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Abstract

MATLAB has become the dominant high-level language
for technical computing. However, MATLAB has signifi-
cant shortcomings when used for large-scale computation-
ally intensive applications that require very high perfor-
mance and/or significant amounts of memory. In such con-
texts, it is common for MATLAB to be first used for pro-
totyping the application, followed by re-implementation in
Fortran or C, using MPI for parallel execution. In this pa-
per we describe GAMMA, a parallel global shared-address
space framework for MATLAB, built on top of the Global
Arrays library suite from Pacific Northwest National Lab-
oratory. GAMMA enables the convenient development of
large-scale computationally intensive applications directly
in MATLAB, without the need to re-code them to achieve
high performance. Preliminary experimental results on a
Pentium cluster are provided, that demonstrate the effec-
tiveness of the developed system.

1 Introduction

Computers have made dramatic strides in speed over the
last two decades, and the trend towards increased paral-
lelism continues with the advent of multi-core chips. How-
ever, unfortunately the difficulty of programming parallel
computers has not eased. As computers have increased in
achievable performance, making it feasible to accurately
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model more and more complex phenomena, the time and ef-
fort required to develop high-performance software has be-
come the bottleneck in many areas of science and engineer-
ing. This is being recognized as one of the most significant
challenges today in the effective use of high-performance
computers and is highlighted by the DARPA High Produc-
tivity Computing Systems (HPCS) program [12] and the re-
ports from the HECRTF (High-End Computing Revitaliza-
tion Task Force) [23] and SCaLeS (Science Case for Large-
scale Simulation) [36] workshops.

High-level languages like MATLAB [22] are being in-
creasingly adopted as an attractive alternative to traditional
languages (e.g., C and Fortran) for technical computing in
various domains. With over 500,000 licenses sold and an
estimated eight million users, MATLAB has established it-
self as the language of choice for technical computing in
many scientific and engineering communities. The popu-
larity of MATLAB is largely due to a programming model
that is easy to use, powerful built-in visualization facili-
ties, an integrated development environment, and a variety
of domain-specific “toolboxes” (essentially, library compo-
nents) for developing applications in various fields.

However, currently MATLAB does not meet the compu-
tational demands of many high-end compute-intensive sci-
entific applications. MATLAB does not scale well to large
problems [7]. As a result, for computationally demanding
application domains, MATLAB is often used to rapidly de-
velop a prototype implementation, followed by recoding of
the application in a language such as Fortran or C, to im-
prove performance and/or increase dataset sizes that can be
handled. The fundamental goal of the ParaM [26] project



at the Ohio Supercomputer Center (OSC) is the develop-
ment of an environment that will enable MATLAB users to
develop large-scale, high-performance applications without
having to recode their application in other languages.

There have been several efforts to address the limita-
tions of MATLAB. Some of these projects have sought to
add parallelization facilities to MATLAB, while others have
employed compilation to eliminate interpretation overhead.
However, the existing work has a number of limitations that
constrain its usefulness for real-world MATLAB applica-
tions; a detailed discussion of these approaches is presented
in Section 4.

MPI (Message Passing Interface) is the most widely used
parallel programming model today. With MPI, the same
code runs in roughly synchronous fashion across all proces-
sors of the parallel computer. It is necessary to explic-
itly decompose each step of the parallel computation to
expose sufficient parallelism to keep all processors load
balanced, and to explicitly orchestrate the interaction be-
tween the parallel processes. This is particularly challeng-
ing with multi-model applications exhibiting complex in-
teraction patterns between elements of different data struc-
tures. Parallel message-passing systems are available with
MATLAB [9], but their use has been limited due to the sig-
nificant effort required to develop and debug parallel pro-
grams created using the message-passing paradigm [18].

Global shared-address space (GAS) models are consid-
erably easier to program than message-passing, but achiev-
ing scalable performance is a difficult challenge. A num-
ber of efforts have targeted the development of scalable
shared-memory models for parallel computing [35]. How-
ever, unlike message-passing with MPI, that has been used
successfully in developing scalable parallel applications in
all domains of science and engineering, GAS program-
ming models are yet to demonstrate effectiveness in scal-
ing to hundreds of processors over a range of application
domains. One of the few notable successes with GAS mod-
els is the Global Arrays (GA) suite [24] developed at Pa-
cific Northwest National Laboratory, that efficiently imple-
ments a shared-memory abstraction using a “get-compute-
put” model for dense matrix computations on clusters and
parallel machines with physically distributed memory. For
example, NWChem [16], a widely used quantum chemistry
suite with over a million lines of source code, has been
implemented using GA. Whereas other GAS model efforts
face stiff challenges in achieving good scalability due to the
generality of their model, GA has succeeded in delivering
excellent performance and scalability by focusing on a con-
strained model for shared-space access.

In this paper we describe GAMMA, a global-shared-
address space parallel programming system for MATLAB
users. GAMMA is a component of the ParaM effort, and
provides technical computing users with the advantages of

both MATLAB and parallel computing. Although our ini-
tial focus is on MATLAB, the infrastructure is being devel-
oped to be adaptable to Octave, a popular open-source clone
of MATLAB. Some important advantages of GAMMA are
minimal changes or additions to parallelize existing sequen-
tial MATLAB code; ability to support a wide variety of
distributions; and reuse of the extensive library support in
sequential MATLAB as part of a parallel library or applica-
tion.

The long term goal of our project is to provide a new
generation of high productivity computing systems build-
ing upon already existing infrastructure in the high perfor-
mance computing domain. Our goal is to make scalable par-
allel computer systems easily usable by technical experts in
various domains. Our first step towards this goal is the pro-
vision of a global shared memory view of distributed MAT-
LAB arrays. An overview of the system and the features
of the programming model are described in Section 2. Sec-
tion 3 discusses the details of our toolbox. A discussion
of various efforts to address the performance limitations of
sequential MATLAB is presented in Section 4. Section 5
presents results on various benchmarks to demonstrate that
GAMMA achieves good scalability. Section 6 presents con-
clusions and further enhancements that are currently being
pursued. Finally, the details of the entire API is presented
in the appendix A.

2 Programming Model for GAMMA

GAMMA is a high productivity computing package de-
veloped to effectively address all four aspects of a high pro-
ductivity computing system, namely programmability, per-
formance, robustness, and portability. The GAMMA sys-
tem has been built as a MATLAB toolbox with parallel con-
structs using the Global Arrays (GA) package [24] that pro-
vides a shared memory programming model on distributed
memory parallel machines. The shared memory abstraction
for parallel programming effectively addresses the perfor-
mance limitations of sequential MATLAB, while retaining
its ease of programming and robustness.

