

unless other assumptions about ignoring anti- and output dependences and branch

prediction were perfect. This last finding is relevant to our work in that this thesis

makes assumptions like this in generating a speedup score.
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Lam and Wilson further explore the affect of branch prediction on ILP [5]. They

recognize that processors that make branch predictions typically throw away all of the

instructions already executed on a predicted branch that is found to be not taken,

even if some of these instructions would be reached and executed anyway due to

other control flow. In presenting multiple models in which a theoretical machine

is capable of some combination of speculating infinite consecutive branch outcomes,

control dependence analysis, and following multiple contexts of execution, they found

that control flow severely limits potential parallelism. This finding may be relevant

to future investigations of more refined variations of our model of parallelism.

In [7], Mak and Mycroft attempted to unify the work performed by Wall, Austin

and Sohi, Postiff, and Lam and Wilson. Their approach was to measure potential

parallelism by generating a dynamic dependence graph based on a choice of what

types of dependences to include as edges. These dependences types include flow de-

pendences, name dependences (output and anti-dependences), control dependences,

dependences based on address calculations, and flow dependences based on the stack

pointer. They find that control dependences tend to restrict potential parallelism,

with the caveat that branch prediction helps to circumvent this limitation within

limited ranges of instructions, and that programs can be artificially serialized by the

compiler through the use of the stack pointer. By introducing the concept of the

spaghetti stack to avoid dependences based on frame allocations, and by distilling

the dependences down to the “essential” flow dependences, they provide a measure-

ment of the potential parallelism of the conceptual algorithm behind the program.

This is somewhat related to the focus of our work, in which we are interested in

implementation-based dependences that affect program design, but also the potential
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to transform that design into one that more closely relates to the potential parallelism

inherent in the conceptual algorithm.

Many of these works explore machine-code languages and discuss architecture-

related parallelism concepts like register renaming or memory location renaming, or

even branch prediction. These approach are intended to avoid anti- and output de-

pendences in promoting instruction-level parallelism, or to avoid lost cycles due to

unknown future control flow, as would be appropriate in exploring compile-time opti-

mizations or similar enhancements that relate more closely to the hardware that could

execute an algorithm. However, the analysis in this thesis focuses on providing more

high-level information that can be directly useful to the programmer. We consider

method-level parallelism instead of instruction-level or loop-level parallelism, and fo-

cus on handling all Java features such as dynamically allocated memory, pointer-based

data structures, and user-defined types. Rather than focusing on anti/output depen-

dences and branch prediction, we are concerned with finding the high-level program

entities (e.g., fields and methods) that the programmer should examine in order to

understand and improve the design-level parallelism properties of the program.
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Chapter 6: Conclusions and Future Work

In this thesis, we have examined the potential parallelism in 26 sequential Java

benchmarks by defining a coarse-grained model of parallelism and introducing a com-

bination of a static analysis and a dynamic analysis to measure that parallelism.

In respecting data dependences through high-level program design concepts such as

static fields, instance fields, and array elements, as well as through sequential control

flow within a method, we found that although some benchmarks showed optimistic

two- or three-digit speedups, most of the benchmarks showed a low speedup in the

range of one to six. This discovery meant that many of these programs have inherent

properties of their implementations that prevent them from being candidates for an

easy design change to parallel programs.

We also examined individual sources of data dependences, including static fields,

instance fields, and array elements, and found that these categories of memory loca-

tions have different magnitude of impacts on potential parallelism. We found that

static fields generally had a very minimal effect on potential parallelism, whereas ar-

ray elements sometimes had a noticeable contribution to it, and instance fields could

have significant effects on speedup. Depending on the program, ignoring dependences

through instance fields could raise the speedup by one or more orders of magnitude,

illustrating the large contribution of instance fields to impeding potential parallelism.
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We then studied the effect of the Java libraries on our measurements. We found

that measurements that consider only user code and do not measure the contribu-

tions of the libraries incur a significantly lower overhead than those experiments that

measure both user code and library code. However, the speedup values gathered in

these circumstances can vary significantly from those in the prior measurements, and

at this time we are not aware of any consistent cause for a rise or drop in speedup

when the libraries are not measured. We further examined the effect of essential

dependences on potential parallelism, in the absence of non-essential dependences.

