
1

Scalable Runtime Bloat Detection Using Abstract Dynamic Slicing

GUOQING XU, University of California, Irvine

NICK MITCHELL, IBM T. J. Watson Research Center

MATTHEW ARNOLD, IBM T. J. Watson Research Center

ATANAS ROUNTEV, Ohio State University

EDITH SCHONBERG, IBM T. J. Watson Research Center

GARY SEVITSKY, IBM T. J. Watson Research Center

Many large-scale Java applications suffer from runtime bloat. They execute large volumes of methods, and
create many temporary objects, all to execute relatively simple operations. There are large opportunities for
performance optimizations in these applications, but most are being missed by existing optimization and
tooling technology. While JIT optimizations struggle for a few percent improvement, performance experts
analyze deployed applications and regularly find gains of 2× or more. Finding such big gains is difficult,

for both humans and compilers, because of the diffuse nature of runtime bloat. Time is spread thinly across
calling contexts, making it difficult to judge how to improve performance. Our experience shows that in order
to identify large performance bottlenecks in a program, it is more important to understand its dynamic data
flow than traditional performance metrics, such as running time.

This paper presents a general framework for designing and implementing scalable analysis algorithms
to find causes of bloat in Java programs. At the heart of this framework is a generalized form of run-time
dependence graph computed by abstract dynamic slicing, a semantics-aware technique that achieves high
scalability by performing dynamic slicing over bounded abstract domains. The framework is instantiated to
create two independent dynamic analyses, copy profiling and cost-benefit analysis, that help programmers
identify performance bottlenecks by identifying, respectively, high-volume copy activities and data struc-
tures that have high construction cost but low benefit for the forward execution.

We have successfully applied these analyses to large-scale and long-running Java applications. We show
that both analyses are effective at detecting inefficient operations that can be optimized for better perfor-
mance. We also demonstrate that the general framework is flexible enough to be instantiated for dynamic
analyses in a variety of application domains.

Categories and Subject Descriptors: D.2.5 [Software Engineering]: Testing and Debugging—Debugging

aids; F.3.2 [Logics and Meaning of Programs]: Semantics of Programming Languages—Program analy-

sis; D.3.4 [Programming Languages]: Processors—Memory management, optimization, run-time environ-

ments

This article extends and refines work from two previous conference papers by the authors, published the
Proceedings of the ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI) in 2009 and 2010.
This material is based upon work supported by the National Science Foundation under grants CCF-
0546040, CCF-1017204, CCF-1319695, and CNS-1321179, and by an IBM Software Quality Innovation
Faculty Award. Guoqing Xu was additionally supported by an IBM Ph.D. fellowship award while he was a
graduate student.
Authors’ addresses: G. Xu, Department of Computer Science, University of California, Irvine, CA; N.
Mitchell, IBM T. J. Watson Research Center, Yorktown Heights, NY; M. Arnold, IBM T. J. Watson Research
Center, Yorktown Heights, NY; A. Rountev, Department of Computer Science and Engineering, Ohio State
University, Columbus, OH; E. Schonberg, IBM T. J. Watson Research Center, Yorktown Heights, NY; G.
Sevitsky, IBM T. J. Watson Research Center, Yorktown Heights, NY.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 1111 ACM 1049-331X/1111/01-ART1 $10.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1, Pub. date: January 1111.

1:2 G. Xu et al.

General Terms: Languages, Measurement, Performance

Additional Key Words and Phrases: Runtime bloat, dynamic analysis, abstract dynamic slicing, copy profil-
ing, cost-benefit analysis

1. INTRODUCTION

A major sustained technology trend is the proliferation of software designed to solve
problems with increasing levels of complexity. These computer programs range from
stand-alone desktop applications developed to meet our individual needs, to large-
scale long-running servers that can process requests for many millions of concurrent
users. Many achievements in the successful development of complex software are due
to the community-wide recognition of the importance of abstraction and reuse: soft-
ware should be designed in a modular way so that specifications and implementations
are well separated, functional components communicate with each other only through
interfaces, and component interfaces are declared as general as possible in order to
provide services in a variety of different contexts. While software reuse makes devel-
opment tasks easier, it often comes with certain kinds of excess, leading to performance
degradation. Implementation details are hidden from the users of a reusable compo-
nent, who have to (and are encouraged to) rely on general-purpose APIs to fulfill their
specific requests. When their needs are much narrower than the service these APIs
can provide, wasteful operations start emerging. For example, a study from [Mitchell
2006] shows that the conversion of a single date field from a SOAP data source to a
Java object can require more than 200 method calls and the generation of 70 objects.

In this paper, the term bloat [Mitchell et al. 2010; Xu et al. 2010b; Xu 2011] is used
to refer to the general phenomenon of using excessive work and memory to achieve
seemingly simple tasks. Bloat commonly exists in large-scale object-oriented appli-
cations, and impacts significantly their performance and scalability. A program that
suffers severe bloat such as a memory leak can crash due to OutOfMemory errors. In
most cases, excessive memory consumption and significant slowdown may be seen in
programs that contain bloated operations. Removing bloat is especially relevant for
multi-core systems: the excess that exists in memory consumption and execution be-
comes increasingly painful because memory bandwidth per core goes down, and we
cannot rely on speed increases to ameliorate ever-increasing levels of inefficiency.

While modern JITs have sophisticated optimizers that offer important performance
improvements, they are often unable to remove the penalty of bloat. One problem is
that the code in large applications is relatively free of hot spots. Table I shows a break-
down of the top ten methods from a commercial document management server. This
application executes over 60,000 methods, with no single method contributing more
than 3.19% to total application time, and only 14 methods contributing more than 1%.
JITs are faced with a number of important methods, and have to rely heavily on the
method inliner to combine together code into larger, hopefully optimizable, regions.
Forming perfect code regions, and then optimizing them, is an immensely challenging
problem [Shankar et al. 2008]. Method inlining is determined based on control flow
profiling, and it is not necessary for the frequently-executed regions to contain large
optimization opportunities, which are, in many cases, related to data creation and
propagation (e.g., non-escaping objects). In addition, optimizations that can be easily
performed by a developer (e.g., moving an invocation of a side-effect-free method out of
a loop) can require great JIT effort to achieve the same effect. That call may ultimately
perform thousands of method invocations with call stacks hundreds deep, and allocate
many objects. Automatically performing such a transformation requires a number of
powerful analyses to work together. If language features that restrict optimization
(e.g., reflection and precise exceptions) are taken into account, there is little hope that

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1, Pub. date: January 1111.

Scalable Runtime Bloat Detection Using Abstract Dynamic Slicing 1:3

Table I. In a commercial document management
server, no single frequently-executed method can
be optimized for easy performance gains.

method CPU time

HashMap.get 3.19%
Id.isId 2.84%
String.regionMatches 2.12%
CharToByteUTF8.convert 2.04%
String.hashCode 1.77%
String.charAt 1.70%
SimpleCharStream.<init> 1.65%
ThreadLocalMap.get 1.32%
String.toUpperCase 1.30%

a performance bottleneck can be identified and removed by a fully automated solution.
As an example, a study described later found that to perform the seemingly simple task
of inserting a single small document in the database, a document server invokes 25,000
methods and creates 3000 temporary objects, even after JIT optimizations. However,
with less than one person-week of manual tuning, a performance expert was able to
reduce the object creation rate by 66%. Such results indicate that vast improvements
are possible when tuning is made easier with more powerful tool support. In this pa-
per, we present two dynamic analysis techniques that can pinpoint problematic areas
to help developers quickly find and fix performance problems in large-scale real-world
applications.

1.1. Copy Profiling

One important symptom of runtime bloat is a large volume of copies in bloated regions:
data is transferred from one object to another, with no computation done on it. Long
copy chains can often be seen, simply to form objects of certain types required by APIs
of one framework from their original representations used in another framework. For
instance, the inefficiencies in the SOAP example are closely related to copies (due to
data wrapping and unwrapping).

If the SOAP example exhibits design issues, the following example that can be ob-
served in the IBM document management server reveals bloat caused by a program-
mer’s mistake. The server extracts name-value pairs from a cookie that the client
transmits in a serialized, string form. The methods that use these name-value pairs
expect Java objects, not strings. They invoke a library method to decode the cookie
string into a Java HashMap, yet another transient form of this very simple data. In the
common case, the caller extracts one or two elements from the 8-element map, and
never uses that map again. Figure 1 illustrates the steps necessary to decode a cookie
in this application. Decoding a single cookie, an operation that occurs repeatedly, costs
1000 method invocations and 35 temporary objects, after JIT optimizations. A hand-
optimized specialization for the common case that only requires one name-value pair
invokes 4 invocations and constructs 2 temporary objects.

The inefficiencies at the heart of the SOAP example and the cookie decoding exam-
ple are common to many bloated implementations. In these implementations, there
is often a chain of information flow that carries values from one storage location to
another, often via temporary objects [Mitchell et al. 2006], as visualized in Figure 1.
Bloat of this form manifests itself in a number of ways: temporary structures to carry
values, and a large number of method invocations that allocate and initialize these
structures, and copy data between them.

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1, Pub. date: January 1111.

1:4 G. Xu et al.

String

n1=v1;

n2=v2

deserialize

from client

String

n1 String

v1 String

n2 String

v2

tokenize

HashMap

$Entry[]

$Entry

$Entry

populate

map

retrieve

value

String

v1

(a) Original version.

!"#$%&

%'()'*
%+()+

!"#"$%&'%("

)$*+,-'%"./ /*0".%("

!"#$%&

)'

(b) Specialized version.

Fig. 1. The steps a commercial document management server uses to decode a cookie; the original version
tokenizes and returns the entire map, even if the caller needs only one name-value pair.

In our experience, it is this data copying activity that is an excellent indicator of
bloat. When copy activities are reduced through code transformations, this often re-
duces the need for creating and deallocating the corresponding objects, and for invok-
ing methods on these objects. For example, the optimized cookie decoding in Figure 1
eliminates the cost of constructing the HashMap and the related key-value pairs.

As the first major contribution of this work, we propose a novel dynamic technique,
called copy profiling, to help programmers find copy-related inefficiencies. Section 3.1
provides an example of the amount of copy activities in a server application, and shows
how they are not handled well by the JIT in a state-of-the-art JVM. To help program-
mers quickly find copy-induced performance problems, we propose a series of tech-
niques that profile various kinds of copy activities, including flat copy summaries, copy
chains, and copy graph. We have also built three client analyses based on copy profiles
that can effectively expose optimization opportunities in large programs. These analy-
ses are presented in Section 3.5.

1.2. Cost Benefit Analysis

Bloat can also be caused by inappropriate choices of data structures and implemen-
tation algorithms, leading to computations with high cost (i.e., expensive to execute)
and low benefit (i.e., produce unnecessary data). In an example mentioned earlier, in
a large Java program we found that the programmer creates lists and adds many el-
ements to them, only for the purpose of obtaining list sizes. Most fields in these list
data structures do not have any benefits for the forward progress of the application.
Correct choices are hard to make, as they require deep understanding of implementa-
tion logic and a great deal of programming experience. These decisions often involve
tradeoffs between space and time, between reusability and performance, and between
short-term development goals and long-term maintenance.

Querying the costs and benefits of certain data structures is a natural and effec-
tive way for a programmer to understand the performance of her program in order to
make appropriate choices. For example, questions such as “What is the cost of using
this data structure?” and “Why does this expensive call produce a rarely-used value?”
are often asked during software development and performance tuning/debugging. Cur-
rently, these questions are answered mostly manually, typically through a few labor-

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1, Pub. date: January 1111.

Scalable Runtime Bloat Detection Using Abstract Dynamic Slicing 1:5

intensive rounds of code inspection, or with coarse-grained cost measurements (e.g.,
method running times and numbers of created instances) with the help of existing
profiling tools. The answers are usually approximations that are far from the actual
causes of problems, making it extremely hard to track down the performance bottle-
necks. As the second major contribution of this work, we propose a dynamic cost-benefit
analysis that can provide automated support for performance experts to measure costs
and benefits at a fine-grained (instruction) level, thereby improving the precision of the
answers and making tuning an easier task.

In addition to finding individual values that are likely to be results of wasteful op-
erations, computing cost and benefit automatically provides many other advantages
for resolving performance issues. For example, a number of high-level performance-
related program properties can be quickly exposed by aggregating the costs and bene-
fits of values contained in individual storage locations. These properties include, for
example, whether a container is overpopulated (i.e., contains many objects but re-
trieves only a few of them), whether an object contains dead fields, and whether an
object field is rewritten before it is read. Such questions can be answered efficiently
by the proposed cost-benefit analysis. The detailed analysis algorithm can be found in
Section 4.

1.3. Abstract Dynamic Slicing as a General Framework

At the heart of these two techniques is a dynamic dataflow tracking engine that keeps
track of how data is propagated among memory locations. In the paper, we develop
a framework to generalize this dataflow tracking analysis so that the framework can
be instantiated to implement other dynamic (bloat or bug) detection techniques. To
provide sufficient dataflow information for a client, this framework needs to record
the whole program execution trace. This can be achieved by performing a dynamic
slicing algorithm [Korel and Laski 1990; Zhang et al. 2003; Zhang and Gupta 2004a;
Wang and Roychoudhury 2008], which tracks the execution of each instruction and
each memory address it accesses. In a large program, however, an instruction can be
executed an extremely large number of times; the amount of memory needed for whole-
program dynamic slicing is thus unbounded, and is determined completely by the run-
time behavior of the program. As a result, regular dynamic slicing is prohibitively
expensive for large-scale and long-running applications.

To enable the analysis of large-scale, long-running applications, we introduce ab-
stract dynamic slicing, a technique that applies dynamic slicing over an abstract do-
main whose size is limited by bounds independent of the run-time execution. This
technique is embedded in the general framework parameterized by the abstract do-
main. The output of this framework is an abstract dependence graph that contains
abstractions of instructions, rather than their actual run-time instances. This new ap-
proach is motivated by the observation that a client of dynamic slicing often needs to
access only a small portion of the complete execution trace collected by a regular slic-
ing algorithm and thus tremendous effort is wasted on collecting information not used
by the client. The run-time (space and time) overhead can be significantly reduced
if the slicing algorithm is client-aware — it understands what information would be
needed by its client and records only such information during the execution. Abstract
dynamic slicing makes this possible by asking the analysis developer to provide an ab-
straction that specifies this knowledge. In the paper, we first define this framework (in
Section 2) and then show how the framework is instantiated to derive the algorithms
of copy profiling and the cost-benefit analysis (in Section 3 and Section 4).

The major contributions of this work are:

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1, Pub. date: January 1111.

1:6 G. Xu et al.

• Abstract dynamic slicing, a general technique that performs dynamic slicing over
bounded abstract domains. It produces much smaller and more relevant slices than
traditional dynamic slicing and can be instantiated to implement a variety of dy-
namic dataflow analyses.

• Copy profiling, an instance of the abstract dynamic slicing framework that identifies
high-overhead activities in terms of copies and chains of copies.

• Cost and benefit profiling, the second instance of the framework that identifies run-
time inefficiencies by understanding the cost of producing values and the benefit of
consuming them.

• An implementations of the framework and the two client analyses based on the IBM
J9 commercial Java Virtual Machine, demonstrating that (1) the general framework
can be easily instantiated and (2) the client analyses are useful in finding various
opportunities for performance improvements.

• A set of experimental results that show that these two techniques can be used to help
developers quickly find performance problems in large applications such as tomcat
and derby; significant performance improvement has been observed after these prob-
lems are fixed.

2. ABSTRACT DYNAMIC SLICING

This section describes the general framework that uses abstract dynamic slicing to pro-
vide dataflow information for client analyses implemented with the help of the frame-
work. We demonstrate its usage through several real-world examples. While our im-
plementation works on the low-level JVM intermediate representation, the discussion
of the framework and the related algorithms uses a three-address-code representation
of the program. In this representation, each statement corresponds to a bytecode in-
struction (i.e., it is either a copy assignment a=b or a computation a=b+c that contains
only one operator). We will use the terms statement and instruction interchangeably,
both meaning a statement in the three-address-code representation.

2.1. Abstract Dynamic Slicing

Existing dynamic analysis algorithms can be classified into two major categories: (1)
forward analysis that maintains a set of analysis states and updates them on the fly
along the execution, and (2) backward analysis that records history information as
the program executes and this information needs to be consulted later for computing
analysis results. For a forward analysis, the set of analysis states at any point during
the execution would provide sufficient information regarding the properties of the pro-
gram that the analysis is designed to discover. Analyses in this category often perform
lightweight computation that needs only a small amount of information from the ex-
ecution. A typical example of forward analysis is taint analysis [Newsome and Song
2005; Xu et al. 2006], which propagates taint information along the information flow.
When data flows from a trusted component to an untrusted component, its taint infor-
mation is checked to verify if it comes from a tainted source. At any point during the
execution, having the taint information for each piece of run-time data satisfies the
need of the analysis.

A backward analysis is much more complex and needs to perform heavier computa-
tion than a forward analysis. The computation is often too expensive to be done along
the main execution, so it has to be undertaken either offline or in a new execution (e.g.,
a new thread or process), completely separated from the original one. The recorded his-
tory is used to “replay” a relevant part of the normal execution to enable this heavy-
weight computation. Examples of backward analyses include null value propagation
analysis [Bond et al. 2007], automated bug location from execution traces [Zhang et al.
2007], dynamic object type-state checking [Arnold et al. 2008], event-based execution

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1, Pub. date: January 1111.

Scalable Runtime Bloat Detection Using Abstract Dynamic Slicing 1:7

fast forwarding [Zhang et al. 2006b], as well as the copy analysis and the cost-benefit
analysis that will be discussed in this paper. For brevity, we will refer to such analysis
problems as BDF (backward dynamic flow) problems. In general, BDF problems can be
solved by dynamic slicing [Korel and Laski 1990; Zhang et al. 2003; Zhang and Gupta
2004a; Zhang et al. 2006a; Wang and Roychoudhury 2008]. For instance, computing
the cost of a value requires the identification of all instruction instances that (directly
or transitively) contribute to the computation of the value, which can only be obtained
by performing slicing on a dynamic dependence graph.

In dynamic slicing, the instrumented program is first executed to obtain an exe-
cution trace with control flow and memory reference information. At a pointer deref-
erence, both the data that is referenced and the pointer value (i.e., the address of
the data) are captured. Based on a dynamic data dependence graph inferred from the
trace, a slicing algorithm is executed. Let I be the domain of static instructions and N
be the domain of natural numbers.

Definition 2.1. (Dynamic Data Dependence Graph). A dynamic data dependence
graph (V , E) has node set V ⊆ I ×N , where each node is a static instruction annotated
with an integer j, representing the j-th occurrence of this instruction in the trace. An
edge from aj to bk (a, b ∈ I and j, k ∈ N) shows that the j-th occurrence of a writes a
location that is then used by the k-th occurrence of b, without an intervening write to
that location.

Existing dynamic slicing algorithms are client-oblivious. They profile the entire ex-
ecution of a program, under the assumption that all details of the execution will be
used later by the client. However, our experience shows that, in most cases, the client
analysis needs only a very small portion of the collected information, leading to wasted
run-time computation and space to collect and store data never used. We observe that,
for some BDF problems, there exists a certain pattern of backward traversal that can
be exploited for increased efficiency. Among the instruction instances that are tra-
versed, equivalence classes can usually be seen. Each equivalence class is related to a
certain property of an instruction from the program code, and distinguishing instruc-
tion instances in the same equivalence class (i.e., with the same property) has little
or no influence on analysis precision. Moreover, it is only necessary to record one in-
struction instance online as the representative for that equivalence class, leading to
significant space reduction of the generated execution trace. Several examples of such
problems will be discussed shortly.

Based on this observation, we propose a novel run-time technique, called abstract
dynamic slicing, that performs slicing over a bounded abstract domain. The key idea
is to design a client-conscious slicing algorithm that collects only the information rele-
vant to this domain. This bounded abstract domain D is client-specific and provided by
the analysis designer before the execution. D contains identifiers that define equiva-
lence classes in N and that encode the semantics of the client analysis. An unbounded
subset of elements in N can be mapped to an element in D. For a particular instruction
a ∈ I, an abstraction function fa : N → D is used to map aj , where j ∈ N , to an ab-
stracted instance ad. This yields an abstraction of the dynamic data dependence graph.
The corresponding dependence graph will be referred as an abstract data dependence
graph.

