
Coverage Criteria for Testing of Object

Interactions in Sequence Diagrams

Atanas Rountev, Scott Kagan, and Jason Sawin

Ohio State University
{rountev,kagan,sawin}@cse.ohio-state.edu

Abstract. This work defines several control-flow coverage criteria for
testing the interactions among a set of collaborating objects. The cri-
teria are based on UML sequence diagrams that are reverse-engineered
from the code under test. The sequences of messages in the diagrams are
used to define the coverage goals for the family of criteria, in a manner
that generalizes traditional testing techniques such as branch coverage
and path coverage. We also describe a run-time analysis that gathers
coverage measurements for each criterion. To compare the criteria, we
propose an approach that estimates the testing effort required to sat-
isfy each criterion, using analysis of the complexity of the underlying
sequence diagrams. The criteria were investigated experimentally on a
set of realistic Java components. The results of this study compare dif-
ferent approaches for testing of object interactions and provide insights
for testers and for builders of test coverage tools.

1 Introduction

Object-oriented software presents a variety of new challenges for testing, com-
pared to testing for procedural software [1]. For example, programs contain com-
plex interactions among sets of collaborating objects from different classes. It is
not sufficient to test a class in isolation—testing the interactions between in-
stances of different classes is of critical importance [2, 1, 3]. A variety of tech-
niques can be employed to test different aspects of object interactions. Several
existing approaches for such testing [3–7] are based on UML interaction dia-
grams. UML defines two kinds of semantically-equivalent interaction diagrams:
sequence diagrams and collaboration diagrams [8, 9]. In this paper we discuss
only sequence diagrams; Figure 1a contains an example of such a diagram.

A sequence diagram shows the messages that are exchanged among several
objects, as well as other control-flow information (e.g., if-then conditions that
guard messages). Such diagrams capture important aspects of object interac-
tions, and can be naturally used to define testing goals that must be achieved
during testing. The testing requirements are related to certain elements of the
diagrams. For example, it may be required to exercise all relationships of the
form “object X send message m to object Y”. More aggressive approaches con-
sider not only individual messages, but also sequences of messages—for example,



all possible start-to-end message sequences in a diagram. Section 2 discusses in
detail the previous work that proposes such approaches.

With the help of reverse-engineering tools, sequence diagrams can be ex-
tracted from existing code. Design recovery through reverse engineering is nec-
essary during iterative development [10] and for evolving systems in which the
design documents have not been updated to reflect code changes. Commercial
tools already provide some functionality for such reverse engineering, both for
class diagrams and for sequence diagrams. In addition, several static analyses
proposed in the literature have considered various aspects of reverse engineering
of sequence diagrams [11–14]. Reverse-engineered sequence diagrams are a nat-
ural source of program-based coverage criteria for testing of object interactions.
If a reverse-engineering tool is used to construct a sequence diagram, a coverage
tool can use this diagram as a basis for defining and measuring of coverage met-
rics during subsequent testing. Such a diagram reflects precisely the up-to-date
state of the code, and therefore can be used for early and frequent testing.

The first goal of our work is to define a family of coverage criteria for ob-
ject interactions based on reverse-engineered sequence diagrams. The criteria are
generalizations of traditional control-flow criteria such as branch coverage and
path coverage, and are defined in terms of the sequences of messages exchanged
among a set of collaborating objects. Some of these criteria have appeared in
previous work. However, there have been no attempts to define a unifying frame-
work for such criteria and to use it for systematic investigation and comparison
of different techniques for testing of object interactions. The work presented in
this paper defines such a framework. At the center of the proposed approach
is a data structure which we refer to as interprocedural restricted control-flow
graph (IRCFG). This data structure represents in a compact manner the set of
message sequences in a sequence diagram, and can be easily constructed as part
of the reverse engineering of such a diagram. The IRCFG allows us to define
systematically the family of test coverage criteria.

Our second goal is to design a run-time analysis based on the IRCFG. The
run-time analysis observes the behavior of the code while tests are being exe-
cuted, and gathers coverage measurements with respect to each criterion. Au-
tomated coverage measurements are essential for any program-based coverage
criterion, and the run-time analysis is an important complement to the criteria.

The third goal of this work is to perform a comparison of the different criteria.
We aim to obtain an estimate of the effort required to achieve high coverage for
each criterion, and to compare these estimates. For each criterion c, we propose
an approach which determines a lower bound pc on the number of start-to-end
IRCFG paths that guarantee the highest possible coverage for c. If for a given
sequence diagram the value of pc is very high, this indicates that the effort
required to achieve high coverage for c may be prohibitive, and therefore weaker
criteria should be used. Having such estimates provides valuable insights about
the differences between the criteria, which in turn could allow better planning
and management of the testing process.



The fourth goal of the work is to perform an experimental study that de-
termines the values of pc for different criteria on a set of realistic software com-
ponents. Our experiments use 18 components from various Java libraries. The
comparison of pc across a diverse set of components provides insights into the
inherent relationships between the different coverage criteria, and into the effort
required to achieve high coverage for these criteria.

2 Testing and Sequence Diagrams

Several testing approaches proposed in the literature consider testing of object
interactions based on sequence diagrams (or the semantically-equivalent collab-
oration diagrams). Binder [3] considers the set of all start-to-end paths in a
sequence diagram, and defines a criterion for choosing a subset of paths to be
covered during testing. The criterion requires coverage that is similar to tra-
ditional branch coverage: each decision outcome within the diagram must be
covered by at least one start-to-end path. For example, if a message is sent un-
der some condition c, the set of test cases should ensure that at least one path
covers the case when c is true, and at least one path covers the case when c
is false. We will refer to this criterion as the all-branches criterion; a precise
definition of this approach is presented later in the paper.

