
DATAFLOW ANALYSIS OF SOFTWARE FRAGMENTS

BY ATANAS ROUNTEV

A dissertation submitted to the

Graduate School—New Brunswick

Rutgers, The State University of New Jersey

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

Graduate Program in Computer Science

Written under the direction of

Barbara Gershon Ryder

and approved by

New Brunswick, New Jersey

August, 2002

c© 2002

Atanas Rountev

ALL RIGHTS RESERVED

ABSTRACT OF THE DISSERTATION

Dataflow Analysis of Software Fragments

by ATANAS ROUNTEV

Dissertation Director: Barbara Gershon Ryder

The goal of dataflow analysis is to determine properties of the run-time behavior of software

systems by analyzing the software source code. Such analysis has a wide range of uses

in software engineering tasks and their supporting tools. Traditionally, interprocedural

dataflow analyses are designed as whole-program analyses: they take as input and process

complete programs. This analysis model has been used extensively in the previous work

on dataflow analysis.

The paradigm of whole-program analysis has several limitations. Such analysis can-

not be applied to incomplete programs (e.g., library modules), to programs containing

unanalyzable modules (e.g., programs built with precompiled components), and to large

programs. These restrictions limit the usefulness of whole-program analysis in the context

of real-world software development. To address this problem, in this thesis we propose the

paradigm of fragment dataflow analysis.

Fragment dataflow analysis is an interprocedural dataflow analysis that is designed to

analyze software fragments rather than complete programs. This analysis model is more

flexible and can be used in situations in which whole-program analysis is not applicable.

The first contribution of our work is a theoretical framework for constructing fragment

ii

dataflow analyses. This framework provides analysis designers with a sound basis for

constructing fragment analyses and for reasoning about their properties.

Our second contribution is an approach for performing points-to analysis and side-

effect analysis for C programs that are built with precompiled libraries modules. We

define and evaluate fragment analyses that can be applied to library modules, as well

as to the corresponding client modules. Our work enables the use of two fundamental

dataflow analyses—points-to analysis and side-effect analysis—for C programs that cannot

be handled by the previous work on whole-program analysis.

The third contribution of this work is an approach for performing class analysis for the

purposes of testing of polymorphism in Java. Our work defines a method for constructing

fragment class analyses in order to compute test coverage requirements. We present em-

pirical results showing the precision and practicality of the analyses. This work is the first

one to show how to construct high-quality coverage tools for testing of polymorphism in

Java software.

iii

Acknowledgements

I would like to thank my advisor and mentor Prof. Barbara Ryder for her constant

support and guidance. She was always ready to help, and she taught me many things that

influenced my professional and personal growth. I would also like to thank all members

of the PROLANGS group for providing a great research environment. Dr. Bill Landi

taught me many things, and our card games were a lot of fun. Prof. Tom Marlowe

provided constant encouragement and many insightful comments. I am grateful to Prof.

Phil Stocks for our long conversations and for the good times. I spent many hours talking

with Matt Arnold about research and about many other things; we learned a lot from each

other. I am also grateful to Ana Milanova for her patience and for all the discussions. Dr.

Satish Chandra helped me broaden my research interests and explore new ideas. Finally,

I would like to thank my parents for their unconditional support and encouragement.

iv

Dedication

To my parents

v

Table of Contents

Abstract . ii

Acknowledgements . iv

Dedication . v

List of Tables . x

List of Figures . xi

1. Introduction . 1

1.1. Contributions . 3

1.1.1. Theoretical Model of Fragment Analysis 3

1.1.2. Points-to Analysis and Side-effect Analysis for C Programs Built

with Precompiled Libraries . 3

1.1.3. Class Analysis for Testing of Polymorphism in Java Software 4

1.2. Thesis Organization . 5

2. Theoretical Foundations . 6

2.1. Whole-program Dataflow Analysis . 6

2.1.1. Context-Insensitive Analysis . 8

2.1.2. Context-Sensitive Analysis . 9

2.2. Fragment Dataflow Analysis . 10

2.2.1. Structure of Fragment Analysis . 10

Interprocedural Control Flow Graph 10

Lattice and Transfer Functions . 12

Computing a Solution . 12

vi

2.2.2. Fragment Analysis Design . 13

2.2.3. Fragment Analysis Safety . 14

2.2.4. General Correctness Conditions . 14

2.2.5. Relaxed Correctness Conditions . 17

Flow-Insensitive Context-Insensitive Analysis 18

Flow-Sensitive Context-Insensitive Analysis 19

3. Points-to Analysis and Side-effect Analysis for Programs Built with Pre-

compiled Libraries . 21

3.1. Whole-program Points-to Analysis and Side-effect Analysis 22

3.1.1. Program Representation . 23

3.1.2. Points-to Analysis . 24

3.1.3. Side-effect Analysis . 25

Variable Filters . 26

Analysis Algorithm . 27

3.2. Fragment Analysis of Library Modules . 28

3.2.1. Placeholders . 29

3.2.2. Computing a Solution . 30

3.2.3. Analysis Safety . 32

3.3. Fragment Analysis of Client Modules . 35

3.3.1. Summary Construction . 35

Basic Summary . 37

3.3.2. Summary-based Fragment Analysis of Client Modules 38

3.3.3. Summary Optimizations . 38

Variable Substitution . 38

Statement Elimination . 42

Modification Elimination . 44

3.4. Programs Built with Multiple Libraries . 44

3.4.1. Case 1: A summary for L2 is available 45

vii

3.4.2. Case 2: A summary for L2 is not available 45

3.5. Empirical Results . 46

4. Class Analysis for Testing of Polymorphism in Java 50

4.1. Testing of Polymorphism . 50

4.1.1. Coverage Criteria . 51

4.1.2. Coverage Tools and Class Analysis 52

4.1.3. Open Problems . 53

Analysis of Partial Programs . 53

Analysis Precision . 54

4.2. A Coverage Tool for Java . 55

4.3. Fragment Class Analysis . 58

4.3.1. Simplified Language . 59

4.3.2. Structure of Fragment Class Analysis 60

4.3.3. Placeholders . 60

4.4. Precision of Fragment Class Analysis . 61

4.5. Safety of Fragment Class Analysis . 64

4.5.1. Whole-program Analyses Ap and Ac 65

4.5.2. Safety of Fragment Analyses A′
p and A′

c 68

Parameter-based Fragment Analysis 69

Call-chain-based Fragment Analysis 71

4.6. Empirical Results . 72

5. Related Work . 77

5.1. Describing the Effects of Software Fragments 77

5.1.1. Summary Information Dependent on the Rest of the Program 77

5.1.2. Summary Information Independent of the Rest of the Program . . . 79

5.1.3. User-defined Summary Information 80

5.2. Using Conservative Assumptions about External Code 81

viii

6. Summary and Future Work . 84

6.1. Theoretical Foundations . 84

6.2. Points-to Analysis and Side-effect Analysis for C Programs Built with Pre-

compiled Libraries . 85

6.3. Class Analysis for Testing of Polymorphism in Java Software 85

6.4. Future Work . 86

References . 88

Vita . 93

ix

List of Tables

3.1. Data programs and libraries . 46

3.2. Cost of library analysis . 47

3.3. Size of library summaries . 48

3.4. Cost of client analysis . 49

4.1. Fragment analysis solutions . 64

4.2. Testing tasks . 73

4.3. Reported coverage . 75

4.4. Analysis running times . 76

x

List of Figures

3.1. Program representation . 23

3.2. Sample program . 24

3.3. Whole-program mod analysis . 28

3.4. Placeholders for points-to and side-effect analyses 30

3.5. Fragment analysis solutions . 31

3.6. Basic summary . 37

3.7. Variable substitution . 39

3.8. Optimized summary . 44

4.1. Example of RC and TM coverage criteria 51

4.2. Package station . 56

4.3. Sample test suite . 57

4.4. Simplified language . 59

4.5. Placeholders for class analysis . 61

4.6. Placeholders for package station . 62

4.7. Sample points-to edges . 63

xi

1

Chapter 1

Introduction

The goal of dataflow analysis is to determine properties of the run-time behavior of soft-

ware systems by analyzing the software source code. Dataflow analysis information has

been traditionally used to enable a wide variety of compiler optimizations. In addition, this

information has many possible software engineering applications. For example, dataflow

analysis can be used during software maintenance to aid in understanding the analyzed

software, and to assist in performing and evaluating software changes. Dataflow analysis

can also check correctness properties in order to discover software faults. Analysis infor-

mation can be used to define test coverage criteria and to evaluate the adequacy of test

suites.

Interprocedural dataflow analyses are designed to analyze multiple procedures and to

take into account the interactions among these procedures. Traditionally, interprocedu-

ral dataflow analyses are designed as whole-program analyses. A whole-program analysis

takes as input a complete program and analyzes that entire program. The advantage of

processing the entire program is that the analysis can track complex interactions among

different parts of the program. This approach enables a wide variety of advanced analyses,

and has been used extensively in the existing work on dataflow analysis.

Unfortunately, the paradigm of whole-program analysis has several limitations. First,

such analysis cannot be applied to incomplete programs. For example, whole-program anal-

ysis cannot be used when a reusable component has to be analyzed in the absence of that

component’s clients. As another example, such analysis is not applicable when program

components only become available at run time (e.g., through mechanisms such as dynamic

class loading or run-time component discovery). Another problem for whole-program anal-

ysis comes from program components that are available, but cannot be analyzed. Typical

2

examples are components for which source code is not available (e.g., precompiled li-

braries); other examples are components written in a different language than the rest of

the program. Finally, analyzing the entire program limits the scalability of whole-program

analysis for large programs. This problem is particularly relevant for more precise analyses,

which tend to be relatively expensive, and therefore cannot be used for large programs.

The fundamental problem with whole-program analysis is that this analysis paradigm

is too restrictive to accommodate a wide variety of real-world situations. Thus, the large

body of existing work on whole-program analysis cannot be used directly to solve many im-

portant analysis problems in the context of optimizing compilers and software engineering

tools. The real-world impact of dataflow analysis research can be broadened significantly

if the limitations of whole-program analysis are addressed and resolved. To achieve this

goal, in this thesis we propose the paradigm of fragment dataflow analysis.

Fragment dataflow analysis is an interprocedural dataflow analysis that analyzes soft-

ware fragments rather than complete programs. The input to the fragment analysis is a

fragment which consists of some arbitrary set of procedures that do not form a complete

program. The analysis output is information about properties of the possible run-time

behaviors of the fragment, based on the available knowledge about the environment in

which the fragment will operate.

The conceptual difference between whole-program analysis and fragment analysis is

that they are designed to solve different problems. Essentially, fragment analysis solves

a problem that is more general than the problem solved by whole-program analysis. As

a result, the model of fragment analysis is more flexible and can be used in situations

in which whole-program analysis is not applicable. For example, fragment analysis can

be used to analyze a software component in the absence of that component’s clients and

servers; in this case, the component is the analyzed fragment. In general, many important

analysis problems can be solved using fragment dataflow analysis, even though they cannot

be solved with the traditional model of whole-program analysis.

3

1.1 Contributions

The work presented in this thesis has three major contributions.

1.1.1 Theoretical Model of Fragment Analysis

The first contribution of our work is a theoretical framework for constructing fragment

dataflow analyses. This framework provides the basis for designing fragment analyses and

for reasoning about their properties. The key idea of our approach is to derive fragment

analyses from existing whole-program analyses. This allows conceptual reuse of exist-

ing algorithmic techniques for whole-program analysis, and also enables physical reuse

of existing implementations of whole-program analyses. The approach can be applied to

a variety of flow-sensitive/flow-insensitive and context-sensitive/context-insensitive analy-

ses.1 Using our framework, analysis designers can adapt the large body of existing work

on whole-program analysis to solve many problems that currently cannot be solved with

whole-program analysis.

1.1.2 Points-to Analysis and Side-effect Analysis for C Programs Built

with Precompiled Libraries

Our second contribution is an approach for performing points-to analysis and side-effect

analysis for C programs that are built with precompiled library modules. Points-to analysis

determines which memory locations may be pointed to by a given variable v (i.e., which ad-

dresses may be stored in v). Side-effect analysis determines which variables are potentially

modified by the execution of a program statement. In the presence of pointers, side-effect

analysis requires the output of a points-to analysis to disambiguate modifications through

pointer dereferences. Both points-to analysis and side-effect analysis compute informa-

tion that is of fundamental importance for many analyses and optimizations for software

written in languages that use pointers (such as C) or object references (such as Java). In

this thesis we consider the problem of performing these two analyses for C programs that

are built with precompiled library modules. For such programs, traditional methods for

1Definitions of flow sensitivity and context sensitivity are presented in Chapter 2.