The GAMMA programming model can be characterized
as follows.

o Global shared view of the distributed data: The
model presents each user with a global shared view
of the MATLAB arrays that are physically distrib-
uted across various processes. Figure 1 illustrates this
model for an array that is distributed across processes
Poy, ..., Ps; the required data that might span across
multiple processes can be accessed by referencing it as
a single logical block. The communication substrate
is transparent to the user and hence the user need not
be aware of the physical location of the data when the
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Figure 1. Global shared view of a physically
distributed MATLAB array in GAMMA

necessary data is accessed. This greatly simplifies the
coding of scientific applications on distributed mem-
ory parallel computers. The efficient GA layer ensures
that the performance overhead of using global shared
abstraction of distributed data is very small.

e Task parallelism and one-sided communication:
GAMMA supports task parallelism by providing op-
erations that can be independently invoked by each
process in MIMD style without any cooperation with
other processes. The one-sided communication sup-
port eliminates unnecessary processor interactions and
synchronization, resulting in easy coding.

e Get-Compute-Put computation: The model inher-
ently supports a Get-Compute-Put computation style,
as illustrated in Figure 2. The data for the computa-
tion is fetched from the distributed array independently
and asynchronously using a GA_Get routine. Each
process then performs computation on the local data
using a sequential MATLAB computation engine. The
computed data is then stored into the distributed ar-
ray, again asynchronously and independently, using a
GA_Put routine. Because of this model, the GAMMA
user can make full utilization of the extensive set of
functions provided by sequential MATLAB.

e Synchronization: The user is provided with various
explicit synchronization primitives to ensure the con-
sistency of the distributed data; examples of such prim-
itives include explicit barrier and fence.

e Data parallelism: The model provides support for
data parallel operations using collective functions that
operate on the distributed data, e.g., common matrix
operations such as transpose, sum, scale, etc.

e Management of data locality: The model provides
support to control the data distribution and also to ac-
cess the locality information and therefore gives ex-
plicit control to the user to exploit data locality.

e Data replication: GAMMA provides support to repli-
cate near-neighbor data, i.e., data residing in the
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Figure 2. GAMMA Get-Compute-Put compu-
tation model

boundary of the remote neighbor process.

e Support for MPI: Processes can communicate non-
numerical MATLAB data types using message passing
primitives.

Our approach differs from other common parallel MAT-
LAB models as follows. Star-P [11] allows only data par-
allel operations on distributed matrices; it needs to provide
native, custom support for the extensive libraries of sequen-
tial MATLAB. Unlike pMatlab [33], our model supports
one-sided communication and allows a process to access
any arbitrary block of data residing in a remote process.

GAMMA operates in two workspaces, namely the MAT-
LAB workspace and the GA workspace. When a dis-
tributed array is created in MATLAB, the memory for
storing the array elements and the metadata are allocated
and maintained in the GA memory manager in the GA
workspace, and a handle to the distributed array is re-
turned to the MATLAB workspace. For example, a reg-
ular 2D block-distributed array of size 1024 x 1024 (as
shown in Figure 1) is created in MATLAB through A =
GA_Create([1024,1024], [1024/sq, 1024/ sq]) where sq is
the square root of the number of processes over which the
data is distributed, and A is the handle that is returned to
the MATLAB space. (The second argument of GA_Create
defines the data distributions, as described later.) A logical
block of the array, for example A[192 : 704, 128 : 640],
can be obtained by any process using a call to GA_Get
as in block = GA_Get(A, [192,128], [704,640]) where
[192, 128] represents the lower indices of the logical block
and [704, 640] represents the higher indices of the block.
A process can make this call without interaction with any
other process, though the data might be local or remote or a
combination of both.

Illustration of the GAMMA Model. Figure 3 shows
the code for parallel 2D Fast Fourier Transform (FFT) us-
ing GAMMA. The code is a straightforward implementa-
tion of a standard parallel 2D FFT algorithm. The call to



[ rank nproc ] = GA_Begin();

% define column distribution
dims=[N N ];distr=[ N N/nproc ];
A = GA _Create(dims, distr);

ATmp = GA_Create(dims, distr);
[loA hiA ] = GA_Distribution(A, rank);
GA_Fill(A, 1);

% perform fft on each column of the initial array
tmp = GA_Get(A, 10A, hiA);
tmp = fft(tmp);

GA_Put(A, loA, hiA, tmp);
GA_Sync();
GA _Transpose(A, ATmp);
GA_Sync();

% perform fft on each column of the transposed array
[ 1oATmp hiATmp ] = GA Distribution(ATmp, rank);
tmp = GA_Get(ATmp, loATmp, hiATmp);
tmp = fft(tmp);

GA _Put(ATmp, loATmp, hiATmp, tmp);
GA_Sync();

GA _Transpose(ATmp, A);

GA_Sync();

GA_End();

Figure 3. MATLAB code using GAMMA to de-
velop parallel 2D Fast Fourier Transform

GA_Begin initializes the underlying layers and returns the
rank of the process and the total number of processes. The
use of distr in the call to GA_Create defines the data distri-
bution: each block is of size N x (N/nproc), and process
P; is assigned the block with logical indices for the upper
left corner (1,1 + 4 x N/nproc) and lower right corner
(N, (i + 1) x N/nproc). The example assumes that the
global array A is initialized with values of 1, using GA_Fill.

Figure 3 illustrates the ease of programming using
GAMMA. Since the user has a global shared view of the
distributed data, the code has no complex communication
involving data location information. Each process gets the
block of data to operate on locally through a one-sided
GA_Get routine (the values of loA and hiA are 2-element
vectors). A process computes its local result using the se-
quential built-in fft function in MATLAB, and puts back the
computed data into the distributed array using a one-sided
GA_Put call. The example also demonstrates how the pro-
gramming model makes use of the functions provided by
sequential MATLAB. Furthermore, the collective operation
GA_Transpose does not involve unnecessary data move-
ment between the MATLAB and GA workspaces.

3 Toolbox Details

The architecture of GAMMA is shown in Figure 4. The
system has been implemented as a MATLAB toolbox using
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Figure 4. Architecture of GAMMA

the Global Arrays [24] and MVAPICH [20] libraries. The
GA library uses Aggregate Remote Memory Copy Interface
(ARMCI) [17] in its communication substrate. The mem-
ory in the GA layer is dynamically allocated and managed
by the Memory Allocator (MA) [32] library. Any tempo-
rary buffer space used by a GA operation is allocated and
managed in the MA stack, whereas the memory for the dis-
tributed GA data is allocated and managed in the MA heap.

The functions of the toolbox can be broadly classified
into the following categories:

e Application launch: An application developed using
the GAMMA toolbox is launched using a launcher that
uses either mpirun or mpiexec. The launch mecha-
nism starts MATLAB on each of the processors and
sets the environment required for initializing the un-
derlying MPI and ARMCI communication layers.

o Initialization and termination: The toolbox is initial-
ized and terminated using GA_Begin and GA_End,
respectively. These routines initialize/terminate the en-
vironment for MPI, ARMCI, MA, and GA libraries.
The size of the heap and stack memory used in the GA
space can be specified in a call to GA_Begin.

e Array creation and destruction: A distributed MAT-
LAB array is created using the GA_Create routines.
The GA_Destroy routine frees the memory used for
the distributed array and its meta data. A detailed de-
scription of these routines is presented in appendix A.

e One-sided data transfer operations: The toolbox
provides one-sided communication routines such as
GA_Get, GA_Put, etc. for fetching data from and
storing data into the distributed array.

e Synchronization operations: Due to the asynchro-
nous nature of the data transfer routines, the opera-
tions might return even before the transfer is complete.
GAMMA supports synchronization primitives to en-
sure the consistency of the distributed data. In the FFT
example from Figure 3, GA_Sync is used to ensure the
completion of the pending data transfers.