Consider the sequence diagram in Figure 1a. This diagram represents the
set of possible behaviors when message m1 is sent to object a. Conditions c1,
c2, and c3 guard certain messages: for example, m6 is sent to b only if c3 is
true. A start-to-end path in the diagram can be represented by the temporal
sequence of messages that are exchanged between objects. For example, one
such path is (m1,m2,m4,m6,m2,m3,m4). To satisfy the all-branches criterion, testing
must execute enough start-to-end paths to cover all conditional behavior. One
possible set of paths that satisfies this requirement is p1 = (m1, m2, m3, m4, m5),
p2 = (m1, m2, m4, m6, m2, m3, m4), and p3 = (m1, m2, m4, m6, m2, m4, m5).

Other testing approaches consider not only individual messages and their
guarding conditions, but also entire sequences of messages. Jorgensen and Erick-
son [15] consider testing that exercises method-message paths and atomic system
functions. A method-message path is a sequence of events of the form “method
m1 invokes method m2; during this invocation, m2 invokes m3; during this invo-
cation, m3 invokes method m4 . . .”. For example, in Figure 1a, the left-to-right
sequence of messages (m1,m6,m2,m3) corresponds to a message-method path. In
the subsequent discussion, we will use the more common term call chain to refer
to such a sequence. An atomic system function, as defined in [15], is equivalent
to the set of all start-to-end message sequences in a sequence diagram.

Abdurazik and Offutt [4] consider collaboration diagrams created during de-
sign, and define an approach for static checking and testing of the interactions
among the diagram objects. Their technique requires coverage of start-to-end
sequences of messages in the diagrams. Basanieri and Bertolino [16] define a
testing approach that considers all message sequences in a sequence diagram
and applies the category-partition method to choose the appropriate test data



for exercising these sequences. Fraikin and Leonhardt [6] describe the SeDiTeC
tool for testing based on sequence diagrams. Their approach requires coverage of
all possible sequences of messages in a set of related sequence diagrams. The dia-
grams are augmented with information about expected input and output values
for method invocations, and these values are checked during test execution.

Briand and Labiche [5] consider functional system testing based on use cases
and sequence diagrams (or collaboration diagrams) constructed during object-
oriented analysis. Each scenario within a use case corresponds to a start-to-end
path in the sequence diagram for that use case. They construct a regular ex-
pression that represents all start-to-end message sequences (i.e., all scenarios),
and require coverage of all such sequences during testing. Wu et al. [7] propose
an approach for testing of component-based software which uses UML collab-
oration/sequence diagrams and statecharts. One of the suggested techniques
requires testing of all possible sequences of messages in a collaboration diagram.

3 Criteria for Reverse-Engineered Sequence Diagrams

The testing approaches discussed in the previous section are based on interaction
diagrams that are constructed during analysis or design, before the correspond-
ing implementation code is written. In general, there is no guarantee that design
activities will produce a complete set of diagrams for all interactions in the sys-
tem. An incomplete set of diagrams is a weak basis for comprehensive testing
of object interactions. Another potential problem is that during code construc-
tion, the implementation often diverges from the original design. For example,
in iterative development, tools for reverse engineering of design artifacts from
the code are often necessary to make the design documents consistent with the
actual implementation.

This paper considers sequence diagrams that are constructed automatically
from existing code, using static analyses for reverse engineering [11–14]. Problems
due to incomplete or outdated diagrams can be avoided with the use of reverse-
engineered diagrams. Such diagrams can be constructed automatically from the
latest version of the code, and for all relevant parts of the system. Furthermore,
since the diagrams are created from the code, a coverage tool can easily determine
what kinds of code instrumentation will be necessary in order to obtain run-time
coverage metrics during test execution.

The approaches from Section 2 (with the exception of Binder’s work [3]) have
a common element: the requirement that all message sequences in an interaction
diagram should be covered. This requirement is either used as a stand-alone
coverage criterion, or as part of more general testing goals. When considered
in the context of reverse-engineered sequence diagrams (rather than diagrams
created during analysis or design), the requirement for all-paths coverage raises
concerns similar to the ones from traditional CFG path coverage. Typically, CFG
path coverage is considered to be infeasible in practice due to the potentially
large number of paths. A similar question can be asked for testing of object
interactions: is it practical to require coverage of all start-to-end paths in a



reverse-engineered sequence diagram? In fact, the reason Binder considers the
weaker all-branches criterion is because, as he states, “the number of paths can
easily reach astronomical numbers” [3].

This section presents a formal definition of three coverage criteria that are
weaker versions of the all-paths criterion; one of them is the all-branches crite-
rion. The criteria provide several options with different tradeoffs between test-
ing effort and test comprehensiveness. Having such options is important in the
presence of resource constraints for the testing process. Depending on these con-
straints, different criteria for systematic testing of object interactions can be
employed. The criteria are generalizations of traditional control-flow-based cri-
teria such as CFG branch coverage and CFG path coverage. We first define the
notion of an interprocedural restricted control-flow graph (IRCFG), which can be
thought of as the equivalent of a CFG for a sequence diagram. Figure 1b shows
the IRCFG for the diagram from Figure 1a. Paths through the IRCFG corre-
spond to sequences of messages in a sequence diagram. The proposed coverage
criteria for object interactions are then defined formally based on the IRCFG.