Definition 2.2. (Abstract Data Dependence Graph). An abstract data dependence
graph (V ′, E ′, F , D) has node set V ′ ⊆ I × D, where each node is a static instruction
annotated with an element d ∈ D, denoting the equivalence class of instances of the
instruction mapped to d. An edge from aj to bk (a, b ∈ I and j, k ∈ D) shows that an
instance of a mapped to aj writes to a location that is used by an instance of b mapped to

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1, Pub. date: January 1111.

1:8 G. Xu et al.

� � � ��

� ��	�
 ����

 � � � �	���

� ������

� ����

� ���� �� �

� � �	��� �� �

� �� 	�
 ��

� !�" � �!# �	��

�� !$%! !�" � �"$$�

�� �

&'((

�
&'((

��
&'((

�
&&

&&

�
&&

)�

1 File f = new File();

2 f.create();

3 i = 0;

4 if(i < 100){

5 f.put(...);

6 …

7 f.put(...);

8 i++; goto 4; }

9 f.close();

10 char b = f.get();

1
*+,- ./01

2
*+,- ./01

5*+,- .
2301

9*+,- .
2401

10*+,- .501

(b)

5*+,- .2401
7
*+,- .2401

Fig. 2. Data dependence graphs for two BDF problems. Line numbers are used to represent the correspond-
ing instructions. Arrows with solid lines are def-use edges. (a) Null origin tracking. Instructions that handle
primitive-typed values are omitted; (b) Typestate history recording; arrows with dashed lines represent
“next-event” relationships.

bk, without an intervening write to that location. F is a family of abstraction functions
fa, one per instruction a ∈ I.

For simplicity, we will use “dependence graph” to refer to the abstract data depen-
dence graph defined above. The number of static instructions (i.e., the size of I) is
relatively small even for large-scale programs, and by carefully selecting domain D
and abstraction functions fa, it is possible to require only a small amount of memory
for the graph and yet preserve necessary information needed for a target analysis.

Many BDF problems exhibit bounded-domain properties. Their analysis-specific de-
pendence graphs can be obtained by defining the appropriate abstraction functions.
The following examples show two analyses and their formulations in our framework.

Propagation of null values. When a NullPointerException is observed in the pro-
gram, this analysis locates the program point where the null value starts propagating
and the propagation flow. Compared to existing null value tracking approaches (e.g.,
[Bond et al. 2007]) that track only the origin of a null value, this analysis also provides
information about how this value flows to the point where it is dereferenced, allowing
the programmer to quickly track down the bug. Here, D contains two elements null
and not null. Abstraction function fa(j) = null if aj produces null and not null other-
wise. Based on the dependence graph, the analysis traverses backward from node anull

where a ∈ I is the instruction whose execution causes the NullPointerException. The
node that is annotated with null and that does not have incoming edges represents
the instruction that created the null value originally. Figure 2 (a) shows an example
of this analysis. Annotation nn denotes not null. A NullPointerException is thrown
when line 4 is reached.

Recording typestate history. Proposed in QVM [Arnold et al. 2008], this analysis
tracks the typestates of the specified objects and records the history of state changes.
When the typestate protocol of an object is violated, it provides the programmer with
the recorded history. Instead of recording every single event in the trace, a summariza-
tion approach is employed to merge these events into DFAs. We show how this analysis
can be formulated as an abstract slicing problem, and the DFAs can be easily derived
from the dependence graph.

Domain D is O× S, where O is a specified set of allocation sites (whose objects need
to be tracked) and S is a set of predefined states s0, s1, . . . , sn of the objects created by
the allocation sites in O. Abstraction function fa(j) maps each instruction instance of
the form aj to a pair (alloc(aj), state(aj)) if aj invokes a method on an object ∈ O,
and the method can cause the object to change its state; otherwise, fa(j) is undefined

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1, Pub. date: January 1111.

Scalable Runtime Bloat Detection Using Abstract Dynamic Slicing 1:9

(i.e., all other instructions are not tracked). Here alloc is a function that returns the
allocation site of the receiver object at aj , and function state returns the state of this
object immediately before aj . The state can be stored as a tag of the object, and updated
when a method is invoked on this object.

An example is shown in Figure 2 (b). Consider the object O1 created at line 1, with
states ‘u’ (uninitialized), ‘oe’ (opened and empty), ‘on’ (opened but not empty), and ‘c’
(closed). Arrows with dashed lines denote the “next-event” relationships. These rela-
tionships are added to the graph for constructing the DFA described in [Arnold et al.
2008], and they can be easily obtained by storing the last event on each tracked object.
When line 10 is executed, the typestate protocol is violated because the file is read af-
ter it is closed. The programmer can easily identify the problem when she inspects the
graph and finds that line 10 is executed on a closed file. While the example shown in
Figure 2 (b) is not strictly a dependence graph, the “next-event” edges can be concep-
tually thought of as def-use edges between nodes that write and read the object state
tag.

Similarly to how a data flow analysis or an abstract interpreter employs static ab-
stractions, abstract dynamic slicing uses abstract domains for dynamic data flow, rec-
ognizing that it is only necessary to distinguish instruction instances that are impor-
tant for the client analysis.

2.2. Modeling of Objects

It is important for certain dependence graph nodes to have information about the ob-
jects they access. This information can be used for various client analyses to discover
properties of objects and data structures. A typical handling of objects for analysis of
object-oriented programs is to use an allocation site to represent the set of run-time
instances created by it. We use the same idea in this framework to add object informa-
tion. For each instruction that has a heap access o.f expression (i.e., either a read or a
write of a field f in a heap object pointed-to by o), we can augment the user-provided
semantic domain Dorig with the set of all possible allocation sites O creating objects
that o may point to at run time. Hence, the new domain D for this instruction becomes
Dorig × O, where Dorig is the original abstract domain defined by the framework user
for this instruction.

An analysis that requires a highly precise handling of heap accesses may need to
consider calling contexts when modeling objects. Calling contexts can be easily added
into our framework. For each instruction a that accesses a heap location o.f , suppose
C is a set of abstractions of all possible calling contexts under which a can be executed.
C can be easily added by redefining D for a to be Dorig × O × C. Different types of
context representations can be employed for different analyses. For example, object-
based contexts [Milanova et al. 2005] are suitable for analyzing programs with large
numbers of object-oriented data structures, and call-chain-based contexts fit better
with the analysis of procedural behavior. While our bloat detection techniques focus on
object-sensitivity [Milanova et al. 2005], all of these different context representations
can be easily added into our framework.

In order to effectively reduce the run-time overhead and bound the memory space
needed for abstract dynamic slicing, D needs to be statically bounded and its size can-
not depend on any (unbounded) dynamic behavior of the program, such as loop itera-
tions and method invocations. This imposes challenges for modeling calling contexts in
our framework—it can be extremely difficult to statically identify all contexts for each
instruction, especially when the program is large and uses dynamic language features
such as reflection. To solve the problem, we can define C to be a small fixed-size set,
and then design an encoding (hash) function to map each dynamic calling context to an
element in C. Example encoding functions can be found later in Section 3 and Section 4.

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1, Pub. date: January 1111.

1:10 G. Xu et al.

Java heap Shadow heap
6766689

6766696

f

...

g

h

6786689

header tag

6786696

shadow_f

...

shadow_g

shadow_h

d = 0x10000

Fig. 3. Representation of an object in the Java heap and its shadow memory. f, g, and h represent the fields
in this object. d represents a constant offset.

2.3. Framework Implementation

We have implemented this framework in J9 (build 2.4, J2RE 1.5.0 for Linux x86-32),
a commercial Java Virtual Machine developed by IBM [The J9 Java Virtual Machine
2011]. This JVM is highly versatile and is used as the basis for many of IBM’s product
offerings from embedded devices to enterprise solutions. By piggy-backing the analy-
ses on J9’s JIT compiler, we are able to apply and evaluate the developed techniques
on large and long-running Java programs such as database servers, JSP/servlet con-
tainers, and application servers. This makes it possible to find problems in these real-
world applications, which are widely used and have significant impact on the software
industry.

At the heart of this framework is a whole-program dataflow tracking engine, which
is used to track the flow of data and perform pre-defined operations as instructions
are executed. These operations are declared as callback functions, each of which is
implemented by the framework user to update the abstract dependence graph for a
certain type of instruction. For example, for each heap load, the framework defines a
callback function handleHeapLoad(Address base, Field field, Word lhs), which is
invoked by our framework after the heap load. The designer of the client analysis is
responsible for implementing these functions to update the dependence graph to collect
necessary run-time information.

For abstract dynamic slicing, this set of callback functions is implemented in a way
so that the run-time dependence edges can be added among dependence graph nodes
during the execution. To do this, each piece of data used during the execution is asso-
ciated with a piece of tracking data, recording the most recent instruction that defines
this piece of data. Tracking data is contained in a shadow memory, which is separated
from the memory space created for the execution. At each instruction instance ai that
uses a piece of data, the instruction bj defining this piece of data is retrieved from its
corresponding tracking data, and a dependence edge is then added to connect the ab-
stract dependence graph node representing ai to the node representing bj. Our data
flow framework supports shadowing of all memory in the application, including local
variables, static fields, arrays, and instance fields. It is important to note that this
handling is different from the usual implementation of dynamic slicing, which first
collects an execution trace and then builds a dependence graph from this trace. Our
dependence graph is constructed entirely online, with the help of shadow locations.

Shadow variable. A local variable is shadowed simply by introducing an extra vari-
able of the same type on the stack.

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1, Pub. date: January 1111.

Scalable Runtime Bloat Detection Using Abstract Dynamic Slicing 1:11

Shadow heap. Shadowing of static fields, arrays, and instance fields is supported
by the use of a shadow heap [Nethercote and Seward 2007]. The shadow heap is a
contiguous region of memory equal in size to the Java heap. To allow quick access
to shadow information, there is a constant distance between the shadow heap and
the Java heap. Thus, the scratch space for every byte of data in the Java heap can
be referenced by adding this constant offset to its address. The size of the tracking
data equals the size of its corresponding data in the Java heap. While the creation of
the shadow heap introduces 2× space overhead, it has not limited us from collecting
data from large-scale and long-running applications such as the aforementioned docu-
ment management server (built on top of the WebSphere application server and DB2
database server). In fact, with 1GB Java heap and 1GB shadow heap, we were able to
successfully run all programs we encountered, including large production web server
applications.

Tagging objects. In addition to the tracking data, the framework implementation
supports object tagging. For example, we often need to tag each run-time object with its
allocation site in order to relate the run-time behavior of the object to the source code
that creates it. In other cases, calling contexts are also associated with objects to enable
context-sensitive diagnosis [Xu et al. 2009; Xu et al. 2010a; Bond and McKinley 2006;
2007]. One way of implementing object tagging is to store the associated information
into the object headers. For example, for some JVMs such as Jikes RVM, each object
header has a few free bytes that are not used by the VM, and these free bytes can be
employed to store the tag. However, in J9, most bytes in an object header are used
by the garbage collector, and modifying them can crash the JVM at run time. Our
infrastructure (implemented in J9) stores the tag into the shadow heap. The shadow
space corresponding to an object header contains the tag for the object. Because an
object header in J9 takes two words (i.e., 8 bytes), the infrastructure allows us to tag
objects with up to 8 bytes data; this space is much larger than the free bytes in the
object header. A representation of the Java heap and shadow heap is shown in Figure 3,
where the constant offset between the two heaps is 0x10000.

Tracking stack. The framework also supports the passing of tracking data interpro-
cedurally through parameters and return values. This is achieved by the use of a track-
ing stack, which is similar to the Java call stack. Tracking data for the actual parame-
ters is pushed onto the stack at a call site, and is popped at the entry of the callee that
the call site invokes. Similarly, tracking data for the return variable is pushed onto
the stack at the return site, and is popped immediately after the call returns. Tracking
of exceptional data flow is not supported in our framework, because it usually does
not carry important data across method invocations. Note that the shadow heap is not
compulsory for using our technique. For example, it can be replaced by a global hash
table that maps each object to its tracking data (and an object entry is removed when
the object is garbage collected). The choice of shadow heap in our work is just to allow
quick access to the tracking information.

3. PROFILING COPIES TO FIND REDUNDANT OPERATIONS

This section presents an instantiation of the abstract dynamic slicing framework to
profile copies. The copy profiling algorithm has three major components: profiling regu-
lar copy activities, profiling copy chains, and profiling the copy graph. Before discussing
how to instantiate the framework, we first introduce copy operations and various kinds
of copy profiles that we are interested in.

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1, Pub. date: January 1111.

1:12 G. Xu et al.

copies

comparisons

ALU operations

total stores

total loads

0% 25% 50% 75% 100% 125%

Counts Relative to the original run with no JIT optimizations

original w/ opt.

handtuned

handtuned w/ opt.

Fig. 4. A breakdown of activity in a document processing server application. The baseline, at 100%, is the
original code run with JIT optimizations disabled. This baseline is compared to the original code with JIT
optimizations enabled, and to an implementation with a dozen hand-tunings.

3.1. Profiling Copy Activities

A copy operation is a pair of a heap load and a heap store instructions that trans-
fers a value, unmodified, from one heap location to another. A copy profile counts the
number of copies; a copy operation is associated with the method that performed the
write to the heap. Although the profiling tracks the propagation through stack loca-
tions (in order to determine whether a store is the second half of a copy), the profiling
reports do not include that level of detail. Since stack variables will likely be assigned
to registers, chains of copies between stack locations will usually involve only register
transfer operations. They are also more likely to be optimized by conventional dataflow
analysis.

Figure 4 shows a comparison of four scenarios of the document management server,
executing in the IBM J9 production JVM. The baseline, at 100%, represents the behav-
ior of the original code, with JIT optimizations disabled, during a 10 minute load run.
This baseline is compared to the original code with JIT optimizations enabled, and
to a version of the code that had been hand-tuned (both with and without JIT opti-
mizations). The figure also shows the number of comparison operations, the number of
ALU operations, and the total number of loads and stores. While the JIT successfully
reduces the number of ALU operations and loads/stores, it does not affect significantly
the number of copies and comparisons, and in some cases makes things worse.

Observe that the JIT is good at what you would expect: reducing ALU operations,
and the total number of loads and stores; common subexpression elimination probably
explains much of these effects. On the other hand, the JIT does not greatly affect the
number of copies; it also has no great effect on the number of comparison instructions.
Comparisons often indicate over-protective or over-general implementations, which
also exhibit runtime bloat. The hand-tuned implementation greatly reduces the num-
ber of copies and the number of comparison operations. Flat copy profiles show that
copies serve as good indicators of problems. From them, we learn that copy activity
is concentrated in a small number of methods. From the copy profiles for the DaCapo
benchmark suite [Blackburn et al. 2006] and the document management server, we
observe the concentration of copies. Figure 5(a) shows that, across the board, a small
number of methods explain most of the copy activities in these programs. Even just
the top method explains at least 12% of the copies, often much more. For comparison,

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1, Pub. date: January 1111.

Scalable Runtime Bloat Detection Using Abstract Dynamic Slicing 1:13

bloat

chart

luindex

jython

antlr

pmd

hsqldb

lusearch

fop

eclipse

xalan

document server

0% 25% 50% 75% 100%

Fraction of Pure Copies that Occurs within the Top-N Methods

top method top 10 methods top 50 methods

(a) Copy concentration.

bloat

luindex

pmd

chart

fop

lusearch

antlr

hsqldb

ecilpse

jython

xalan

document server

0% 25% 50% 75% 100%

Fraction of Execution Time that Occurs within the Top-N Methods

top method top 10 methods top 50 methods

(b) Time concentration.

Fig. 5. In copy concentration, a small number of methods explain most of the copies in the DaCapo bench-
marks, version 2006-10-MR2, and the document management server; In contrast to copies, which are con-
centrated even for complex applications, the time spent in methods is only concentrated for the simpler
benchmarks.

Figure 5(b) shows the concentration of execution time in methods. As expected, the
more complex applications, such as the Eclipse DaCapo benchmark and the document
management server, have very flat execution time method profiles; this is in contrast
to the highly concentrated copy profiles for those same programs.

3.2. Copy Chains

Individual copies are usually part of longer copy chains. Optimizing for bloat requires
understanding the chains as a whole, as they may span large code regions that need to

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1, Pub. date: January 1111.

1:14 G. Xu et al.

1 class List{

2 Object[] elems; int count;
3 List(){ elems = new Object[1000]; }

4 List(List l){ this(); // call default constructor
5 for(Iterator it = l.iterator(); it.hasNext();)
6 { add(it.next()); } }

7 void add(Object m){
8 Object[] t = this.elems;

9 t[count++] = m;
10 }

11 Object get(int ind){
12 Object[] t = this.elems;
13 Object p = t[ind]; return p;

14 }
15 Iterator iterator(){

16 return new ListIterator(this);
17 }
18 }

19 class ListIterator{
20 int pos = 0; List list;

21 ListIterator(List l){
22 this.list = l;

23 }
24 boolean hasNext(){ return pos < list.count - 1;}
25 Object next(){ return list.get(pos ++);}

26 }

27 class ListClient{

28 List myList;
29 ListClient(List l){ myList = l; }
30 ListClient deepClone(){

31 List j = new List(myList);
32 return new ListClient(j);

33 }
34 ListClient shallowClone(){

35 return new ListClient(myList);
36 }
37 }

38 static void main(String[] args){
39 List data1 = new List();

40 for(int i = 0; i < 1000; i++)
41 data1.add(new Integer(i));
42 List data2 = new List();

43 for(int i = 0; i<5; i++){
44 data2.add(new String(args[i]));

45 System.out.println(data2.get(i));}
46 ListClient c1 = new ListClient(data1);

47 ListClient c2 = new ListClient(data2);
48 ListClient new_c1 = c1.deepClone();
49 ListClient new_c2 = c2.shallowClone();

50 }

Fig. 6. Running example.

6 add(it.next());

…

9 t[count++] = m;

25 return list.get(pos ++);

…

…

13 p = t[ind]; return p;

…

Read(O3.ELM)

Step 2Write(O3.ELM)

Step 3

Step 1

Fig. 7. A copy chain due to ListClient.deepClone. Line numbers 6, 9, 13, and 25 correspond to the code in
Figure 6.

O41

O44

O3.ELM

O42

1000, 4

5, 4

1000, 4

O47.myList1, 4

O39

O46 O47

(a) Context-insensitive copy graph

O41

O44

O3
O39

.ELM

O42

1000, 4

5, 4

O47.myList
1, 4

O46 O47

(b) 1-object-sensitive copy graph

C

O3
O31

.ELM

1000, 4

O3
O42

.ELM

O16.list
1, 4

1, 4
O35.myList

1, 4 O35
O47.

myList

O39 O16
O39.list

1, 4

Allocation site node Heap location node

Copy graph edge C Consumer node

O46.myList
1, 4

5, 4

C
5, 4

O46.myList
1, 4

Fig. 8. Partial copy graph with context-insensitive and context-sensitive object naming. Each edge is an-
notated with a pair 〈f , b〉 where f is the edge frequency and b is the number of bytes copied on each edge.

be examined and transformed. We now show how to form an abstraction, copy graph,
that can be used to identify chains of copies.

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1, Pub. date: January 1111.

Scalable Runtime Bloat Detection Using Abstract Dynamic Slicing 1:15

Definition 3.1. (Copy Chain). A copy chain is a sequence of copies that carry a
value through two or more heap storage locations. Each copy chain node is a heap
location. Each edge represents a sequence of copies that transfers a value from one
heap location to another, abstracting away the intermediate copies via stack locations,
parameter passing, and value returns.

The heap locations of interest are fields of objects and elements of arrays. A copy
chain ends if the value it carries is the operand of a computation, which produces a
new value, or is an argument to a native method. It is important to note that, in a copy
chain, each maximal-length subsequence of stack copies is abstracted by a single edge
directly connecting two heap locations.