4

whole-program analysis cannot be applied because the source code for the entire program

is never available.

In the context of this problem, we have developed an approach for performing flow-

insensitive context-insensitive points-to analysis as well as side-effect analysis based on

such points-to analysis. We first present a method for constructing fragment analyses of

a library module; these analyses can be used without any available information about the

clients of the library. We also show how to perform fragment analyses of a client module

without having the source code of the used library modules; our method is based on a

technique for automatic construction of summary information that precisely describes the

possible effects of library modules. Finally, we present empirical results that confirm the

practicality and effectiveness of our approach. This work enables optimizing compilers and

software engineering tools to use two fundamental dataflow analyses—points-to analysis

and side-effect analysis—for C programs that are built with precompiled library modules.

For such programs, it is not possible to use the previous work on whole-program points-to

analysis and side-effect analysis.

1.1.3 Class Analysis for Testing of Polymorphism in Java Software

The third contribution of our work is an approach for performing class analysis for the

purposes of testing of polymorphism in Java. Class analysis is a fundamental dataflow

analysis for object-oriented software that determines the possible classes of all objects

that a reference variable may refer to. This information has a wide variety of applica-

tions in optimizing compilers and software engineering tools. We consider one specific

use of class analysis in the context of a coverage tool for testing of polymorphism in Java

software. Polymorphism is a basic object-oriented feature that allows the binding of an

object reference to objects of different classes. Previous work on testing of object-oriented

software [41, 40, 43, 11] proposes techniques that require exercising of all possible bindings

of polymorphic references at call sites. For example, if a reference variable v may refer

to instances of classes A, B, and C, adequate testing of call site “v .m()” should exer-

cise each one of the three possible classes of the receiver object. However, existing work

5

does not address the problem of measuring how well a given test suite covers all possible

polymorphic bindings.

We have built a coverage tool for Java that reports which bindings of polymorphic

receivers have been exercised by a given test suite. The tool uses class analysis to determine

the coverage requirements (i.e., all possible bindings of reference variables). In this context

we cannot use whole-program class analysis because the tool may be used for testing of

partial programs. We have developed a general method for constructing fragment class

analyses from existing whole-program class analyses. This method allows a large number

of whole-program analyses from previous work to be incorporated in coverage tools for

testing of polymorphism. We also present empirical results that compare several specific

fragment class analyses and evaluate their suitability for our target problem. The results

clearly show that appropriately chosen analyses have high precision and low cost, and

therefore are good candidates for inclusion in real-world tools. Our work is the first one

to show how to construct high-quality coverage tools for testing of polymorphism in Java

software.

1.2 Thesis Organization

The rest of this thesis is organized as follows. The theoretical framework for constructing

fragment dataflow analyses is presented in Chapter 2. Chapter 3 discusses our approach for

performing points-to analysis and side-effect analysis for C programs that are built with

precompiled libraries. Chapter 4 presents our method for constructing fragment class

analyses for the purposes of testing of polymorphism in Java. Related work is discussed

in Chapter 5. Finally, Chapter 6 summarizes the thesis and presents possible directions

for future work.

6

Chapter 2

Theoretical Foundations

This chapter presents a theoretical framework for constructing fragment dataflow analyses

from existing whole-program dataflow analyses. Our approach can be applied to a variety

of flow-sensitive/flow-insensitive and context-sensitive/context-insensitive analyses. In the

remainder of this thesis we present and evaluate specific fragment analyses that were

designed with the help of these general theoretical techniques: Chapter 3 discusses flow-

insensitive context-insensitive fragment points-to analyses for C and fragment side-effects

analyses based on them, and Chapter 4 presents flow-insensitive fragment class analyses

for Java. (The notions of flow sensitivity and context sensitivity will be discussed shortly.)

2.1 Whole-program Dataflow Analysis

This section presents a standard framework for whole-program interprocedural dataflow

analysis [57, 39]. This framework serves as the basis for our general approach for construct-

ing fragment dataflow analyses. Given a whole program to be analyzed, a whole-program

analysis conceptually defines a tuple <G,L, F,M, η>, where

• G = (N,E, ρ) is a directed graph with node set N , edge set E, and starting node

ρ∈N . G is an interprocedural control flow graph, as described below.

• <L,≤,∧,>> is a meet semi-lattice [39] with partial order ≤, meet operation ∧, and

greatest element >. For the purposes of our work, we assume that L is finite.1

• F ⊆ {f | f : L → L} is a monotone function space (i.e., x ≤ y implies f(x) ≤ f(y))

1Our results can be trivially extended for infinite semi-lattices with finite height.

7

• M : N → F is an assignment of transfer functions to the nodes in G. The transfer

function for node n will be denoted by fn.

• η∈L is the solution at the bottom of the starting node ρ

A partially ordered set is a set that has an ordering relation ≤ that is reflexive, anti-

symmetric, and transitive. For any two elements x and y of a partially ordered set L, their

meet (denoted by x∧ y) is a unique element of L which is less than x and y in the partial

order, and is maximal among all elements of L with this property; in general, x ∧ y may

not exist. A meet semi-lattice is a partially ordered set in which every two elements have

a meet.

The program is represented by an interprocedural control flow graph (ICFG) which

contains the control flow graphs for all procedures in the program. Each procedure has

a single entry node and a single exit node. Node ρ is the entry node of the starting

procedure. Nodes within each procedure represent statements from that procedure, and

the edges in the graph represent potential flow of control between these statements. Each

call statement is represented by a pair of nodes, a call node and a return node. There is

an edge from the call node to the entry node of the called procedure; there is also an edge

from the exit node of the called procedure to the return node in the calling procedure.

A path from node n1 to node nk is a sequence of nodes p = (n1, . . . , nk) such that

(ni, ni+1) ∈E. Let fp = fn1
◦ fn2

◦ . . . ◦ fnk
. A realizable path is a path on which every

procedure returns to the call site which invoked it [57, 35, 49]; only such paths represent

potential sequences of execution steps.2 A same-level realizable path is a realizable path

whose first and last nodes belong to the same procedure, and on which the number of call

nodes is equal to the number of return nodes. Such paths represent sequences of execution

steps during which the call stack may temporarily grow deeper, but never shallower that its

original depth, before eventually returning to its original depth [49]. The set of all realizable

paths from n to m will be denoted by RP(n,m); the set of all same-level realizable paths

2Some realizable paths may be infeasible (i.e., cannot be followed during an actual program execution);
a typical example is a program in which the boolean conditions of two different if statements always have
the same value. In general, it is impossible to detect such infeasible paths, and most analyses do not
attempt to filter out realizable paths that are infeasible.

8

from n to m will be denoted by SLRP(n,m).

Definition 1 For each n∈N , the meet-over-all-realizable-paths (MORP) solution at

n is defined as MORP(n) =
∧

p∈RP(ρ,n) fp(η).

After conceptually defining the tuple <G,L, F,M, η> based on the input program,

a whole-program analysis computes a dataflow solution S : N → L; the solution at the

bottom of node n will be denoted by Sn. The solution is safe iff Sn ≤ MORP(n) for each

node n∈N . A safe analysis computes a safe solution for each valid input program.

The analysis computes a solution by using some solution procedure, which is essentially

an algorithm that takes as input the tuple <G,L, F,M, η> and produces as output a

solution S : N → L. In the rest of the thesis we will refer to this algorithm as the

solution engine of the analysis. For efficiency reasons, the solution engine typically employs

approximation techniques that result in a solution that is less precise than the MORP

solution (i.e., Sn < MORP(n)). With respect to these approximations, two major design

choices are the flow sensitivity and the context sensitivity of the analysis. Informally,

flow-sensitive analyses take into account the flow of control in the program, while flow-

insensitive analyses ignore that flow. Context-sensitive analyses distinguish among the

different invocation contexts of a procedure, and context-insensitive analyses do not make

this distinction.

2.1.1 Context-Insensitive Analysis

The solution engine of a flow-sensitive, context-insensitive analysis constructs a system of

equations of the form

Sρ = η, Sn =
∧

m∈Pred(n)

fn(Sm) (2.1)

where Pred(n) is the set of predecessor nodes for n. This system has the form S = H(S),

where S : N → L and H : (N → L) → (N → L). To solve this system, the engine starts

with an initial solution S0 for which S0
ρ = η and S0

n = > for n 6= ρ. The final solution is

the limit of the sequence {Si|Si = H(Si−1)}, and can be computed using some form of

9

fixed-point iteration.3

The solution engine of a flow-insensitive, context-insensitive analysis ignores the flow

of control in the program (i.e., it assumes that statements may be executed in arbitrary

order), and computes a single solution S ∈ L for the entire program.4 Intuitively, this

approach can be thought of as merging all nodes in G. Conceptually, this creates a graph

with a single node, with a corresponding transfer function fall : L → L of the form

fall = (
∧

n∈N fn) ∧ id . This transfer function summarizes all possible effects of all transfer

functions for individual program statements. The inclusion of the identity function id in

the above definition is necessary to encode the fact that the analysis does not perform

any “kills”—that is, because of the flow insensitivity, dataflow facts that have already

been created cannot be removed. After all nodes have been merged, the solution engine

defines the equation S = fall (S) and then solves it using fixed-point iteration as follows:

S0 = η, Si = fall (S
i−1).

2.1.2 Context-Sensitive Analysis

The problem with context-insensitive analysis is that the effects of different invocations

of the same procedure are merged and are propagated to all callers of that procedure.

Context-sensitive analysis attempts to avoid this potential source of imprecision by distin-

guishing between the different calling contexts of a procedure. There have been various

approaches that introduce different elements of context sensitivity in dataflow analysis.

For example, early work by Sharir and Pnueli [57] presents two approaches to context sen-

sitivity: “functional approach” and “call string approach”. In the functional approach, the

calling context is approximated by a lattice element that encodes the state of the program

at the entry node of the called procedure. The call string approach approximates calling

context by a chain of k enclosing call sites. Both techniques have served as the basis for a

large number of subsequent context-sensitive analyses.

3Since N and L are finite and H is monotone, this sequence has a well-defined limit.

4Some analyses (e.g., [33]) compute separate solutions for each procedure; our results can be trivially
extended to such analyses. Whenever we discuss flow- and context-insensitive analyses in the rest of the
thesis, we refer to analyses that compute a single solution for the entire program.

10

2.2 Fragment Dataflow Analysis

This section describes the overall structure of fragment dataflow analysis and its relation-

ship with whole-program analysis. The techniques presented in this section allow designers

of dataflow analyses to derive fragment analyses from existing whole-program analyses.

Using these techniques, the large existing body of work on whole-program analysis can be

adapted to solve a variety of problems that cannot be solved with the traditional model

of whole-program analysis.

2.2.1 Structure of Fragment Analysis

The input to a fragment analysis contains the source code for some software fragment Fr .

For the purposes of this discussion, we will assume that the fragment is some arbitrary

set of procedures that does not form a complete program. In general, the fragment could

potentially be a part of many different whole programs. The input to the fragment analysis

also contains whole-program information I that represents the available knowledge about

the whole programs that could contain Fr . The available whole-program information de-

pends on the particular context in which the fragment analysis is performed. For example,

I could encode some knowledge about preconditions that will be satisfied by the callers of

the fragment. As another example, I could be summary information about the possible

effects of the callees of the fragment. We will use WholePrg(Fr , I) to denote the set of all

valid whole programs that contain Fr and for which I is true; typically, WholePrg(Fr , I)

is an infinite set.

Interprocedural Control Flow Graph

Consider a fragment Fr and the control flow graphs of the procedures in that fragment.

We will denote by BoundaryEntries the set of entry nodes for all procedures in Fr that

could be called by non-fragment procedures. More precisely, BoundaryEntries contains

all entry nodes e such that for some whole program from WholePrg(Fr , I), node e has

a predecessor call node that is located inside a non-fragment procedure. Similarly, set

BoundaryCalls contains all call nodes c in the fragment such that for some whole program

11

from WholePrg(Fr , I), node c has a successor entry node that is outside of the fragment.