3.1 Interprocedural Restricted Control-Flow Graph

An IRCFG contains a set of restricted CFGs (RCFGs), together with edges
which connect these RCFGs. Each RCFG corresponds to a particular method
and is similar to the CFG for that method, except that it is restricted to the flow
of control that is relevant to message sending. In Figure 1b, each RCFG is shown
within a rectangular box. For example, the top RCFG in the figure corresponds to
method m1, which is invoked as a result of sending message m1 to object a. A node
in the RCFG for some method m represents a method invocation in the body of
m. For example, the node labeled m2 in the top RCFG in Figure 1b corresponds
to some call to m2 in the body of method m1. In the reverse-engineered diagram
from Figure 1a, this call is represented by the message m2 sent from a to c. The
RCFGs also contain artificial nodes start and end. The start node represents
the moment when the run-time execution enters the method, and the end node
represents the moment when the flow of control returns back to the caller.

RCFG edges, shown with solid arrows in Figure 1b, represent the sequencing
relationships between nodes. In Figure 1a, after the execution enters method m1,
method m2 is invoked. This is represented by the edge (start,m2) in the RCFG
for m1. After this invocation of m2 completes, either m6 is invoked by m1, or m1
completes without invoking m6. These two possibilities are represented by RCFG
edges (m2,m6) and (m2,end) respectively. Sometimes we will refer to RCFG edges
as intraprocedural edges. RCFGs are connected with interprocedural edges, shown
in Figure 1b with dashed arrows. An interprocedural edge connects an RCFG
node n with a start node that corresponds to some method that could be invoked
by n. Note that due to polymorphism, there could be multiple interprocedural
edges coming out of n. The interprocedural edges define a tree in which the
nodes are RCFGs; we will refer to that tree as the RCFG tree.

Clearly, all information in the IRCFG is entirely based on the structure of the
corresponding sequence diagram. Since we consider sequence diagrams that are



Fig. 1. Sample sequence diagram and the corresponding IRCFG.

constructed from existing code using some reverse-engineering static analysis,
it should be straightforward to construct the IRCFG by augmenting the static
analysis. Our implementation (described later) uses this approach: it extends an
existing reverse-engineering analysis to construct the IRCFG.

3.2 Coverage Criteria

The IRCFG introduced in the previous section serves two purposes. First, it al-
lows precise formal definition of coverage criteria for the corresponding sequence
diagram. Second, it is the basis for a run-time analysis that measures the cov-
erage achieved during testing. In this section we focus on the definition of the
criteria; the run-time analysis is outlined in Section 4.

All-IRCFG-Paths Coverage The all-paths criterion, which we will refer to as
All-IRCFG-Paths, requires coverage of the entire set of complete IRCFG paths.



Each complete path is a start-to-end traversal of the IRCFG. An example of
such a path is

(startm1, m2, startm2, m4, startm4, endm4, m5, startm5, endm5, endm2, endm1)

Let p be a sequence of RCFG nodes in which the first and the last node are
start and end in the root RCFG, respectively. We will refer to p as a complete
IRCFG path if it has the following property. Consider some node ni in p, and
let R be the enclosing RCFG for ni. If the next node after ni in the sequence p
is node nj , then one of the following must hold:
Case 1. If ni is the start node of R, there must exist an intraprocedural RCFG

edge (ni, nj) in R
Case 2. If ni is not the start or the end node of R, then

– there exists an interprocedural edge (ni, nj), where nj is the start node
of some child of R in the RCFG tree, or

– there are no interprocedural edges starting at ni, and (ni, nj) is an in-
traprocedural edge in R

Case 3. If ni is the end node of R, then the parent of R in the RCFG tree
contains an intraprocedural edge (nk, nj), and there is an interprocedural
edge from nk to the start node of R

The second alternative in Case 2 represents a situation when the body of the
method invoked by ni is not included in the diagram. For example, it is common
to “stop” the reverse-engineered diagrams at library methods; in this case there
is no interprocedural edge coming out of ni.

It is important to note that not all complete IRCFG paths necessarily corre-
spond to feasible run-time executions. Of course, this is a standard issue for any
program-based criterion that uses some abstracted model of the tested code. For
example, in traditional CFG path coverage, some CFG paths may be infeasible
and complete coverage may not be possible. Even though it is impossible to
completely eliminate infeasibility, there is a wide range of effective static analy-
sis techniques that can reduce significantly the degree of infeasibility in program
models such as CFGs and IRCFGs. For example, points-to analyses (e.g., [17])
can produce very precise calling-context-sensitive information about the calling
relationships between methods, and branch correlation analysis (e.g., [18]) can
identify certain classes of infeasible CFG paths. Static analyses for reverse engi-
neering of sequence diagrams can employ such techniques to identify infeasible
subpaths in the diagrams and in their corresponding IRCFGs. The investigation
of this issue is beyond the scope of this paper, and the subsequent discussion
assumes that all IRCFG paths are feasible.

An interesting question is how many complete IRCFG paths exist in a given
IRCFG. Consider the example in Figure 1b. The invocation of m2 from m1 could
lead to four distinct IRCFG subpaths. Similarly, the invocation of m6 from m1
may proceed along four distinct subpaths. Therefore, there are 16 complete IR-
CFG paths in which m1 calls m2 and m6. When we also consider the case in which
m6 is skipped, the total number of paths becomes 20. This example illustrates
one fundamental concern with the All-IRCFG-Paths criterion: the number of
paths could easily grow exponentially.



Fig. 2. Subsumption hierarchy for coverage criteria.