A motivating example. The code in Figure 6 is used for illustration throughout the
section. The example is based on a common usage scenario of Java collections. A simple
implementation of a data structure List is used by a client ListClient. ListClient de-
clares two clone methods shallowClone and deepClone, which return a new ListClient
object by reusing the old backing list and by copying list elements, respectively. The
entry method main creates two lists data1 and data2 and initializes them with 1000
Integer and 5 String objects (lines 41 and 44). The two lists are then passed into two
ListClient objects and eventually two new ListClient objects are created by calling
deepClone and shallowClone. For simplicity, the approach is described at the level of
Java source code, although our implementation works with a lower-level virtual ma-
chine intermediate representation.

Figure 7 depicts the steps in the creation of a single-edge copy chain from the invo-
cation of deepClone at line 48. The call to the constructor of List at line 31 reads each
element from the old list and adds it to the new list to be created. This chain starts
at the heap load at line 13 that reads an Integer object from the heap (i.e., an array)
to the stack and ends at the the heap store at line 8 that writes this object back the
heap (i.e., another array), abstracting away the three intermediate copies (shown as
step 1 to step 3) that occur on the stack. Both the source array and the target array
are denoted by O3 because they are created at line 3 in the code. (For now, the reader
can ignore the naming scheme; it will be discussed shortly.) The copy chain in Figure 7
is thus O3.ELM → O3.ELM , where ELM is the placeholder for any array element.

To represent the source and the sink of the data propagated along a copy chain, we
can augment the chain with two nodes: a producer node added at the beginning, and a
consumer node added at the end. The producer node can be a constant value, a new X
expression, or a computation operation representing the creation of a new value. The
consumer node has only one instance (denoted by C) in the copy graph, showing that
the data goes to a computation operation or to a native method. These two types of
nodes are not heap locations, and are added solely for the purpose of subsequent client
analyses. Note that not every chain has these two special nodes. For the producer node,
we are interested only in reference-typed values because they are important for further
analysis and program understanding. Thus, chains that propagate values of primitive
types do not have producer nodes. Not every piece of data goes to a consumer and
therefore not every chain has a consumer node. The absence of a consumer is a strong
symptom of bloat and can be used to identify performance problems. An example of
a full augmented copy chain starting from producer O44 (i.e., new String) is O44 →
O3.ELM → C. This chain ends in consumer node C because the data goes into method
println which eventually calls native method write.

It is clear that copy chain profiling is a BDF problem, which can be solved by regu-
lar dynamic slicing, which cannot scale to large real-world applications. To make the
analysis scale to these applications, we simplify the problem by applying abstractions

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1, Pub. date: January 1111.

1:16 G. Xu et al.

in copy chains, so that the resulting problem can be solved by the abstract dynamic
slicing framework presented in Section 2.

3.3. Copy Graph

The first abstraction is to merge all copy chains in a copy graph, so that nodes shared
among chains do not need to be maintained separately.

Definition 3.2. (Copy Graph). A copy graph G = (N , E) has node set N ⊆ AL∪IF ∪
SF ∪ {C}. Here AL is the domain of allocation sites Oi which serve as producer nodes
and do not have any incoming edges. IF is the domain of instance field nodes Oi .f . SF
is the domain of static field nodes. C is the consumer node; it has only incoming edges.
The edge set is E ⊆ N × Integer × Integer ×N . Each edge is annotated with two integer
values: the frequency of the heap copy and the number of copied bytes (i.e., 1, 2, 4, or
8).

There could be many different ways to map the run-time execution to these abstrac-
tions. The rest of this section describes the mapping used in our current work; future
work could explore other choices with varying cost, precision, and usefulness for tool
users.

Object naming. In order to exploit the abstract dynamic slicing algorithm, we first
need to determine how heap locations are abstracted in the copy graph, namely, the
object naming scheme.

To match the object naming scheme in the abstract dynamic slicing framework, an
allocation site is used to represent the set of run-time instances that it creates. Simi-
larly, all heap locations that an instance field dereference expression a.f represents are
projected to a set of nodes {Oi.f} such that the objects that a points to are projected to
set {Oi}. Applying this abstraction reduces the number of allocation site nodes AL and
instance field nodes IF . Each element of an array a is represented by a special field
node Oa .ELM , where Oa denotes the allocation site of a and ELM is the placeholder
for the field name in the abstraction. Individual array elements are not distinguished:
considering each element separately may introduce infeasible time and space over-
head.

For illustration, consider the partial copy graph in Figure 8(a). The figure shows
only paths starting from nodes in method main in the running example. An allocation
site is named Oi, where i is the number of the code line containing the site. Each copy
graph edge is annotated with two numbers: its frequency and the number of bytes it

copies. For example, edge O41
1000,4
−−−−→ O3.ELM copies the Integer objects created at line

41 into the array referenced by data1’s elems field. This edge consists of a sequence of
copies via parameter passing (line 41 and line 9). This sequence of copies occurs 1000

times, and each time 4 bytes of data are transferred. Both O41
1000,4
−−−−→ O3.ELM and

O3.ELM
1000,4
−−−−→ O3.ELM are hot edges: their frequencies and the total number of bytes

copied are much larger than those of other edges. When there exists a performance
problem in the program, a better design might be needed to eliminate these copies.

It is important to note again that nodes that represent different objects may be
merged due to the employed abstraction. For example, although variable t at line 9
points to different objects at run time, the array element node t[count++] is repre-
sented by a single node O3.ELM , regardless of the List object that owns the array.

Consider the self-pointing edge
1000,4
−−−−→ at node O3.ELM . The edge captures the data

flow illustrated in Figure 7. This sequence of copies moves object references from the
array pointed-to by O39.elems to the array pointed-to by O31.elems . Since both arrays

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1, Pub. date: January 1111.

Scalable Runtime Bloat Detection Using Abstract Dynamic Slicing 1:17

are represented by O3, their elements are merged into O3.ELM in the copy graph and
this self-pointing edge is generated.

Merging of nodes could lead to spurious copy chains that are inferred from the copy
graph. For example, from Figure 8(a), one could imprecisely conclude that both O41

and O44 will eventually be consumed, because both edges
1000,4
−−−−→ and

5,4
−−→ can lead to

consumer node C . The cause of the problem is the context-insensitive object naming
scheme, which maps each run-time object to its allocation site, regardless of the larger
data structure in which the object appears. In order to model copy chains more pre-
cisely, we introduce a context-sensitive object naming scheme.

Context sensitivity. When naming a run-time object, a context-sensitive copy graph
construction algorithm takes into account both the allocation site and the calling con-
text of the method in which the object is allocated. Existing static analysis work pro-
poses two major types of context sensitivity for object-oriented programs: call-chain-
based context sensitivity (i.e., k-CFA) [Shivers 1988], which considers a sequence of
call sites invoking the analyzed method, and object-sensitivity [Milanova et al. 2005],
in which the context is the sequence of static abstractions of the objects (i.e., allocation
sites) that are run-time receivers of methods preceding the analyzed method on the
call stack. Of particular interest for our work is the object-sensitive naming scheme
because, to a large degree, it reflects object ownership (cf. [Aldrich et al. 2002; Clarke
and Drossopoulou 2002; Boyapati et al. 2003; Heine and Lam 2003]) and is suitable
for improving the analysis precision for real-world applications making use of a large
number of object-oriented data structures.

Figure 8(b) shows the 1-object-sensitive version of the copy graph, in which an object
is named using its allocation site together with the allocation site of the receiver object
of the method in which the object is created. For objects created in a constructor, the
context is usually their run-time owner. By adding context sensitivity, paths that start
from O41 and O44 do not share any nodes. Note that there are no contexts for nodes
O39, . . . , O47 because they are created in static method main which does not have a
receiver object. Although longer context strings may increase precision, our tool limits
the length of the context to 1 since it could be prohibitively expensive (both in time and
space) to employ longer contexts in a dynamic analysis.

3.4. Instantiating the General Framework to Compute a Copy Graph

As we focus on transitive copies among heap locations, instructions that read from and
write to heap locations and that perform data computations are of particular interest
during the dependence profiling. In the original abstract dependence graph, there may
be sequences of dependence edges starting at an instruction (e.g., a) that reads a piece
of data from the heap, and ending at an instruction (e.g., b) that writes this data (after
being manipulated) back to the heap. Because in this section we are not interested
in how this piece of data is manipulated on the stack, the original abstract dynamic
slicing algorithm is optimized in a way so that we add (transitive) dependence edges
directly from a to b, abstracting away dependence relationships among stack copy in-
structions in the middle. Nodes representing (irrelevant) stack copy instructions can
thus be omitted in the dependence graph, leading to increased time and space effi-
ciency for the profiling.

Abstract domain D needs to be defined only for relevant instructions. The definitions
of D for different types of instructions are as follows:

• Alloc site a = new O: D = {ǫ};
• Computation a = b + c: D = {ǫ};
• Static field access a = A.f /A.f = a: D = {ǫ};

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1, Pub. date: January 1111.

1:18 G. Xu et al.

• Instance field access a = o.f /o.f = a:

D =















O for context-insensitive copy graph, where O is the set of allocation sites for

all possible run-time objects pointed by o;

O × C for 1-object-sensitive copy graph, where C is the set of allocation sites

for all possible receiver objects of the method containing the instruction;

For each allocation site and computation instruction, D is a singleton set that con-
tains the empty calling context, and all instances share one single dependence graph
node. This is because in the copy graph each allocation site is a producer and each
computation is a consumer, and we do not need to distinguish their instances. The
same handling is used for static field access, as each static field has one single loca-
tion node in the copy graph. For an instance field access that reads from/writes to o.f ,
D is defined in a way so that different heap locations that o.f may represent can be
distinguished. For a context-insensitive copy graph, o’s allocation sites are sufficient
to distinguish the different objects that o points to, and thus, D is simply defined as
a set of o’s allocation sites. For a context-sensitive copy graph, as heap locations are
differentiated using a combination of an object allocation site and an object context,
we define D as the Cartesian product of the set of allocation sites for o and the set of
allocation sites for the receiver object of the method containing the load/store. Hence,
the copy graph can be easily derived from the abstract dependence graph collected by
our abstract dynamic slicing framework.

As discussed in Section 1, in order to efficiently use abstract dynamic slicing, D
has to be a relatively small domain. However, for context-sensitive copy graph, D is
a Cartesian product Dorig × O × C, which can be large for real-world applications. To
make the context-sensitive copy profiling scalable, the size of D has to be significantly
reduced. Here we keep O while limiting the size of context set C to be a fixed number
s (short for “slots”), specified by the user as a parameter of the profiling tool. Now
the domain is still O for context-insensitive copy graph and it is simplified to O × [0,
s−1] for context-sensitive copy graph. An encoding function h is used to map an object
context (i.e., the allocation site of the receiver object) to such an integer. Here a simple
hash function context % c is employed to map the object context to a value in [0, c –1].
A default c value of 4 was used for the studies described in Section 3.6. Despite its
simplicity, very few contexts for an object have conflicts (i.e., they map to the same
value) when using this function (as reported in Section 3.7).

Profiling algorithm. Figure 9 shows a list of inference rules defining the
the customized abstract dynamic slicing algorithms. Each rule is of the form
V, E, S, P, T ⇒a:i=... V′, E′, S′, P′, T′ with unprimed and primed symbols representing
the state before and after the execution of statement a. In cases where a set does not
change (e.g., when S = S′), it is omitted. Node domain V contains nodes of the form
a〈alloc,h(c)〉, where a denotes the instruction, alloc denotes an allocation site ID, and h is
the encoding function that returns the encoded integer of the (context) allocation site
c. Dependence edge domain E : V×V is a relation containing dependence relationships
of the form al

� kn, which represents that an instance of a abstracted as al is data
dependent on an instance of k abstracted as kn. Shadow environment S : M → V maps
a run-time storage location to the content in its corresponding shadow location (i.e.,
to its tracking data). Here M is the domain of memory locations. For each location, its
shadow location contains the (address of the) node that performs the most recent write
to this location.

Domain P maps each run-time object (represented by Oi for variable i) to a pair
〈alloci, allocj〉, where alloci and allocj are the IDs of the allocation sites creating Oi

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1, Pub. date: January 1111.

Scalable Runtime Bloat Detection Using Abstract Dynamic Slicing 1:19

ALLOC

P
′ = P[Oi 7→ 〈allocID(new X), Po(Othis)〉]

V
′ = V ∪ {aǫ} S

′ = S[i 7→ aǫ]

V, S, P ⇒a:i=new X
V

′, S
′, P

′

ASSIGN

S
′ = S[i 7→ S(k)]}

V, E, S ⇒a:i=k
V

′, E
′, S

′

COMPUTATION

V
′ = V ∪ {aǫ} S

′ = S[i 7→ aǫ]
E
′ = E ∪ {aǫ

� S(k)} ∪ {aǫ
� S(l)}

V, E, S ⇒a:i=k⊕l
V

′, E
′, S

′

PREDICATE

V
′ = V ∪ {aǫ}

E
′ = E ∪ {aǫ

� S(i)} ∪ {aǫ
� S(k)}

V, E, S ⇒a:if (i>k){...}
V

′, E
′, S

′

LOAD STATIC

V
′ = V ∪ {aǫ} S

′ = S[i 7→ aǫ]

V, S ⇒a:i=A.f
V

′, S
′

STORE STATIC

V
′ = V ∪ {aǫ} E

′ = E ∪ {aǫ
� S(i)}

V, E ⇒a:A.f=i
V

′, E
′

LOAD FIELD

V
′ = V ∪ {a〈Po(Ov),h(Pc(Ov))〉}

S
′ = S[i 7→ a〈Po(Ov),h(Pc(Ov))〉}]

V, E ⇒a:i=v.f
V

′, E
′

STORE FIELD

V
′ = V ∪ {a〈Po(Ov),h(Pc(Ov))〉}

E
′ = E ∪ {a〈Po(Ov),h(Pc(Ov))〉

� S(i)}

V, E ⇒a:v.f=i
V

′, E
′

METHOD ENTRY

S
′ = S[ti 7→ T(i)] for 1 ≤ i ≤ n T

′ = ∅

S, T ⇒a:m(t1 ,t2,...,tn)
S
′, T

′

RETURN

T = ∅ T
′ = (S(i))

T ⇒a:return i
T

′

Fig. 9. Inference rules defining the customized abstract dynamic slicing algorithm.

and the receiver object of the method containing alloci, respectively. Po(Oi) and Pc(Oi)
are used to represent alloci and allocj , respectively. Based on the definitions of D for
different types of instructions (shown earlier in this section), all rules are defined in
expected ways. Dependence edges are added only among nodes representing instances
of relevant instructions. Thus, rule ASSIGN propagates tracking data (containing the
node that defines the original data), but does not add any dependence edge to the
dependence graph.

Note that the slicing algorithm shown in Figure 9 is a form of thin slicing [Sridharan
et al. 2007], a technique that considers only direct locations that are part of the data
flow in the generated slice, while filtering out locations that are indirectly used to
obtain the direct locations. For instance, for a seed statement a.f = b, its thin slice
consists of the statements that contribute to the generation of the value in location a.f ,
but excludes the statements that contribute to the generation of the object reference a.
This technique is particularly suitable for copy profiling, because we focus only on the
flow of data among heap locations and do not need to worry about the base pointers
via which heap locations are referenced.

The last two rules show the instrumentation semantics at the entry and the return
site of a method, respectively. At the entry of a method with n parameters, tracking
stack T contains the tracking data for the actual parameters of the call, as the n top
elements T(1), . . . , T(n). In rule METHOD ENTRY, the tracking data for a formal pa-
rameter ti is updated with the tracking data for the corresponding actual parameter
(stored in T(i)). The stack is updated by removing the tracking data for the actuals. At
the return site, T is updated to store the tracking data for the return variable i.

The rule for call sites is not shown in Figure 9, as it requires splitting a call site into
a call part and a return part, and reasoning about both of them. Immediately before
the call, the tracking data for the actual parameters is pushed on tracking stack T.
Immediately after the call, the tracking data for the returned value is popped from T

and used to update the dependence graph and the shadow location for the left-hand-
side variable at the call site. If the method invoked at the call site is a native method,
we create a node (without context) for it, and add edges between each node contained

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1, Pub. date: January 1111.

1:20 G. Xu et al.

in the shadow locations of the actual parameters and this node, representing that the
values of parameters are consumed by this native method.

Implementation of P and S. Although environments P and S have different mathe-
matical meanings, both are implemented using shadow locations. For each run-time
object Ov, the encoded context P(Ov) is implemented as Ov ’s tag stored in the location
corresponding to Ov ’s header in the shadow heap (shown in Figure 3).

From dependence graph to copy graph. It is straightforward to build a copy graph
from the dependence graph, as instruction instances in the dependence graph are ab-
stracted in the same way as heap locations in the copy graph are abstracted. For each
collected dependence graph edge ac → bd, a corresponding edge m → n is added into
the copy graph. The rules are outlined as follows:

• if a is an allocation site instruction, m is an allocation site node in the copy graph.
• if a (or b) is a computation instruction, a predicate instruction, or a call to a native

method, m (or n) is the consumer node C.
• if a (or b) is an instruction accessing static field, m (or n) is a static field node A.f .
• if a (or b) is an instruction accessing instance field, c (or d) must have the form
〈alloc, cxt〉. m (or n) is thus an instance field node, represented by alloc.f and
alloccxt .f , for the context-insensitive copy graph and the context-sensitive copy graph,
respectively.

Frequency information for each dependence edge is collected in the underlying
framework, which is annotated with the corresponding copy graph edge during the
copy graph building.

Data structure design. The data structure design for the copy graph is important for
minimizing overhead. The goal of the design is to allow efficient mapping from a run-
time heap location to its name (which in our analysis is a copy graph node address).
Figure 10 shows an overview of the data structures for the copy graph. Static field
nodes are stored in a singly-linked-list that is constructed at instrumentation time.
The node address is hard-coded in the generated executable code, so that the retrieval
of nodes does not contribute to running time (thus, the analysis does not need to use
the shadow locations for static fields). Each node has an edge pointer, which points to
a linked list of copy graph edges that leave this node. Edge adding occurs at run time.
If an existing edge is found for a pair of a source node and a target node, a new edge
is not added. Instead, the frequency field of the existing edge is incremented. The size
field (i.e., number of bytes) can be determined at compile time by inspecting the type
of data that the copy transfers.

Allocation site nodes and instance field nodes are implemented using arrays to allow
fast access. For each allocation site, a unique integer ID is generated at compile time
(the IDs start from 0). The ID is used as the index into an array of allocation head-
ers. Each allocation header corresponds to one ID, and points to an array of allocation
nodes and to an array of field nodes, both specific to this ID. For a context-insensitive
copy graph, the allocation node array for the ID has only one element. For the context-
sensitive copy graph that requires a unique allocation node for each calling context
(i.e., the allocation site ID of the receiver object of the surrounding method), each el-
ement of the allocation node array corresponds to a different calling context. In the
current implementation the array does not grow dynamically, thus the number of call-
ing contexts for each allocation site is limited to a pre-defined value c (as mentioned
earlier in this Section). We have experimented with different values of c and these
results are reported in Section 3.7.

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1, Pub. date: January 1111.

Scalable Runtime Bloat Detection Using Abstract Dynamic Slicing 1:21

:;< =;> ?;@

ABCD
EFGD

HIJKLDM
NJKO

<MDP QJRD SGL <MDP QJRD SGL

QLBLJT UJDVF KIFD

?IHW GMBHX DFGD

YBZ [BLB \LM]TL]MD UIM \LBLJT UJDVF KIFD\

^_ `abcd eaafgb hijakb ?l[EFGD

YmZ[BLB \LM]TL]MD UIM BVVITBLJIK KIFD\ BKF JK\LBKTD UJDVF\

KIFD\ UIM noImpDTLo\DK\JLJqD TIHW GMBHX

r

n

s

nrss QLMJKG

...

stuv QLMJKG

...

?l[<K EFGD

r Un

n Un

s Un

w Un

w Us

...

:VVIT

\JLD l[

?VB\\

HLM

:VVIT KIFD HLM

<JDVF KIFD

BMMBW HLM
?IKLDxL

l[

EFGD

HLM

?IKLDxL

l[

<JDVF

KBCD

EFGD

HLM

:VVITBLJIK KIFD BMMBW <JDVF KIFD BMMBW:VVITBLJIK XDBFDM BMMBW

w

Fig. 10. Data structure overview.