Given Fr and I, the fragment analysis starts by creating an interprocedural control flow

graph G′ = (N ′, E′, ρ′). G′ contains the control flow graphs of all fragment procedures,

as well as the interprocedural edges representing calls between fragment procedures (as

described in Section 2.1). In addition, G′ contains the control flow graphs for several

placeholder procedures. Intuitively, the placeholder procedures serve as representatives for

the unknown procedures from the rest of the program. For each placeholder procedure,

there is a control flow graph that contains placeholder nodes and edges between these

nodes. Informally, the role of the placeholder nodes is to represent the possible effects of

the unknown statements from the rest of the program; a more formal description will be

presented shortly.

In addition to the intraprocedural edges inside the placeholder procedures, there could

be interprocedural edges representing (i) calls between placeholder procedures, and (ii)

calls between placeholder procedures and fragment procedures. For each fragment node

e∈BoundaryEntries, G′ should contain at least one interprocedural edge from a call node

in some placeholder procedure to entry node e (plus the corresponding exit-return edge).

Similarly, for each fragment node c∈BoundaryCalls, G′ should contain an interprocedural

edge from c to the entry node of some placeholder procedure (plus the corresponding

exit-return edge).

If the fragment contains the starting procedure of the program, the starting node ρ ′

is the entry node of this fragment procedure. Otherwise, ρ′ is the entry node of some

placeholder procedure.

Example. In Chapter 3 we consider the problem of analyzing a library before we have

any information about the possible clients of this library. In the context of this problem, we

use a single placeholder procedure ph proc that represents the unknown procedures from

client code that could be built on top of the library. Inside this placeholder procedure, we

use a variety of placeholder nodes that represent the possible effects of different categories

of statements from the unknown client code. The starting node ρ′ is the entry node of

ph proc. ♦

12

Lattice and Transfer Functions

Given Fr and I, the fragment analysis defines a finite meet semi-lattice L′ with partial

order ≤, meet operation ∧, and greatest element >′. In addition, the analysis defines a

monotone function space F ′ ⊆ {f | f : L′→L′} and assigns transfer functions to the nodes

in G′ by defining a map M ′ : N ′ → F ′. Note that N ′ contains not only nodes inside the

fragment, but also placeholder nodes inside placeholder procedures. The transfer functions

associated with these placeholder nodes encode the possible effects of unknown statements

from the rest of the program. Finally, the analysis also defines a value η ′ ∈ L′ as the

solution at the bottom of the entry node ρ′.

Computing a Solution

Once the fragment analysis has defined the tuple < G′, L′, F ′,M ′, η′ >, it computes a

dataflow solution S ′ : N ′ → L′; the solution at the bottom of node n will be denoted by

S′
n. To compute this solution, the fragment analysis can use solution procedures similar

to the approaches used by whole-program analyses. In fact, we are only interested in

fragment analyses that have been derived from existing whole-program analyses. For such

fragment analyses, we assume that the designers of the analysis have chosen L ′ and F ′

that are similar in structure to L and F from some whole-program analysis (or from an

entire category of whole-program analyses), and because of this, the solution engine of

that whole-program analysis can be reused by the fragment analysis. Therefore, after

conceptually defining < G′, L′, F ′,M ′, η′ >, the fragment analysis will run the solution

engine of some existing whole-program analysis. From the point of view of that engine, it is

irrelevant that tuple <G′, L′, F ′,M ′, η′> is not based on some whole program, but instead

is constructed by the fragment analysis. As long as the tuple has the appropriate structure

and properties, the whole-program solution engine can be used to compute a fragment

analysis solution (the correctness of this solution is discussed in Section 2.2.3). This

approach allows conceptual reuse of existing algorithmic techniques for whole-program

analysis, and also enables physical reuse of existing implementations of whole-program

analyses.

13

2.2.2 Fragment Analysis Design

The previous section describes the general structure of fragment analysis, but intentionally

does not discuss several issues that have to be addressed by the designer of a fragment

analysis. The first issue is what kind of whole-program information I to use. This depends

on the context in which the fragment analysis is used—that is, the process/tool/system

that employs the analysis. Clearly, we cannot expect to be able to provide a general

characterization of I. In the rest of this thesis, we present several specific problems in

the context of which we define the appropriate form of whole-program information. For

example, we consider the problem of analyzing software libraries before we have access to

the client components of these libraries. In the context of this problem, the only available

information is the list of library procedures that could be called by client code, as well as

the list of library variables that could be read/written by client code. As another example,

we also consider the problem of analyzing a library client without having access to the

library source code. For this problem, one possible solution is to use an I that describes

the potential effects of the library code on the client.

Another issue is what kind of lattice and transfer functions to use. As described earlier,

our goal is to be able to reuse existing solution procedures from whole-program analyses,

and therefore the structure of L′ and F ′ should allow this reuse. From our experience, given

an existing whole-program analysis with L and F , it is trivial to define L′ and F ′ of the

same form as L and F , thus enabling the use of the solution engine from the whole-program

analysis. The only non-trivial issue is how to define the parts of L′ and F ′ that represent

entities from outside the fragment (e.g., what kind of transfer functions to associate with

placeholder nodes). In general, this depends on the available whole-program information

I and on the kind of whole-program analysis we start with. In the next section we present

techniques that can be used by analysis designers to ensure that they in fact have chosen

L′ and F ′ appropriately. In the remaining chapters of the thesis we present specific choices

of lattices and transfer functions in the context of particular fragment analyses.

14

2.2.3 Fragment Analysis Safety

Consider a safe whole-program analysis from which we have derived a fragment analysis.

To be able to reason about the safety of the fragment analysis, analysis designers have to

define the relationship between the semi-lattice L′ in the fragment analysis and all semi-

lattices LP constructed by the corresponding whole-program analysis for the programs

P ∈WholePrg(Fr , I). For each such LP , analysis designers need to define an abstraction

relation αP ⊆LP ×L′. This relation encodes the notion of safety and is used to prove that

the analysis is safe; it is never explicitly constructed or used during the actual analysis. If

(x, x′)∈αP , we will write αP (x, x′).

Intuitively, the abstraction relation αP defines the relationship between the knowl-

edge represented by values from LP and the knowledge represented by values from L′. If

αP (x, x′), the knowledge associated with x′ “safely abstracts” the knowledge associated

with x; thus, αP is similar in nature to the abstraction relations used in abstract interpre-

tation [15]. Relation αP is defined by the designer of the fragment analysis, and depends

on the original whole-program analysis, on the available information about the rest of the

program, and on the intended uses of the fragment analysis solution. In the remaining

chapters of this work we present specific definitions of abstraction relations in the context

of several fragment analyses.

Definition 2 A solution produced by a fragment analysis for an input pair (Fr , I) is safe

iff αP (MORPP (n), S′
n) for each P ∈ WholePrg(Fr , I) and each node n ∈ N ′ inside the

fragment. Here S ′
n denotes the fragment analysis solution at n, and MORPP (n) is the

MORP solution at n for the whole-program analysis of P , as defined earlier. A safe

fragment analysis produces a safe solution for each valid input pair (Fr , I).

2.2.4 General Correctness Conditions

We have defined a set of sufficient conditions that ensure the safety of a fragment analysis

according to the above definition. These conditions can be used by analysis designers

in two ways. First, after a designer has defined her analysis, she can prove its safety.

Second, while designing her fragment analysis, she can use the conditions as a guide to

15

define different elements of the analysis, in particular the lattice and the transfer functions.

While designing the specific fragment analyses presented later in the thesis, we found it

very helpful to use the correctness conditions as a guide in making design choices.

Intuitively, the first condition ensures that a safe approximation in L′, as defined by the

partial order ≤, is also a safe abstraction according to αP . The second condition ensures

that if x′∈L′ safely abstracts the effects of each individual realizable path ending at a node

n, it also safely abstract the MORP solution at n. Formally, for any P ∈WholePrg(Fr , I)

and its αP , any x, y∈LP and any x′, y′∈L′, the following should be true:

Condition 1: If αP (x, x′) and y′ ≤ x′, then αP (x, y′)

Condition 2: If αP (x, x′) and αP (y, x′), then αP (x ∧ y, x′)

The next condition ensures that the solution η ′ at the starting node in the fragment

analysis safely abstracts the solution ηP at the starting node in the whole-program analysis.

That is, for any program P ∈WholePrg(Fr , I) the following should be true:

Condition 3: αP (ηP , η′)

We should ensure that the transfer functions for fragment nodes in the fragment anal-

ysis safely abstract the corresponding transfer functions in the whole-program analysis.

Intuitively, this means that the semantics associated with node n ∈ Fr in the fragment

analysis safely models the semantics associated with n in the whole-program analysis. We

first introduce the following notation: for any function f in the function space of the

whole-program analysis, and any function f ′∈F ′, αP (f, f ′) holds if and only if αP (x, x′)

implies αP (f(x), f ′(x′)) for any x ∈ LP and x′ ∈ L′. In other words, we generalize the

abstraction relation to transfer functions.

Let fn,P be the transfer function for node n ∈ Fr in the whole-program analysis for

some program P ∈WholePrg(Fr , I), and f ′
n be the transfer function for that same node in

the fragment analysis. For any such n, the following should be true:

Condition 4: αP (fn,P , f ′
n)

16

The next two conditions guarantee that the possible effects of nodes outside of the

fragment are taken into account by the fragment analysis. First, we need to consider

realizable paths that represent calls from the rest of the program to the fragment. For

any P ∈WholePrg(Fr , I) and any node n∈BoundaryEntries , let OutRP P (ρ, n) be the set

of all realizable paths q = (ρ, . . . ,m, n) in the ICFG of P such that m /∈ Fr . Then the

following condition should hold:

Condition 5: For any path q∈OutRPP (ρ, n) there exists a realizable path q ′ = (ρ′, . . . , n)

in G′ such that αP (fq, f
′
q′)

Finally, we also have to consider the effects of calls from the fragment to the rest

of the program. For any P ∈ WholePrg(Fr , I) and any node n ∈ BoundaryCalls with a

corresponding return node r, let OutSLRPP (n, r) be the set of all same-level realizable

paths q = (n,m, . . . , r) in the ICFG of P such that m /∈ Fr . Each such path represents

the possible effects of a call from the fragment to some procedure that is external to the

fragment. In this case, the following should hold:

Condition 6: For any path q∈OutSLRPP (n, r) there exists a same-level realizable path

q′ = (n, . . . , r) in G′ such that αP (fq, f
′
q′)

The safety of the fragment analysis is guaranteed by the following claim:

Theorem 1 If the fragment analysis uses the solution engine of a safe whole-program

analysis, and if Conditions 1–6 hold, then the resulting fragment analysis solution is safe

according to Definition 2.

Proof Outline. Because of the safety of the whole-program solution engine, the solution

S′
n computed by the fragment analysis for a node n is an approximation of MORP ′(n) =

∧
q′∈RP(ρ′,n) fq′(η′), where RP(ρ′, n) is the set of realizable paths (ρ′, . . . , n) in G′. In other

words, S′
n ≤ MORP ′(n).

Suppose we can show that αP (MORPP (n),MORP ′(n)) for each node n∈Fr . Because

of Condition 1, this would imply that αP (MORPP (n), S′
n), which guarantees the safety of

the fragment analysis.

17

To show that αP (MORPP (n),MORP ′(n)), it is enough to prove that for each path

q∈RP(ρ, n) in the ICFG for P , there exists a path q ′∈RP(ρ′, n) in G′ such that αP (fq, f
′
q′).

Because of Condition 3, this implies αP (fq(ηP), f ′
q′(η′)); in turn, using Conditions 1 and

2, it is trivial to show that αP (MORPP (n),MORP ′(n)). The existence of such q′ for each

q can be proven by induction on the number k of fragment nodes in q. The base case of

the induction (k = 1) holds due to Condition 5; the inductive step can be shown using

Conditions 4–6. ♦

2.2.5 Relaxed Correctness Conditions

Conditions 5 and 6 from Section 2.2.4 are designed to ensure that the fragment anal-

ysis correctly models the possible effects of non-fragment nodes in the whole-program

analysis. Using these conditions (together with Conditions 1–4), we can prove that

αP (MORPP (n),MORP ′(n)) for each node n∈Fr . Since the fragment analysis uses the so-

lution engine of a safe whole-program analysis, the fragment analysis solution is guaranteed

to be a safe approximation of MORP ′(n), and therefore safe according to Definition 2.