o Utility routines: The user is provided with routines to
inquire about the location and the distribution of the
data, as well as routines to fetch and store local data.



e Collective matrix operations: The toolbox provides
numerous collective operations to perform commonly
used matrix operations (e.g., transpose, sum, scale,
etc. appendix A). These operations are optimized be-
cause they are implemented using the lower-level GA
libraries and do not involve unnecessary data move-
ment between MATLAB and GA. The code in Fig-
ure 3 uses GA_Transpose to perform a transpose of
the matrix. A transpose can also be computed using
GA_Get and GA_Put calls; however, they incur the
additional overhead of data movement between MAT-
LAB and GA.

e Distributions: The toolbox supports regular and irreg-
ular block distributions of distributed arrays.

e Global indexing: Logical blocks of physically distrib-
uted arrays are accessed using global indices. The
global index translation service is implemented effi-
ciently using the GA libraries.

e Processor groups: The toolbox provides a facility to
divide the domain into subsets of processors that can
act independently of other subsets. This functionality
allows improved load balance and offers opportunities
for supporting environments with hardware faults.

The implementation of the toolbox presents several chal-
lenges. First, MATLAB is an untyped language. Hence, the
toolbox tracks dynamically the type of the data on which the
operations are being performed, in order to make the appro-
priate GA calls. Further, in MATLAB, a user is not exposed
to any explicit memory management routines. Therefore,
the user space (i.e., MATLAB space) is managed automati-
cally by the toolbox. GAMMA also handles transfer of data
between the MATLAB workspace and the GA workspace.
In addition, during the data transfer from the GA workspace
to the MATLAB workspace, the toolbox dynamically cre-
ates a data block in the MATLAB workspace inferring the
type, size, and dimensions of the block from the Get re-
quest. Furthermore, the toolbox handles the data layout in-
compatibility issues between MATLAB and GA and pre-
serves the MATLAB semantics for the user. The toolbox
also supports out-of-order (arbitrary) array indexing and
thereby preserves an important feature of MATLAB. For
example, consider a vector A[1:100]. A user can index the
vector in an arbitrary fashion as A([54 87 15]).

4 Related Work

The popularity of MATLAB has motivated various re-
search projects to address its performance limitations.
These projects vary widely in their approaches and func-
tionalities. Broadly, these efforts can be classified into the
five categories described below [10].

4.1 Compilation Approach

Many projects such as Otter [29], RTExpress [31], FAL-
CON [30], CONLAB [14], MATCH [2], Menhir [8], and
Telescoping Languages [7] use a compilation-based ap-
proach to address the performance limitations of sequen-
tial MATLAB by eliminating the overhead of interpretation.
Most of these efforts have sought to perform a source-to-
source transformation of MATLAB into C, C++, or For-
tran, and then use the compilers for these languages. Some
projects have also attempted to generate parallel versions of
the transformed code using automatic parallelization com-
pilers. With the exception of the continuing work at Rice
University, none of the other projects is currently active.

4.2 Embarrassingly Parallel Approach

Research projects such as PLab [19] and Parmatlab [21]
provide support for embarrassingly parallel applications in
MATLAB. The projects built on this approach launch mul-
tiple MATLAB processes on different nodes. Each process
works only on its local data and sends the result to the parent
process. However, this approach severely limits the type of
applications that can be parallelized. None of these projects
are currently active.

4.3 Backend Support for Parallelization

Projects such as DLAB [25], Netsolve [6], and
Star-P [11] attempt to create a parallel MATLAB environ-
ment by providing backend support. This approach uses
MATLAB as a front end and the computation is done using
a backend parallel computation engine. The backend engine
uses high-performance libraries such as ScaLAPACK [3]
and FFTW [15]. Star-P is a now a commercial product,
currently distributed by SGI.

The backend approach does not require the user to have
any specialized knowledge of parallel computing: the high-
performance benefits are achieved while retaining all MAT-
LAB features. Thus, it is extremely attractive from the
user’s point of view. Star-P currently has interfaced with a
number of pre-existing parallel numerical libraries such as
ScaLAPACK, ARPack etc. However, the development of
new functionality for Star-P takes considerable effort. Al-
though Star-P provides a software development kit for the
user to add overloaded parallel extensions of needed MAT-
LAB functions, it requires software development with low-
level communication primitives, using traditional languages
such as C and Fortran. Indeed, GAMMA could be used to
develop distributed parallel implementations of MATLAB
functions that could be used with Star-P.



4.4 Message Passing Support

Projects such as MultiMATLAB [34], MPITB [1], and
MatlabMPI [18] add message passing primitives to MAT-
LAB. With this approach, multiple MATLAB sessions are
launched on different nodes. These sessions communicate
with each other using a message passing paradigm. With
this approach, users have maximum flexibility to build their
parallel applications using a basic set of communication
primitives. MPI functionality is added to MATLAB using a
file-based communication mechanism in MatlabMPI, while
in MPITB it is achieved using the LAM/MPI communica-
tion library. However, the low-level abstractions of message
passing cause a significant increase in the developmental
effort for implementing high-performance computationally
intensive MATLAB applications.

4.5 Parallel Global Address Space Model

pMatlab [33] provides a parallel global address space
programming model for MATLAB users. The system de-
fines a set of data structures for distributed arrays; a user
can write an explicitly parallel application with multiple
processes, that can operate on individual elements from
these shared arrays. In addition, pMatlab defines a limited
number of parallel functions that operate on entire distrib-
uted arrays (e.g., addition and multiplication). By perform-
ing message passing implicitly using MatlabMPI, pMatlab
attempts to abstract away the communication details from
the MATLAB programmer. However, access of an individ-
ual element of the distributed array (using global address
space indices), requires interaction of all processes. Unlike
GAMMA, pMatlab does not permit concurrent asynchro-
nous access by the processes to arbitrary logical blocks dis-
tributed across multiple processes. Furthermore, the index
translation mechanism in pMATLAB is inefficient because
it is implemented in MATLAB.

5 Experimental Results

In this section, we present experimental results for four
parallel algorithms used to evaluate GAMMA: NAS CG
benchmark, two-dimensional FFT, two-dimensional convo-
lution, and Jacobi iterative solver. We present data on the
achieved performance as well as indicators of the ease of
programming.

5.1 Experimental Test bed

The experiments were conducted on the Ohio Super-
computer Center’s Intel Pentium 4 cluster constructed from
commodity PC components running the Linux operating
system. The hardware and software configuration of the
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cluster is as follows: two 2.4 GHz Intel P4 Xeon proces-
sors on each node; 4GB RAM on each node; InfiniBand
interconnection network; Red Hat Linux with kernel 2.6.6;
MATLAB Version 7.0.1.24704 (R14) Service Pack 1. The
parallel programs built using GAMMA were launched us-
ing mpiexec [28]. All experiments were conducted such
that no two processors were on the same node in the cluster,
ensuring that the parallel processing environment is fully
distributed.