The field node array is created similarly. The order of different fields in the array is
dependent on the offsets of these fields in the class. We build a class metadata table at
the time the class is resolved by the JIT. The table sorts fields based on their offsets,
and maps each field to a unique ID (starting from 0) indicating its order in the field
node array. For each instance field declared in the type (and all its supertypes) instan-
tiated at the allocation site, there are 1 (i.e., for context-insensitive naming) or c (i.e.,
for 1-object-sensitive naming) entries in the field node array. For example, consider an
instance field dereference a.f for which the allocation site ID of the object pointed-to by
a is 1000, the corresponding context allocation ID is 245, the offset of f is 12, and this
offset (at compile time) is mapped to field ID i = class metadata [12]. The corresponding
copy graph node address can be obtained from the element with index c ∗ i + 245 % c in
the array pointed-to by column Fields of alloc headers [1000].

3.5. Copy Graph Client Analyses

This subsection presents three client analyses implemented in J9. These clients ana-
lyze the copy graph and generate reports that are useful for understanding run-time
behavior and pinpointing performance bottlenecks.

3.5.1. Hot Copy Chains. Given a copy chain with frequency n and data size s, its copy
volume is n × s. The copy volume of a chain is the total amount of data transmitted
along that chain. Chains with large copy volumes are more likely to be sources of per-
formance problem. Another important metric is chain length—the longer a copy chain
is, the more wasteful memory operations it contains. Considering both factors, we com-

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1, Pub. date: January 1111.

1:22 G. Xu et al.

pute a waste factor (WF) for each chain as the product of length and copy volume. The
goal of the hot chain analysis is to find copy chains that have large WF values.

The first issue is how to recover chains from copy graph edges. We use a brute-force
approach which traverses the copy graph and computes the set of all distinct paths
whose length is smaller than a pre-defined threshold value. If a path is a true copy
chain, all its edges should have the same frequency. Based on this observation, the WF
for each path is computed by using its smallest edge frequency as the path frequency.
The resulting copy graph paths are ranked based on their WF values, and the top
paths are reported. An example of a chain reported for benchmark antlr from DaCapo
is as follows:

(355162, 2):
array[antlr/PreservingFileWriter:61].ELM

— [java/io/BufferedWriter.write:198, 177581, 2] →
array[java/io/BufferedWriter:108].ELM

— [sun/io/CharToByteUTF8.convert:262, 177759, 2] →
array[sun/nio/cs/StreamEncoder$ConverterSE:237].ELM

The chain contains three nodes connected by two edges. The pair (355162,2) shows
the WF and the chain length. Each node in this example is an array element node. For
instance field nodes and array element nodes, the allocation site of the base object is
also shown. In this example, line 61 in class antlr.PreservingFileWriter creates the ar-
ray whose elements are the sources of the copy chain. An edge shows the method where
its last copy operation occurs (e.g., line 198 in method java.io.BufferedWriter.write),
the edge frequency (e.g., 177581), and the data size (e.g., 2 bytes).

3.5.2. Clone Detector. Many applications make expensive clones of objects. A cloned
object can be obtained via field-to-field copies from another object (e.g., as usually
done in clone methods), or by adding data held by another object during initializa-
tion (e.g., many container classes have constructors that can initialize an object from
another container object). Although clones are sometimes necessary, they indicate the
existence of wasteful operations and redundant data. For instance, in our running ex-
ample, deepClone initializes a new list by copying data from an existing list. Invoking
this method many times may cause performance problems. The goal of this analysis is
to find pairs of allocation sites, each of which represents the top (i.e., root) of a heap
object subgraphs, such that a large amount of data is copied from one subgraph to the
other.

For each copy graph edge O1.f
a,b
−−→ O2.g, where f and g are instance fields, the value

of a × b is counted as part of the direct flow from O1 to O2. The total direct flow for
pair (O1, O2) shows how many bytes are copied from fields of O1 to fields of O2. Next,
the analysis considers the indirect flow between objects. Suppose that some field of
O1 points to an object O3, and some field of O2 points to an object O4. Furthermore,
suppose that there is direct flow (i.e., some copy volume) from O3 to O4. In addition
to attributing this copy volume to the pair (O3, O4), we want to also attribute it to the
pair (O1, O2). This is done because O1 may potentially be the root of an object subgraph
for a data structure containing O3. Similarly, O2 may be the root of a data structure
containing O4. If copying is occurring for the entire data structures, the copy volume
reported for pair (O1, O2) should reflect this.

The analysis considers all objects Oi reachable from O1 along reference chains of
a pre-defined length (length 3 was used for the experiments). Similarly, all objects
Oj reachable from O2 along reference chains of this length are considered. The copy
volume reported for (O1, O2) is the sum of the direct copy volumes for all such pairs
(Oi, Oj), including the direct flow from O1 to O2. To determine all relationships of the
form “O′ points to O”, the analysis considers chains such that O is the producer node—

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1, Pub. date: January 1111.

Scalable Runtime Bloat Detection Using Abstract Dynamic Slicing 1:23

that is, the value propagated along the chain is a reference to O. For any field node
O′.h in such a chain, object O′ points to object O.

In the running example, deepClone illustrates this approach. At line 31, a new List
object is created. Its field elems points to an array which is initialized with the con-
tents of the array pointed to by the List created at line 39. In the first step of the
analysis, volume 4000 is associated with the two array objects (1000 copies of 4-byte
references to Integer objects). This volume is then also attributed to the two List ob-
jects, represented by pair (O39, O31), and to the two ListClient objects that own the
lists, represented by pair (O46, O32). Ultimately, the reason for this entire copy vol-
ume is the cloning of a ListClient object, even though it manifests in the copying of
the array data owned by this ListClient. Reporting the pair (O46, O32) highlights this
underlying cause.

3.5.3. Not Assigned to Heap (NATH). The third client analysis detects allocation sites
that are instantiated many times and whose object references do not flow to the heap.
For instance, O46 and O47 in the running example represent objects whose references
are never assigned to any heap object or static field. These allocation sites are likely
to represent the tops of temporary data structures that are constructed many times
to provide simple services. For example, we have observed an application that creates
GregorianCalendar objects inside a loop. These objects are used to construct the date
fields of other objects. This causes significant performance degradation, as construction
of GregorianCalendar objects is very expensive. In addition, these objects are usually
temporary and short-lived, which may lead to frequent garbage collection. A simple fix
that moves the object construction out of the loop can solve the problem. The escape
analysis performed by a JIT usually does not remove this type of bloat, because many
such objects escape the method where they are created, and are eventually captured
far away from the method. Using copy graph, this analysis can be easily performed by
finding all allocation nodes that do not have outgoing edges. These nodes are ranked
based on the numbers of times that they are instantiated. Using the information pro-
vided by this analysis, we have found in Eclipse 3.1 a few places where NATH objects
are heavily used. Running time reduction can be achieved after a simple manual opti-
mization that avoids the creation of these objects.

3.5.4. Other Potential Clients. There are a variety of performance analyses that can take
advantage of the copy graph. For example, one can measure and identify useless data
by finding nodes that cannot reach the consumer node, and by aggregating them based
on the objects that they belong to. As another example, developers of large applications
usually maintain a performance regression test suite, which will be executed across
versions of a program to guarantee that no performance degradation results from the
changes. However, these performance regression tests can easily fail due to bug fixes or
the addition of new features that involve extra memory copies and method invocations.
It is labor-intensive to find the cause of these failures. Differentiating the copy graphs
constructed from the runs of two versions of the program with the same input data can
potentially help pinpoint performance problems that are introduced by the changes. A
possible direction for future work is to investigate these interesting copy-graph-based
analyses.

3.6. Using Copy Profiles to Find Bloat

This subsection presents three case studies of using copy profiles, both flat and ones
derived from the copy graph, to pinpoint sources of useless work.

DaCapo bloat benchmark. Inspecting the total copy count of the DaCapo bloat bench-
mark, we found a high volume of data copies. Averaged across all method invocations,

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1, Pub. date: January 1111.

1:24 G. Xu et al.

28% of all operations were copies from one heap location to another. This indicated that
there were big opportunities for optimizing away excessive computations and tempo-
rary object construction.

When inspecting the cumulative copy profile (i.e., a copy profile that counts copies
in a method and any methods it invokes), we found that approximately 50% of all
data copies came from a variety of toString and append methods. Inspecting the
source code, we found that most of these calls centered around code of the form:
Assert.isTrue(cond, "bug: " + node). This benchmark was written prior to the ex-
istence of the Java assert keyword. This coding pattern meant that debugging logic
resulted in entire data structures being serialized to strings, even though most of the
time the strings themselves were unused; the isTrue method does not use the second
parameter, if the first parameter is true. We made a simple modification to eliminate
the temporary strings created during the most important copying methods1. This re-
sulted in a 65% reduction in objects created, and a 29–35% reduction in execution time
(depending on the JVM used; we tried Sun 1.6.0 10 and IBM 1.6.0 SR2).

The DaCapo suite is geared towards JVM and hardware designers. In the design of
this suite, it is important to distinguish inefficiencies that a JIT could possibly elimi-
nate from ones that require a programmer with good tools.

Java 5 GregorianCalendar. A recurring problem with the Java 1.5 standard li-
braries is the poor performance of calendar-related classes [Sun Java Forum]. Many
users experienced a 50× slowdown when upgrading from Java 1.4 to Java 1.5. The
problems centered around methods in class GregorianCalendar, which is an important
part of date formatting and parsing. We ran the test case provided by a user and
constructed a context-sensitive copy graph. The test case makes intensive calls of the
before, after, and equals methods. The report of hot copy chains includes a family of
hot chains with the following structure:

array[Calendar:907].ELM — [Calendar.clone:2168,510000] → array[Calendar:2169].ELM

This chain (and others similar to it, for the fields of a calendar) suggests that clone
is invoked many times to copy values from one Calendar to another. To confirm this,
we ran the clone detector and the top four pairs of allocation sites were as follows:

340000: (GregorianCalendar[GregorianCalendarTest:11],array[Calendar:2168])

340000: (array[Calendar:906],array[Calendar:2168])

340000: (array[Calendar:907],array:[Calendar:2169])

340000: (array[Calendar:908],array[Calendar:2170])

The first pair shows that an array created at line 2168 of Calendar gets a large amount
of data from the GregorianCalendar object created in the test case. The remaining
three pairs of allocation sites also suggest the occurrence of clones, because the first
group of objects (i.e., at lines 906, 907, 908) are arrays created in the constructor of
Calendar, while the second group (i.e., at lines 2168, 2169, and 2170) are arrays cre-
ated in clone. By examining the code, we found that clone creates a new object by
deep copying all array fields from the old Calendar object. These copies also include the
cloning of a time zone from the zone field of the existing object. Upon further inspec-
tion, we found the cause of the slowdown: methods before, after, and equals invoke
method compareTo to compare two GregorianCalendar objects, which is implemented
by comparing the current times (in milliseconds) obtained from these objects. How-

1We commented out the toString methods of Block, FlowGraph, RegisterAllocator, Liveness, Node, Tree,
Label, MemberRef, Instruction, NameAndType, LocalVariable, Field, and Constant.

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1, Pub. date: January 1111.

Scalable Runtime Bloat Detection Using Abstract Dynamic Slicing 1:25

ever, getMillisof does not compute time directly from the existing calendar object,
but instead makes a clone of the calendar and obtains the time from the clone.

The JDK 1.4 implementation of Calendar does not clone any objects. This is because
the 1.4 implementation of getMillisof mistakenly changes the internal state of the
object when computing the current time. In order to avoid touching the internal state,
the implementers of JDK 1.5 made the decision to clone the calendar and get the time
from the clone. Of course, it is not a perfect solution as it fixes the original bug at the
cost of introducing a significant performance problem. Our tool highlighted the useless
work being done in order to work around the getMillisof issue. We have looked at the
top 20 pairs reported by the clone detector and found that all of them revealed heavy
copies between the reported data structures. These copies are not necessarily object
clones (e.g., a method call list1.addAll(list2) would make the clone detector report
the pair <list1, list2> while they are not true clones), but they all indicate problems
that need to be fixed for improved performance.

DaCapo eclipse benchmark. As a large framework-based application, Eclipse suffers
from performance problems that result from the pile-up of wasteful operations in
its plugins. These problems impact usability, and even programmers’ choice when
comparing Java development tools [Java Development Blog 2009]. We ran Eclipse 3.1
from the DaCapo benchmark set and used the NATH analysis to identify allocation
sites whose run-time objects are never assigned to the heap. The top nine allocation
sites are shown the below table:

Table II. The top 9 allocation sites reported for Eclipse 3.1.

Rank Frequency Detailed Description

1 295,004 org/eclipse/jdt/internal/compiler/ISourceElementRequestor$MethodInfo[SourceElementParser:968]
2 161,169 .../SimpleWordSet[SimpleWordSet:58]
3 145,987 .../ISourceElementRequestor$FieldInfo[SourceElementParser:1074]
4 46,603 .../ContentTypeCatalog$7[ContentTypeCatalog:523]
5 46,186 .../ISourceElementRequestor$TypeInfo[SourceElementParser:1190]
6 45,813 .../Path[PackageFragment:309]
7 44,703 .../Path[CompilationUnit:786]
8 37,201 .../ContentTypeHandler[ContentTypeMatcher:50]
9 30,939 .../HashtableOfObject[HashtableOfObject:123]

Each line shows an allocation site and the number of times it is instantiated. For
example, the first line is for an allocation site at line 968 in class SourceElementParser,
which creates 295004 objects of type ISourceElementRequestor$MethodInfo. Sites 4
and 8 are from plugin org.eclipse.core.resources. The remaining sites are located in
org.eclipse.jdt.core. Because the Eclipse 3.1 release does not contain the source code
for org.eclipse.core.resources, we inspected only the seven sites in the JDT plugin.

The first site is located in class SourceElementParser, which is a key part of the
JDT compiler. JDT provides many source code manipulation functionalities that can
be used for various purposes, such as automated formatting and refactoring. The ob-
server pattern is used to provide source code element objects when a client needs them.
Method notifySourceElementRequestor, which contains this site, plays the observer
role: once a requester (i.e., a client) asks for a compilation unit node (i.e., a class),
the method notifies all child elements (i.e., methods) of the compilation unit by calling
method enterMethod, which will subsequently notify source code statements in each
method. Method enterMethod takes a MethodInfo object as input; this object contains
all necessary information for the method that needs to be notified.

The site creates MethodInfo objects which are then provided to enterMethod. Be-
cause enterMethod is defined in an interface, we checked all implementations of the

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1, Pub. date: January 1111.

1:26 G. Xu et al.

Table III. Eclipse 3.1 performance problems, fixes, and performance improvements.

Class Site# Modification #Total Objs #GCs Time(s)

Original — — 273,991,250 478 143.6
MethodInfo, Field- 1, 3, 5 Directly pass the data 272,461,138 460 139.6
Info, TypeInfo
PackageFragment 6, 7 Get IResource 272,429,471 448 138.3

directly from String
SimpleWordSet 2 In-place rehash 272,395,776 430 136.8
HashtableOfObject 9 In-place rehash 272,320,499 424 134.0
Total Reduction — — 1,670,751 54 9.6

method. Surprisingly, none of these implementations invoke any methods on this pa-
rameter object. They extract all information about the method to be notified from fields
of the object; these fields are previously set by notifySourceElementRequestor. The
third and the fifth allocation sites from above tell the same story: these hundreds of
thousands of objects are created solely for the purpose of carrying data across one-level
method invocations. It is expensive to create and reclaim these objects, and to perform
the corresponding heap copies. We modified the interface and all related implementa-
tions to pass data directly through parameters. This modification reduces the number
of allocated objects by millions and improves the running time by 2.8%. In large appli-
cations with no single hot spot, significant performance improvements are possible by
accumulating several such “small” improvements, as illustrated below.

Table III shows a list of several problems we identified with the help of the anal-
yses. For each problem, the table shows the problematic class (Class), the IDs of its
corresponding allocation sites in Table II, our code modification, the number of total
allocated objects (#Objs), the total number of GC invocations (#GCs), and the run-
ning times. Row Original characterizes the original execution. By modifying the code
to eliminate redundant copies and the related creation of objects, we successfully re-
duced the number of GC runs, the number of allocated objects, and the total running
time. With the help of the tool, it took us only a few hours to find these problems and
to make modifications in a large application we had never studied before.

It is important to note that this effort just scratches the surface: significant perfor-
mance improvement may be possible if a developer or a performance expert carefully
examines the tool reports (with different tests and workloads) and eliminates the iden-
tified useless work. This is the kind of manual tuning that is already being done today
for large Java applications with performance problems that cannot be attributed to a
single hot spot. This tedious and labor-intensive process can be made more efficient
and effective by the dynamic analyses proposed in our work. Future studies should
investigate such potential performance improvements for a broad range of Java appli-
cations.

3.7. Copy Graph Characteristics

This subsection presents characteristics of the copy graph and its construction. The
maximum heap size specified for each run was 500Mb. Hence, the size of shadow for
each run was 500Mb. IBM DMS is the IBM document management server, which is
run on top of a J2EE application server. Each DaCapo benchmark (in the DaCapo 9.12
version) was run with large workload for two iterations, and the running time for the
second iteration is shown. SPECjbb and IBM DMS are server applications that report
throughput, not total running time; both were run for 30 minutes with a standard
workload.

Table IV presents the time and space overhead of context-insensitive copy graphs.
The second column, labeled Torig , presents the original running times in seconds. The

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1, Pub. date: January 1111.

Scalable Runtime Bloat Detection Using Abstract Dynamic Slicing 1:27

Table IV. Copy graph size and time/space overhead, part 1. Shown are the original
running time Torig , as well as the total numbers of graph nodes N0 and edges E0,
the total amount of memory consumed M0, the running time T0, and the slowdown
(shown in parentheses) when using a context-insensitive copy graph.

Program Original Context-insensitive
Torig (s) #N0 #E0 M0(Mb) T0(s) (×)

antlr 8·9 12516 56703 503.7 284·2(31.9)
bloat 157·5 14058 14471 502.2 9812·2(62.4)
chart 32·5 18113 12810 502.5 1053·2(32.4)
fop 3·6 12419 7675 501.8 38·2(10.6)
pmd 46·6 11289 8418 501.7 1542·4(33.1)
jython 74·7 25653 21893 503.2 2826·1(37.8)
xalan 64·8 13505 28678 502.6 3030·5(46.8)
hsqldb 13·5 12294 9102 501.7 350·0(25.9)
luindex 12·1 10154 10227 501.6 583·4(48.2)
lusearch 19·2 8390 13849 501.5 662·8(34.5)
eclipse 124·7 34074 52957 506.5 4343·8(34.8)
SPECjbb 1800·0∗ 17146 12637 502.4 1800·0∗
IBM DMS 1800·0∗ 147517 87531 519.6 1800·0∗

remaining columns show the total numbers of nodes N0 and edges E0, the amount of
memory M0 needed by the analysis (in megabytes), the running times T0 (in seconds),
and the performance slowdowns (shown in parentheses). The slowdown for each pro-
gram is T0/Torig. Because the shadow heap is 500Mb, the space overhead of the copy
graph is M0–500. In Table V, Table VI, and Table VII, the same measurements are
reported for 1-object-sensitive copy graphs. To understand the impact of the number of
context slots (i.e., parameter c from Section 3.3), we experimented with values 4, 8 and
16 when constructing the 1-object-sensitive copy graph. The slowdown for each pro-
gram was calculated as Ti/Torig (the original time from Table IV), where i ∈ {4, 8, 16}.

The copy graph itself consumes a relatively small amount of memory. Other than
for IBM DMS, the space overhead of the copy graph does not exceed 27Mb even when
using 16 context slots. As expected, a context-sensitive copy graph consumes more
memory than the context-insensitive one, and using more context slots leads to larger
space overhead.

The running time overheads for profiling the context-insensitive copy graph and the
three versions of 1-object-sensitive copy graphs are, on average, 36×, 37×, 37×, and
37× respectively. This overhead is not surprising because the analysis tracks the exe-
cution of every instruction in the program. The overhead also comes from synchroniza-
tion performed by the instrumentation of allocation sites, which sequentially executes
the allocation handler to create allocation header elements. The current implementa-
tion provides a general facility for mapping an object address to a context ID. This
is done even for the context-insensitive analysis, where the ID is always 0. Since the
cost of this mapping is negligible, we have not created a specialized context-insensitive
implementation. Hence, the difference between the running times of profiling context-
insensitive and context-sensitive copy graphs is noise. The only significant difference
between context-insensitive and context-sensitive analysis is the space overhead.