All-RCFG-Paths Coverage Next, consider all RCFG paths in an IRCFG. An
RCFG path is a sequence of RCFG nodes within some RCFG R, beginning with
the start node of R and finishing with the end node of R. Each pair of adjacent
nodes in the path must correspond to an intraprocedural edge in R. For example,
for the root RCFG in Figure 1b, there are two such paths: (start,m2,end) and
(start,m2,m6,end). A complete IRCFG path could cover several RCFG paths.
For example, consider again path

(startm1, m2, startm2, m4, startm4, endm4, m5, startm5, endm5, endm2, endm1)

This complete path covers the following RCFG paths: (startm1, m2, endm1) in
the root RCFG, (startm2, m4, m5, endm2) in the left child of the root, and the
trivial start-end paths in the two leftmost leaves.

The All-RCFG-Paths criterion requires testing to exercise enough complete
IRCFG paths to cover all RCFG paths. In Figure 1b, coverage for this criterion
can be achieved with five (but not fewer) complete IRCFG paths. Coverage of
all RCFG paths is similar to traditional CFG path coverage. Of course, unlike a
CFG, an RCFG represents only a subset of the flow of control within a method
(e.g., conditions that are irrelevant for calls are ignored). Furthermore, the cri-
terion takes into account the calling context of a method. For example, for m2
there are two RCFGs in Figure 1b—corresponding to call chains (m1,m2) and
(m1,m6,m2)—and each start-to-end path in each of the two RCFGs should be
covered.

All-RCFG-Branches Coverage Another potential source of exponential growth
is the fact that the number of RCFG paths could be exponential in the size of the
RCFG. We can eliminate this source by defining a criterion that requires cover-
age of all RCFG edges rather than all RCFG paths. This All-RCFG-Branches
criterion is equivalent to Binder’s approach discussed in Section 2. For our run-
ning example, the criterion can be satisfied with three complete IRCFG paths.

Unique RCFG Branches It is possible to define an additional simplification
that leads to an even weaker (and easier to achieve) criterion. Consider the case
when the tree contains several RCFGs for the same method, and each graph is



associated with different calling contexts for the corresponding method. If we re-
quire coverage of each RCFG edge regardless of the calling context, this defines a
coverage criterion that is a simplified version of All-RCFG-Branches. In essence,
we consider each unique RCFG edge regardless of how many times it occurs in
the IRCFG, and require at least one occurrence to be covered by a complete
IRCFG path. The new criterion will be denoted by All-Unique-Branches. For
Figure 1b, this criterion can be satisfied by two complete IRCFG paths—for
example,

(startm1, m2, startm2, m3, startm3, endm3, m4, startm4, endm4, m5, startm5,
endm5, endm2, endm1) and (startm1, m2, startm2, m4, startm4, endm4, endm2,
m6, startm6, m2, startm2, m4, startm4, endm4, endm2, endm6, endm1)

Summary of Coverage Criteria The preceding discussion defines four dif-
ferent coverage criteria based on the IRCFG. Clearly, these criteria form a sub-
sumption hierarchy. (Criterion ci subsumes criterion cj if complete coverage for
ci also achieves complete coverage for cj .) The hierarchy is illustrated in Figure 2.

For the running example, the minimum number of complete IRCFG paths
that achieve coverage for each criterion is as follows:

(All-IRCFG-Paths, 20) (All-RCFG-Paths, 5)
(All-RCFG-Branches, 3) (All-Unique-Branches, 2)

3.3 Handling of Cycles

The criteria were defined under the assumption that each RCFG is acyclic. If an
RCFG contains a cycle, the number of RCFG paths is of course infinite. Due to
space limitations, the handling of this case is discussed in detail elsewhere [19].

Since cycles are due to iterative behavior, the resolution of this issue depends
on the chosen approach for loop testing. Many such approaches are possible [20,
3, 5]. In this work we consider one specific choice which is a simplified version of
the traditional loop testing techniques described by Beizer [20]. In the future we
plan to investigate other approaches for loop testing. Our current techniques can
be easily generalized to support these approaches. Essentially, the only significant
change will be related to adding information about loop bounds (i.e., minimum
and maximum number of loop iterations).

Our current approach requires coverage of each RCFG subpath that repre-
sents (1) a possible iteration that does not lead to loop exit, and (2) a possible
iteration that leads to loop exit, including complete bypassing of the loop. To
formalize this approach, we augment the techniques presented earlier in the fol-
lowing manner. First, we assume that an RCFG contains artificial “loophead”
nodes. Each such node represents the entry point of some loop. Any RCFG edge
from the body of the loop to the loophead represents the end of a complete
iteration of the loop; such edges are commonly referred to as back edges [21]. An
example of a loophead node (labeled lh) is shown in Figure 3a.



Fig. 3. Elimination of RCFG cycles.

Next, we define a graph transformation that takes an RCFG with cycles and
produces an acyclic RCFG. The start-to-end paths in the transformed RCFG cor-
respond to different execution scenarios for the corresponding cycle. The trans-
formation is illustrated in Figure 3. We create a second artificial node lh′, and
all back edges in the original cycle are redirected to the new node. As a result,
the transformed graph does not contain any cycles. All exit edges from lh are
also replicated: for example, we add an edge from lh′ to m6. Other nodes from
the original cycle are replicated, if they lead to “premature” exits. For example,
m1 is replicated as a successor of lh′, and an edge is added from the replicated
node to m4.