In some cases, instead of proving safety with respect to any whole-program solution

engine, we are only interested in proving safety with respect to a particular engine (or

category of engines). In this case, Conditions 5 and 6 may be too strong, because they

are designed to guarantee that MORP ′(n) is safe (which implies safety with respect to all

engines), while we are only interested in proving the safety of the solution S ′
n computed

with that particular engine. In other words, even if αP (MORPP (n),MORP ′(n)) does not

hold, we may still be able to prove that αP (MORPP (n), S′
n). In this case, we can relax

Conditions 5 and 6 to take into account the properties of the engine under consideration.

In particular, we have defined relaxed correctness conditions that are appropriate for flow-

insensitive, context-insensitive solution engines, and another set of relaxed conditions that

are useful for flow-sensitive, context-insensitive solution engines.

There are two advantages in defining and using these relaxed conditions. First, they

provide analysis designers with more freedom in making design choices: fragment analyses

that cannot be proven to be safe using the general conditions from Section 2.2.4 can now be

18

proven safe using engine-specific knowledge. Second, these relaxed conditions are simpler

than the general conditions, and therefore are easier to use by analysis designers while

designing the fragment analysis and when proving analysis safety.

Flow-Insensitive Context-Insensitive Analysis

Suppose that the fragment analysis uses the solution engine of a flow-insensitive, context-

insensitive whole-program analysis, and that this engine can be described using the model

presented in Section 2.1: S0 = η, Si = fall (S
i−1), with a final solution S∗ = limi→∞ Si.

Note that the actual engine may use a variety of methods to compute S∗, not just the

simple fixed-point iteration described by S i = fall (S
i−1). For example, instead of applying

fall , the engine may apply individual transfer functions in particular order that ensures

fast convergence. In fact, the analysis may even compute an approximation of S ∗ in order

to reduce analysis time. While there could be a wide variety of solution procedures, we

assume that the engine is conceptually based on the above model, and therefore computes

a solution S ′ ≤ S∗. Essentially, the above definition of S∗ provides a generic model that

allows us to reason about the properties of an entire class of solution engines.5

If a fragment analysis uses a whole-program solution engine that fits the above model,

it should satisfy the following relaxed versions of Conditions 5 and 6 from Section 2.2.4:

Condition 7: For any path q ∈ OutRPP (ρ, n) there exists a set of nodes {m1, . . . ,mr}

in graph G′ with a corresponding set of transfer functions {f ′
m1

, . . . , f ′
mr

} such that

αP (fq , f ′
m1

◦ . . . ◦ f ′
mr

). The same is true for any path q∈OutSLRPP (n, r).

Since the solution engine ignores the flow of control in G′, we can define the correctness

condition in terms of sets of nodes in G′, rather than in terms of realizable paths in G′

as in Conditions 5 and 6. Given Conditions 1–4 and 7, it is straightforward to prove that

a flow-insensitive context-insensitive fragment analysis is safe according to Definition 2

(assuming its solution engine can be described using the above model). The proof considers

the solution S∗ defined earlier, and shows that for each P ∈WholePrg(Fr , I), each node

5For example, in Chapter 3 we define such a generic model to describe several different flow-insensitive
context-insensitive points-to analyses.

19

n∈Fr , and each realizable path q = (ρ, . . . , n) in P , it is true that αP (fq(ηP), S∗). This

together with Conditions 1 and 2 guarantees that αP (MORPP (n), S′). To prove that

αP (fq(ηP), S∗), it is enough to show that there exists some set of functions {f ′
i |f

′
i ∈ F ′}

such that αP (fq, f
′
1◦. . .◦f ′

k); this together with the obvious S∗ ≤ (f ′
1◦. . .◦f ′

k)(η
′) shows the

desired result. The existence of such {f ′
i} is straightforward to prove based on Conditions

4 and 7.

Flow-Sensitive Context-Insensitive Analysis

Suppose that the fragment analysis uses the solution engine of a flow-sensitive, context-

insensitive whole-program analysis, and that this engine can be described using the model

from Section 2.1. Recall that this model defines the system of equations (2.1) of the form

S = H(S), where S : N → L and H : (N → L) → (N → L). Let S∗ = limi→∞ Si,

where Si = H(Si−1). This is just a model of the operation of the solution engine: the

actual engine may use a different computational procedure (e.g., ordered applications of

transfer functions using a worklist), and may introduce approximations to reduce analysis

cost. However, we assume that the engine is conceptually based on the above model, and

therefore computes a solution S ′ ≤ S∗. As before, our goal is to define a generic model

that can be used to reason about the properties of an entire class of solution engines.

If a fragment analysis uses a whole-program solution engine that can be described with

the above model, we can define the following relaxed versions of Conditions 5 and 6 from

Section 2.2.4:

Condition 8: For any path q ∈OutRPP (ρ, n) there exists a path q′ = (ρ′, . . . , n) in G′

such that αP (fq, f
′
q′). Similarly, for any path q ∈ OutSLRPP (n, r), there exists a

path q′ = (n, . . . , r) in G′ such that αP (fq, f
′
q′).

Since the solution engine takes into account all paths in G′ (both realizable and non-

realizable), we can define the correctness condition in terms of arbitrary paths in G ′, rather

than in terms of realizable paths in G′ as in Conditions 5 and 6. Given Conditions 1–4 and

8, it can be proven that a flow-sensitive, context-insensitive fragment analysis is safe ac-

cording to Definition 2. The proof shows that for each program P ∈WholePrg(Fr , I), each

20

node n∈Fr , and each realizable path q = (ρ, . . . , n) in P , it is true that αP (fq(ηP), S∗
n).

This can be proven by showing that there exists a path q ′ = (ρ′, . . . , n) in G′ such that

αP (fq, f
′
q′); this together with S∗

n ≤ f ′
q′(η′) shows the desired property. The existence of

such a path q′ can be proven based on Conditions 4 and 8.

21

Chapter 3

Points-to Analysis and Side-effect Analysis for Programs

Built with Precompiled Libraries

Large programs are typically built from separate modules. Such modular development

enables people to understand and manage complex software systems. This development

model also allows practical compilation: instead of (re)compiling large programs from

scratch, compilers can perform separate compilation of individual modules. Modular de-

velopment allows sharing of modules between programs: for example, an already compiled

library module can be reused with no development effort or compilation cost. Modularity

also enables better distribution of the implementation effort—different modules can be

developed by different teams, at different times and in separate locations.

Traditional whole-program dataflow analysis cannot be used directly in the context of a

modular development process. To make existing analyses useful in realistic compilers and

software productivity tools, analysis techniques must be adapted to handle such modular

development. In this chapter we investigate one instance of this problem. Our work con-

siders points-to analysis and side-effect analysis for programs built with precompiled library

modules. Reusable modules are routinely employed in order to reduce development costs.

Such modules are designed to be used by a variety of (as yet unknown) clients, and are

typically packaged as precompiled libraries that are statically or dynamically linked with

the client code. To simplify the discussion, for most of the chapter we consider programs

containing two modules: a library module that is developed and compiled independently

of any particular client, and a client module that uses the functionality provided by the

library module. (Section 3.4 discusses analysis of programs built with multiple library

modules.) In the context of such programs, we propose fragment points-to analyses and

fragment side-effect analyses that can be used to analyze the library module and the client

22

module in separation from each other.

3.1 Whole-program Points-to Analysis and Side-effect Analysis

Modification side-effect analysis (mod) determines, for each program statement, the set of

variables whose values may be modified by executing that statement. The complementary

use analysis computes similar information for the uses of variable values. Such information

plays a fundamental role in optimizing compilers and software productivity tools: it en-

ables a variety of other analyses (e.g., reaching definitions analysis, live variables analysis,

etc.), which in turn are needed for code optimization and for program understanding, re-

structuring and testing. For brevity, we only discuss mod analysis; all techniques trivially

apply to use analysis, because the two analysis problems are essentially identical.

Side-effect analysis for languages like C is difficult because pointers allow indirect

memory accesses and indirect procedure calls. Typically, mod analysis uses the output

of a points-to analysis to resolve pointer dereferences. Various whole-program points-to

analyses have been developed [35, 33, 21, 4, 68, 60, 69, 56, 36, 25, 17, 23, 12, 32, 54]. In

this chapter we focus on the category of flow- and context-insensitive analyses [4, 60, 69,

56, 17, 32]. Such analyses ignore the flow of control between program points and do not

distinguish between different calling contexts of procedures. As a result, analyses from this

category are efficient and can be used in production-strength tools without introducing

substantial time/space overhead.

Several combinations of a whole-program mod analysis and a whole-program flow-

and context-insensitive points-to analysis have been investigated [55, 34, 54]. Similarly to

[55, 34], we consider a whole-program mod analysis based on Andersen’s whole-program

flow- and context-insensitive points-to analysis for C [4]. Even though we investigate these

specific analyses, our techniques also apply to similar whole-program flow- and context-

insensitive points-to analyses (e.g., [60, 56, 17]), because these analyses can be thought of

as approximate algorithms for performing Andersen’s analysis.

In this section we define a conceptual model of Andersen’s whole-program points-to

analysis and a whole-program mod analysis based on it. In the remaining sections of

23

Program → GlobalDecl∗ Procedure∗ IndirectCall → [Var =] (*Var)(Actuals)
GlobalDecl → global VarList Actuals → ε | VarList
Procedure → proc Var(Formals) Assignment → Var=Var | Var=&Var |

[returns Var] { Body } Var=*Var | *Var=Var |
Formals → ε | VarList Var=NptrExpr
Body → LocalDecl∗ StLocalDecl∗ Stmt∗ NptrExpr → const | unop Var |
LocalDecl → local VarList Var binop Var
StLocalDecl → static local VarList VarList → Var | Var , VarList
Stmt → Call | IndirectCall | Assignment Var → id
Call → [Var =] Var(Actuals)

Figure 3.1: Grammar for the program representation. Terminals are shown in boldface.
A procedure may have a special return variable (defined by returns) that is assigned the
return value of the procedure. NptrExpr is an expression with non-pointer values.

this chapter we describe fragment analyses that are derived from these whole-program

analyses.

3.1.1 Program Representation

For the purpose of this work, we assume that the program representation is defined by the

grammar in Figure 3.1. This representation has a simplified form similar to the kinds of

program representations that are typically supplied as input to points-to and side-effect

analyses. Control-flow statements (if, while, etc.) are irrelevant with respect to flow-

insensitive analyses and are not included in the representation. Because of the weak type

system of C (due to typecasting and union types), we assume that type information is

not used in the points-to and mod analyses1, and therefore the program representation

is untyped. Similarly to [60, 56, 55, 22, 25, 17, 23, 34, 32], structures and arrays are

represented as monolithic objects without distinguishing their individual elements. We

assume that calls to malloc and other heap-allocating functions are replaced by statements

of the form “x=&heap i”, where heap i is a variable unique to the allocation site. Figure 3.2

shows a sample program with two modules: module Client containing procedures main

and div, and module Lib containing procedures exec and neg.

1This analysis approach is the simplest to implement and therefore most likely to be the first one
employed by realistic compilers and tools. Our techniques can be easily adapted to approaches that use
some form of type information.

24

proc main() { proc exec(p,fp) {

local x,y,z,w local s,u,q,t

1: x = 1 11: s = 3 12: u = 4

2: y = 2 13: t = p

3: z = &x 14: (*fp)(g,t)

4: g = &y 15: q = &s 16: neg(q)

5: w = &div 17: q = &u 18: neg(q)

6: exec(z,w) 19: *t = u

} 20: g = t

proc div(a,b) { }

local c,d,e proc neg(r) {

7: c = *a local i,j

8: d = *b 21: i = *r

9: e = c / d 22: j = -i

10: *a = e 23: *r = j

} }

global g

Client Lib

Var Pt(v)
z x
g x, y

w, fp div
p, t, b x

a x, y
q, r s, u

Stmt Mod (s)
1 x
6 g, x, y
10 x, y
14 x, y

16,18 s, u
19 x
23 s, u

Figure 3.2: Program with two modules Client = {main , div} and Lib = {exec,neg}, and
the points-to and mod solutions computed by the whole-program analyses.