Although significant, these overheads have not hindered us from running the tool
on any programs, including real world large-scale production applications. It was an
intentional design decision not to focus on the performance of the analysis, but instead
focus on the content collected and on demonstrating that the results are useful for
finding performance problems in real programs. A possible future direction is to use
sampling-based profiling to obtain the same or similar results. Another possibility is
to employ static pre-analyses to reduce the cost of the subsequent dynamic analysis.

Table VIII shows measurements for the copy chains obtained from a context-
insensitive copy graph, including the total number of generated chains (#Chains) and
the average length of these chains (Length). The table also shows the number of NATH

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1, Pub. date: January 1111.

1:28 G. Xu et al.

Table V. Copy graph size and time/space overhead, part 2. The
columns report the same measurements as Table IV, but for 1-
object sensitive copy graph with 4 context slots.

Program 1-object-sensitive (c = 4)
#N4 #E4 M4(Mb) T4(s) (×)

antlr 48556 112907 506.9 294·8(33.1)
bloat 54960 35678 504.3 10182·9(64.7)
chart 69438 25951 504.6 1079·4(33.2)
fop 47893 11985 503.1 37·4(10.4)
pmd 43740 15576 503.0 1586·7(34.0)
jython 95493 32256 505.8 2865·6(38.4)
xalan 52485 55367 504.9 2983·3(46.0)
hsqldb 47666 13432 503.0 358·0(26.5)
luindex 39319 17695 502.8 568·7(47.0)
lusearch 32354 22163 502.6 643·5(33.5)
eclipse 131065 124043 512.3 4521·5(36.3)
SPECjbb 66102 23909 503.3 1800·0∗
IBM DMS 193707 180187 533.7 1800·0∗

Table VI. Copy graph size and time/space overhead, part 3. The columns
report the same measurements for 1-object sensitive copy graph with 8
context slots.

Program 1-object-sensitive (c = 8)
#N8 #E8 M8(Mb) T8(s) (×)

antlr 96609 159042 510·2 300·7(33.8)
bloat 109494 48840 506·5 10147·4(64.4)
chart 137945 39133 507·3 1054·4(32.4)
fop 95180 13509 504·6 37·2(10.3)
pmd 86980 19568 504·5 1568·5(33.7)
jython 188583 37005 509·0 2879·9(38.6)
xalan 85751 88001 507·7 3067·6(47.3)
hsqldb 94846 15201 504·6 346·7(25.7)
luindex 78232 22912 504·3 581·1(48.0)
lusearch 64280 26629 503·8 651·6(33.9)
eclipse 259168 154004 517·4 4545·3(36.4)
SPECjbb 131413 27660 507·2 1800·0∗
IBM DMS 381072 242049 571·2 1800·0∗

Table VII. Copy graph size and time/space overhead, part 4. The
columns report the same measurements for 1-object sensitive copy
graph with 16 context slots.

Program 1-object-sensitive (c = 16)
#N16 #E16 M16(Mb) T16(s) (×)

antlr 192713 210522 515.2 309·5(34.8)
bloat 218558 60483 510.5 10068·2(63.9)
chart 274903 45071 511.9 1056·5(32.5)
fop 189757 14388 507.7 36·8(10.2)
pmd 173484 21339 507.3 1555·5(33.4)
jython 374791 41027 515.0 2861·4(38.3)
xalan 208119 117760 512.2 3067·6(47.3)
hsqldb 189183 17190 507.7 345·9(25.6)
luindex 156033 28333 507.0 564·8(46.7)
lusearch 128152 32544 506.1 658·4(34.3)
eclipse 516030 174846 526.4 4746·4(38.1)
SPECjbb 261915 29017 511.0 1800·0∗
IBM DMS 755829 304759 652.3 1800·0∗

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1, Pub. date: January 1111.

Scalable Runtime Bloat Detection Using Abstract Dynamic Slicing 1:29

Table VIII. Copy chains and NATH objects. All copy graph paths with
length ≤ 5 are traversed to compute hot chains. The columns show the
total number of generated chains, the average length of these chains,
and the number of NATH allocation sites and NATH run-time objects.

Program #Chains Length #NATH Sites #NATH Objects

antlr 250680 2.60 811 411536
bloat 6955316 4.00 1160 31217025
chart 29490 1.16 1652 15080848
fop 275835 3.36 1282 167808
pmd 436397 2.96 1062 54103059
jython 6827057 4.00 493 35926287
xalan 93263 2.60 1218 6186112
hsqldb 8595 1.80 828 3059666
luindex 30183 2.24 749 5543579
lusearch 10640 3.8 302 4200325
eclipse 10070910 1.24 3030 3494187
SPECjbb 21468 2.00 575 722800
IBM DMS 1937646 3.75 4695 1413528

Table IX. Average node fan-out for context-insensitive (CIFO) and context-sensitive
(CSFO-i) copy graphs, as well as average context conflict ratios (CCR-i) for the
context-sensitive copy graphs.

Program Average fan-out Context conflict ratio
CIFO CSFO-4 CSFO-8 CSFO-16 CCR-4 CCR-8 CCR-16

antlr 4.66 2.33 1.64 1.09 0.237 0.131 0.081
bloat 1.03 0.64 0.44 0.27 0.199 0.090 0.068
chart 0.70 0.36 0.28 0.16 0.118 0.059 0.028
fop 0.62 0.25 0.15 0.08 0.134 0.060 0.043
pmd 0.75 0.35 0.22 0.12 0.131 0.059 0.051
jython 0.80 0.31 0.18 0.10 0.079 0.071 0.024
xalan 2.13 1.79 0.81 0.56 0.128 0.067 0.040
hsqldb 0.74 0.28 0.16 0.09 0.169 0.080 0.051
luindex 1.02 0.45 0.29 0.18 0.148 0.073 0.051
lusearch 1.68 0.68 0.41 0.25 0.127 0.082 0.052
eclipse 1.53 0.91 0.57 0.33 0.193 0.114 0.071
SPECjbb 0.75 0.36 0.21 0.11 0.144 0.065 0.026
IBM DMS 0.76 0.32 0.17 0.09 0.112 0.047 0.027

allocation sites and NATH run-time objects. The significant numbers of NATH objects
indicate that eliminating such objects may be a worthwhile goal for future work on
manual and automatic optimizations.

The first part of Table IX lists the average node fan-out for the context-insensitive
copy graph (CIFO) and the three versions of context-sensitive copy graphs (CSFO-i,
where i is the number of context slots for each object). A node’s fan-out is the number
of its outgoing edges. The average fan-out indicates the degree of node sharing among
paths in the graph. Note that CIFO and CSFO-i are small, because there exist a large
number of producer nodes (allocation site) that do not have outgoing edges. In addition,
the more slots are used to represent contexts, the smaller the average fan-out, because
more nodes are created to avoid path sharing.

In addition, for each context-sensitive copy graph, the table reports the average con-
text conflict ratio (CCR-i). The CCR for an object o is defined as follows:

CCR-i(o) =

{

0 max0≤k≤i (nc[k]) = 1

max (nc[k])/
∑

nc[k] otherwise

Here nc[k] represents the number of distinct contexts that fall into context slot k.
The CCR value captures the degree to which our encoding function (i.e., id % k) causes
distinct contexts to be merged in the copy graph. For example, the CCR is 0 if each
context slot represents at most one distinct context; the CCR is 1 if all contexts for
the object fall into the same slot. The table reports the average CCR for all allocation

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1, Pub. date: January 1111.

1:30 G. Xu et al.

sites in the copy graph. As expected, the average CCR decreases with an increase in
the number of context slots. Note that very few context conflicts occur even when c = 4,
because a large number of objects have only one distinct context during their lifetimes.

Summary. The study presented in this section confirms that data-based activities
(e.g., copying of data) can sometimes be more interesting than control-based activities
(e.g., method invocations) in bloat detection. When method invocation counts and exe-
cution times fail to expose performance bottlenecks (e.g., in the document management
server), these data-oriented observations become valuable and more informative. This
section also demonstrates that the abstract dynamic slicing framework can be easily
instantiated to collect run-time dataflow-based information. Excessive copying is just
one example of such an activity. The next section describes another (more complex)
instantiation of the framework to find high-cost-low-benefit data structures.

4. COMPUTING COSTS AND BENEFITS TO FIND LOW-UTILITY DATA STRUCTURES

One primary symptom of runtime bloat is an imbalance between costs and benefits.
The costs of forming a data structure, of computing and storing its values, are out of
line with the benefits gained over the uses of those values. In this section, we focus
on these low-utility data structures. A data structure has low utility if the cumulative
costs of creating its member fields outweighs a weighted sum over the subsequent uses
of those fields. We show how the costs and benefits of data structures can be obtained
from the abstract dynamic slicing framework.

4.1. Cost Computation

Definition 4.1. (Absolute Cost). Given a non-abstract thin data dependence graph
G and an instruction instance aj (a ∈ I, j ∈ N) that produces a value v, the absolute
cost of v is the number of nodes that can reach aj in G.

We first define the absolute cost of a run-time value as the total number of bytecode
instructions transitively required to produce it; each instruction is treated as having
unit cost. Here we still use thin slicing [Sridharan et al. 2007], because the cost of a
pointer value (e.g., a) should not be attributed to the cost of the value computed from
the heap location (e.g., a.f) accessed through the pointer a. Absolute costs are expen-
sive to compute and it does not make much sense to present them to the programmer,
unless they are aggregated in some meaningful way across instruction instances so
that they can help understand the overall execution. To mitigate the problem, we pro-
pose to compute abstract costs instead of absolute costs. Unlike an absolute cost that is
computed based on a concrete dependence graph, an abstract cost is computed based on
an abstract dependence graph, obtained from the abstract dynamic slicing framework
presented in Section 2. Therefore, the computation of abstract costs is much more effi-
cient than that of absolute costs. The abstraction we use to instantiate the framework
is described as follows.

Each instruction instance in the concrete dependence graph is abstracted based on
dynamic calling contexts. Similarly to copy graph profiling in Section 3, contexts are
represented by object sensitivity [Milanova et al. 2005], which is well suited for model-
ing of object-oriented data structures. However, unlike 1-object-sensitivity in Section 3
that only uses one-level receiver objects for contexts, a calling context for an instruc-
tion in this technique is represented by the entire chain of receiver objects for the in-
vocation of the instruction, which is potentially more precise than 1-object-sensitivity.
Thus, domain Dcost contains all possible chains of allocation sites. Abstraction func-
tion is defined as fa(j) = objCon(cs(aj)), where function cs takes a snapshot of the call
stack when aj is executed, and function objCon (i.e., short for object-concatenation)

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1, Pub. date: January 1111.

Scalable Runtime Bloat Detection Using Abstract Dynamic Slicing 1:31

y z{|}} ~�

� ��� � � ��

� ��� ������|{���

� ������ ���}��� �

� ���� ������� ���

� ��� � � ��

� ��� | � ��

� ��� � � ��

� ��� ���|{ � ��

y� ���� � ���

yy | � | � ��

y� � � � � ��

y� ���� � �����

y� ���|{ � ���|{ � |�

y� �{}�

y� ���|{ � ���|{ � ��

y� � � � � y�

y� ���� y�� �

y� ���}� � � ���|{� ��

�� z{|}} ��¡�}��

�y ���¢£ |���

�� ��� }�¤��

�� ¡�}��� �

�� ���¢£ �¥¦ � ��§ ���¢y��£�

�� ���}�|�� � �¥¦�

�� }�¤� � �� �

�� ���� |������ ���

�� |��¢}�¤�£ � ��

�� ���}�}�¤� � ���}�}�¤� � y�

�� ��

�y ���� ¥|�����

�� ��¡�}� { � ��§ ��¡�}����

�� ~ � � ��§ ~���

�� ������y�����

�� ��� } � ��������|{���

�� {�|���}��

�� �

�� �

�|�

¨©
ª««

©
ª«« ¬

ª««
­
ª««

¨¨
ª«« ¨®

ª««

¨¯
ª««

¨¬
ª««

°
ª««

±²³

´µ
¶

®­
ª«·

¨°
ª««

®µ
ª«·

®¬
ª«·

±¸³

¹º»¼½¾º º¿Àº Áº»ºÂºÃ¸º º¿Àº

ÄÅÆÇ ÈÉ
ÊËÌ

ÈÉ
ÊËÍ

ÎÉ
ÊËÌ

ÎÉ
ÊËÍ

O24 O32 Ï Ð Ï Ð

O32
Ñ Ò Ó Ô Ó

O33
 Ñ ÒÕÕÖ Ò ÒÕÕÖ Ò

××
Ø

ÙÚÛ

×Ü
Ø

ÜÝ
Þßà

Ý
Þßß

Üá
Þßà

âãäå æçåè éê âãäå æçåè éê
6O33 ë ë 12O33 ëììì íììí

7O33 ë ë 14O33 îìì íîìï

8O33 ë ë 16O33 îìì ðììð
9O33 ë ë 17O33 ëììì ëììë
11O33 ëììì íììí 19O33 ë ðììî

Fig. 11. (a) Code example; (b) Corresponding dependence graph Gcost; nodes in boxes/circles write/read
heap locations; underlined nodes create objects; (c) Nodes in method A.foo (Node), their frequencies (Freq),
and their abstract costs (AC); (d) Relative abstract costs i-RAC and benefits i-RAB for the three allocation
sites; i is the level of reference edges considered.

maps this snapshot to the corresponding chain of allocation sites Oi for the run-time
receiver objects.
Dcost is unbounded in the presence of recursion, and even for a recursion-free pro-

gram its size is exponential. Similarly to the context reduction approach used in Sec-
tion 3, we limit the size of Dcost further to be a fixed number s, specified by the user
as a parameter of the profiling tool. Now the domain is simply the set of integers 0 to
s−1. Similarly, an encoding function h is designed to map an allocation site chain to
such an integer; the description of h will be presented shortly. With this approach, the
amount of memory required for the analysis is linear in program size.

Each node in the dependence graph is annotated with an integer, representing the
execution frequency of the node. Based on these frequencies, an abstract cost for each
node can be computed as an approximation of the sum of the absolute costs of values
produced by the instruction instances represented by the node.

Definition 4.2. (Abstract Cost). Given an abstract dependence graph Gcost , the ab-
stract cost of a node nk is defined as Σaj |aj;nk freq(aj), where aj

; nk if there is a path

from aj to nk in Gcost , or aj = nk.

Example. Figure 11 shows a code example and its dependence graph for cost com-
putation. While some statements (line 29) may correspond to multiple bytecode in-
structions, they are still considered to have unit costs. These statements are shown for
illustration purposes and will be broken into multiple ones by our tool.

All nodes are annotated with their object contexts (i.e., elements of Dcost). For ease
of understanding, the contexts are shown in their original forms, and the tool actually
uses the encoded forms (through function h). Nodes in boxes represent instructions
that write to heap locations. Dashed arrows represent reference edges; these edges
can be ignored for now. The table shown in part (c) lists nodes for the execution of
method A.foo (invoked by the call site at line 34), their frequencies, and their abstract
costs.

The abstract cost of a node computed by this approach may be larger than the exact
sum of absolute costs of the values produced by the instruction instances represented
by the node. This is because for a node a such that a ; n, there may not exist any
dependence between some instruction instances of a and some instruction instances

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1, Pub. date: January 1111.

1:32 G. Xu et al.

of n. This difference can be large when the abstract cost is computed after traversing
long dependence graph paths, and the imprecision gets magnified. More importantly,
this cost represents the cumulative effort that has been made from the very beginning
of the execution to produce the values. It may still not make much sense for the pro-
grammer to diagnose problems using abstract costs, as it is almost certain that nodes
representing instructions executed later will have larger costs than those representing
instructions executed earlier. In Section 4.2, we address this problem by computing a
relative abstract cost, which measures execution bloat at the object level by traversing
dependence graph paths connecting nodes that read and write object fields.

Special nodes and edges in Gcost . To measure bloat, we augment the graph with
two special kinds of nodes: predicate nodes and native nodes, both representing the
consumption of data. A predicate node is created for each if statement, and a native
node is created for each call site that invokes a native method. These nodes do not have
associated contexts. In addition, we mark nodes that allocate objects (underlined in
Figure 11 (b)), that read heap locations (nodes in circles), and that write heap locations
(nodes in boxes). These nodes are later used to identify object structures.

Reference edges are used to represent reference relationships. For each heap store
a.f = b, a reference edge is created to connect the node representing this store (i.e., a
boxed node) and the node allocating the object that flows to a (i.e., an underlined node).
For example, there exists a reference edge from 28O32 to 24O32 , because 24O32 allocates
the array object and 28O32 stores an integer to the array (which is similar to writing an
object field). These edges will be used to aggregate costs for individual heap locations
to form costs for objects and data structures.

4.1.1. Instantiating the Framework to Compute Gcost .

Selecting encoding function h. There are two steps in mapping an allocation site
chain to an integer d ∈ Dcost (i.e., [0, . . . , s−1]). The first step is to encode the chain
into a probabilistically unique value that will accurately represent the original object
context chain. An encoding function proposed in [Bond and McKinley 2007] is adapted
to perform this mapping: gi = 3 * gi−1 + oi, where oi is the i-th allocation site ID in
the chain and gi−1 is the probabilistic context value computed for the chain prefix with
length i−1. While simple, this function exhibits very small context conflict rate, as
demonstrated in [Bond and McKinley 2007]. In the second step, this encoded value is
mapped to an integer in the range [0, . . . , s−1] using a simple mod operation.

Computing cost from the abstract dependence graph Gcost. Figure 12 shows a list of
inference rules (similar to those in Figure 9) defining the customized abstract dynamic
slicing algorithm for cost computation. Similarly, node domain V contains nodes of the
form ah(c), where a denotes the instruction and h(c) denotes the encoded integer of the
object context c. Edge domain E : V × V is a relation containing dependence relation-
ships of the form al

� kn, which represents that an instance of a abstracted as al is
data dependent on an instance of k abstracted as kn. Shadow environment S : M → V

maps a run-time storage location to the content in its corresponding shadow location
(i.e., to its tracking data). M is the domain of memory locations. For each location,
its shadow location contains the (address of the) node that performs the most recent
write to this location. Rules ASSIGN, COMPUTATION, PREDICATE, LOAD STATIC, and
STORE STATIC update the environments in expected ways. In rule PREDICATE, in-
struction instances are not distinguished and the node is represented by aǫ.

Rules ALLOC, LOAD FIELD and STORE FIELD additionally update heap effect envi-
ronment H, which is used to construct reference edges in Gcost . H : V → Z maps a node
al ∈ V to a heap effect triple (type, alloc, field) ∈ domain Z of heap effects. Here, type
can be ′U ′ (i.e., underlined) representing the allocation of an object, ′B ′ (i.e., boxed)

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1, Pub. date: January 1111.