In general, we found that in terms of absolute speedup, the potential parallelism in

each of the benchmarks was not significantly affected by non-essential dependences,

although in terms of relative speedup, some programs showed a fair increase in po-

tential parallelism under these assumptions.

Finally, we studied several of the benchmarks in more depth and made changes

to them, all while preserving the original semantics of those programs. Using the

analysis as a guide, we were able to hand-alter these benchmarks into versions that

showed higher speedup, and thus greater potential parallelism. In this manner, we

have used the analysis as a form of feedback in performing design-level changes to

existing sequential programs to prepare them to be altered in parallel versions.

This work can be expanded in the future by performing more case studies with

further programs, which may reveal other ways in which programs can be altered to

expose additional potential parallelism. Also, because it can be difficult to localize an

inhibition to speedup in a large body of source code, it would be of interest to apply

disciplined techniques that analyze a program’s structure to automatically explore

the program and recommend places that show the most promise in being altered to

101



improve potential parallelism. Another way to expand the work would be to change

our assumptions about the model of parallelism, such as by assuming that only certain

method invocations can be run in parallel, or that only certain numbers of methods

may be run in parallel at any given time. Such changes may give further insight as to

the potential parallelism of a program if only major portions were altered to include

threading, or as to how much parallelism of which a program may take advantage on

a more realistic finite-processor parallel machine.

102



Appendix A: Jimple Grammar

Detailed Grammar for Jimple

The following grammar is for the Jimple intermediate language used by the static

analysis in this thesis via the Soot Java optimization framework. This representation

is reminiscent of Java syntax, but it breaks down more complex statements containing

multiple expressions into simpler statements, as described below. This grammar

captures the details that could be relevant for static analysis and instrumentation of

Java programs. This section was compiled by Prof. Rountev.

Consider the following grammar with starting non-terminal 〈Program〉.

〈Program〉 ::= 〈Class〉+

〈Class〉 ::= 〈Field〉∗ 〈Method〉∗

〈Method〉 ::= 〈Statement〉∗

The nonterminal 〈Class〉 represents both classes and interfaces; for the rest of this

document, the term “class” will be used to refer to both classes and interfaces. The

program contains at least one class. Certain classes are designated as library classes,

as they belong to library classes. The rest of the classes are client classes. If we

consider analysis of a complete program, one of the client classes is designated as the

main class — it contains the main method of the program. In addition to the set of

classes, the program defines a class hierarchy : a DAG which captures the extends

and implements relationships.
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A class contains some combination of fields and methods. Each field has a name,

a type (primitive type or reference type), and modifiers which are one or more of the

following: public, protected, private, static, final, transient, volatile. Each

method has a name, a sequence of parameter types, a return type, and modifiers which

are one or more of the following: public, protected, private, abstract, static,

final, synchronized, native, strictfp. Some of the methods in the class can be

designated as constructors ; all and only such methods have names <init>. Every

class has at least one constructor; every interface has zero constructors. A class has

zero or one static initializer methods, with name <clinit>, with a static modifier.

A method has a body containing an ordered sequence of zero or more statements.

All and only abstract and native methods have zero statements. The different cate-

gories of statements are defined as follows:

〈Statement〉 ::= 〈ReturnStmt〉
| 〈ReturnVoidStmt〉
| 〈ThrowStmt〉
| 〈GotoStmt〉
| 〈IfStmt〉
| 〈SwitchStmt〉
| 〈MonitorStmt〉
| 〈InvokeStmt〉
| 〈IdentityStmt〉
| 〈AssignStmt〉

The details of individual categories of statements are as follows:

〈ReturnVoidStmt〉 ::= return

// return nothing
〈ReturnStmt〉 ::= return 〈SimpleValue〉

// return a constant or the value of a local variable
〈ThrowStmt〉 ::= throw 〈Local〉

// throw the exception pointed-to by the local variable
〈GotoStmt〉 ::= goto stmt reference

// jump to a statement in the same method
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〈IfStmt〉 ::= if 〈ConditionExpr〉 stmt reference

// conditional jump to a statement in the same method
〈SwitchStmt〉 ::= switch 〈Local〉 stmt reference+

// conditional jump to a statement in the same method
〈MonitorStmt〉 ::= monitor 〈Local〉