The paths in the transformed acyclic graph represent various execution sce-
narios for the original RCFG. For example, path (start, lh, m1, m2, m5, lh′, m6, end)
in the new RCFG represents the following execution in the original RCFG: the
cycle is entered, it completes several full iterations (i.e., the back edge is tra-
versed at least once), and then exits through (lh,m6). Furthermore, at least one
of these full iterations follows the intra-cycle path (m1,m2,m5). It is easy to define
when an RCFG paths in the original graph covers a path in the new graph. For
example,

(start, lh, m1, m2, m5, lh, m1, m3, m5, lh, m1, m4, m6, end)

in the original graph covers two paths in the new graph:

(start, lh, m1, m2, m5, lh′, m1, m4, m6, end)
(start, lh, m1, m3, m5, lh′, m1, m4, m6, end)



The graph transformation is easy to perform, by creating the replicated nodes
and exit edges and by redirecting the back edges to lh′. In the presence of nested
cycles, the innermost cycles can be processed first, then their enclosing cycles
can be transformed, and so on. For brevity, we do not discuss the details of this
straightforward algorithm.

The rationale behind the transformation is to make explicit the conceptually
different scenarios in the execution of the original cycle, and to represent these
scenarios as acyclic paths in the transformed graph. A tester will have to consider
each of those scenarios when defining test cases, and therefore the number of
paths in the new graph is an indication of the required testing effort. For the
example in Figure 3, there are six such scenarios. Of course, an alternative way
to estimate testing effort is to simply consider the number of RCFG paths in the
original graph that can cover all paths in the transformed graph. For example,
two paths from Figure 3a are sufficient to cover all paths in Figure 3b. However,
such estimation does not take into account the complexity of the control flow
inside the cycle. For example, consider an RCFG whose entire body is a cycle
(except for the start and end nodes). Suppose the cycle has a single exit edge
and complicated internal flow of control. One single multi-iteration path in the
original RCFG is sufficient to cover all paths in the transformed graph. However,
the effort to construct this path during testing depends on the internal structure
of the cycle, and therefore can be better estimated by the number of paths in
the transformed graph.

4 Run-Time Coverage Analysis

This section defines a coverage analysis for All-RCFG-Paths, All-RCFG-Branches,
and All-Unique-Branches. We are in the process of building a coverage tool for
these criteria, and this paper describes the design of the run-time analysis al-
gorithm used in the tool. For brevity, the description outlines the ideas behind
the algorithm without providing an in-depth discussion of all relevant details. At
present we have no plans to implement coverage tracking for All-IRCFG-Paths,
because the experimental results presented later in the paper raise questions
about the practicality of this criterion.

The code instrumentation required to perform the run-time tracking is fairly
straightforward. Immediately before each call site, we insert instrumentation to
identify the method that is about to be invoked. We also insert instrumentation
immediately after each call site, in order to know at run time that the invoca-
tion has just completed. The run-time events triggered by the instrumentation
are used to traverse the IRCFG while the tests are being executed. The anal-
ysis maintains a “current” RCFG node which reflects the current state of the
run-time execution. Immediately before a call site is about to make a call, the
corresponding interprocedural edge in the IRCFG is traversed downwards and
the current node is changed to the start node of the RCFG for the called method.
The execution within the callee method proceeds until the flow of control reaches
the exit of that method. At this point of time, the current node in the coverage



analysis is end in the RCFG for the callee. The return to the caller triggers an
instrumentation event which shows that the call has just completed. As a result,
the current node becomes the corresponding RCFG node in the caller method.

Based on the current RCFG node in the analysis, it is easy to compute cover-
age metrics for All-RCFG-Branches and All-Unique-Branches. To compute path
coverage for All-RCFG-Paths, we use a variation of an approach for intraproce-
dural path profiling proposed by Ball and Larus [22]. Their technique assigns a
unique integer path id to each distinct start-to-end path in a CFG. Instrumenta-
tion at CFG edges is used to update the value of a run-time integer accumulator.
At CFG exit the accumulator contains the id of the executed path. We can use a
similar technique for RCFG path tracking: each RCFG has an associated accu-
mulator, which is initialized every time the flow of control enters the start node
of the graph.

5 Minimum Number of Paths

In this section we define techniques for estimating the testing effort inherent in
each of the four criteria discussed earlier. Given some IRCFG, for each criterion
c we want to compute a lower bound on the number of complete IRCFG paths
whose run-time coverage would guarantee the best possible coverage for c. This
bound is an indication of how many complete IRCFG paths a tester may need
to consider for coverage in order to satisfy c.

Complete IRCFG Paths First, what is the total number of complete IRCFG
paths in a given IRCFG? The computation of the number of paths can be done in
bottom-up fashion on the RCFG tree. Starting from the leaves, we can compute
the number of IRCFG subpaths in each subtree. Consider some RCFG R in
the tree, and suppose that we have already computed the number of IRCFG
subpaths for each of the subtrees rooted at R’s children. To compute the number
of subpaths for the subtree rooted at R, we can traverse R in topological sort
order. During the traversal, when we visit an RCFG node n in R, we compute
the number p(n) of all IRCFG subpaths from the start node of R to n. In the
beginning of the traversal, p(startR) = 1 for the start node of R. For each visited
node n, we have

p(n) =
∑

(n′,n)∈R

p(n′) × q(n′)

Here n′ is an intraprocedural predecessor of n and q(n′) =
∑

R′ p(endR′) where
the sum is over all RCFG R′ that are called by n′ (i.e., there is an interprocedural
edge from n′ to the start node of R′). In the case when there are no such R′, let
q(n′) = 1.