Scalable Runtime Bloat Detection Using Abstract Dynamic Slicing 1:33

ASSIGN

V
′ = V ∪ {ah(c)} S

′ = S[i 7→ ah(c)]

E
′ = E ∪ {ah(c)

� S(k)}

V, E, S ⇒a:i=k
V

′, E
′, S

′

COMPUTATION

V
′ = V ∪ {ah(c)} S

′ = S[i 7→ ah(c)]

E
′ = E ∪ {ah(c)

� S(k)} ∪ {ah(c)
� S(l)}

V, E, S ⇒a:i=k⊕l
V

′, E
′, S

′

PREDICATE

V
′ = V ∪ {aǫ}

E
′ = E ∪ {aǫ

� S(i)} ∪ {aǫ
� S(k)}

V, E, S ⇒a:if (i>k){...}
V

′, E
′, S

′

LOAD STATIC

V
′ = V ∪ {ah(c)} S

′ = S[i 7→ ah(c)]

E
′ = E ∪ {ah(c)

� S(A.f)}

V, E, S ⇒a:i=A.f
V

′, E
′, S

′

STORE STATIC

V
′ = V ∪ {ah(c)} S

′ = S[A.f 7→ ah(c)]

E
′ = E ∪ {ah(c)

� S(i)}

V, E, S ⇒a:A.f=i
V

′, E
′, S

′

ALLOC

V
′ = V ∪ {ah(c)} S

′ = S[i 7→ ah(c)]

H
′ = H[ah(c) 7→ (′U ′, (new X)h(c),′ ′)]

P
′ = P[Oi 7→ (new X)h(c)]

V, H, S, P ⇒a:i=new X
V

′, H
′, S

′, P
′

LOAD FIELD

V
′ = V ∪ {ah(c)} S

′ = S[i 7→ ah(c)]

E
′ = E ∪ {ah(c)

� S(Ov .f)}

H
′ = H[ah(c) 7→ (′C ′, P(Ov), f)]

V, E, H, S ⇒a:i=v.f
V

′, E
′, H

′, S
′

STORE FIELD

V
′ = V ∪ {ah(c)} S

′ = S[Ov .f 7→ ah(c)]

E
′ = E ∪ {ah(c)

� S(i)}

H
′ = H[ah(c) 7→ (′B ′, P(Ov), f)]

V, E, H, S ⇒a:v.f=i
V

′, E
′, H

′, S
′

METHOD ENTRY

S
′ = S[ti 7→ T(i)] for 1 ≤ i ≤ n

T
′ = (T(n + 1) ◦ ALLOCID(P(Othis)))

S, T ⇒a:m(t1 ,t2,...,tn)
S
′, T

′

RETURN

T = (c) T
′ = (S(i))

T ⇒a:return i
T

′

Fig. 12. Inference rules defining the customized abstract dynamic slicing for cost computation.

representing a field store, or ′C ′ (i.e., circled) representing a field load. Elements al-
loc and field denote the object and the field on which the effect occurs. For instance,
triple (′U ′, O, ′ ′) means that a node contains an allocation site O, while triple (′B ′,
O, f) means that a node writes to field f of an object created by allocation site O. A
reference edge can be added between a (store) node with effect (′B ′, O, ∗) and another
(allocation) node with effect (′U ′, O, ′ ′), where ∗ represents any field name. In order
to perform this matching, we need to provide access to the allocation site ID for each
run-time object. This is done using tag environment P that maps a run-time object to
its allocation site ID.

However, the reference edge could be spurious if the store node and the allocation
node are connected using only allocation site ID O, because the two effects (i.e., ′B ′ and
′U ′) could occur on different instances created by O. To improve the precision of the
client analyses, object context is used again to annotate allocation sites. For example,
in rule ALLOC, H is updated with effect triple (′U ′, (new X)h(c), ′ ′), where the allocation
site new X is annotated with the encoded context integer h(c). This triple matches only
(store) node with effect (′B ′, (new X)h(c), ∗), and many spurious reference edges can
thus be eliminated. In rule ALLOC, (new X)h(c) is used to tag the newly-created run-
time object Oi (by updating tag environment P), and this information will be retrieved
later when Oi is dereferenced. In rules LOAD FIELD and STORE FIELD, Ov denotes
the run-time object that variable v points to. P(Ov) is used to retrieve the allocation
site (annotated with the context) of Ov, which is previously set as Ov ’s tag upon its
allocation.

The last two rules show the instrumentation semantics at the entry and the return
site of a method, respectively. Tracking stack T here still contains the tracking data for
the actual parameters of the call, as the n top elements T(1), . . . , T(n). T additionally
stores the receiver object chain for the caller of the method (as element T(n + 1)). In

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1, Pub. date: January 1111.

1:34 G. Xu et al.

rule METHOD ENTRY, the tracking data for a formal parameter ti is updated with the
tracking data for the corresponding actual parameter (stored in T(i)). The new object
context is computed by applying concatenation operator ◦ to the old chain T(n+1) and
the allocation site of the run-time receiver object Othis pointed to by this (or an empty
string if the current method is static). Function ALLOCID removes the context annota-
tion from the tag of Othis, leaving only the allocation site ID. The stack is updated by
removing the tracking data for the actuals, and storing the new context on the top of
the stack. This new context is available for use by all rules applied in the body of the
method (denoted by c in those rules). At the return site, T is updated to remove the
current context and to store the tracking data for the return variable i.

4.2. Relative Object Cost-Benefit Analysis

This subsection describes a diagnosis technique that identifies data structures with
high cost-benefit rates. As discussed in Section 4.3, this analysis effectively uncovers
significant optimization opportunities in six large real-world applications. We propose
to compute a relative abstract cost for an object, which measures the effort of con-
structing the object from data already available in fields of other objects (rather than
the cumulative effort from the beginning of the execution). Similarly, we compute a
relative abstract benefit for an object, which explains how the data contained in the ob-
ject is used to construct other objects. These metrics can help a programmer pinpoint
specific objects that are expensive to construct (e.g., there are large costs of computing
the data being written into this object) but are not very useful (e.g, the only use of this
object is to make a clone of it and then invoke methods on the clone).

We first develop an object cost-benefit analysis that aggregates relative costs and
benefits for individual fields of an object in order to compute the cost and benefit for the
object itself. Next, the cost and benefit for a higher-level data structure is obtained in a
similar manner, by gathering costs and benefits of lower-level objects/data structures
accessible through reference edges.

4.2.1. Analysis Algorithm.

Definition 4.3. (Relative Abstract Cost). Given Gcost, the heap-relative abstract cost
(HRAC) of a node nk is Σaj |aj⇀nk freq(aj), where aj ⇀ nk if aj

; nk and there exists

a path from aj to nk such that no node on the path reads from a static or object field.
The relative abstract cost (RAC) for an object field represented by Od .f is the average
HRAC of store nodes nk that write to Od .f .

Consider the entire flow of a piece of data (from the input of the program to its out-
put) during the execution. This flow consists of multiple hops of data transformations
among heap locations. Each hop performs the following three steps: reading values
from heap locations, performing stack copies and computations on them, and writing
the results to other heap locations. Consider one single hop with multiple sources and
one target along the flow, which reads values from heap locations l1, l2, . . . , ln, trans-
forms them to produce a new value, and writes it back to heap location l′. The RAC of
l′ measures the amount of work needed (on the stack) to complete this hop of transfor-
mations.

The computation of HRAC for a node nk requires a backward traversal from nk,
which finds all nodes on the paths between each heap-reading node and nk, and calcu-
lates the sum of their frequencies. For example, the HRAC for node 35ǫ in Figure 11 is
only 1 (instead of 4007), because the node depends directly on a node (i.e., 4O33) that
reads heap location this.t. The RAC for a heap location is the average HRAC of the
nodes that can write this location. For example, the RAC for Oǫ

33.t is the HRAC for

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1, Pub. date: January 1111.

Scalable Runtime Bloat Detection Using Abstract Dynamic Slicing 1:35

...

...

z.g = q

...

e.s = t u.x = w

m = i * 6 n = l - 5

i = a.f l = c.h

o = z.g

(a)

o.f = a

O o = new O

A a = new A

B b = new B

o.g = b

o.e = q

...

a.h = c

C c = new C

...

b.k = d

D d = new D

...

...

t.m = v

V v = new V

Level 1 Level 2 Level n

(b)

No heap read inside

No heap write inside

RACO.g
t = r + 3 w = s >> 2

RABO.g

...

...

Fig. 13. (a) Relative abstract cost and benefit. Nodes considered in computing RAC and RAB for O.g (where
O is the allocation site for the object referenced by z) are included in the two circles, respectively; (b) Illus-
tration of n-RAC and n-RAB for the object created by o = new O; dashed arrows are reference edges.

19O33 , which is 4005. The RAC for OO32
24 .ELM (i.e., the elements of the array object) is

2, which equals the HRAC of node 28O32 that writes this field.

Definition 4.4. (Relative Abstract Benefit). Given Gcost, the heap-relative abstract
benefit (HRAB) of a node nk is Σaj |nk⇁aj freq(aj), where nk ⇁ aj if nk

; aj and there

exists a path from nk to aj such that no node on the path writes to a static or object
field. The relative abstract benefit (RAB) for an object field represented by Od .f is the
average HRAB of load nodes nk that read from Od .f .

Symmetric to the definition of RAC that focuses on how a heap value is produced,
the RAB for l explains how a heap value is consumed. Consider again one single hop
(but with one source and multiple targets) along the flow, which reads a value from
location l, transforms this value (together with values read from other locations), and
writes the results to a set of other heap locations l′1, l

′
2, . . . , l

′
n. The RAB of l measures

the amount of work performed (on the stack) to complete this hop of transformations.
For example, the RAB for Oǫ

33.t is the HRAB of node 4O33 that reads this field, which
is 2 (because the relevant nodes aj are only 4O33 and 35ǫ). Figure 13 (a) illustrates the
computation of RAC and RAB.

This definition of benefit captures both the frequency and the complexity of data use.
First, the more target heap values the value read from l is used to (transitively) pro-
duce, the larger benefit location l can have for the construction of these other objects.
Second, the more effort is made to transform the value from l to other heap values, the
larger benefit l can have. This is because the purpose of writing a value into a heap
location is, intuitively, to keep the value so that it can be reused later and the (heavy)
cost of re-computing it can be avoided. Whether to store a value in a heap location is
essentially a decision involving space-time tradeoffs. If l’s value v can be easily con-
verted to some other value v′ and v′ is immediately stored in another heap location
(i.e., little computation performed), the benefit of keeping v in l becomes less obvious,

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1, Pub. date: January 1111.

1:36 G. Xu et al.

class ClasspathDirectory{

boolean isPackage(String packageName){

return directoryList(packageName) != null;

}

List directoryList(String packageName){

List ret = new ArrayList(); /*problematic*/

//try to find all the files in the dir packageName

//if nothing is found, set ret to null

…

return ret;

}

}

Fig. 14. Real-world bloat example that our analysis found in eclipse.

since v and v′ may differ slightly and it may not be necessary to use two different heap
locations to cache them. In the extreme case where v′ is simply a copy of v, the RAB
for l is 1 and storing v is not desirable at all if the RAC for l is large. Special treatment
is applied to consumer nodes: we assign a large RAB to a heap location if the value it
contains can flow to a predicate or a native node. This means the value contributes to
control decision making or is used by the JVM, and thus benefits the overall execution.

Definition 4.5. (n-RAC and n-RAB). Consider an object reference tree RTn of height
n rooted at Od. The n-RAC for Od is the sum of the RACs for all fields Ok

i .f , such that
both Ok

i and the object Ok
i .f points to are in RTn. Similarly, the n-RAB for Od is the

sum of the RABs for all such fields Ok
i .f .

The object reference (points-to) tree can be constructed by using reference edges
in the dependence graph, and by removing cycles and nodes more than n reference
edges away from Od. We aggregate the RACs and RABs for individual fields through
the tree edges to form the RACs and RABs for objects (when n = 1) and high-level
data structures (when n > 1). Figure 13 (b) illustrates n-RAC and n-RAB for an object
created by o = new O. The n-RAC(RAB) for this object includes the RAC(RAB) of each
field written by a boxed node (i.e., heap store) shown in the figure. For all case studies
and experiments, n = 4 was used as this is the reference chain length for the most
complex container classes in the Java collection framework (i.e., HashSet).

Table (d) in Figure 11 shows examples of 1- and 2- RACs and RABs. Both the 1-
RAB and the 2-RAB for OO32

24 are 0, because the array element is never used in the
code. Objects Oǫ

32 and Oǫ
33 have large cost-benefit rates, which indicates the existence

of wasteful operations. This is indeed the case in this example: for Oǫ
32, there is an

element added but never retrieved; for Oǫ
33, there is a large cost of computing the

value stored in its field t, and the value is copied to another heap location (in IntList)
immediately after it is calculated. The creation of object Oǫ

33 is not beneficial at all
because this value could have been stored directly to the array.

Finding bloat. Several usage scenarios are intended for this cost-benefit analysis.
First, it can find long-lived objects that are written much more frequently than being
read. Second, it can find containers that contain many more objects than they should.
These containers are often the sources of memory leaks. The analysis can find that they
have large RAC/RAB rates because few elements are retrieved and assigned to other
heap locations. Third, it can find allocation sites that create large volumes of temporary
(short-lived) objects. These objects are often created simply to carry data across method
invocations. Data that is computed and written into them is read somewhere else and
assigned to other object fields. This simple use of the data causes these objects to have

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1, Pub. date: January 1111.

Scalable Runtime Bloat Detection Using Abstract Dynamic Slicing 1:37

Table X. Characteristics of Gcost (I). Reported are the numbers (in thousand) of nodes (N) and edges (E), the
memory overhead (in megabytes) excluding the size of the shadow heap (M), the running time overhead (O),
and the context conflict ratio (CR).

Program (a) s = 8 (b) s = 16
#N(K) #E(K) M(Mb) O(×) CR(%) #N #E M O CR

antlr 183 689 10·2 82 0.066 355 949 16.1 77 0.041
bloat 201 434 9·8 78 0.089 396 914 17.4 76 0.051
chart 288 306 13·2 76 0.068 567 453 22.6 76 0.047
fop 195 120 8·4 45 0.067 381 162 14.0 46 0.045
pmd 184 187 8·0 55 0.075 365 313 13.6 96 0.052
jython 288 275 12·6 28 0.065 666 539 26.1 27 0.042
xalan 168 594 8·5 75 0.066 407 1095 18.1 74 0.044
hsqldb 192 110 8·0 88 0.072 379 132 13.7 86 0.050
luindex 160 177 6·7 92 0.073 315 331 11.5 86 0.040
lusearch 139 110 5·5 48 0.079 275 223 11.0 52 0.053
eclipse 525 2435 28·8 47 0.072 1016 5724 53.1 53 0.047
avrora 189 108 7·9 67 0.086 330 125 11.2 56 0.034
batik 361 355 15·8 85 0.086 662 614 24.9 89 0.049
derby 308 314 13·9 63 0.080 425 530 22.1 57 0.049
sunflow 206 152 8·2 92 0.076 330 212 10.3 91 0.040
tomcat 533 1100 25·4 94 0.098 730 2209 48.6 92 0.063
tradebeans 825 1010 38·2 89/8* 0.053 1568 1925 58.9 82/8* 0.036
tradesoap 860 1370 41 82/17* 0.062 1628 2536 63.6 81/16* 0.040

large cost-benefit rates. The next section shows that our tool finds all three categories
of problems in real-world Java applications.

Real-world example. Figure 14 shows a real-world example that illustrates how our
analysis works. An object with high costs and low benefits is highlighted in the fig-
ure. The code in the example is extracted from eclipse 3.1.2. Method isPackage re-
turns true/false based on whether the given package name corresponds to an actual
Java package. This method is implemented by calling (reusing) directoryList which
invokes many other methods to compute a list of files and directories under the pack-
age specified by the parameter. isPackage then returns whether the list computed by
directoryList is null. While the reference to list ret is used in a predicate, its fields
are not read and do not participate in computations. Hence, when the RACs and RABs
for its fields are aggregated based on the object hierarchy, the imbalance between the
cost and benefit for the entire List data structure can be seen. To optimize this case,
we created a specialized version of directoryList, which returns immediately when
the package corresponding to the given name is found. This fix has reduced the number
of objects by almost a million.

4.3. Evaluation

We have performed a variety of studies with our technique using the DaCapo bench-
mark set (version 9.12) [Blackburn et al. 2006], which contains 11 programs in its
original version (from antlr to eclipse in Table X and Table XI) and an additional
set of 7 programs in its new release (from avrora to tradesoap). We were able to run
our tool on all these 18 large programs, including both client and server applications.
16 programs (except tradesoap and tradebeans) were executed with their large work-
loads. tradesoap and tradebeanswere run with their default workloads, because these
two benchmarks were not stable enough and running them with large workloads can
fail even without our tool. The evaluation has several components: cost graph charac-
teristics, evaluation of the time and space overhead of the tool, the measurements of
bloat based on nodes producing dead values, and six case studies that describe prob-
lems found by the tool in real applications.

4.3.1. Gcost Characteristics and Bloat Measurement. Parts (a) and (b) in Table X report,
for two different values of s (the number of slots for each object used to represent

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1, Pub. date: January 1111.

1:38 G. Xu et al.

Table XI. Characteristics of Gcost (II). This table reports the total number (in billion) of
instruction instances (I), the percentages of instruction instances (directly and transi-
tively) producing values that are ultimately dead (IPD), the percentages of instruction
instances (directly or transitively) producing values that end up only in predicates (IPP),
and the percentages of Gcost nodes such that all the instruction instances represented
by these nodes produce ultimately-dead values (NLD).

Program (c) Bloat measurement for s = 16
#I(B) IPD(%) IPP(%) NLD(%)

antlr 4·9 3·7 96·2 17·5
bloat 91·2 26·9 69·9 19·3
chart 9·4 8·0 91·7 30·0
fop 0·2 28·8 60·9 30·5
pmd 5·6 7·5 92·1 27·0
jython 14·6 13·1 81·9 26·8
xalan 25·5 17·8 82·0 19·4
hsqldb 1·3 6·4 92·4 31·0
luindex 3·5 4·6 93·0 24·6
lusearch 9·1 9·3 65·2 29·1
eclipse 28·6 21·0 78·3 22·0
avrora 3·3 3·2 94·8 34·5
batik 2·4 27·1 71·1 26·7
derby 65·2 5·0 94·0 23·7
sunflow 82·5 32·7 43·7 31·7
tomcat 29·1 24·2 72·2 23·1
tradebeans 15·1 14·9 80·0 22·3
tradesoap 41·0 24·5 59·4 20·1

context), the numbers of nodes and edges in Gcost, as well as the space overheads and
the time overheads of the tool. Note that all programs can successfully execute when
we increase s to 32, while the offline traversal of the graph (to generate statistics) can
make the tool run out of memory for some large programs. The space overhead does not
include the size of shadow heap, which is 500Mb for all programs. When the number of
context slots s grows from 8 to 16, the space overhead increases while the running time
is almost not affected. The instrumentation significantly increases the running times
(i.e., 71× slowdown on average for s = 8 and 72× for s = 16 when the whole-program
tracking is enabled). This is because (1) Gcost is updated at each instruction instance
and (2) the creation of Gcost nodes and edges needs to be synchronized to guarantee
that the tool is race-free. As with the copy chain analysis from Section 3, we did not
attempt to tune the performance of the analysis, but rather to focus on identifying
instances of bloat in real-world programs. One effective way of reducing overhead is to
choose only relevant components to track. For example, for the two transaction-based
applications tradebeans and tradesoap, there is 5-10× overhead reduction when we
enable tracking only for the load runs (i.e., the application is not tracked for the server
startup and shutdown phases). It is also possible to employ various sampling-based
or static pre-processing techniques (e.g., from [Zhang and Gupta 2004a]) to reduce the
dynamic effort in data collection.

A small amount of memory is required to store the graph, and this is achieved pri-
marily by employing abstract domains. The space reduction resulting from abstract
slicing can also be seen from the comparison between the number of nodes in the
graph (N) and the total number of instruction instances (I), as N represents the size of
the abstract domain employed in the analysis while I represents the size of the actual
concrete domain that fully depends on the run-time behavior of the application. CR
measures the degree to which distinct contexts are mapped to the same slots by our
encoding function h. Following Section 3, CR-s for an instruction i is defined as:

CR-s(i) =

{

0 max0≤j≤s (dc[j]) = 1

max (dc[j])/
∑

dc[j] otherwise

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1, Pub. date: January 1111.

Scalable Runtime Bloat Detection Using Abstract Dynamic Slicing 1:39

where dc[j] represents the number of distinct contexts that fall into context slot
j. CR is 0 if each context slot represents at most one distinct context; CR is 1 if all
contexts fall into the same slot. The table reports the average CR for all instructions in
Gcost. Note that both CR-8 and CR-16 show very small numbers. This is because many
methods in a program only have a small number of distinct object chains throughout
the execution.