5.2 Performance Analysis

We compared the performance of the parallel algorithms
implemented using our toolbox with their sequential coun-
terparts written in MATLAB Version 7.0 (with the just-in-
time compilation feature enabled). In the sequential version
of the algorithms, the highly efficient built-in MATLAB
functions have been used wherever possible. The parallel
algorithms implemented using GAMMA show good scala-
bility as the problem size increases.
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e NAS benchmark CG: The NAS Conjugate Gradient
(CG) benchmark is a scientific kernel that has been
used to compare the characteristics of different pro-
gramming models. This benchmark uses an inverse
power method to find the largest eigenvalue of a ran-
dom sparse matrix. In the parallel version imple-
mented using GAMMA, each process was assigned a
block of the random sparse matrix distributed column
wise. Figure 5 shows the speedup obtained for class
A and class B. For class A, which has smaller prob-
lem size, the parallelization overhead dominates the
execution time and therefore the speedup curve flat-
tens. However, Class B, with much larger problem
size, scales well and attains good speedup.

e Two-dimensional FFT (FFT2): FFT2 is an algorithm
to compute the two-dimensional fast Fourier trans-
form. FFT is widely used in a variety of applications
ranging from digital signal processing to solving par-
tial differential equations. FFT2 is available as a built-
in library function in MATLAB, implemented using
the FFTW algorithm [15]. Figure 6 shows that the par-
allel version attains good scalability as the size of the
matrix increases. For matrix sizes N < 256, due to the
parallelization overhead, the speedup does not increase
proportionately as the number of processes increases.

e Two-dimensional convolution: Convolution is an op-
eration that is central to many image processing and
signal processing applications. It is a linear filtering
technique in which the input image (matrix) is scanned
by a filter (matrix of weights) or the convolution ker-
nel. The value at each output pixel is the weighted
sum of the neighboring input pixels. Convolution is
a built-in library function in MATLAB. In the paral-
lel version of the convolution algorithm, implemented
using GAMMA, the input and output images (matri-
ces) were distributed in a two dimensional block dis-

tributed fashion and the filter (kernel) was replicated
on all processes. Figure 7 shows that the parallel ver-
sion achieves significant scalability and as the size of
the input matrix increases, the speedup obtained also
increases.

e Jacobi iterative solver: The Jacobi iterative solver
uses the Jacobi method to solve a linear system of
equations arising in the solution of a discretized partial
differential equation. All data were distributed using
a one-dimensional block distribution. Figure 8 shows
that the parallel version implemented using GAMMA
achieves an almost linear speedup.

We compared our performance results with the most
popularly used parallel MATLAB packages for distributed
memory systems: MatlabMPI and pMatlab. MatlabMPI
suggests various optimizations [13] (tuning) of the under-
lying system installation that can improve the performance
of applications built using it. However, a user can enable
only those optimizations that are permitted in the exper-
imental environment. We have tuned the underlying sys-
tem at OSC within the extent of privileges permitted to an
OSC user. Applications written using GAMMA show good
performance when compared to those written using Mat-
labMPI and pMatlab. For example, parallel 2D FFT of a
matrix of size (2048 x 2048) implemented using GAMMA
takes 0.776649, 0.407208, 0.213695, and 0.105113 seconds
on 2, 4, 8, and 16 processes, respectively. However, the
same problem takes 59.537, 59.679, 59.791, and 59.976
seconds in MatlabMPI and 60.125, 60.347, 60.634, and
60.982 seconds in pMatlab on 2, 4, 8, and 16 processes,
respectively. A constant execution time is observed with
MatlabMPI and pMatlab as they use a file-based communi-
cation mechanism and the performance is severely limited
by the NFS (Network File System) latency.

5.3 Programmability

Even though there does not exist an ideal metric for eval-
uating the programmability of a parallel language/toolbox,
the number of source lines of code (SLOC) provides some
indication on the ease of programming [4]. Hence, we eval-
uated the ease of programming with GAMMA using SLOC
measurements.

Table 9 compares the source lines of code required to
implement the parallel version of the four benchmarks us-
ing GAMMA with the sequential version implemented in
MATLAB. It can be observed that the parallel version can
be implemented with only a small increase in the lines of
code. Further, compared to the standard MPI-based F77
implementation of NAS CG benchmark, the SLOC [5] is
reduced approximately by a factor of 11.
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Application MATLAB | GAMMA
2D FFT 1 (built-in) 19
2D Convolution | 1 (built-in) 26
Jacobi Solver 35 56
NAS CG 59 98

Figure 9. Lines of source code for the bench-
marks

5.4 Memory scalability

The use of MATLAB for large-scale computationally
intensive applications is limited by the problem sizes
that it can handle on a single processor. In addition to
the enhanced performance, another significant benefit of
GAMMA to MATLAB users is the ability to handle larger
problem sizes, with data distributed across multiple proces-
sors. For example, using sequential MATLAB, the largest
matrix size that the 2D convolution routine of MATLAB
(conv2) could handle was 9100 x 9100 using a filter of
size 32 x 32. However, using GAMMA, we were able to
perform two dimensional convolution on a matrix of size
2000020000 using the same filter. Similarly, for the FFT2,
8900 x 8900 was the largest case sequential MATLAB was
able to run, while the GAMMA version on 8 processors was
able to run a 17000 x 17000 case.

6 Conclusions and Future Work

This paper has described GAMMA, a parallel MATLAB
environment providing a global shared view of arrays that
are physically distributed on clusters, and a get-compute-
put model of parallel computation. Several examples were
provided, illustrating the ease of programming coupled with

high efficiency. Use of the get-compute-put model also fa-
cilitates effective reuse of existing sequential MATLAB li-
braries as part of a parallel application. An additional bene-
fit of using the GAMMA system is the ability to run larger
problems than sequential MATLAB.

The GAMMA toolbox is currently being used by the
staff and users at the Ohio Supercomputer Center and will
soon be made available for public release. GAMMA is part
of a larger effort to develop a high-productivity environment
called ParaM [26] - a Parallel MATLAB project that aims at
combining compilation technology along with paralleliza-
tion, to enable very high performance. Efforts are currently
underway to develop a number of parallel MATLAB appli-
cations and numerical libraries using GAMMA.
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A API
See Also

A.1 Initialization GA_Begin, GA _Create

o GA Begin
GA _Create
Syntax:
GA_Begin () Syntax:
[handle] = GA_Create (dims)

GA_Begin (heap)
GA_Begin (heap, stack)

Description:

Initializes the GA environment. This includes initial-
izing the MPI layer, the memory allocator (MA), and
the Global Arrays space. The user may specify the
size of heap and stack space required for the entire
program. The default value for heap space is 512MB
and stack space is 64MB. If the application requires
larger amount of memory to be managed dynamically
in the global space, heap and stack values can be
mentioned accordingly.

Note:
This is a collective operation.

Example:

heap = 64%x1024%x1024;
stack = 8x1024%1024;
GA_Begin (heap, stack) ;
GA_End () ;

See Also
GA_End

GA_End

Syntax:
GA_End ()
GA_End([ArrayHandlel, ... ])

Description:

Terminates the GA environment and destroys the
Global Arrays that were created and frees all allocated
memory.

Note:
This is a collective operation.