3.1.2 Points-to Analysis

Let V be the set of variables in the program representation, as defined by the last pro-

duction in Figure 3.1. We classify the elements of V as (i) global variables, (ii) proce-

dure variables, which occur immediately after the proc terminal and denote the names

of procedures, (iii) local variables, including formals and return variables, and (iv) heap

variables introduced at heap-allocation sites. The analysis constructs a points-to graph in

which nodes correspond to variables from V . A directed edge (v1, v2) shows that one of

the memory locations represented by v1 may contain the address of one of the memory

locations represented by v2 (i.e., v1 may point to v2).

We can define a lattice of points-to graphs L=P(V×V), where P(X) denotes the power

set of X. As usual, in this lattice the partial order ≤ is the “is-superset-of” relation ⊇, the

meet operation ∧ is set union, and the greatest element is ∅. Each statement in the program

defines a transfer function f : L→L that encodes the points-to effects of the statement.

For example, the transfer function for statement “p=q” is f(G) = G∪{(p, x) | (q, x)∈G}.

As another example, the transfer function for “∗p = q” is f(G) = G ∪ {(x, y) | (p, x) ∈

G ∧ (q, y)∈G}. We can define similar transfer functions for all categories of statements

25

described by the Stmt non-terminal from the grammar in Figure 3.1.

Conceptually, the analysis starts with an empty graph and applies transfer functions

until a fixed-point solution is obtained. Figure 3.2 shows the points-to solution for the

sample program; Pt(v) denotes the points-to set of v. The process of computing a points-

to solution can be modeled using the approach from Section 2.1. Formally, we can define

a compound transfer function fall : L → L of the form fall = (
∧

n∈N fn) ∧ id . This

function summarizes the effects of all transfer functions for individual program statements.

Andersen’s analysis computes a solution S∗ = limi→∞ Si where S0 = ∅, Si = fall (S
i−1).

As discussed in Section 2.2.5, this is just a model of the operation of the analysis: the

actual analysis engine need not construct or directly apply fall .

In fact, the above formal model can also be used to reason about other flow- and

context-insensitive points-to analyses—for example, the analyses by Steensgaard [60],

Shapiro and Horwitz [56], and Das [17]. These analyses can be thought of as comput-

ing an approximation of S∗ (i.e., the computed solution is S ′ ≤ S∗). Since our approach

for constructing fragment analyses (presented later) is defined in terms of the above model,

our techniques trivially apply not only to Andersen’s analysis, but also to other analyses

that fit in this model (e.g., [60, 56, 17]).

3.1.3 Side-effect Analysis

We define a conceptual algorithm for whole-program mod analysis that computes a set of

potentially modified variables Mod(s)⊆V for each program statement s. The elements of

Mod(s) represent memory locations whose values after the execution of s may be different

from their values before the execution of s. The algorithm is derived from similar mod

algorithms [55, 34, 54] by adding two variable filters that allow certain variables to be

excluded from Mod sets. This filtering improves the precision of the mod analysis by

compensating for some of the imprecision introduced by the flow- and context-insensitivity

of the underlying points-to analysis.

26

Variable Filters

Our first filter is based on the following observation: a variable v should be included in

Mod(s) only if v represents memory locations whose lifetime is active immediately before

and immediately after the execution of s. For example, if v is a non-static local variable in

procedure P , it represents memory locations whose lifetime is active only for procedures

that are directly or transitively called by P . We define a relation active(s, v) that holds

only if

• v is a global variable, a static local variable, or a heap variable, or

• v is a non-static local variable in procedure P1, s belongs to procedure P2, and

either P2 is reachable from P1 in the program call graph, or P1 and P2 are the same

procedure

Our second filter is applied only to Mod(s) of a call statement s. Suppose that s invokes

procedure P . Among all locations whose lifetime is active with respect to s, only a subset

is actually accessible by P and the procedures transitively called by P . Intuitively, an

active location is accessible only if it can be referenced either directly, or through a series

of pointer dereferences. Only accessible variables may be modified by the call to P , and

only they should be included in Mod(s).

An active global variable is always directly accessible by P and the procedures tran-

sitively called by P . Similarly, an active static local could be directly accessible if its

defining procedure is P or a callee of P . However, an active non-static local can only be

accessed indirectly through pointer dereferences; any direct reference to this local in P or

in the callees of P actually accesses a different run-time instance of the local. Finally, heap

variables can only be accessed through pointers because the program does not contain any

direct references to such variables. Based on these observations, for each call statement s

we define a relation accessible(s, v) that holds only if active(s, v) holds and

• v is a global variable or a static local variable, or

• v∈Pt(a), where a is an actual parameter of s, or

27

• v∈Pt(w) and accessible(s, w) holds for some w∈V

For example, variable u from Figure 3.2 is active for all statements in procedures exec,

div, and neg. With respect to calls 16 and 18, u is accessible because it belongs to the

points-to set of actual q; however, u is not accessible for call 14.

In our conceptual mod algorithm, a variable v is added to Mod(s) only if active(s, v)

holds. In addition, v is included in Mod(s) for a call statement s only if accessible(s, v)

holds. We use these filters in our algorithm formulation in order to define a more precise

semantics for the mod analysis. This allows us to improve the quality of our fragment

analyses, as described later.

Analysis Algorithm

The mod algorithm is described in Figure 3.3. Input map SynMod stores the syntactic

modifications that occur in program statements. Each syntactic modification is a pair

(v, d), where v is variable that occurs on the left-hand side of an assignment or a call,

and d ∈ {D, I} indicates whether the modification is direct or indirect. For example, in

Figure 3.2, SynMod(s) is (x,D) for statement 1 and (a, I) for statement 10.

The first analysis phase (lines 1–5 in Figure 3.3) resolves indirect calls and constructs

a safe approximation of the program call graph. The second phase (lines 6–13) computes

initial Mod sets without taking into account the effects of procedure calls. This phase also

initializes map ProcMod, which stores the sets of variables modified by each procedure.

The third phase (lines 14–18) is a fixed-point computation based on the program call

graph; it uses ProcMod (P) to update the Mod sets of calls to P and the ProcMod sets for

the calling procedures. Figure 3.2 shows the computed Mod sets for some of the statements

in the sample program.

Filters active and accessible are used whenever a variable is added to a Mod set (lines

12 and 17). In addition, we filter out direct modifications of non-static local variables

(lines 9–10), because the lifetime of the modified memory location terminates when the

procedure returns. This filtering allows the analysis to compute more precise information

for non-static local variables declared in recursive procedures, by distinguishing among

28

input Stmt : set of statements Proc: set of procedures
SynMod : Stmt → V ×{D, I} Pt : V → P(V)

output Mod : Stmt → P(V)
declare Called : Stmt → P(Proc) ProcMod : Proc → P(V)

[1] foreach s∈Stmt do
[2] if s is a direct call to procedure P then
[3] Called(s) := {P}
[4] if s is an indirect call through pointer q then
[5] Called(s) := { P | procedure P ∈Pt(q)}

[6] foreach s∈Stmt do
[7] if SynMod(s) = (v,D) then
[8] Mod(s) := {v}
[9] if v is global or static local then
[10] add {v} to ProcMod (EnclosingProc(s))
[11] if SynMod(s) = (v, I) then
[12] Mod(s) := {x |x∈Pt(v) ∧ active(s, x) }
[13] add Mod (s) to ProcMod (EnclosingProc(s))

[14] while changes occur in Mod or ProcMod do
[15] foreach call statement s∈Stmt do
[16] foreach P ∈Called(s) do
[17] Mod(s) := Mod(s) ∪ {x |x∈ProcMod (P) ∧ accessible(s, x)}
[18] add Mod (s) to ProcMod (EnclosingProc(s))

Figure 3.3: Whole-program mod analysis.

different recursive instantiations of such variables.

3.2 Fragment Analysis of Library Modules

In this section we consider the problem of analyzing a library module in isolation from its

client modules. For example, suppose that a library vendor wants to use an optimizing

compiler to produce a highly optimized library binary that will eventually be used by

many (unknown) different clients. In this case the compiler cannot use whole-program

analysis, and it needs to use some form of fragment analysis (where the analyzed fragment

is the library). Similarly, if a library developer wants to use a software engineering tool for

understanding/restructuring/testing of the library module, this tool needs to use fragment

analysis.

29

We consider one particular instance of this problem: performing Andersen’s points-

to analysis and the corresponding mod analysis (as defined in Section 3.1) on a given

library module, under the assumption that many different clients of this module will be

written in the future. We assume that the only knowledge we have about the possible

future clients of the library is the list of library procedures/variables that may be directly

referenced by client modules—that is, the interface of the library module. This list is

the whole-program information I (as defined in Section 2.2) that is part of our analysis

input. Intuitively, given the library and I, our fragment analyses have to model all possible

points-to relationships and mod relationships that may hold with respect to at least one

of the possible client modules of the library. To achieve this, the analyses have to make

conservative assumptions about the possible effects of the unknown code from the client

modules.

Given a library module Lib, consider a complete program P containing Lib and some

client module. Let WholePrg(Lib) be the (infinite) set of all such complete programs.

We use VP to denote the variable set of any such P , as defined in Section 3.1.2. Let

VL⊆ VP be the set of all variables that occur in statements in Lib (this set is independent

of any particular P). Also, let Vexp ⊆ VL be the set of all variables that may be explicitly

referenced by client modules; we refer to such variables as exported. Exported variables

are either globals that could be directly accessed by library clients, or names of procedures

that could be directly called by client code.

Example. We use module Lib from Figure 3.2 as our running example; for conve-

nience, the module is shown again in Figure 3.5. For this module, VL ={exec, p, fp, s, u, t,

g, q,neg , r, i, j}. For the purpose of this example, we assume that Vexp = {g, exec}. Note

that the complete program in Figure 3.2 is just one of the (infinitely many) elements of

WholePrg(Lib). ♦

3.2.1 Placeholders

In our fragment analyses, the possible effects of the unknown code from client modules are

represented by introducing placeholder statements. The placeholder statements are located

30

global ph var

proc ph proc(f1,..,fn) returns ph proc ret {
ph var = fi (1 ≤ i ≤ n) ph var = &v (v∈Vexp) ph var = &ph var

ph var = *ph var *ph var = ph var ph var = &ph proc

ph var = (*ph var)(ph var,..,ph var) (with m actuals)
ph proc ret = ph var

}
Figure 3.4: Placeholder procedure and placeholder statements.

inside a placeholder procedure ph proc that represents all procedures in all possible client

modules. The statements use a placeholder variable ph var that represents all global, local,

and heap variables v∈(VP −VL) for all P ∈WholePrg(Lib). The placeholder procedure and

the placeholder statements are shown in Figure 3.4. Intuitively, each statement represents

different kinds of statements that could occur in client modules: for example, “ph var=&v”

for v∈Vexp models statements of the form “u=&v” where u∈(VP − VL) for some complete

program P .

The indirect call through ph var represents all calls originating from client modules.

In the fragment analyses, the targets of this call could be (i) ph proc, (ii) the procedures

from Vexp , or (iii) any library procedure whose address is taken somewhere in Lib. To

model all possible formal-actual pairs, the number of actuals m should be equal to the

maximum number of formals for all possible target procedures. Similarly, all callbacks

from the library are represented by indirect calls to ph proc; thus, the number of formals

n in ph proc should be equal to the maximum number of actuals used at indirect calls in

the library.