Columns IPD and IPP in part (c) of Table XI report the measurements of inefficiency
for s = 16. IPD represents the percentage of instruction instances that produce only
dead values. Suppose D is a set of non-consumer nodes in Gcost that do not have any
outgoing edges (i.e., no other instructions are data-dependent on them), and D∗ is a
set of nodes that can lead only to nodes in D . Hence, D∗ contains nodes that ultimately
produce only dead values. IPD is calculated as the ratio between the sum of execution
frequencies of the nodes in D∗ and the total number of instruction instances during the
execution (shown in column I). Similarly, suppose P∗ is the set of nodes that can lead
only to predicate consumer nodes, and IPP is calculated as the ratio between the sum
of execution frequencies of the nodes in P∗ and I. Programs such as bloat, eclipse and
sunflow have large IPDs, which indicates that there may exist large optimization op-
portunities. In fact, these three programs are the ones for which we have achieved the
largest performance improvement after removing bloat (as discussed shortly in case
studies). Clearly, a significant portion of the set of instruction instances is executed to
produce only control flow conditions. While this does not help performance diagnosis
directly, a high IPP indicates the program performs a large amount of comparisons-
related work, which may be a sign of over-protective or over-general implementations.

Column NLD in part (c) reports the percentage of nodes in D∗, relative to the total
number of graph nodes. The higher NLD a program has, the easier it is for a program-
mer to find problems from Gcost. Despite the merging of a large number of instruction
instances in a single graph node, there are on average 25.5% nodes in the graph that
have this property. Large performance opportunities may be found by inspecting the
report to identify these wasteful operations.

4.3.2. Case Studies. We have carefully inspected the tool reports for the following
six large applications in the DaCapo benchmark set (version 9.12): bloat, eclipse,
sunflow, derby, tomcat, and trade. These applications have large code bases, and are
representatives of various kinds of real-world applications, including program analy-
sis tools (bloat), Java development tools (eclipse), image renders (sunflow), database
servers (derby), servlet containers (tomcat), and transaction-based enterprise appli-
cations (trade). We have found significant optimization opportunities for unoptimized
programs, such as bloat (37% speedup). For the other five applications that have been
well maintained and tuned, the removal of the bloat detected by our tool can still result
in considerable performance improvement (2%-15% speedup). More insightful changes
could have been made if we were familiar with the overall design of functionality and
data models. We use the DaCapo versions of these programs, because the server appli-
cations are converted to run fixed loads, and the performance can be measured simply
by using running time rather than other metrics such as throughput and the number
of concurrent users. It took us about 2.5 weeks (i.e., 2 days per application) to find the
problems and implement the fixes for these six applications that we had never studied
before.

DaCapo sunflow benchmark. Because it is an image rendering tool, much of its func-
tionality is based on matrix and vector computations, such as transpose and scale.
However, each such method in class Matrix and Vector starts with cloning a new Ma-
trix or Vector object and assigns the result of the computation to the new object. The
cost-benefit analysis reported that these newly created (short-lived) objects have ex-

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1, Pub. date: January 1111.

1:40 G. Xu et al.

tremely large unbalanced costs and benefits, as they serve primarily the purpose of
carrying data across method invocations. Another few lines of the report directed us to
an int array where some slots of the array are used to contain float values. These float
values are converted to integers using method Float.floatToIntBits and assigned to
the array elements. Later, the encoded integers are read from the array and converted
back to float values. These operations occur in the most-frequently executed methods
in the program and are therefore are expensive to perform. By eliminating unneces-
sary clones and bookkeeping the float values that need to be passed across method
boundaries (to avoid the back-and-forth conversions), we observed a 9%-15% running
time reduction.

DaCapo eclipse benchmark. Some of the allocation sites that have the largest cost-
benefit rates create objects of inner classes and Iterators, which implement visitor
patterns to traverse the workspace. These visitor objects do not contain any data and
are passed into iterators, where their visit method is invoked to process individual
children elements of the workspace. However, the Iterator used here is a stack-based
class that provides general functionality for traversing different types of data struc-
tures (e.g., graph, tree, etc.), while the workspace has a very simple tree structure.
We replaced the visitor implementation with a worklist implementation, and this sim-
ple specialization eliminated millions of run-time objects. The second major problem
found by the tool is with the hash computation implemented in a set of Hashtable
classes in the JDT plugin. One of the most frequently used classes in this set is
called HashtableOfArrayToObject, which uses arrays of objects as keys. Every time
the Hashtable is expanded, its rehash method needs to be invoked and the hash codes
of all existing entries have to be recomputed. Because the key can be a big object array,
computing its hash code can trigger invocations of the hashcode method in many other
objects, and can thus take considerably large amount of time. We created an int array
field in the Hashtable class to cache the hash codes of the entries, and the recorded
hash codes are used when rehash is executed. To conclude, by removing these high-
cost-low-benefit operations, we have managed to reduce the running time by 14.5%
(from 151s to 129s), and the number of objects by 2% (5.5 million).

It is worth noting that while our fixes passed the DaCapo validation, they might
cause latent bugs in real-world development. For example, caching hashcodes only
works if the key objects are immutable, that is, the refactoring relies on the invariant
that the objects being hashed are immutable. This is a determination that cannot be
made by a compiler and must be made by a human expert. In this work, we rely on
developers to establish the invariant and make the correct refactoring. How to develop
techniques to validate the refactoring is an interesting future research topic.

DaCapo bloat benchmark. A case study in Section 3 has found that bloat suffers
from excessive string creations. This finding is confirmed by our cost-benefit analysis
report. 46 allocation sites out of the top 50 that have the largest cost-benefit rates are
String and StringBuffer objects created in the set of toString methods. Most of these
objects eventually flow into methods Assert.isTrue and db, which print the strings
when certain debugging-related conditions hold. However, in production runs where
most bugs have been fixed, such conditions can rarely evaluate to true, and there is
no benefit in constructing these objects. Another problem exposed by our tool (but not
reported in Section 3) is the excessive use of objects of an inner class NodeComparator,
which contains no data but methods to compare a pair of AST nodes. The comparison
starts with the given root nodes, and recursively creates NodeComparator objects to
compare children nodes. Comparing two large trees usually requires the allocation
(and garbage collection) of hundreds of objects, and such comparisons occur in almost
all methods related to ASTs, even including hashcode and equals. We replaced the

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1, Pub. date: January 1111.

Scalable Runtime Bloat Detection Using Abstract Dynamic Slicing 1:41

recursion-based implementation with a breadth-first worklist-based implementation,
which makes it possible for us to create a very small number of objects to compare all
reachable nodes. Eliminating the unnecessary String and StringBuffer objects as well
as the change of the implementation algorithm result in a 37% reduction in running
time, and a 68% reduction in the number of objects created.

DaCapo derby benchmark. The tool report shows that an int array in class
FileContainer has large cost-benefit rates. After inspecting the code, we found it is
an array containing the information of a file-based container. Every time the (same)
container is written into a page, the array needs to be updated. Hence, it is written
much more frequently (with the same data) than being read. To solve the problem, we
modify the code to update this array only before it is read. Another set of objects that
were found to have unbalanced cost-benefit rates are the strings representing IDs for
different ContextManagers. These strings are used to retrieve the ContextManagers
in a variety of ways, but mostly serve as HashMap keys. Because the database con-
texts are frequently switched, clear performance improvement can be seen when we
replaced these strings with integer IDs. Eventually, the running time of the program
was reduced by 6%, and the number of objects created was reduced by 8.6%.

DaCapo tomcat benchmark. tomcat is a well-tuned JSP and servlet container. There
are only a few objects that have large cost-benefits according to the tool report. One set
of such objects is arrays used in util.Mapper, representing the (sorted) list of existing
contexts. Once a context is added or removed from the manager, an update algorithm
is executed. The algorithm creates a new array, inserts the new context at the right
position in this new array, copies the old context array to the new one, and discards the
old array. To remove this bloat, we maintain only two arrays, using them back and forth
as the main context list and the backing array used for the update algorithm. Another
problem reported by our tool pointed to string comparisons in various getContents
and getProperty methods. These methods take a property name and a Class object
(representing the type of the property) as input, and return the value corresponding to
the property using reflection. To decide the type of the property, the implementations
of these methods first obtain the names of the argument classes and compare them
with the hardcoded names such as “Integer” and “Boolean”. Because a property can
have only a few types, we remove such string comparisons and insert code to directly
compare the Class objects. After the modifications, the program could run 3 seconds
faster (about 2% reduction).

DaCapo tradebeans benchmark. tradebeans is an EJB application that performs
database queries to simulate a stock trading process. One problem that our tool re-
ported was with the use of KeyBlock and its iterators. This class represents a range
of integers that will be given as IDs for the accounts and holdings when they are
requested. We found that for each ID request, the class needs to perform a few re-
dundant database queries and updates. In addition, a simple int array can suffice to
represent IDs since the KeyBlock and the iterators are just wrappers over integers.
By removing the additional database queries and using directly the int array, we have
managed to make the application run 9 seconds faster (from 350s to 341s, 2.5% reduc-
tion). The number of objects created was reduced by 2.3%. DaCapo has another imple-
mentation (tradesoap) of trade, which uses the SOAP protocol to perform client-server
communication and runs much slower than tradebeans. An interesting comparison be-
tween these two benchmarks is that the major high-cost-low-benefit objects reported
for tradesoap are the bean objects created in the set of convertXBeanmethods. As part
of the SOAP protocol, these methods perform large volumes of copies between different
representations of the same bean data, resulting in significant performance slowdown.

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1, Pub. date: January 1111.

1:42 G. Xu et al.

Summary. With the help of the cost-benefit analyses, we have found various per-
formance problems in these large applications with which we do not have any expe-
rience. These problems include inefficiencies caused by common programming idioms
such as repeated work whose result needs to be cached (e.g., the hash code exam-
ple in eclipse), computation of data not necessarily used (e.g., strings in bloat), and
choices of expensive operations (e.g., string comparison in tomcat and the use of SOAP
in tradesoap). These case studies clearly demonstrate that the cost-benefit analysis
is able to identify various performance problems caused by inappropriate design and
implementation choices to help developers make informed decisions. For specific bloat
patterns such as the use of inner classes, it is also possible for the compiler/optimizer
designers to take them into account and develop optimization techniques that can re-
move the bloat. For example, inner classes often have large numbers of objects with
disjoint lifetimes and very simple data content; it may be possible to keep reusing one
single object and resetting its content to improve performance.

5. DISCUSSION

5.1. Comparing Copy Profiling and Cost-Benefit Profiling

Usage Scenarios. While both techniques are effective at exposing performance bot-
tlenecks, their design goals are completely different. Cost-benefit analysis is a tech-
nique targeting general bloat that can be caused by many different factors and can ex-
hibit different symptoms. Hence, it provides a systematic way to answer fundamental
questions including “what is bloat” and “how bloat should be found”. The report of the
cost-benefit analysis may thus contain many potential problems (of different kinds),
some of which are not truly optimizable. Copy profiling is designed to find a specific
type of inefficiencies that manifest themselves through excessive copy activities. Thus,
it may not be able to find performance problems that do not exhibit large volumes
of copies, such as inappropriate choice of collections. However, reports generated by
copy profiling can be more focused—they contain only copy-related problems that can
be easily understood and fixed by developers. Cost-benefit analysis and copy profiling
can be used together in a way so that they can complement each other. For instance,
cost-benefit analysis is suitable for an initial round of diagnosis when a performance
bottleneck is seen, because the developer may have very little knowledge of the likely
cause at this time. After the cost-benefit analysis report is inspected and the developer
gains more insights of the problem, a specialized analysis such as copy profiling can be
performed to help programmers narrow down the root cause of the bottleneck.

Context Sensitivity. From our experimental results, it appears that our framework
has a smaller conflict rate for the (encoded) full-chain context sensitivity (in Table IX,
Section 3) than the 1-object-sensitivity context representation (in Table X, Section 4),
despite the significantly larger number of distinct contexts full-chain context sensi-
tivity may need to represent, compared to 1-object-sensitive context sensitivity. We
observed that the following two factors may contribute to this result. First, for a typ-
ical method invocation, the number of its distinct run-time receiver object chains is
relatively small, at least not substantially bigger than the number of its distinct re-
ceiver objects. Receiver objects for many methods on the call stack can be created only
by one single allocation site. In fact, we have seen, in our experiments, that for a large
number of method invocations, the numbers of both full receiver object chains and
one-level receiver objects are smaller than 16, the maximum number of slots used in
our system. This indicates that in an ideal solution can be even completely lossless
in representing these contexts. Second, the encoding of a receiver object chain (using
probabilistic calling context) produces values that are more randomly distributed than

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1, Pub. date: January 1111.

Scalable Runtime Bloat Detection Using Abstract Dynamic Slicing 1:43

regular allocation site IDs (used by 1-object-sensitivity), leading to higher likelihood of
mapping them into different context slots.

Despite the context-sensitive modeling, it is often still difficult to distinguish objects
created by factory methods. For copy profiling, if 1-object-sensitivity is not sufficient
to distinguish certain objects, the precision for these objects would be the same as
the context-insensitive modeling. Increasing the depth of calling contexts is possible
only for small programs. For programs such as Eclipse, k = 1 is the longest context
length before they run out of memory. For the cost-benefit analysis, since the full call-
ing context is encoded and used, objects can often be easily distinguished. However,
this approach is limited by the fixed number of context slots. Despite much work done
on faithfully recording calling contexts, existing methods still leave much to be desired.

5.2. Use of the General Framework for Future BDF analyses

Both copy profiling and cost-benefit analysis require whole-program dataflow infor-
mation. Developing them using our framework indicates that the abstract dynamic
slicing approach and the shadow memory implementation are flexible enough to be
customized to support a variety of other complex dynamic analysis. These two anal-
yses can also be used as examples for (1) abstracting concrete execution information
and (2) instantiating the framework to collect such information, when future analyses
need to be designed and implemented in this framework.

6. RELATED WORK

This section outlines work related to the dynamic analyses presented in this paper.
The relevant existing work falls into the following five categories: bloat detection, dy-
namic slicing, dynamic data flow tracking, dynamic memory leak detection, and heap
assertions.

6.1. Bloat Detection

Dufour et al. propose dynamic metrics for Java [Dufour et al. 2003], which provide
insights by quantifying runtime bloat. Many memory profiling tools have been devel-
oped to take heap snapshots for understanding memory usage (e.g., [Java Heap Ana-
lyzer Tool]) and to identify objects of suspicious types that consume a large amount
of memory (e.g., [Quest Software 2011; ej-technologies GmbH 2011]). However, none
of these tools attempt to understand the underlying causes of memory bloat, and thus
cannot help programmers pinpoint the problematic areas of the application. Mitchell
et al. [Mitchell et al. 2006] structure behavior according to the flow of information,
though using a manual technique. Their aim is to allow programmers to place judg-
ments on whether certain classes of computations are excessive. Our copy profiling
work is in this same spirit, and automates an important component of this approach.
Their follow-up work [Mitchell and Sevitsky 2007] introduces a way to find data struc-
tures that consume excessive amounts of memory. Work by Dufour et al. finds excessive
use of temporary data structures [Dufour et al. 2007; 2008] and summarizes the shape
of these structures. In contrast to the purely dynamic approximation introduced in
our work, they employ a blended escape analysis, which applies static analysis to a
region of dynamically collected calling structure with observed performance problem.
By approximating object effective lifetimes, the analysis has been shown to be useful
in classifying the usage of newly created objects in the problematic program region.
JOLT [Shankar et al. 2008] is a VM-based tool that uses a new metric to quantify ob-
ject churn and identify regions that make heavy use of temporary objects, in order to
guide aggressive method inlining.

Our dynamic approaches differ from all existing bloat detection work in two dimen-
sions. First, our work addresses the challenge of automatically detecting bloated com-

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1, Pub. date: January 1111.

1:44 G. Xu et al.

putations that fall out of the purview of conventional JIT optimization strategies. In
general, existing bloat detection work can be classified into two major categories: man-
ual tuning methods (i.e., mostly based on measurements of bloat) [Mitchell et al. 2006;
Mitchell and Sevitsky 2007; Dufour et al. 2007; 2008; Han et al. 2012; Xiao et al. 2013;
Nistor et al. 2013], and fully automated performance optimization techniques such as
the entire field of JIT technology [Arnold et al. 2005] and the research from [Shankar
et al. 2008]. The work described in this paper sits in between: we provide sophisti-
cated analyses to support manual tuning, guiding programmers to the program re-
gions where bloat is most likely to exist, and then allowing human experts to perform
the code modification and refactoring. By doing so, we hope to help the programmers
quickly get through the hardest part of the tuning process—finding the likely bloated
regions—and yet use their (human) insights to perform application-specific optimiza-
tions.

Second, we use different (non-conventional) symptom definitions to identify the
bloated regions. For example, the work of copy profiling profiles data flows based on
the observation that bloat often manifests itself in the form of large volumes of copies.
On the contrary, the JIT performs optimizations based on hot spots, which are decided
completely by profiling control flows. As shown in Section 1, performance bottlenecks
do not necessarily exist in frequently-executed regions, and in many cases, they are
more related to data flow, rather than control flow. This observation is also the basis of
work by Yan et al. [Yan et al. 2012], in which the flow of reference values is tracked sim-
ilarly to our copy chain profiling technique. Bloat detection has also been attempted by
developing dynamic techniques to identify reusable data structures [Xu 2012; 2013b]
and cacheable data values [Nguyen and Xu 2013]. In addition, Xu proposes an adaptive
technique [Xu 2013a] that can automatically switch container implementations online
to improve the performance of programs that make intensive use of object-oriented
containers.

A significant difference between the cost-benefit analysis and existing bloat detec-
tion techniques is that an existing approach can usually find only one type of problems
effectively. For instance, blended escape analysis [Dufour et al. 2007; 2008] is effective
at detection of temporary objects while a container profiling technique [Xu and Roun-
tev 2008; Xu 2013a; Shacham et al. 2009] works only for container bloat. Our cost-
benefit analysis detects operations that have high costs and low benefits. Performing
such operations is the essence of bloat and is a common characteristic of a variety of
performance problems, which, however, may show different symptoms on the surface.
Hence, the cost-benefit analysis is potentially capable of identifying many different
kinds of bloat, and thus can be more useful in practice to help a programmer perform
the tuning task.

6.2. Control- and Data-Based Profiling

Lossy compression of profiles has been proposed for space efficiency. These techniques
include dynamic dependence profiles [Agrawal and Horgan 1990], control flow pro-
files [Ball and Larus 1996], and value profiles [Calder et al. 1997]. While lossy compres-
sion can provide sufficient precision for many applications, evidence has been shown
that they are inadequate for many others. Lossless compression techniques are thus
developed to reduce space requirements and yet preserve the dynamically collected
data. Research from [Larus 1999; Zhang and Gupta 2001] studies the compressed rep-
resentations of control flow traces. Value predictors [Burtscher and Jeeradit 2003] are
proposed to compress value profiles, which can be used to perform various kinds of
tasks such as code specialization [Calder et al. 1997], data compression [Zhang and
Gupta 2002], value encoding [Yang and Gupta 2002] and value speculation [Lipasti
and Shen 1996]. Research from [Chilimbi 2001] proposes a technique to compress an

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1, Pub. date: January 1111.

Scalable Runtime Bloat Detection Using Abstract Dynamic Slicing 1:45

address profile, which is used to help prefetch data [Jacobson et al. 1997] and to find
cache conscious data layouts [Rubin et al. 2002]. Zhang and Gupta propose whole ex-
ecution traces [Zhang and Gupta 2004b] that include complete data information of an
execution, to enable the mining of behavior that requires understanding of relation-
ships among various profiles.

Ammons et al. [Ammons et al. 2004] develops a dynamic analysis tool to explore call-
ing context trees in order to find performance bottlenecks. Srinivas et al. [Srinivas and
Srinivasan 2005] use a dynamic analysis technique that identifies important program
components, also by inspecting calling context trees. Chameleon [Shacham et al. 2009]
is a dynamic analysis tool that profiles container behaviors to provide advice as to the
choices of appropriate containers. The work in [Rayside and Mendel 2007] proposes
object ownership profiling to detect memory leaks in Java programs.

When profiling to find performance problems, existing techniques typically concen-
trate on control flow, rather than data flow, from path profiling [Ball and Larus 1996;
Larus 1999; Bond and McKinley 2005; Vaswani et al. 2007] to feedback-directed profil-
ing [Arnold et al. 2005], all to identify heavily-executed paths for further optimization.
The copy profiling technique described in Section 3 profiles data flow, and uses the
copy profiles to determine the problematic program regions. The profiling technique
in the cost-benefit analysis is similar in spirit to the dependence profiling in [Agrawal
and Horgan 1990]. While both fall in the general category of lossy profile compression,
our technique proposes to introduce client analysis semantics into profiling. Hence,
our approach loses zero or very little information in terms of the target analysis—as
long as a target analysis can be formulated in our framework, the compressed profile
provides all the information required by that analysis. The summarization techniques
described in [Agrawal and Horgan 1990] are analysis-neutral and it is unclear what
kinds of analyses can take advantage of them.