Example:

GA_Begin () ;

A = GA Create([2 21);
B = GACreate([4 4]);
GA_End (A, B) ;

[handle] = GA_Create (dims, chunk)

dims - vector of 'n’ elements where 'n’ is the number
of dimensions of the global array to be created and the
ith element in the vector denotes the size or extent of
the ith dimension of the global array

chunk - vector of 'n’ elements where ’n’ is the number
of dimensions of the global array to be created and
the ith element in the vector denotes the minimum
size that the ith dimension of the global array must be
divided into among the processes

Description:

Creates a Global Array with distribution as specified
by dims and chunk. Specifying chunk[i] < 1 will
cause that dimension to be distributed evenly. If chunk
is not specified, the entire array is distributed evenly,
i.e. the elements are distributed such that each process
gets equal number of elements along each dimension.

Note:

This is a collective operation.

The handle is a numeric handle. It has to be used only
with GAMMA functions. Using it with non-GAMMA
functions might give undesired results.

Example:

GA_Begin () ;

dims = [8 8]; chunk = [2 8];
A = GA_Create(dims, chunk);
GA_End (A) ;

See Also
GA_Create_ghosts, GA Duplicate

GA _Create_irreg

Syntax:

[handle] = GA_Create_irreg(dims,
block, map)

dims - vector of 'n’ elements where ’n’ is the number
of dimensions of the global array to be created and the
ith element in the vector denotes the size or extent of
the ith dimension of the global array

block - vector of 'n’ elements where 'n’ is the number



of dimensions of the global array to be created and
the ith element in the vector denotes the number of
blocks that the ith dimension of the global array must
be divided into among the processes

map - vector indicating the starting index of each block

Description:

Creates an array as per the user-specified distribution
information. The distribution is specified as a Carte-
sian product of distributions for each dimension.

Note:
This is a collective operation.

Example:

GA_Begin () ;

dims = [8 10]; block = [3 2];

map = [1,3,7,1,6];

A = GA Create_irreg(dims, block,

map) ;

GA_End (A) ;

The above example demonstrates the distribution of a
2-dimensional array 8x10 on 6 (or more) processes.
The distribution is nonuniform because, P1 and P4 get
20 elements each while PO,P2,P3, and P5 get only 10
elements each.

See Also
GA Duplicate, GA Destroy, GA Create

GA Destroy

Syntax:
GA_Destroy (ArrayHandle)

Description:
Destroys the Global Array ArrayHandle and frees

the allocated memory.

Note:
This is a collective operation.

Example:
A = GA Create([2 2]1);
GA_Destroy (A);

See Also
GA_Create

GA Duplicate

Syntax:

[new_handle] = GA Duplicate (ArrayHandle)

Description:
Creates a new array by applying all the properties
of another existing array. It returns a new array handle.

Note:

This is a collective operation. Note that only the
array properties are reflected and not the values of the
elements.

Example:

GA_Begin () ;

A = GACreate([2 2]1);
B = GA Duplicate(A);
GA_End (A, B) ;

See Also
GA_Create, GA_Copy

GA_Copy

Syntax:
GA_Copy (From_ArrayHandle,
To_ArrayHandle)

Description:

Copies elements from source array
(From_ArrayHandle) to destination array
(To_ArrayHandle).

Note:

This is a collective operation. Note that the arrays
must be of the same shape and identically aligned.

Example:

GA_Begin () ;

A = GA Create([2 2]);

B = GA Duplicate(A);
GAFill(A,2);

$To perform the operation B = A;
GA_Copy (A, B) ;

GA_End (A, B) ;

See Also
GA_Get, GA_Put, GA_Copy-patch

GA _Copy_patch

Syntax:

GA_Copy-patch (From_ArrayHandle,
From_lo, From_hi, To_ArrayHandle,
To_lo, To_hi)



Description:
Copies a patch of source array (From_ArrayHandle)
to a patch of destination array (To_ArrayHandle).

Note:

This is a collective operation. Note that the array
patches must be of the same shape and identically
aligned.

Example:

GA_Begin () ;

A = GA Create([8 81);

B GA Duplicate (A);

GAFill(A,2);

GA_Copy (A, [2 41, [4 61, B, [3 51,
[5 71);

GA_End (A, B);

See Also
GA_Get, GA_Put, GA_Copy

A.2 One-Sided

o GA _Get

Syntax:
[local buffer] =
GA_Get (ArrayHandle, lo, hi)

Description:
Copies data asynchronously into the local array buffer
of the calling process from a section of global array.

Note:

Task parallelism can be exploited using GA_Get and
GA _Put functions. Perform GA_Sync before GA_Get
to avoid any kind of inconsistencies. Inconsistencies

might result due to load imbalance if GA_Sync is not
used before GA_Get.

Example:

GA_Begin () ;

A = GA Create([8 8], [2 8]);
GAFill(A,5);

% For transferring data from
[2:5,4:7] section of 2-dimensional
8x8 global array into local buffer.
buf = GAGet (A, [2 4], [5 71);
GA_End (A) ;

See Also

GA_Put, GA_Get_local, GA_Sync

GA_Put

Syntax:
GA_Put (ArrayHandle, lo, hi, buf)

Description:

Copies data asynchronously from the local array
buffer of the calling process to a section of global
array.

Note:

Task parallelism can be exploited using GA_Get and
GA_Put functions. Perform GA_Sync after GA_Put
to avoid any kind of inconsistencies. Inconsistencies
might result due to load imbalance if GA_Sync is not
used after GA_Put.

Example:

GA_Begin () ;

A = GA_Create([8 8], [2 8]);
buf = ones (4,2);

% For transferring data from the
local buffer into [2:5,4:7] section
of 2-dimensional 8x8 global array.
GAPut (A, [2 4], [5 71, buf);
GA_End (A) ;

See Also
GA_Get, GA_Put_local, GAFill, GA_Sync

GA _Get_ local

Syntax:

[local buffer] =
GA_Get_local (ArrayHandle)

Description:
Copies data from the portion of global array owned by
the calling process to the local array buffer.

Example:

GA_Begin () ;

A = GACreate(2,[8 81, [2 81);
GAFill(A,5);

buf = GA_Get_local (A);

GA_End (A7) ;

See Also
GA_Put_local, GA_Get, GA_Sync

o GA_Put_local



Syntax:
GA_Put_local (ArrayHandle, buf)

Description:
Copies data from the local array buffer to the portion
of global array owned by the calling process.

Example:

GA_Begin () ;

A = GACreate([8 8], [2 8]);
buf = ones(4,2);
GA_Put_local (A, buf);
GA_End (A) ;

See Also
GA_Get_local, GA_Put, GA_Sync

GA_Acc

Syntax:
GA_Acc (ArrayHandle, lo, hi, buf,
alpha)

Description:

Performs the below operation: (Let A be the Global

Array.)

A(lo[1l]:hi[l], lo[2]:hi[2]) =

A(lo[1l]:hi[l], lof[2]:hi[2])
[1]-1o[1]1+1,

+ alphaxbuf (1:hi
1:hi[2]-10o[2]+1)
Note:

This is an atomic operation.