Example. Consider module Lib from Figure 3.5. For the purpose of this example

assume that Vexp = {g, exec}. The library has one indirect call with two actuals; thus,

ph proc should have two formals (n = 2). The indirect call through ph var has possible

targets exec and ph proc, and should have two actuals (m=2). ♦

3.2.2 Computing a Solution

The fragment analyses start by creating the placeholders described above. These place-

holders are then added to the library, the result is treated as a complete program, and

31

global g

proc exec(p,fp) { proc neg(r) {

local s,u,q,t 11: s = 3 12: u = 4 local i,j

13: t = p 14: (*fp)(g,t) 15: q = &u 21: i = *r

16: neg(q) 17: q = &s 18: neg(q) 22: j = -i

19: *t = u 20: g = t 23: *r = j

} }

Pt(v) = ∅ for v∈{s, u, i, j,neg} Mod(s) = {ph var , g} for s∈{14, 19}
Pt(v) = {s, u} for v∈{q, r} and for the indirect call through ph var
Pt(v) = {ph var , ph proc, g, exec} for Mod(23) = {s, u}
every other v in Lib and in ph proc Called (s) = {ph proc, exec} for s = 14

and for the indirect call through ph var

Figure 3.5: Module Lib (Vexp = {g, exec}) and the fragment analysis solutions.

the solution engines of the whole-program analyses (presented in Section 3.1) are applied

to it. This approach is simple to implement by reusing already existing implementa-

tions of the whole-program analyses; such reuse is an important practical advantage. The

fragment analysis solutions computed with this approach are guaranteed to be safe ab-

stractions of all possible points-to and mod relationships in all possible complete programs

P ∈WholePrg(Lib); this issue is discussed in detail in the next section.

Example. Figure 3.5 shows the points-to solution computed by the fragment points-to

analysis. The solution represents all possible points-to pairs in all complete programs. For

example, ph var ∈ Pt(p) shows that p may point to some unknown variable declared in

some client module. Similarly, ph proc∈Pt(p) indicates that p may point to an unknown

procedure from some client module. The first phase of the mod analysis (lines 1–5 in

Figure 3.3) computes a call graph that represents all possible calls in all complete programs.

For example, Called (14) = {ph proc, exec} represents the possible callback from exec to

some client module, as well as the possible recursive call of exec. The remaining phases

of the mod algorithm compute a solution that represents all possible Mod sets in all

complete programs. Some of the Mod sets for Lib are shown in Figure 3.5. For example,

ph var ∈Mod(19) shows that statement “*t=u” may modify the value of some unknown

variable from some client module. ♦

Conceptually, the solutions computed by the fragment analyses can be used in two

32

ways. First, the analyses can determine potential interactions between the library module

and unknown client modules (e.g., which library statements may modify client variables

or may invoke client procedures). This information is necessary for optimizing compilers

and software engineering tools that process the library independently of its clients, and

therefore need to take into account all possible library-client interactions. Second, the

fragment analyses can prove that certain elements of the library do not interact with

the client modules: for example, that regardless of the effects of unknown client code,

a given library variable never points to a client variable. Essentially, the complement of

the analysis solution can be used to prove the absence of library-client interactions. In

Section 3.3 we use this information when creating library summaries that describe the

possible effects of the library. By identifying the absence of interactions with the potential

clients, we can remove redundant information from the library summary.

3.2.3 Analysis Safety

Let V ′ be the set of all variables in the analyzed library and in the placeholder procedure.

The fragment points-to analysis defines a lattice of points-to graphs L′=P(V ′×V ′). The

analysis also associates transfer functions f ′ : L′ → L′ with all fragment statements and

placeholder statements; these functions are defined similarly to the whole-program transfer

functions from Section 3.1.2.

Consider a complete program P ∈WholePrg(Lib). Recall that we use VP to denote the

variable set of any such P , and VL ⊆ VP to denote the set of all variables that occur in

statements in Lib. For any such P , we can define an abstraction relation αP ⊆ VP ×V ′ as

follows:

• αP (v, v) for any v∈VL

• αP (v, ph var) for any global, local, or heap variable v∈(VP − VL)

• αP (v, ph proc) for any procedure variable v∈(VP − VL)

This definition encodes the idea that in the fragment analysis, all fragment variables

are represented by themselves, all unknown non-fragment procedures are represented by

33

ph proc, and all unknown non-fragment variables are represented by ph var. We can

generalize αP to lattice elements (i.e., points-to graphs) as follows: αP (x, x′) iff for each

points-to pair (v, u)∈ x, there exists a points-to pair (v ′, u′)∈ x′ such that αP (u, u′) and

αP (v, v′).

Based on this abstraction relation, the clients of the fragment points-to analysis can

infer that certain points-to relationships may hold in the context of whole programs that

contain the library. For example, if the fragment analysis reports that some fragment

variable v points to the placeholder variable ph var, this means that in some whole program

v may point to some unknown non-fragment variable. Of course, we have to make sure

that the fragment analysis solution represents all possible points-to relationships that may

exist in some whole program. More specifically, we have to show that the solution is safe

according to Definition 2 from Section 2.2.3. To prove this, we can use the correctness

conditions described in Section 2.2.4 and Section 2.2.5. For convenience, these conditions

are shown again below.

Condition 1: If αP (x, x′) and y′ ≤ x′, then αP (x, y′)

Condition 2: If αP (x, x′) and αP (y, x′), then αP (x ∧ y, x′)

For Condition 1, y′ ≤ x′ means that x′ ⊆ y′, and therefore all points-to pairs from x

are represented by corresponding pairs in y ′. Similarly, for Condition 2, x∧ y is x∪ y, and

clearly there are points-to pairs in x′ that represent all pairs in x ∪ y.

Condition 3: αP (ηP , η′)

Since the starting values ηP = η′ = ∅, this condition is trivially satisfied.

Let fn,P be the transfer function for node n∈Lib in the whole-program analysis, and

f ′
n be the transfer function for that same node in the fragment analysis. For any such n,

the following should be true:

Condition 4: αP (fn,P , f ′
n)

The proof of this claim considers the different kinds of transfer functions. For example,

for statement “p = q”, the transfer function (both in the whole-program analysis and in

34

the fragment analysis) is f(G) = G ∪ {(p, x)|(q, x) ∈G}. Suppose we have two points-to

graphs GP ∈LP and G′∈L′ such that αP (GP , G′). Therefore, for every (q, x)∈GP there

exists (q, x′)∈G′ such that α(x, x′). Clearly, for every new (p, x)∈fn,P (GP), there exists

a corresponding (p, x′)∈f ′
n(G′). The proof for other kinds of statements can be done in a

similar fashion.

Since the points-to analysis is flow-insensitive and context-insensitive, we can use the

following correctness condition from Section 2.2.5:

Condition 7: For any path q ∈ OutRPP (ρ, n) there exists a set of nodes {m1, . . . ,mr}

in graph G′ with a corresponding set of transfer functions {f ′
m1

, . . . , f ′
mr

} such that

αP (fq , f ′
m1

◦ . . . ◦ f ′
mr

). The same is true for any path q∈OutSLRPP (n, r).

Intuitively, this condition ensures that the fragment analysis correctly represents the

effects of paths that lie outside of the fragment. For our purposes, we can prove this

condition by showing that the following property holds: for each individual node n /∈Lib

in the whole-program analysis, there exists a set of nodes (i.e., statements) {m1, . . . ,mr} in

the fragment analysis such that αP (fn,P , f ′
m1

◦ . . .◦f ′
mr

); clearly, this implies Condition 7.

To prove this property, we have to consider the kinds of statements that could occur

outside of the fragment. For example, some client module could contain a statement

“v=&g”, where v is a non-fragment variable and g is an exported library global variable. In

the fragment analysis, we have a corresponding placeholder statement “ph var=&g” (see

Figure 3.4). It is easy to show that αP holds between the transfer functions for these two

statements. In general, it can be proven that for each possible non-fragment statement n in

the whole-program analysis, there exists a group of placeholder statements {m1, . . . ,mr}

from Figure 3.4 such that αP (fn,P , f ′
m1

◦ . . . ◦ f ′
mr

).

As discussed in Section 2.2.4 and Section 2.2.5, Conditions 1–4 and 7 guarantee the

safety of the fragment points-to analysis of the library module. The safety of the fragment

mod analysis is straightforward to show, based on the algorithm from Figure 3.3. More pre-

cisely, it can be proven that for every statement n∈Lib, we have αP (ModP (n),Mod ′(n)).

The proof of this property is based on the safety of the fragment points-to analysis.

35

3.3 Fragment Analysis of Client Modules

In this section we consider the problem of analyzing a client module that is built on top

of an existing reusable library module. We are particularly interested in a scenario where

the library module is produced by a vendor that does not provide the source code for the

library. This problem is important in the context of component-based software, where

systems are built from different components that are developed and assembled by different

organizations. Such components are typically distributed in binary form, and their source

code is rarely available.

In order to analyze a client module (e.g., in the context of an optimizing compiler or a

software engineering tool), it is necessary to use some form of fragment analysis because

the source code of the used library module is not available. In this thesis we consider

summary-based fragment analysis of the client module. Such analysis takes as input the

client module (which is the analyzed fragment), as well as summary information about

the library module. This summary information describes the possible effects of the library

module on the client module (i.e., this is the whole-program information I discussed in

Section 2.2.1). Such summary information can be constructed by the library vendor by

analyzing the library source code, and can be made available to the clients of the library

together with the library object code. Library clients can use this information to perform

summary-based fragment analysis of their client modules.

In this section we present an approach for automatic construction of library summary

information for the purposes of performing fragment points-to analysis and fragment side-

effect analysis of client modules. We discuss fragment analyses based on Andersen’s points-

to analysis and the mod analysis described in Section 3.1. Our techniques trivially apply

to other flow- and context-insensitive points-to analyses (e.g., [60, 56, 17]) and to mod

analyses based on them.

3.3.1 Summary Construction

Previous work on context-sensitive points-to analysis uses summary information computed

for each program procedure [35, 54, 68, 31, 10, 12]. In these approaches, the effects of a

36

procedure P are represented by a summary function that encodes the cumulative effects of

the transfer functions of all statements from P and from all procedures transitively called

by P . Some analyses construct partial functions that are defined only for some input

values [35, 54, 68]; others use complete functions defined for all possible inputs [31, 10, 12].

The latter approach can be used to produce summary information for a library module, by

computing and storing the complete summary functions for all exported procedures [31].

The above approaches have one major disadvantage: the implicit assumption that

a called procedure can be analyzed either before its callers are analyzed, or while its

callers are being analyzed. This assumption can be easily violated—for example, when a

library module calls another library module, there are no guarantees that any summary

information will be available for the callee. In the presence of callbacks (e.g., through

function pointers in C), the library module may call client modules that do not even exist

at the time when the summary is being constructed. For example, for module Lib from

Figure 3.5, the effects of exec cannot be expressed by a summary function because of

the indirect call to some unknown client module. In practice, callbacks are often used to

increase the flexibility of reusable libraries by allowing client code to define, extend, or

modify the behavior of the library. A classic example is a generic sorting procedure that

takes as input a pointer to a comparison function defined in the client code. The library

modules used as data in our experiments had several examples of callback usage.

Our approach for summary construction is conceptually different from approaches

based on complete summary functions. We use summary information that is similar in

form to the program representation defined in Figure 3.1; for example, the summary con-

tains statements like those from Figure 3.1. Conceptually, we use elementary transfer

functions instead of cumulative summary functions. This approach has two advantages.

First, the summary can be constructed completely independently of any callers and callees

of the library; therefore, unlike previous work, our approach can handle callbacks. Sec-

ond, the summary construction algorithm is inexpensive and simple to implement, and is

independent of any particular analysis or analysis implementation. Thus, unlike previous

approaches, the analysis needed to construct the library summary does not have to be the

37

1. Variable summary
Procedures = {exec,neg} Locals(exec) = {p, fp, s, u, q, t}
Globals = {g} Locals(neg) = {r, i, j}

2. Points-to summary
proc exec(p,fp) q=&s *t=u i=*r

t=p neg(q) g=t *r=j

(*fp)(g,t) q=&u proc neg(r)

3. Mod summary
SynMod (exec) = {(t, I), (g,D)} SynMod(neg) = {(r, I)}
SynCall (exec) = {(fp, I), (neg , D)} SynCall(neg) = ∅

Figure 3.6: Basic summary for module Lib.

same as the analysis that uses this summary to analyze the client module.

The summary information is designed to be precision-preserving. With respect to the

needs of library clients, the solutions computed by the summary-based fragment analyses

are the same as the solutions that would have been computed if the standard whole-

program analyses were possible. This ensures the best possible cost and precision for the

subsequent users of the fragment analysis solutions.