// enter or exit a synchronized block
〈InvokeStmt〉 ::= 〈InvokeExpr〉

// call without return value
〈IdentityStmt〉 ::= 〈Local〉 = 〈IdentityRef 〉

// parameter passing or exception catching

The stmt reference above is a pointer to some other statement in the same method
body. A few of the non-terminals used above are as follows:

〈Constant〉 ::= 〈NumericConstant〉
| 〈StringConstant〉 | 〈NullConstant〉 | 〈ClassConstant〉

〈Local〉 ::= id // variable name
〈SimpleValue〉 ::= 〈Local〉 | 〈Constant〉
〈IdentityRef 〉 ::= 〈ThisRef 〉 | 〈ParameterRef 〉 | 〈CaughtExceptionRef 〉
〈ThisRef 〉 ::= this // for instance methods
〈ParameterRef 〉 ::= formali

// i-th formal parameter of the method, with i ≥ 1
〈CaughtExceptionRef 〉::= caughtexception

// artificial variable pointing to exception at a catch clause

There are two kinds of 〈IdentityStmt〉. First, when the right-hand side is a formal

parameter (including the implicit formal parameter this), this statement appears at

the very beginning of the method. This is the only place where the formals appear

in the body. The second kind of 〈IdentityStmt〉 is used to represent the effect catch

(Exception e): the caughtexception points to the exception object upon entry

into the catch, and its value is used to set the value of local e.

〈AssignStmt〉 ::= 〈Local〉 = 〈GeneralRhs〉
| 〈ArrayRef 〉 = 〈SimpleValue〉
| 〈FieldRef 〉 = 〈SimpleValue〉

〈ArrayRef 〉 ::= 〈Local〉 [ 〈SimpleValue〉 ]
〈FieldRef 〉 ::= 〈StaticFieldRef 〉 | 〈InstanceFieldRef 〉
〈StaticFieldRef 〉 ::= id

〈InstanceFieldRef 〉::= 〈Local〉 . id
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The general form of the right-hand side of an 〈AssignStmt〉 is this:

〈GeneralRhs〉 ::= 〈SimpleValue〉
| 〈AnyNewExpr〉 // creation of an object or an array
| 〈FieldRef 〉
| 〈ArrayRef 〉
| 〈InvokeExpr〉 // method call with a return value
| 〈BinopExpr〉 // binary operation
| 〈UnopExpr〉 // unary operation
| 〈CastExpr〉 // casting
| 〈InstanceofExpr〉 // x instanceof C

〈AnyNewExpr〉 ::= 〈NewExpr〉 | 〈NewArrayExpr〉 | 〈NewMultiArrayExpr〉
〈NewExpr〉 ::= new 〈Type〉

// create an instance of the corresponding class
〈NewArrayExpr〉 ::= newarray 〈Type〉 of length 〈SimpleValue〉

// 〈Type〉 is the component type (could be an array type)
〈NewMultiArrayExpr〉::= newmultiarray 〈Type〉 of length 〈LengthList〉

// 〈Type〉 is the component type (could be an array type)
〈LengthList〉 ::= 〈SimpleValue〉

| 〈SimpleValue〉 〈LengthList〉
// lengths in all allocated dimensions

〈BinopExpr〉 ::= 〈SimpleValue〉 binop 〈SimpleValue〉
// binop is some binary operator

〈UnopExpr〉 ::= unop 〈SimpleValue〉 // unop is some unary operator
〈CastExpr〉 ::= cast 〈SimpleValue〉 to 〈Type〉
〈InstanceofExpr〉 ::= 〈Local〉 instanceof 〈Type〉

// the type is a reference type

The call expressions have the following form:

〈InvokeExpr〉 ::= 〈StaticInvokeExpr〉 // call to a static method
| 〈InstanceInvokeExpr〉 // call to an instance method

〈StaticInvokeExpr〉 ::= id ( 〈SimpleValue〉∗ )
// zero or more simple values as actual parameters

〈InstanceInvokeExpr〉 ::= 〈SpecialInvokeExpr〉 // call without dynamic dispatch
| 〈VirtualInvokeExpr〉 // call with dynamic dispatch

〈SpecialInvokeExpr〉 ::= 〈Local〉 . id ( 〈SimpleValue〉∗ )
〈VirtualInvokeExpr〉 ::= 〈Local〉 . id ( 〈SimpleValue〉∗ )

// the method is a compile-time target
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