Example:

GA_Begin () ;

A = GACreate([8 8], [2 8]);

buf = ones(4,2);

alpha = 5; GA_Acc(A, [2 4], [5 71,
buf, alpha);

GA_End (A) ;

A.3 Synchronization

e GA Sync

Syntax:
GA_Sync ()

Description:
Synchronizes processes (a barrier) and ensures that all

GA operations are complete.

Note:
This is a collective operation.

Example:
GA_Begin () ;
GA_Sync () ;
GA_End () ;

See Also
GA_Fence

GA Init_fence

Syntax:
GA_Init_fence ()

Description:
Initializes tracing of completion status of data transfer
operations.

Note:
This is a local operation. GA _Init_fence and GA_Fence
must be used in pairs.

See Also
GA_Fence

GA _Fence

Syntax:
GA_Fence ()

Description:

Blocks the calling process until all the data trans-
fers corresponding to GA operations called after
GA _Init_fence complete.

Note:
This is a local operation. GA _Init_fence and GA_Fence
must be used in pairs.

Example:

GA_Begin () ;

A = GA Create([8 8], [2 8]);

buf = ones(4,2);

GA_Init_fence(); GA_Put (A, [2 4], [5
71, buf);

GA_Fence(); GA_End(A);

See Also



GA_Init_fence

A.4 Collectives

e GA_Fill

Syntax:
GA_Fill (ArrayHandle, value)

Description:
Assign a single value to all the elements in the array.

Example:

GA_Begin () ;

A = GACreate([8 8], [2 8]);
GAFill (A,5);

GA_End (A7) ;

See Also
GA_Fill_patch

¢ GA Fill_patch

Syntax:
GA_Fill patch (ArrayHandle, lo, hi,
value)

Description:
Assign a single value to all the elements in the global
array patch.

Example:

GA_Begin () ;

A = GA Create([8 8], [2 8]);
GA_Fill_patch(A, [3 5], [6 81, 5);
GA_End (A7) ;

See Also
GAFill

o GA_Zero

Syntax:
GA_Zero (ArrayHandle)

Description:
Sets the value of all the elements in the array to zero.

Example:
GA_Begin () ;
A = GA Create([8 8], [2 81]);

GA_Zero (A);
GA_End (A) ;

See Also
GA_Zero_patch

GA Zero_patch

Syntax:
GA_Zero_patch (ArrayHandle, lo, hi)

Description:
Sets the value of all the elements in the global array
patch to zero.

Example:

GA_Begin () ;

A = GACreate([8 8], [2 8]);
GA_Zero_patch (A, [3 5], [6 8]1);
GA_End (A7) ;

See Also
GA_Zero

GA _Scale

Syntax:
GA_Scale (ArrayHandle, value)

Description:
Scales an array by a constant.

Example:

GA_Begin () ;

A = GA Create([8 8], [2 8]);
GAFill(A,5);

GA_Scale(A,2);

GA_End (A7) ;

See Also
GA_Add_scale

GA_Add_scale

Syntax:

GA_Add_scale (scalarl,
SrcArrayHandlel, scalar2,
SrcArrayHandle?2, DestnArrayHandle)

Description:
Scales the source arrays, SrcArrayHandlel



and SrcArrayHandle2, by the corresponding
scalar values, scalarl and scalar2, and then
performs an element-wise addition of the scaled
arrays and stores the result in the destination array,
DestnArrayHandle.

Example:
GA_Begin () ;
A = GA Create([8 8], [2 8]);
B GA_Duplicate (A);

C = GA Duplicate(d);
GA_Fill(A,5);

GA_Fill (B, 6);

GA_Add_scale (

GA_End (A, B,C)

21A13IB’C);

4

See Also
GA_Scale

GA_Add

Syntax:
GA_Add (SrcArrayHandlel,
SrcArrayHandleZ2, DestnArrayHandle)

Description:

Performs an element-wise addition of the source
arrays, SrcArrayHandlel and SrcArrayHandle2,
and stores the result in the destination array,
DestnArrayHandle.

Example:

GA_Begin () ;

A = GACreate([8 81, [2 8]1);
B = GA_Duplicate (d);

C GA_Duplicate (A);

GA_Add (A,B,C);
GA_End (A, B,C);

See Also
GA_Minus

GA _Minus

Syntax:
GA Minus (SrcArrayHandlel,
SrcArrayHandle2, DestnArrayHandle)

Description:
Performs an element-wise subtraction of the source
arrays, SrcArrayHandlel and SrcArrayHandle2,

and stores the result in the destination array,
DestnArrayHandle.

Example:

GA_Begin () ;

A = GACreate([8 81, [2 8]);
B GA_Duplicate (A);

C = GADuplicate(A);

GA Minus (A,B,C);
GA_End (A, B,C);

See Also
GA_Add

GA_Add_patch

Syntax:

GA_Add_patch (SrcArrayHandlel, 1lol,
hil, SrcArrayHandle2, lo2, hiZ2,
DestnArrayHandle, lo, hi)

Description:

Performs an element-wise addition of source array
patches and stores the result in a patch of destination
array.

Example:

GA_Begin () ;

A = GA_Create([8 81);
B GA Duplicate (A);
C = GADuplicate(A);

GA_Add_patch(a, [2 41, [4 6], B, I3
51, [5 71, ¢, [3 5], [5 71);
GA_End (A, B,C);

See Also

GA_Subtract_patch

GA _Subtract_patch

Syntax:

GA_Subtract_patch (SrcArrayHandlel,
lol, hil, SrcArrayHandle2, lo2, hi2,
DestnArrayHandle, lo, hi)

Description:

Performs an element-wise subtraction of source array
patches and stores the result in a patch of destination
array.

Example:



GA_Begin () ;

A = GA_Create([8 81);
B = GA Duplicate(d);
C GA Duplicate (A);

GA_Subtract_patch (A, [2 4],
B, [3 5], [5 7], ¢, [3 5],
GA_End (A,B,C);

See Also
GA_Add_patch

GA _Symmetrize

Syntax:
GA_Symmetrize (ArrayHandle)

Description:
Symmetrizes a matrix.

Example:
GA_Begin () ;
A = GA Create([8 8], [2 8]);

GA_Symmetrize (A);
GA_End (A) ;

See Also
GA_Transpose

GA _Transpose

Syntax:
GA_Transpose (SrcArrayHandle,
DestArrayHandle)

Description:
Transposes a matrix.

Example:

GA_Begin () ;

A = GACreate([8 8], [2 8]);
B = GA Duplicate (d);

GA_Transpose (A, B);
GA_End (A, B) ;

See Also
GA_Symmetrize

e GAOP

Syntax:
GA_OP (vect, op)

Description:

Performs a reduction of the elements of the vector,
vect, across all nodes using the commutative operator,
op. The result is broadcast to all nodes. Supported
operations include ’+’, ’x’, 'max’, 'min’, ’absmax’,
absmin’.

Example:

GA_Begin () ;

A = GACreate([8 8], [2 8]);
x = GA_Get_local (A);

GAOP (x,"+");
GA_End (A) ;

A.5 ElementWise

o GA_Abs

Syntax:
GA_Abs (ArrayHandle)

Description:
Takes the in-place absolute value of the entire Global
Array.

Note:
This is a collective operation.