Basic Summary

The basic summary is the simplest summary information produced by our approach. Fig-

ure 3.6 shows the basic summary for module Lib from Figure 3.5. The summary has three

parts. The variable summary contains information about relevant library variables. The

points-to summary contains all library statements that are relevant to points-to analysis;

statements of the form “Var = NptrExpr” (see Figure 3.1) are not included. The proc

declarations are used by the subsequent points-to analysis to model the formal-actual pair-

ings at procedure calls. The Mod summary contains syntactic modifications and syntactic

calls for each library procedure. A syntactic modification (defined in Section 3.1.3) is a

pair (v,D) or (v, I) representing a direct or indirect modification. A syntactic call is a

similar pair indicating a direct or indirect call through v. The Mod summary does not

include direct modifications of non-static local variables—as discussed in Section 3.1.3,

such modifications can be filtered out by the mod analysis.

38

3.3.2 Summary-based Fragment Analysis of Client Modules

In the summary-based fragment analysis, the client module (which is the analyzed frag-

ment) is combined with the library summary, and the result is analyzed as if it were a

complete program. Thus, already existing implementations of the whole-program analyses

from Section 3.1 can be reused with only minor adjustments, which makes the approach

simple to implement. For example, the mod solution engine (described in Figure 3.3) can

treat each library procedure P as containing a single placeholder statement with Called

set constructed from SynCall(P) and with multiple syntactic definitions determined by

SynMod (P). Clearly, if the summary-based analyses are provided with the basic sum-

mary, the computed points-to and mod solutions are the same as the solutions that would

have been produced by the standard whole-program analyses.

The basic summary is easy to construct and use. However, with this summary, the cost

of the summary-based analyses is essentially the same as the cost that would have been

incurred if the standard whole-program analyses were possible. This cost can be reduced

by performing some analysis work in advance and by encoding the results in the summary.

In the next section we describe several summary optimizations that achieve this goal.

3.3.3 Summary Optimizations

In this section we describe three techniques for optimizing the basic summary. The re-

sulting optimized summary has two important features. First, the summary is precision-

preserving: with respect to library clients, the fragment analysis solutions computed with

the optimized summary are the same as the solutions that would have been computed with

the basic summary. Second, as demonstrated by our experiments, the cost of the summary-

based analyses is significantly reduced when using the optimized summary, compared to

using the basic summary.

Variable Substitution

Variable substitution is a technique for reducing the cost of points-to analysis by replacing a

set of variables with a single representative variable [50]. In this work we use a particular

39

1. Variable summary
Procedures = {exec,neg} Locals(exec) = {fp, s, u} Reps = {rep 1, rep2}
Globals = {g} Locals(neg) = {i, j}

2. Points-to summary
proc exec(rep1,fp) rep2=&s *rep1=u i=*rep2

(*fp)(g,rep1) rep2=&u g=rep1 *rep2=j

3. Mod summary
SynMod (exec) = {(rep1, I), (g,D)} SynMod (neg) = {(rep2, I)}
SynCall (exec) = {(fp, I), (neg , D)} SynCall (neg) = ∅

Figure 3.7: Optimization through variable substitution.

precision-preserving substitution that allows us to produce a more compact summary,

which in turn reduces the cost of the subsequent summary-based analyses without any

loss of precision.

Two variables are equivalent if they have the same points-to sets. The substitution

is based on mutually disjoint sets of variables V1, . . . , Vk such that for each set Vi (i) all

elements of Vi are equivalent, (ii) no element of Vi has its address taken (i.e., no element

is pointed to by other variables), and (iii) no element of Vi is exported. Each Vi has

associated a representative variable rep i. We optimize the points-to summary by replacing

all occurrences of a variable v∈Vi with rep i. In addition, in the Mod summary, every pair

(v, I) is replaced with (rep i, I); this ensures that the subsequent mod analysis will use the

appropriate points-to sets to resolve indirect modifications and indirect calls.

Example. Consider module Lib from Figure 3.5 and its basic summary in Figure 3.6.

Using an algorithm described later, we identify sets V1 = {p, t} and V2 = {q, r}. After the

substitution, the summary can be simplified by eliminating trivial statements. For exam-

ple, “t=p” is transformed into “rep1=rep1”, which can be eliminated. Call “neg(rep2)”

can also be eliminated. Since this is the only call to neg (and neg is not exported), declara-

tion “proc neg(rep2)” can be removed as well. Figure 3.7 shows the resulting summary,

derived from the basic summary in Figure 3.6. ♦

It can be proven that the above optimization is precision-preserving with respect to

client modules. More precisely, after this optimization, for any variable x that occurs in

some client module, the fragment points-to analysis of that module computes a points-to

40

set Pt(x) that is exactly the same as the set Pt(x) that would have been computed if

the basic summary were used. Similarly, for any statement s in the client module, the

computed set Mod(s) is the same as the set Mod(s) produced with the basic summary.

These properties can be easily proven using an earlier result from [50].

We identify sets of equivalent variables V1, . . . , Vk using a linear-time algorithm that

extends a similar algorithm from [50]. We start by constructing a subset graph G⊆. The

nodes in the graph represent points-to sets, while the edges represent subset relationships

between these points-to sets. For each variable v∈VL, the subset graph contains node n(v)

and node n(∗v). If the address of v is taken anywhere in the library, the subset graph also

contains node n(&v). Node n(v) represents the points-to set Pt(v), node n(∗v) represents

the union of Pt(x) for all x ∈ Pt(v), and node n(&v) represents the points-to set {v}.

Graph edges represent subset relationships between points-to sets: for every edge (n1, n2),

we have Pt(n1) ⊆ Pt(n2). G⊆ contains edges that represent all subset relationships that

can be directly inferred from statements in the library:

• For each assignment “p = &x”, G⊆ contains (n(&x), n(p)) and (n(x), n(∗p)).

• For each assignment “p = q”, G⊆ contains (n(q), n(p)) and (n(∗q), n(∗p)).

• For each assignment “p = ∗q”, G⊆ contains (n(∗q), n(p))

• For each assignment “∗p = q”, G⊆ contains (n(q), n(∗p))

• For each pair of an actual a and a corresponding formal f in a direct call, G⊆ contains

edges (n(a), n(f)) and (n(∗a), n(∗f))

• For each direct call where r is the return variable of the called procedure and p is

assigned the return value at the call site, G⊆ contains (n(r), n(p)) and (n(∗r), n(∗p))

The subset graph represents all subset relationships that can be directly inferred from

individual library statements. Relationships created indirectly through pointer derefer-

ences are not represented. For example, if the address of a variable v is taken, there could

be indirect assignments to v; the subset relationships created by such assignments are not

represented by any of v’s incoming edges.

41

A direct node n(v) corresponds to a variable v for which we can track directly all values

assigned to v. The points-to set of a direct node depends only on the points-to sets of

its predecessor nodes in the subset graph. A variable node n(v) is direct only if all of

the following conditions hold: (i) v is not an exported global or a formal of an exported

procedure, (ii) the address of v is not taken, (iii) v is not a formal of a procedure whose

address is taken, and (iv) v is not assigned the return value of an indirect call.

After constructing the subset graph, the algorithm identifies all strongly connected

components (SCC) in G⊆ and builds the corresponding SCC-DAG condensation. Since

edges in G⊆ encode subset relationships, all nodes in the same SCC represent the same

points-to set, and therefore the corresponding variables are equivalent. In addition, multi-

ple SCCs may represent the same points-to set. To identify such sets of equivalent SCCs,

the algorithm performs a topological sort order traversal of the SCC-DAG. During this

traversal, an integer label is assigned to each visited SCC. If a SCC x contains only direct

nodes and if all of its predecessor SCCs have the same integer label, that same label is

assigned to x. In all other cases, x is assigned a fresh label. At the end of the traversal,

any two SCCs that have the same label are guaranteed to represent the same points-to

set, and therefore the variables in these SCCs are equivalent.

Example. Consider module Lib from Figure 3.5. Because of statement “t = p”,

the subset graph contains an edge (n(p), n(t)). Two of the SCCs in G⊆ are {n(p)} and

{n(t)}. Since n(t) is a direct node and SCC {n(t)} has a single predecessor SCC {n(p)}

in the SCC-DAG, {n(t)} will be assigned the same label as {n(p)}. Thus, the algorithm

determines that p and t are equivalent variables and reports set V1 = {p, t}. Similarly, the

algorithm detects and reports set V2 = {q, r}. These two sets are then used to perform

variable substitution as shown in Figure 3.7. ♦

In addition to producing a more compact summary, we use the computed substitution

to reduce the cost of the fragment points-to analysis of the library module described in

Section 3.2. During the analysis, every occurrence of v∈Vi in library statements is treated

as an occurrence of rep i. In the final solution, the points-to set of v is defined to be the

same as the points-to set computed for rep i. It is easy to show that this technique produces

42

the same points-to sets as the original analysis.

Statement Elimination

After variable substitution, the points-to summary is simplified further by removing state-

ments that have no effect on client modules. A library variable v∈VL is client-inactive if v

is a non-static local in procedure P and there is no path from P to placeholder procedure

ph proc in the call graph computed by the fragment mod analysis of the library module.2

This call graph represents all possible call graphs for all complete programs; thus, for any

such v, active(s, v) (defined in Section 3.1.3) is false for all statements s in all client mod-

ules. Intuitively, a client-inactive variable can never be live on the run-time stack when

client code is being executed.

Let Reach(u) be the set of all variables reachable from u in the points-to graph com-

puted by the fragment points-to analysis of the library module.3 A library variable v∈VL

is client-inaccessible if (i) v is not a global, static local, or procedure variable, and (ii) v

does not belong to Reach(u) for any global or static local variable u, including ph var.

Based on the safety properties from Section 3.2.3, it is easy to show that in this case

accessible(s, v) (defined in Section 3.1.3) is false for all call statements s in all client mod-

ules. Intuitively, a client-inaccessible variable can never be accessed during the execution

of call statements located in client modules.

In the summary-based mod analysis, any variable that is client-inactive or client-

inaccessible will not be included in any Mod set for any statement in a client module.

We refer to such variables as removable. The optimization eliminates from the points-to

summary certain statements that are only relevant with respect to removable variables.

As a result of this elimination, the summary-based points-to analysis computes a solution

in which some points-to pairs (p, v) are missing. However, we can guarantee that for any

such missing pair, v is a removable variable. Clearly, variables that occur in client mod-

ules cannot point to removable variables. Furthermore, it is easy to show that the removal

2The call graph is computed at lines 1–5 in Figure 3.3.

3Variable w is reachable from u if there exists a path from u to w containing at least one edge.

43

of such points-to pairs (p, v) does not affect Mod sets for statements in client modules.

Therefore, the optimization preserves the safety of the summary-based fragment points-to

analysis and fragment mod analysis of the client component.

The optimization is based on the fact that certain variables can only be used to access

removable variables. Variable v is irrelevant if Reach(v) contains only removable variables.

Certain statements involving irrelevant variables can be safely eliminated from the points-

to summary:

• “p = &q”, if q is removable and irrelevant

• “p = q”, “p = ∗q”, and “∗p = q”, if p or q is irrelevant

• calls “p = f(q1, . . . , qn)” and “p = (∗fp)(q1, . . . , qn)”, if all of p, q1, . . . , qn are irrele-

vant

Intuitively, the removal of such statements does not “break” points-to chains that end at

non-removable variables. This guarantees the safety of the optimization: it can be proven

that the points-to solution computed after statement elimination differs from the solution

computed without statement elimination only by points-to pairs (p, v) in which v is a

removable variable.

Example. Consider module Lib and the fragment analysis solutions from Figure 3.5.

Variables {r, i, j} are client-inactive because the call graph does not contain a path from

neg to ph proc. Variables {p, fp, s, u, q, t, r, i, j} are client-inaccessible because they are

not reachable from g or ph var in the points-to graph. Variables {s, u, i, j} have empty

points-to sets and are irrelevant. Variables {q, r, rep 2} can only reach s and u and are also

irrelevant. Therefore, the following statements can be safely removed from the points-to

summary in Figure 3.7: rep2=&s, rep2=&u, *rep1=u, i=*rep2, and *rep2=j. ♦

Identifying client-inaccessible and irrelevant variables requires various reachability com-

putations in the points-to graph computed by the fragment analysis of the library module.