6.3. Dynamic Slicing

Since first being proposed by Korel and Laski [Korel and Laski 1990], dynamic slicing
has inspired a large body of work on efficiently computing slices and on applications
to a variety of software engineering tasks. A general description of slicing technology
and challenges can be found in Tip’s survey [Tip 1995] and Krinke’s thesis [Krinke
2003]. The work by Zhang et al. [Zhang et al. 2003; Zhang and Gupta 2004a; 2004b;
Zhang et al. 2006a; Zhang et al. 2006b] has considerably improved the state of the art
in dynamic slicing. This work includes, for example, a set of cost-effective dynamic slic-
ing algorithms [Zhang et al. 2003; Zhang and Gupta 2004a], a slice-pruning analysis
that computes confidence values for instructions to select those that are most related
to errors [Zhang et al. 2006a], a technique that performs online compression of the
execution trace [Zhang and Gupta 2004b], and an event-based approach that reduces
the cost by focusing on events instead of individual instruction instances [Zhang et al.
2006b]. We refer the reader to Zhang’s thesis [Zhang 2006] for a detailed description
of these techniques. Sridharan et al. proposes thin slicing [Sridharan et al. 2007], a
technique that improves the relevance of the slice by focusing on the statements that
compute and copy a value to the seed. Although this technique is originally proposed
for static analysis, it fits naturally in the work on dynamic cost-benefit analyses.

Our work on abstract dynamic slicing is fundamentally different from these exist-
ing techniques in the following ways. Orthogonal to the existing profile summarization
techniques such as [Agrawal and Horgan 1990; Ball and Larus 1996; Calder et al.
1997; Zhang and Gupta 2004b], abstract slicing achieves efficiency by introducing
client analysis semantics to profiling, establishing a foundation for solving a range
of dynamic data flow problems. If an analysis can be formulated in our framework, the
profiled information is sufficiently precise for this particular analysis. Hence, although

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1, Pub. date: January 1111.

1:46 G. Xu et al.

our approach falls into the general category of lossy compression, it is lossless for the
specific analysis formulated. The work from [Zhang et al. 2006b] is more related to our
work in that the proposed event-based slicing approach is a special case of abstract
slicing with the domain D containing a set of pre-defined events. In addition, existing
work on dynamic slicing targets its use for automated program debugging, whereas
the goal of our work is to understand performance and to find bottlenecks.

6.4. Dynamic Information Flow Analysis

Dynamic taint analysis [Haldar et al. 2005; Newsome and Song 2005; Xu et al. 2006;
Qin et al. 2006; Clause et al. 2007] tracks input data from untrusted channels to detect
potential security attacks. Debugging, testing, and program understanding tools track
dynamic data flow for other specialized purposes (e.g., [Masri and Podgurski 2006]).
The work in [Bond et al. 2007] tracks the origins of undefined values to assist debug-
ging. Research from [Masri and Podgurski 2009] proposes to measure the strength of
information flows and conducts an empirical study to better understand dynamic infor-
mation flow analysis. Work from [Chandra and Franz 2007; Nair et al. 2008; Chandra
2006] describes approaches to enforcing information flow analysis in Java virtual ma-
chines.

Our dynamic analyses combine information flow tracking and profiling to efficiently
form execution representations (e.g., graph Gcost) that are necessary for the client
analyses. Because information flow analysis is expensive in general, approaches such
as [Qin et al. 2006] have been developed to reduce its run-time cost. These techniques
can also be employed in the future to make our techniques more scalable.

7. CONCLUSIONS

Software applications are now assembled from many abstractions, and programmers
trust compilers to avoid low-level tuning of the implementation and composition of
these abstractions, in the hope that automated optimizations will take care of those
details. As a result, questionable decisions are often made—for example, the use of an
overly-general library to a achieve a simple task, or the addition of yet another layer
of delegation in the data model. The cost of one additional method call or one more
allocated object seems insignificant. In reality, the effects of these decisions can ac-
cumulate, and the underlying compilers and runtime systems cannot eliminate these
inefficiencies.

To help developers find these performance problems, this paper presents two dy-
namic techniques, one identifying program regions containing large volumes of data
copies and second finding data structures with high costs and low benefits. We develop
a general abstract dynamic slicing framework by extracting the common dataflow
tracking functionalities from the two analyses. The framework tracks the propagation
of data among heap locations based on an abstract domain specified by the user so that
the resulting dependence graph is bounded and does not depend on any dynamic be-
havior of the program. Both the framework and the analyses have been implemented
in J9, IBM’s commercial Java Virtual Machine, and have been shown to be effective in
helping a programmer quickly find problematic code that needs to be further inspected
and optimized.

Our experimental results clearly demonstrate that the developer’s involvement is
irreplaceable in the process of performance optimization: many of the refactorings
that we have performed either rely on high-level invariants that hold across mul-
tiple compilation units or require the deep observation that a specialized version of
the computation would be sufficient (and more efficient) under the given context. The
insights required to perform such refactorings are way beyond the scope of current
automated analyses and transformation techniques. The proposed approach sheds a

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1, Pub. date: January 1111.

Scalable Runtime Bloat Detection Using Abstract Dynamic Slicing 1:47

new light on the optimization of modern large-scale applications: through a combina-
tion of automated analyses and manual tuning, we can quickly guide developers to the
problematic areas of the application. Fixing the reported problems often leads to large
performance gains that cannot be obtained by any compiler transformations.

REFERENCES

AGRAWAL, H. AND HORGAN, J. R. 1990. Dynamic program slicing. In ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (PLDI). 246–256.

ALDRICH, J., KOSTADINOV, V., AND CHAMBERS, C. 2002. Alias annotations for program understanding. In
ACM SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA). 311–330.

AMMONS, G., CHOI, J.-D., GUPTA, M., AND SWAMY, N. 2004. Finding and removing performance bottle-
necks in large systems. In European Conference on Object-Oriented Programming (ECOOP). 172–196.

ARNOLD, M., FINK, S., GROVE, D., HIND, M., AND SWEENEY, P. F. 2005. A survey of adaptive optimization
in virtual machines. Proceedings of the IEEE 92, 2, 449–466.

ARNOLD, M., VECHEV, M., AND YAHAV, E. 2008. QVM: An efficient runtime for detecting defects in de-
ployed systems. In ACM SIGPLAN International Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA). 143–162.

BALL, T. AND LARUS, J. 1996. Efficient path profiling. In International Symposium on Microarchitecture
(MICRO). 46–57.

BLACKBURN, S. M., GARNER, R., HOFFMAN, C., KHAN, A. M., MCKINLEY, K. S., BENTZUR, R., DIWAN,
A., FEINBERG, D., FRAMPTON, D., GUYER, S. Z., HIRZEL, M., HOSKING, A., JUMP, M., LEE, H.,
MOSS, J. E. B., PHANSALKAR, A., STEFANOVIĆ, D., VANDRUNEN, T., VON DINCKLAGE, D., AND WIE-
DERMANN, B. 2006. The DaCapo benchmarks: Java benchmarking development and analysis. In ACM
SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages, and Appli-
cations (OOPSLA). 169–190.

BOND, M. D. AND MCKINLEY, K. S. 2005. Continuous path and edge profiling. In International Symposium
on Microarchitecture (MICRO). 130–140.

BOND, M. D. AND MCKINLEY, K. S. 2006. Bell: Bit-encoding online memory leak detection. In International
Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS).
61–72.

BOND, M. D. AND MCKINLEY, K. S. 2007. Probabilistic calling context. In ACM SIGPLAN International
Conference on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA). 97–112.

BOND, M. D., NETHERCOTE, N., KENT, S. W., GUYER, S. Z., AND MCKINLEY, K. S. 2007. Tracking bad
apples: reporting the origin of null and undefined value errors. In ACM SIGPLAN International Confer-
ence on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA). 405–422.

BOYAPATI, C., LISKOV, B., AND SHRIRA, L. 2003. Ownership types for object encapsulation. In ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL). 213–223.

BURTSCHER, M. AND JEERADIT, M. 2003. Compressing extended program traces using value predictors. In
International Conference on Parallel Architectures and Compilation Techniques (PACT). 159–169.

CALDER, B., FELLER, P., AND EUSTACE, A. 1997. Value profiling. In International Symposium on Microar-
chitecture (MICRO). 259–269.

CHANDRA, D. 2006. Information flow analysis and enforcement in Java bytecode. Ph.D. thesis, University
of California, Irvine.

CHANDRA, D. AND FRANZ, M. 2007. Fine-grained information flow analysis and enforcement in a Java
virtual machine. In Annual Computer Security Applications Conference (ACSAC). 463–475.

CHILIMBI, T. M. 2001. Efficient representations and abstractions for quantifying and exploiting data ref-
erence locality. In ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI). 191–202.

CLARKE, D. AND DROSSOPOULOU, S. 2002. Ownership, encapsulation and the disjointness of type and ef-
fect. In ACM SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA). 292–310.

CLAUSE, J., LI, W., AND ORSO, A. 2007. Dytan: A generic dynamic taint analysis framework. In ACM
SIGSOFT International Symposium on Software Testing and Analysis (ISSTA). 196–206.

DUFOUR, B., DRIESEN, K., HENDREN, L., AND VERBRUGGE, C. 2003. Dynamic metrics for Java. In ACM
SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages, and Appli-
cations (OOPSLA). 149–168.

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1, Pub. date: January 1111.

1:48 G. Xu et al.

DUFOUR, B., RYDER, B. G., AND SEVITSKY, G. 2007. Blended analysis for performance understanding of
framework-based applications. In ACM SIGSOFT International Symposium on Software Testing and
Analysis (ISSTA). 118–128.

DUFOUR, B., RYDER, B. G., AND SEVITSKY, G. 2008. A scalable technique for characterizing the usage of
temporaries in framework-intensive Java applications. In ACM SIGSOFT International Symposium on
the Foundations of Software Engineering (FSE). 59–70.

EJ-TECHNOLOGIES GMBH. 2011. JProfiler. http://www.ej-technologies.com.

HALDAR, V., CHANDRA, D., AND FRANZ, M. 2005. Dynamic taint propagation for Java. In Annual Computer
Security Applications Conference (ACSAC). 303–311.

HAN, S., DANG, Y., GE, S., ZHANG, D., AND XIE, T. 2012. Performance debugging in the large via mining
millions of stack traces. In International Conference on Software Engineering (ICSE). 145–155.

HEINE, D. L. AND LAM, M. S. 2003. A practical flow-sensitive and context-sensitive C and C++ memory
leak detector. In ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI). 168–181.

JACOBSON, Q., ROTENBERG, E., AND SMITH, J. E. 1997. Path-based next trace prediction. In International
Symposium on Microarchitecture (MICRO). 14–23.

Java Development Blog 2009. Java Development Blog. cld.blog-city.com.

Java Heap Analyzer Tool. Java Heap Analyzer Tool (HAT). http://hat.dev.java.net.

KOREL, B. AND LASKI, J. 1990. Dynamic slicing of computer programs. Journal of Systems and Soft-
ware 13, 3, 187–195.

KRINKE, J. 2003. Advanced slicing of sequential and concurrent programs. Ph.D. thesis, University of Pas-
sau.

LARUS, J. 1999. Whole program paths. In ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI). 259–269.

LIPASTI, M. H. AND SHEN, J. P. 1996. Exceeding the dataflow limit via value prediction. In International
Symposium on Microarchitecture (MICRO). 226–237.

MASRI, W. AND PODGURSKI, A. 2006. An empirical study of the strength of information flows in programs.
In International Workshop on Dynamic Analysis (WODA). 73–80.

MASRI, W. AND PODGURSKI, A. 2009. Measuring the strength of information flows in programs. ACM
Transactions on Software Engineering and Methodology 19, 2, 1–33.

MILANOVA, A., ROUNTEV, A., AND RYDER, B. G. 2005. Parameterized object sensitivity for points-to anal-
ysis for Java. ACM Transactions on Software Engineering and Methodology 14, 1, 1–41.

MITCHELL, N. 2006. The runtime structure of object ownership. In European Conference on Object-Oriented
Programming (ECOOP). 74–98.

MITCHELL, N., SCHONBERG, E., AND SEVITSKY, G. 2010. Four trends leading to Java runtime bloat. IEEE
Software 27, 1, 56–63.

MITCHELL, N. AND SEVITSKY, G. 2007. The causes of bloat, the limits of health. ACM SIGPLAN Interna-
tional Conference on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA),
245–260.

MITCHELL, N., SEVITSKY, G., AND SRINIVASAN, H. 2006. Modeling runtime behavior in framework-based
applications. In European Conference on Object-Oriented Programming (ECOOP). 429–451.

NAIR, S. K., SIMPSON, P. N., CRISPO, B., AND TANENBAUM, A. S. 2008. A virtual machine based informa-
tion flow control system for policy enforcement. Electronic Notes in Theoretical Computer Science 197, 1,
3–16.

NETHERCOTE, N. AND SEWARD, J. 2007. How to shadow every byte of memory used by a program. In ACM
SIGPLAN/SIGOPS International Conference on Virtual Execution Environments (VEE). 65–74.

NEWSOME, J. AND SONG, D. 2005. Dynamic taint analysis for automatic detection, analysis, and signa-
ture generation of exploits on commodity software. In Annual Network & Distributed System Security
Symposium (NDSS).

NGUYEN, K. AND XU, G. 2013. Cachetor: Detecting cacheable data to remove bloat. In ACM SIGSOFT
International Symposium on the Foundations of Software Engineering (FSE). 268–278.

NISTOR, A., SONG, L., MARINOV, D., AND LU, S. 2013. Toddler: Detecting performance problems via similar
memory-access patterns. In International Conference on Software Engineering (ICSE). 562–571.

QIN, F., WANG, C., LI, Z., KIM, H., ZHOU, Y., AND WU, Y. 2006. Lift: A low-overhead practical information
flow tracking system for detecting security attacks. In International Symposium on Microarchitecture
(MICRO). 135–148.

QUEST SOFTWARE. 2011. JProbe Memory Debugging. http://www.quest.com/jprobe.

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1, Pub. date: January 1111.

Scalable Runtime Bloat Detection Using Abstract Dynamic Slicing 1:49

RAYSIDE, D. AND MENDEL, L. 2007. Object ownership profiling: A technique for finding and fixing memory
leaks. In International Conference on Automated Software Engineering (ASE). 194–203.

RUBIN, S., BODIK, R., AND CHILIMBI, T. 2002. An efficient profile-analysis framework for data-layout opti-
mizations. In ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL).
140–153.

SHACHAM, O., VECHEV, M., AND YAHAV, E. 2009. Chameleon: Adaptive selection of collections. In ACM
SIGPLAN Conference on Programming Language Design and Implementation (PLDI). 408–418.

SHANKAR, A., ARNOLD, M., AND BODIK, R. 2008. JOLT: Lightweight dynamic analysis and removal of
object churn. In ACM SIGPLAN International Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA). 127–142.

SHIVERS, O. 1988. Control-flow analysis in Scheme. In ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation (PLDI). 164–174.

SRIDHARAN, M., FINK, S. J., AND BODIK, R. 2007. Thin slicing. In ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI). 112–122.

SRINIVAS, K. AND SRINIVASAN, H. 2005. Summarizing application performance from a component perspec-
tive. In ACM SIGSOFT International Symposium on the Foundations of Software Engineering (FSE).
136–145.

Sun Java Forum. Sun Java Forum. http://forums.java.net/jive/thread.jspa?messageID=
180784.

The J9 Java Virtual Machine 2011. The J9 Java Virtual Machine. http://wiki.eclipse.org/J9.

TIP, F. 1995. A survey of program slicing techniques. Journal of Programming Languages 3, 121–189.

VASWANI, K., NORI, A. V., AND CHILIMBI, T. M. 2007. Preferential path profiling: Compactly numbering
interesting paths. In ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL). 351–362.

WANG, C. AND ROYCHOUDHURY, A. 2008. Dynamic slicing on Java bytecode traces. ACM Transactions on
Programming Languages and Systems 30, 2, 1–49.

XIAO, X., HAN, S., XIE, T., AND ZHANG, D. 2013. Context-sensitive delta inference for identifying workload-
dependent performance bottlenecks. In ACM SIGSOFT International Symposium on Software Testing
and Analysis (ISSTA). 90–100.

XU, G. 2011. Analyzing large-scale object-oriented software to find and remove runtime bloat. Ph.D. thesis,
The Ohio State University.

XU, G. 2012. Finding reusable data structures. In ACM SIGPLAN International Conference on Object-
Oriented Programming, Systems, Languages, and Applications (OOPSLA). 1017–1034.

XU, G. 2013a. CoCo: Sound and adaptive replacement of Java collections. In European Conference on Object-
Oriented Programming (ECOOP). 1–26.

XU, G. 2013b. Resurrector: A tunable object lifetime profiling technique for optimizing real-world programs.
In ACM SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA). 111–130.

XU, G., ARNOLD, M., MITCHELL, N., ROUNTEV, A., SCHONBERG, E., AND SEVITSKY, G. 2010a. Finding
low-utility data structures. In ACM SIGPLAN Conference on Programming Language Design and Im-
plementation (PLDI). 174–186.

XU, G., ARNOLD, M., MITCHELL, N., ROUNTEV, A., AND SEVITSKY, G. 2009. Go with the flow: Profiling
copies to find runtime bloat. In ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI). 419–430.

XU, G., MITCHELL, N., ARNOLD, M., ROUNTEV, A., AND SEVITSKY, G. 2010b. Software bloat analysis:
Finding, removing, and preventing performance problems in modern large-scale object-oriented applica-
tionsfinding, removing, and preventing performance problems in modern large-scale object-oriented ap-
plications. In FSE/SDP Working Conference on the Future of Software Engineering Research (FoSER).
421–426.

XU, G. AND ROUNTEV, A. 2008. Precise memory leak detection for Java software using container profiling.
In International Conference on Software Engineering (ICSE). 151–160.

XU, W., BHATKAR, S., AND SEKAR, R. 2006. Taint-enhanced policy enforcement: A practical approach to
defeat a wide range of attacks. In USENIX Security. 121–136.

YAN, D., XU, G., AND ROUNTEV, A. 2012. Uncovering performance problems in Java applications with
reference propagation profiling. In International Conference on Software Engineering (ICSE). 134–144.

YANG, J. AND GUPTA, R. 2002. Frequent value locality and its applications. ACM Transactions on Program-
ming Languages and Systems 1, 1, 79–105.

ZHANG, X. 2006. Fault localization via precise dynamic slicing. Ph.D. thesis, University of Arizona.

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1, Pub. date: January 1111.

1:50 G. Xu et al.

ZHANG, X., GUPTA, N., AND GUPTA, R. 2006a. Pruning dynamic slices with confidence. In ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI). 169–180.

ZHANG, X., GUPTA, N., AND GUPTA, R. 2007. Locating faulty code by multiple points slicing. Software:
Practice and Experience 37, 935–961.

ZHANG, X. AND GUPTA, R. 2004a. Cost effective dynamic program slicing. In ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI). 94–106.

ZHANG, X. AND GUPTA, R. 2004b. Whole execution traces. In International Symposium on Microarchitecture
(MICRO). 105–116.

ZHANG, X., GUPTA, R., AND ZHANG, Y. 2003. Precise dynamic slicing algorithms. In International Confer-
ence on Software Engineering (ICSE). 319–329.

ZHANG, X., TALLAM, S., AND GUPTA, R. 2006b. Dynamic slicing long running programs through execution
fast forwarding. In ACM SIGSOFT International Symposium on the Foundations of Software Engineer-
ing (FSE). 81–91.

ZHANG, Y. AND GUPTA, R. 2001. Timestamped whole program path representation and its applications. In
ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI). 180–190.

ZHANG, Y. AND GUPTA, R. 2002. Data compression transformations for dynamically allocated data struc-
tures. In International Conference on Compiler Construction (CC). 14–28.

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1, Pub. date: January 1111.