In this computation, for each intraprocedural edge (n′, n) in R, we consider
the number of IRCFG subpaths p(n′) from the start of R to n′. For each RCFG
R′ that is called by n′, we examine the value p(endR′) computed earlier for the
end node of R′. There are a total of p(n′)×p(endR′) IRCFG subpaths that start



at the beginning of R, lead to n′, continue downwards into R′, and eventually
return back to n in R. The total number of complete IRCFG paths is the value
p(n) computed for the end node of the root RCFG.

Coverage of RCFG Branches To find the minimum number of complete
IRCFG paths that contain all RCFG edges, we define an integer linear program-
ming problem. Consider some hypothetical set S of complete IRCFG paths. For
each RCFG edge e, let the integer value v(e) ≥ 0 represent the number of times
e is covered by all paths in S (i.e., the edge frequency of e in S). For each call
node n in the IRCFG, we define the equation

∑

e∈In(n)

v(e) =
∑

e∈Out(n)

v(e) (1)

Here In(n) denotes the set of all intraprocedural edges (n′, n), and Out(n) is the
set of all intraprocedural edges (n, n′′). Equation (1) shows that the number of
times n is entered by paths in S is equal to the number of times n is exited.

For each call node n that has outgoing interprocedural edges, we also need
to model the execution of the corresponding children RCFGs. This is done by

∑

e∈In(n)

v(e) =
∑

e∈Call(n)

v(e) (2)

Here Call(n) denotes the set of all interprocedural edges (n, start) entering the
children RCFGs. Equation (2) encodes the fact that the number of times n is
covered by S is equal to the number of times the children graphs are covered
by S. We also model the execution frequencies of the edges coming out of each
start node, using equation

v(e′) =
∑

e∈Out(start)

v(e) (3)

where e′ is the single interprocedural edge entering start .
For the All-RCFG-Branches criterion, we define a system that combines (1),

(2), and (3) with the following equation:

v(e) ≥ 1

for each edge e in each RCFG. Given this system, we solve a linear programming
problem that minimizes the objective function

∑

e∈Out(startroot)

v(e)

where startroot is the start node of the root RCFG. This value represents the
total number of times the start node is traversed by S, which is equal to the size
of S. Let p∗ be the minimum value for the objective function, as computed by a
linear programming solver. It can be proven that p∗ is the minimum number of
complete IRCFG paths that contain all RCFG edges.



Unique Branches When considering unique RCFG edges, (1), (2), and (3) are
combined with equation

v(e1) + v(e2) + . . . + v(ek) ≥ 1

Here ei are RCFG edges that are equivalent: they belong to different RCFGs for
the same method, and all of them represent transitions between equivalent pairs
of RCFG nodes. It can be proven that a linear programming problem with the
same objective function as before produces the minimum number of complete
IRCFG paths that contain each unique RCFG edge.

Coverage of RCFG Paths Recall that an RCFG path is a start-to-end se-
quence of intraprocedural edges inside an RCFG. Let SR denote the set of all
such paths in some RCFG R. For each edge e ∈ R, let w(e) be the number of
times e occurs in SR. Suppose we combine (1), (2), and (3) with the following
equation

v(e) ≥ w(e)

for each edge e in each RCFG. Using the same objective function as before, it can
be proven that a linear programming solver will produce the minimum number
of complete IRCFG paths that cover all RCFG paths.

The proof of this property can be constructed by showing that (1) there
exists a set of p∗ complete IRCFG paths that covers each RCFG path, and (2)
p∗ is the smallest such number. Due to the rather technical nature of the proof,
especially for property (1), we omit a detailed discussion of the proof technique.
The intuition behind the proof is that even though the linear programming
formulation enforces only edge-related properties (since it constraints only the
values for edge frequencies), these properties are strong enough to guarantee
path-related properties and ultimately RCFG path coverage.

To construct the system, we need to compute w(e). Given an RCFG R, the
values of w(e) for all e ∈ R can be computed in time linear in the size of R. First,
a topological sort order traversal is used to compute the number p′(n) of paths
from the start node of R to any node n ∈ R. Clearly, p′(n) is equal to the sum of
p′(m) for all predecessor edges (m, n) ∈ R. Similarly, using a traversal in reverse
topological sort order, we can compute the number p′′(n) of paths from n to the
end node of R. For an edge e = (ni, nj), the value w(e) = p′(ni) × p′′(nj).

6 Experimental Study

The approach described in this paper was implemented as part of the ongoing
work on the Red tool for reverse engineering of sequence diagrams. The goal
of this tool is to provide high-quality support for reverse engineering of UML
sequence diagrams from Java code and for testing based on such diagrams. The
tool uses several static analyses, including call graph construction [23, 17], call
chain analysis [24], control flow analysis [13], and object naming analysis [14].
IRCFG construction was implemented as a straightforward extension of these



Table 1. Subject components.

Component Methods IRCFGs Component Methods IRCFGs

checked 15 3 pushback 20 11

bigdecimal 33 26 vector 38 22

gzip 41 11 boundaries 74 13

io 86 12 zip 118 38

decimal 136 30 date 136 37

calendar 152 60 collator 157 17

message 176 59 math 241 156

jflex 313 93 sql 350 22

mindbright 488 161 bytecode 625 333

existing analyses. The lower bounds described in Section 5 were computed with
the lp solve linear programming solver (groups.yahoo.com/group/lp solve).