Example:

GA_Begin();

A = GA Create(2, [8 8], [2 81);
GA_Fill (A,5);

GA_Abs (A7) ;

GA_End (A) ;

See Also
GA_Abs_patch

GA_Abs_patch

Syntax:
GA_Abs_patch (ArrayHandle, lo, hi)

Description:
Takes the in-place absolute value of the Global Array
patch specified.



Note:
This is a collective operation.

Example:

GA_Begin () ;

A = GA_Create(2, [8 8], [2 8]1);
GAFill(A,5);

GA_Abs_patch(a, [1 2], [2 3]);
GA_End (A) ;

See Also
GA_Abs

GA_Add_constant

Syntax:
GA_Add_constant (ArrayHandle, value)

Description:
Adds the scalar, value,to each element of the Global
Array.

Note:
This is a collective operation.

Example:

GA_Begin () ;

A = GA_Create(2, [8 8], [2 8]1);
GAFill(A,5);

GA_Add_constant (A, 3);
GA_End (A) ;

See Also
GA_Add_constant_patch, GA_Add

GA_Add _constant_patch

Syntax:
GA_Add_constant_patch (ArrayHandle,
lo, hi, wvalue)

Description:
Adds the scalar, value,to each element of the Global
Array patch.

Note:
This is a collective operation.

Example:

GA_Begin () ;

A = GA_Create(2, [8 8], [2 81);
GAFill(A,5);

GA_Add_constant_patch (A, [1 1], [2
21, 3);
GA_End () ;

See Also
GA_Add_constant, GA_Add

GA _Elem_multiply

Syntax:
GA_Elemmultiply (ArrayHandlel,
ArrayHandle2?2, ArrayHandleResult)

Description:
Computes the element-wise product of two arrays.

Note:
This is a collective operation.
The arrays must be of the same shape.

Example:

GA_Begin () ;

A = GACreate(2, [8 8], [2 81);
B = GACreate(2, [8 8], [2 81);
C GA_Create (2, [8 81, [2 8]);
GAFill(A,5);

GAFill(B,5);
GA_Elemmultiply (A, B, C);
GA_End (A, B, C);

See Also
GAElemmultiply_patch

GA _Elem_multiply_patch

Syntax:

GA_Elemmultiply_patch (ArrayHandlel,
lol[], hil[], ArrayHandle2,

lo2[], hi2[], ArrayHandleResult,
resultLo[], resultHil[])

Description:
Computes the element-wise product of two array
patches.

Note:
This is a collective operation.
The array patches must be of the same shape.

Example:
GA_Begin () ;
A = GA_Create(2, [8 8], [2 8]);



B = GACreate(2, [8 8], [2 8]1);

C GA_Create (2, [8 81, [2 8]1);
GA_Fill(A,5);

GAFill(B,5);
GAElemmultiply_patch(A, [1 11, [2
21, B, [1 11, [2 21, C, [1 11, I[2
21);

GA_End (A, B, C);

See Also
GAElemmultiply

GA _Elem_divide

Syntax:
GA_Elem_divide (ArrayHandlel,
ArrayHandle2?2, ArrayHandleResult)

Description:
Computes the element-wise quotient of two arrays.

Note:

This is a collective operation.

The arrays must be of the same shape.

The result (quotient) array may replace one of the
input (dividend or divisor) arrays.

If any element of the divisor array is zero,
the corresponding element of the quotient ar-
ray will be set to the smallest negative integer,
GANEGATIVE_INFINITY .

Example:

GA_Begin () ;

A = GA Create(2, [8 8], [2 81);
B = GA_Create (2, [8 8], [2 8]);
C GA Create(2, [8 8], [2 8]);
GA_Fill(A,5);

GA_Fill(B,5);

GAElem_divide (A, B, C);

GA_End (A, B, C);

See Also
GA_Elem_divide_patch

GA _Elem_divide_patch

Syntax:
GA_Elem divide_patch (ArrayHandlel,
ArrayHandle2, ArrayHandleResult)

Description:
Computes the element-wise quotient of two array

patches.

Note:

This is a collective operation.

The arrays must be of the same shape.

The result (quotient) array may replace one of the
input (dividend or divisor) arrays.

If any element of the divisor array is zero,
the corresponding element of the quotient ar-
ray will be set to the smallest negative integer,
GA_NEGATIVE_INFINITY .

Example:

GA_Begin () ;

A = GA Create (2, [8 8], [2 81);

B = GA_Create (2, [8 8], [2 81);

C = GA Create(2, [8 8], [2 81);
GAFill(A,5);

GAFill(B,5);

GA_Elem_divide_patch(a, [1 1], [2 2],
B, [1 11, [2 2], ¢, [1 11, [2 2]1);
GA_End (A, B, C);

See Also
GA_Elem_divide

GA _Elem_maximum

Syntax: GA Elemmaximum(ArrayHandlel,
ArrayHandle2, ArrayHandleResult)

Description:
Computes the element-wise maximum of two arrays.

Note:
This is a collective operation.
The arrays must be of the same shape.

Example:

GA_Begin () ;

A = GA_Create(2, [8 8], [2 81);
B = GA_Create(2, [8 8], [2 8]);
C = GACreate (2, [8 8], [2 81);
GAFill(A,2);

GAFill(B,5);

GA_Elem_maximum (A, B, C);
GA_End (A, B, C);

See Also

GA_Elem_minimum

¢ GA_Elem_maximum_patch



Syntax:

GA_Elem maximum patch (ArrayHandlel,
lol[], hil[], ArrayHandle2,

lo2[], hi2[], ArrayHandleResult,
resultLo[], resultHil[])

Description:
Computes the element-wise maximum of two array
patches.

Note:
This is a collective operation.
The arrays must be of the same shape.

Example:

GA_Begin () ;

A = GA_Create(2, [8 8], [2 81);

B = GA_Create(2, [8 8], [2 8]);

C GA_Create (2, [8 81, [2 8]1);
GAFill(A,5);

GA_Fill (B, 5);
GA_Elemmaximum patch (A, [1 1], [2
21, B, [1 11, [2 2], C, [1 11, I[2
21);

GA_End (A, B, C);

See Also
GA_Elem_maximum

GA _Elem_minimum

Syntax:
GA_Elemminimum (ArrayHandlel,
ArrayHandle2?2, ArrayHandleResult)

Description:
Computes the element-wise minimum of two arrays.

Note:
This is a collective operation.
The arrays must be of the same shape.

Example:

GA_Begin () ;

A = GA Create(2, [8 8], [2 81);
B = GA Create(2, [8 8], [2 8]);
C = GACreate(2, [8 8], [2 8]);
GA_Fill (A, 2);

GAFill(B,5);

GA_Elemminimum (A, B, C);
GA_End (A, B, C);

See Also
GA_Elem_maximum

GA _Elem_minimum_patch

Syntax:

GAElemminimum_patch (ArrayHandlel,
lol[], hil[], ArrayHandleZz,

lo2[], hi2[], ArrayHandleResult,
resultLo[], resultHil[])

Description:
Computes the element-wise minimum of two array
patches.

Note:
This is a collective operation.
The arrays must be of the same shape.

Example:

GA_Begin () ;

A = GA_Create(2, [8 8], [2 81);

B = GA_Create(2, [8 8], [2 8]);

C GA_Create (2, [8 81, [2 8]);
GAFill(A,5);

GAFill(B,5);
GAElemminimumpatch(a, [1 1], [2
21, B, [1 11, [2 2], C, [1 11, I[2
21)

GA_End (A, B, C);

See Also

GA_Elem_minimum

A.6 Ghosts

e GA _Create_ghosts

Syntax:

[handle] = GA_Create_ghosts (dims,
width, chunk)

dims - vector of 'n’ elements where 'n’ is the number
of dimensions of the global array to be created and the
ith element in the vector denotes the size or extent of
the ith dimension of the global array

width - vector of 'n’ elements where 'n’ is the number
of dimensions of the global array to be created and the
ith element in the vector denotes the ghost cell width
in the ith dimension of the global array

chunk - vector of 'n’ elements where ’n’ is the number
of dimensions of the global array to be created and
the ith element in the vector denotes the minimum



size that the ith dimension of the global array must be
divided into among the processes

Description:

Similar to GA_Create; creates a Global Array with
distribution as specified by dims and chunk. Further,
the local portion of the global array residing on each
processor will have a layer of ghost cells of width,
width[i], on either side of the visible data along the
ith dimension.

Note:
This is a collective operation.

Example:

GA_Begin () ;

dims = [8 10]; width = [1 0];
chunk = [8/np 107];

A = GA Create_ghosts (dims, width,
chunk) ;

GA_End (A) ;

See Also
GA_Create

GA _Create_ghosts_irreg

Syntax:

[handle] = GA_Create_ghosts_irreg(dims,
width, block, map)

dims - vector of 'n’ elements where 'n’ is the number
of dimensions of the global array to be created and the
ith element in the vector denotes the size or extent of
the ith dimension of the global array

width - vector of 'n’ elements where ’n’ is the number
of dimensions of the global array to be created and the
ith element in the vector denotes the ghost cell width
in the ith dimension of the global array

block - vector of 'n’ elements where *n’ is the number
of dimensions of the global array to be created and
the ith element in the vector denotes the number of
blocks that the ith dimension of the global array must
be divided into among the processes

map - vector indicating the starting index of each block

Description:

Similar to GA_Create_irreg; creates an array as per
the user-specified distribution information (specified
as a Cartesian product of distributions for each dimen-
sion). Further, the local portion of the global array
residing on each processor will have a layer of ghost
cells of width, width[i], on either side of the visible
data along the ith dimension.

Note:
This is a collective operation.

Example:

GA_Begin () ;

dims = [8 10]; width = [1 0];
block = [3 2];

map = [1 3 7 1 6];

A = GA_Create_ghosts_irreg(dims,
width, block, map);

GA_End (A7) ;

See Also

GA_Create_irreg

GA _Has_ghosts

Syntax:
[handle] = GA_Has_ghosts (ArrayHandle)

Description:

Returns 1 if the global array, ArrayH andle has some
dimensions for which the ghost cell width is greater
than zero, returns 0 otherwise.

Note:
This is a collective operation.

Example:

GA Begin () ;

A = GA_Create_ghosts([4 4],[1 0], [4
1]); has_ghosts = GA_Has_ghosts (A);
GA_End (A) ;

See Also

GA_Create_ghosts

GA_Set_ghosts

Syntax:

[handle] = GA_Set_ghosts (ArrayHandle,

width)

Description:
Sets the ghost cell widths for a global array.

Note:
This is a collective operation.

Example:
GA_Begin () ;



A = GA Create([4 4], [4 11);
GA_Set_ghosts (A, [1 0]);
GA_End (A7) ;

See Also
GA_Create_ghosts
A.7 Utilities
o GA Distribution

Syntax:
[lo, hi] = GADistribution (ArrayHandle)

Description:

Returns the index range of the global array portion
owned by the calling process. If no array elements are
owned by the calling process, the range is returned

as lo[i] = 0 and hifi] = —1 fori = 1 : ndim
dimensions.

Example:

GA_Begin () ;

A = GA Create([4 4] [4 1]1); [lo hi]

= GA Distribution (A);
GA_End (A7) ;

See Also
GA_Create

o GA_Compare_distr

Syntax:

e GA_Nnodes
Syntax: nNodes = GA_Nnodes ()

Description:
Returns the number of user (compute) processes.

Note:
This is a local operation.

Example:
GA_Begin();

np = GA_Nnodes () ;
GA_End () ;

See Also
GA_Nodeid

e GA Nodeid

Syntax:
rank = GA_Nodeid ()

Description:
Returns the rank or the process id (0 ... (np-1)) of the
calling process.

Note:
This is a local operation.

Example:
GA_Begin () ;
rank = GA_Nodeid();

isSimillar = GA_Compare._distr (ArrayHandlel,

ArrayHandle2)

Description:
Compares the distributions of two global arrays.

Note:
This is a collective operation.

Example:

GA_Begin () ;

A = GACreate([4 4], [4 1]); B =
GA Create([4 4], [4 1]); isSimillar
= GA_Compare_distr (A, B);

GA_End (A, B);

See Also
GA_Create

GA_End () ;
See Also
GA_Nnodes

o GA_Check_handle

Syntax: isvalid =

GA_Check_handle (ArrayHandle)

Description:
Checks if the ArrayHandle is valid.

Note:
This is a collective operation.

Example:
GA_Begin () ;
A = GA_Create([4 4]); isValid =



GA_Check_handle (A7) ;
GA_End (A) ;

See Also
GA_Nnodes

A.8 Process Groups

e GA _Create_pgroup

Syntax:
pGrpHandle = GA_Create_pgroup(list)

Description:
Creates a processor group given the list of process ids
and returns a process group handle.

Note:
This is a collective operation.

Example:

GA_Begin () ;

pGrpHandle = GA_Create_pgroup ([0
11); GAEnd();

See Also
GA_Pgroup-nnodes

e GA _Pgroup_nnodes

Syntax:
nNodes = GA_Pgroup_nnodes (pGrpHandle)

Description:
Returns the number of processors contained in the
group specified by pGrpH andle.

Note:
This is a local operation.

Example:
GA_Begin () ;
pGrpHandle = GA_Create_pgroup ([0

1]); nNodes = GA_Pgroup-nnodes (pGrpHandle) ;

GA_End () ;

See Also
GA_Pgroup-nodeid

e GA _Pgroup_nodeid

Syntax:
rank = GA_Pgroup-nodeid (pGrpHandle)

Description:
Returns the relative index of the calling process in the
processor group specified by pGrpH andle.

Note:
This is a local operation.

Example:
GA_Begin () ;
pGrpHandle = GA_Create_pgroup ([0

11); rank = GA_Pgroup-nodeid (pGrpHandle);

GA_End () ;

See Also
GA_Pgroup-nnodes

GA_Pgroup_sync

Syntax:
GA_Pgroup-_sync (pGrpHandle)

Description:

Synchronizes processes (a barrier) in the process
group specified by pGrpHandle and ensures that all
GA operations for the process group are complete.

Note:
This is a collective operation.

Example:

GA_Begin () ;
GA_Pgroup-sync () ;
GA_End () ;

See Also
GA_Pgroup-nnodes