The 18 subject components used in the study are listed in Table 1. The com-
ponents come from a variety of domains and typically represent parts of reusable
libraries. Columns labeled “Methods” show the number of non-abstract methods
in each component. For each component, we considered the set of methods that
would normally be used to access the functionality provided by that component.
For each such method we constructed an IRCFG starting at the method (i.e., the
root RCFG was for this method). Red uses a parameter k to control the length
of call chains in the reverse-engineered diagrams. Given some k, the number of
messages in call chains is restricted to be at most k—that is, the depth of the
corresponding RCFG tree is at most k, where the depth for the root is 0. We ran
all experiments with the value k = 3. RCFGs were created only for component
methods: if a component method called code external to the component, the cor-
responding RCFG node did not have a child RCFG. This restriction is part of
the design of Red, and it allows a tool user to define a “scope of interest” and to
ignore code that is outside of this scope. Columns “IRCFGs” show the number
of IRCFGs that had non-trivial flow of control: at least one RCFG node had two
or more outgoing edges. The total number of such IRCFGs for all components
was 1104.

For each IRCFG counted in columns “IRCFGs” in Table 1, we determined
the minimum number of complete IRCFG paths for the different criteria, as
described in Section 5. Table 2 shows the distribution of these numbers for the
entire set of 1104 IRCFGs. Each column shows the percentage of IRCFGs for
which the minimum number of complete IRCFG paths was in the corresponding
range. For example, the last column shows the percentage of IRCFGs that had
a minimum number of complete paths greater than 1000.

The results from Table 2 lead to some interesting observations. In a substan-
tial number of cases, the number of complete IRCFG paths is rather large. In
fact, for several IRCFGs this number is very large (e.g., more than a million).
Thus, even for the limited diagram depth of k = 3, and with the limited scope
of the diagrams to component-only code, in many cases the All-IRCFG-Paths



Table 2. Minimum number of IRCFG paths.

Criterion 1–5 6–10 11–100 101–1000 >1000

IRCFG-Paths 29.1% 10.3% 16.8% 10.2% 33.6%

RCFG-Paths 40.8% 14.9% 27.4% 2.6% 14.2%

RCFG-Branches 45.5% 19.6% 31.9% 2.9% 0.2%

Unique-Branches 49.9% 22.1% 27.4% 0.5% 0.0%

Table 3. Reduction in the number of paths.

Ratio 1 (1, 2] (2, 10] (10, 103] > 103

IRCFG−Paths
RCFG−Paths

35.1% 13.0% 12.7% 20.2% 19.0%
RCFG−Paths

RCFG−Branches
51.3% 26.2% 7.6% 13.2% 1.7%

RCFG−Branches
Unique−Branches

65.6% 23.5% 10.8% 0.2% 0.0%

criterion is clearly impossible to achieve in practice. These results confirm exper-
imentally Binder’s intuition [3] that the number of all start-to-end paths may be
too large. The use of less demanding coverage criteria is one way to address this
problem. Our results indicate that the three other criteria require less testing
effort, and therefore are useful alternatives to All-IRCFG-Paths. For example,
for All-Unique-Branches, almost all IRCFGs have a minimum number of paths
that is ≤ 100, and for half of the IRCFGs this number is ≤ 5. The results suggest
that each criterion provides a different tradeoff between testing effort and test
comprehensiveness, and therefore a tester may benefit from having tool support
for each criterion.

For each IRCFG counted in columns “IRCFGs” in Table 1, we computed the
ratios between the minimum number of paths for different pairs of criteria, as
shown in the first column of Table 3. Each of the remaining columns in that table
shows the percentage of IRCFGs for which the ratio was in the corresponding
range. For example, the last number of the first row in the table shows that for
19% out of the 1104 IRCFGs, the minimum number of complete IRCFG paths
for All-RCFG-Paths is more than 1000 times smaller than the total number of
complete IRCFG paths. The results in Table 3 are an indication of the reduction
of testing effort when replacing a stronger criterion with a weaker one. All pairs of
criteria exhibit substantial degrees of reduction, and the most significant change
is from All-IRCFG-Paths to All-RCFG-Paths.

The results of the study can be summarized as follows. First, there is strong
indication that the number of start-to-end paths in reverse-engineered sequence
diagrams is often quite large, and therefore simpler (and easier to achieve) criteria
should be available as options to testers. Second, the remaining three criteria
appear to be good candidates for such options because they provide different
tradeoffs for testing effort and comprehensiveness.



7 Related Work

As discussed in Section 2, several testing approaches are based on interaction
diagrams that are constructed during analysis or design [3, 15, 4, 16, 6, 5, 7]. Our
work applies similar techniques to diagrams that are constructed automatically
from existing code. We define a spectrum of coverage criteria that could provide
a tester with several options for the targeted test coverage.

The IRCFG used in our approach is based on two popular data structures:
interprocedural CFG [25] and calling context tree [26]. An interprocedural CFG
contains the CFGs for individual procedures, as well as edges connecting these
CFGs. Unlike an IRCFG, an interprocedural CFG contains nodes for all state-
ments in the procedures, and the edges between the individual CFGs do not
form a tree. In a calling context tree, a node represents a procedure and the
chain from the node to the tree root represents a call chain for that procedure.
Similarly, the RCFGs in our approach form a tree that represents call chains.

Binder’s all-branches approach [3] is based on a flow-graph representation of a
sequence diagram which is similar to an RCFG. The discussion of the approach
is limited to a single method, while our IRCFG combines information about
several methods and their calling relationships. Briand and Labiche [5] represent
an UML activity diagram with a directed graph in which paths correspond to
sequences of use case that are considered for testing. The sequence diagram for
a use case is represented by a regular expressions that captures the possible
sequences of messages in the diagram. In order to automate the construction of
the regular expression, the authors suggest modeling the sequence diagram with
a labeled graph in which labels correspond to messages, similarly to our use of
the RCFGs.

The traversal of the RCFG tree during the run-time analysis is similar to the
dynamic profiling analyses from [26, 24]: in both cases, the sequence of methods
on the run-time call stack is “simulated” by the analysis. The coverage of intra-
RCFG paths uses the efficient techniques for path profiling from [22], with the
appropriate modifications to ignore statements irrelevant to calls. Melski and
Reps [27] present a general approach for interprocedural paths profiling which
may be possible to adapt in order to obtain run-time coverage information for
complete IRCFG paths.

8 Conclusions and Future Work

This work presents a family of control-flow-based coverage criteria for testing
of object interactions in reverse-engineered sequence diagrams, together with a
corresponding run-time coverage analysis. The experimental study highlights the
inherent difficulty of criteria based on sequences of messages (i.e., path coverage).
The study also indicates that less demanding criteria (e.g., based on branch
coverage) may be a more practical choice for testing of object interactions. In
our future work we plan to measure the coverage for these criteria that is achieved
by real-world test suites, and to investigate the test weaknesses exposed by the
different coverage statistics.



References

1. Binder, R.: Testing object-oriented software: a survey. Journal of Software Testing,
Verification and Reliability 6 (1996) 125–252

2. Perry, D., Kaiser, G.: Adequate testing and object-oriented programming. Journal
of Object-Oriented Programming 2 (1990) 13–19

3. Binder, R.: Testing Object-Oriented Systems: Models, Patterns, and Tools.
Addison-Wesley (1999)

4. Abdurazik, A., Offutt, J.: Using UML collaboration diagrams for static check-
ing and test generation. In: International Conference on the Unified Modeling
Language. (2000) 383–395

5. Briand, L., Labiche, Y.: A UML-based approach to system testing. Journal of
Software and Systems Modeling 1 (2002)

6. Fraikin, F., Leonhardt, T.: SeDiTeC—testing based on sequence diagrams. In:
International Conference on Automated Software Engineering. (2002) 261–266

7. Wu, Y., Chen, M.H., Offutt, J.: UML-based integration testing for component-
based software. In: International Conference on COTS-Based Software Systems.
(2003)

8. Booch, G., Rumbaugh, J., Jacobson, I.: The Unified Modeling Language User
Guide. Addison-Wesley (1999)

9. Fowler, M.: UML Distilled. 3rd edn. Addison-Wesley (2003)

10. Larman, C.: Applying UML and Patterns. 2nd edn. Prentice Hall (2002)

11. Kollman, R., Gogolla, M.: Capturing dynamic program behavior with UML collab-
oration diagrams. In: European Conference on Software Maintenance and Reengi-
neering. (2001) 58–67

12. Tonella, P., Potrich, A.: Reverse engineering of the interaction diagrams from C++
code. In: IEEE International Conference on Software Maintenance. (2003) 159–168

13. Rountev, A., Volgin, O., Reddoch, M.: Control flow analysis for reverse engineer-
ing of sequence diagrams. Technical Report OSU-CISRC-3/04-TR12, Ohio State
University (2004)

14. Rountev, A., Connell, B.H.: Object naming analysis for reverse-engineered se-
quence diagrams. In: International Conference on Software Engineering. (2005) to
appear.

15. Jorgenson, P., Erickson, C.: Object-oriented integration testing. Communications
of the ACM 37 (1994) 30–38

16. Basanieri, F., Bertolino, A.: A practical approach to UML-based derivation of
integration tests. In: 4th International Quality Week Europe. (2000)

17. Milanova, A., Rountev, A., Ryder, B.G.: Parameterized object sensitivity for
points-to analysis for Java. ACM Transactions on Software Engineering and
Methodology (2004) to appear.

18. Bodik, R., Gupta, R., Soffa, M.L.: Refining data flow information using infeasible
paths. In: ACM SIGSOFT International Symposium on Foundations of Software
Engineering. (1997) 361–377

19. Rountev, A., Kagan, S., Sawin, J.: Coverage criteria for testing of object inter-
actions in sequence diagrams. Technical Report OSU-CISRC-12/04-TR68, Ohio
State University (2004)

20. Beizer, B.: Software Testing Techniques. Van Nostrand Reinhold (1990)

21. Aho, A., Sethi, R., Ullman, J.: Compilers: Principles, Techniques, and Tools.
Addison-Wesley (1986)



22. Ball, T., Larus, J.: Efficient path profiling. In: IEEE/ACM International Sympo-
sium on Microarchitecture. (1996) 46–57

23. Rountev, A., Milanova, A., Ryder, B.G.: Points-to analysis for Java based on
annotated constraints. In: Conference on Object-Oriented Programming Systems,
Languages, and Applications. (2001) 43–55

24. Rountev, A., Kagan, S., Gibas, M.: Static and dynamic analysis of call chains
in Java. In: ACM SIGSOFT International Symposium on Software Testing and
Analysis. (2004) 1–11

25. Sharir, M., Pnueli, A.: Two approaches to interprocedural data flow analysis. In
Muchnick, S., Jones, N., eds.: Program Flow Analysis: Theory and Applications.
Prentice Hall (1981) 189–234

26. Ammons, G., Ball, T., Larus, J.: Exploiting hardware performance counters with
flow and context sensitive profiling. In: ACM SIGSOFT Conference on Program-
ming Language Design and Implementation. (1997) 85–96

27. Melski, D., Reps, T.: Interprocedural path profiling. In: International Conference
on Compiler Construction. LNCS 1575 (1999) 47–62