We reduce the cost of these traversals by merging ph var with all of its successor nodes in

the graph: during the reachability computations, all successors of ph var are considered

merged with ph var, and any edges incident to these nodes are redirected to ph var. It

44

1. Variable summary
Procedures = {exec,neg} Locals(exec) = {fp} Reps = {rep 1}
Globals = {g} Locals(neg) = ∅

2. Points-to summary
proc exec(rep1,fp) (*fp)(g,rep1) g=rep1

3. Mod summary
SynMod (exec) = {(rep1, I), (g,D)} SynMod (neg) = ∅
SynCall (exec) = {(fp, I), (neg , D)} SynCall (neg) = ∅

Figure 3.8: Final optimized summary.

is easy to show that after this optimization, the traversals of the points-to graph identify

exactly the same client-inaccessible and irrelevant variables as with the original points-to

graph.

Modification Elimination

This optimization removes syntactic modifications that are irrelevant with respect to client

modules. Syntactic modification (v, I) can be removed from the Mod summary if Pt(v)

contains only removable variables. Clearly, this optimization does not affect the Mod sets

of statements in client modules. In Figure 3.7, (rep 2, I) can be removed because rep2

points only to removable variables s and u. The final optimized summary for our running

example is shown in Figure 3.8.

3.4 Programs Built with Multiple Libraries

Up to this point, we have considered programs that are built with one library module

and one client module. Consider now a complete program containing one client module

and multiple library modules L1, . . . , Ln. In the simplest case, the library modules are

independent: no module references variables exported by other modules. The fragment

analyses and the summary optimizations presented earlier can be trivially extended to

handle this case.

Suppose that module L1 references variables exported by another module L2—either by

accessing exported globals, or by calling exported procedures. We say that such variables

45

are imported by L1. The fragment analyses and the summary construction for L1 must be

extended to handle the additional interactions with L2.

Two approaches can be used in this situation: (i) the analyses of L1 can be performed

completely independently of L2, or (ii) L1 can be analyzed by using an existing library

summary for L2. The first approach is needed if no summary information about L2 is

available—for example, if no summary construction capabilities existed at the time when

L2 was compiled. The second approach can be applied if a library summary for L2 had

been constructed in advance and had been stored together with L2’s binary.

3.4.1 Case 1: A summary for L2 is available

If a precomputed summary for L2 is available, it can be combined with L1 and the result

can be treated as a single library to which the fragment analyses from Section 3.2 are

applied. In addition, the techniques from Section 3.3.3 can be applied to this “combined

library” to identify variables from L1 that are equivalent, removable, or irrelevant. This

information can be used to optimize the basic summary for L1.

3.4.2 Case 2: A summary for L2 is not available

In the case when no summary for L2 is available, the fragment analyses of L1 are obtained

by three adjustments of the fragment analyses from Section 3.2. First, a placeholder

statement “ph var=&v” should be introduced for any imported global v. Second, all direct

calls to imported procedures should be replaced by calls to placeholder procedure ph proc.

Finally, statements “v=&P”, where P is an imported procedure, should be replaced with

“v=&ph proc”. The last two adjustments ensure that direct and indirect calls to imported

procedures are modeled by calls to ph proc.

When no summary for L2 is available, the summary optimizations from Section 3.3.3

need two adjustments when constructing an optimized summary for L1. First, variable

substitution should not be performed for imported variables; this ensures that variables

that occur in both libraries will be properly matched by the subsequent analyses of the

46

Program #LOC #Statements Library #LOC #Statements

bzip2-0.9.0c 6.3K 8453 libbz2 4.5K (71%) 7263 (86%)

tiff2ps-3.4 20.9K 24618 libtiff-3.4 19.6K (94%) 20688 (84%)

cjpeg-5b 22.7K 20610 libjpeg-5b 19.1K (84%) 17343 (84%)

gasp-1.2 26.0K 12611 libiberty 11.2K (43%) 6259 (50%)

unzip-5.40 27.6K 27001 zlib-1.1.3 8.0K (29%) 9005 (33%)

fudgit-2.41 29.8K 27903 readline-2.0 14.8K (50%) 10788 (39%)

gnuplot-3.7.1 66.3K 50522 libgd-1.3 22.2K (34%) 2965 (6%)

povray-3.1 133.9K 112369 libpng-1.0.3 25.7K (19%) 25322 (23%)

Table 3.1: Data programs and libraries. Last two columns show absolute and relative
library size.

client module. Second, the algorithm for detecting equivalent variables (described in Sec-

tion 3.3.3) should take into account that a variable node n(v) is not direct if v is an

imported global variable, or if v is assigned the value returned by a call to an imported

procedure. No adjustments are needed for the rest of the summary optimizations.

3.5 Empirical Results

For our experiments, we implemented the fragment points-to analyses of the library module

and the client module, as well as the summary construction techniques from Section 3.3.3.

Our implementation of Andersen’s analysis is based on the Bane toolkit for constraint-

based analysis [22]; the analysis is performed by generating and solving a system of set-

inclusion constraints. We measured (i) the cost of the fragment points-to analysis of the

library, (ii) the cost of constructing the optimized summary, (iii) the size of the optimized

summary, and (iv) the cost of the summary-based fragment points-to analysis of the client

module.

Table 3.1 describes our C data programs. Each program contains a well-defined library

module that is designed as a general-purpose library and is developed independently of any

client applications. For example, unzip is an extraction utility for compressed archives

that uses the general-purpose data compression library zlib. Similarly, fudgit is a fitting

program that uses the GNU Readline Library to provide command line interface. We

added to each library module a set of stubs representing the effects of standard C library

functions (e.g., strcpy, cos, rand); the stubs are summaries produced by hand from the

47

Library Tpt (sec) Tsub (sec) Telim (sec)

libgd 3.9 0.4 0.1

libiberty 5.8 0.5 0.1

libbz2 4.1 0.8 0.1

zlib 6.5 1.0 0.1

readline 10.2 1.3 0.1

libjpeg 15.1 2.5 0.1

libtiff 23.4 3.6 0.2

libpng 19.8 4.0 0.2

Table 3.2: Cost of library analysis and summary construction. Tpt is the running time of
the fragment points-to analysis, Tsub is the time to compute the variable substitution, and
Telim is the time to perform statement elimination and modification elimination.

specifications of the library functions.4 During the fragment analyses and the summary

construction, the stubs were treated as part of the library module.

The first part of Table 3.1 shows our data programs and their sizes (including the

library modules) in terms of number of lines of source code. The third column shows

the number of pointer-related statements in the program representation; this number is

the size of the input for the points-to analysis. The second part of the table shows the

sizes of the library modules, as an absolute value and as percentage of the corresponding

measurement for the whole program. For example, for povray, 19% (25.7K) of the source

code lines are in the library module, and the remaining 81% (108.2K) are in the client

module.

For our first set of experiments, we measured the cost of the fragment points-to analysis

of the library module, as well as the cost of constructing the optimized summary. The

results from these experiments are shown in Table 3.2.5 Column Tpt shows the running

time of the fragment points-to analysis of the library module. Column Tsub contains the

time needed by the algorithm from Section 3.3.3 to compute the variable substitution.

Column Telim shows the time needed to identify removable and irrelevant variables (as

described in Section 3.3.3) in order to perform statement elimination and modification

elimination.

4In the future it would be interesting to investigate how our approach can be used to produce summaries
for the standard libraries.

5These and all subsequent experiments were performed on a 360MHz Sun Ultra-60 with 512MB memory.
The reported times are the median values out of five runs.

48

Library Sbasic (KB) Sopt (KB) Reduction Sobj (KB) Sopt / Sobj

libgd 67.7 25.8 62% 159.2 16%

libiberty 128.9 43.9 66% 195.4 22%

libbz2 145.7 37.1 75% 53.6 69%

zlib 75.9 40.3 47% 70.6 57%

readline 216.5 68.0 69% 193.5 35%

libjpeg 365.5 100.6 72% 132.6 76%

libtiff 455.4 110.0 76% 765.7 14%

libpng 562.0 117.2 79% 221.9 53%

Table 3.3: Summary sizes. Sbasic is the size of the basic summary and Sopt is the size of
the optimized summary. Sobj is the size of the library object code.

Clearly, the cost of the fragment points-to analysis and the cost of the summary con-

struction are low. Even for the larger libraries (around 20K LOC) the running time is

practical. These results indicate that both the fragment points-to analysis and the sum-

mary construction algorithm are good candidates for inclusion in realistic compilers and

software engineering tools.

Our second set of experiments investigated the difference between the basic summary

and the optimized summary. We first compared the sizes of the two summaries, as shown

in Table 3.3. The fourth column in the table shows the reduction in summary size due

to the optimizations described in Section 3.3.3. This reduction was between 47% and

79% (69% on average), which indicates that the optimizations can be very effective in

producing a more compact summary. The last two columns in Table 3.3 compare the size

of the optimized summary and the size of the library object code. The summary size was

between 14% and 76% (43% on average) of the size of the object code, which shows that

the space overhead of storing the summary is practical.6

Next, we measured the differences between the basic summary and the optimized sum-

mary with respect to the cost of the summary-based fragment points-to analysis of the

client module. The results are shown in Table 3.4. The order of the programs in the table

is based on the relative size of the library, as shown by the percentages in the last column

6The sizes depend on the file format used to store the summaries. We use a simple text-based format;
more optimized formats could further reduce summary size.

49

Program Tbasic (sec) ∆T Sbasic (MB) ∆S

gnuplot 47.3 4% 79.6 5%

povray 111.6 17% 146.7 16%

unzip 21.0 25% 39.5 16%

fudgit 39.8 21% 59.5 17%

gasp 9.7 32% 18.6 26%

cjpeg 15.7 59% 32.1 56%

tiff2ps 22.5 61% 37.5 59%

bzip2 5.4 69% 13.0 54%

Table 3.4: Cost of the fragment points-to analysis of the client module. Tbasic is the
analysis time with the basic summary, and ∆T is the reduction in analysis time when
using the optimized summary. Sbasic and ∆S are the corresponding measurements for
analysis memory.

of Table 3.1. Column Tbasic shows the analysis time when using the basic summary. Col-

umn ∆T shows the reduction in analysis time when using the optimized summary. The

reduction is proportional to the relative size of the library. For example, in bzip2 the

majority of the program is in the library, and the cost reduction is significant. In gnuplot

only 6% of the pointer-related statements are in the library, and the analysis cost is re-

duced accordingly. Column ∆S shows the reduction in the memory usage of the analysis.

Similarly to ∆T , the space reduction is proportional to the relative size of the library.

The results from these experiments clearly show that the optimizations from Sec-

tion 3.3.3 can have significant beneficial impact on the size of the summary and on the

cost of the subsequent summary-based points-to analysis.

50

Chapter 4

Class Analysis for Testing of Polymorphism in Java

In this chapter we discuss the design and use of fragment analysis for the purposes of

testing of polymorphism in Java software.

4.1 Testing of Polymorphism

Testing of object-oriented software presents new challenges due to features such as inher-

itance, polymorphism, dynamic binding, and object state [6]. Programs contain complex

interactions among sets of collaborating objects from different classes. These interactions

are greatly complicated by object-oriented features such as polymorphism, which allows

the binding of an object reference to objects of different classes. While this is a pow-

erful mechanism for producing compact and extensible code, it creates numerous fault

opportunities [6].

Code that uses polymorphism can be hard to understand and therefore fault-prone—for

example, understanding all possible interactions between a message sender and a message

receiver under all possible bindings can be challenging for programmers. The sender of a

message may fail to meet all preconditions for all possible bindings of the receiver [7]. A

subclass in an inheritance hierarchy may violate the contract of its superclasses; clients

that send polymorphic messages to this hierarchy may experience inconsistent behavior.

For example, an inherited method may be incorrect in the context of the subclass [46],

or an overriding method may have preconditions and postconditions different from the

ones for the overridden method [6]. In deep inheritance hierarchies, it is easy to forget to

override methods for lower-level subclasses [16]; clients of such hierarchies may experience

incorrect behavior for some receiver classes. Changes in receiver classes may cause tested

51

class A { public void m() {..} }
class B extends A { public void m() {..} }
class C extends A {..}
A a;

.....

ci: a.m(); // a may refer to instances of A, B, or C
// RC (ci) = {A,B,C} TM (ci) = {A.m,B.m}

Figure 4.1: Example of RC and TM coverage criteria

and unchanged client code to fail [7].

4.1.1 Coverage Criteria

Various techniques for testing of polymorphic interactions have been proposed in previous

work [64, 41, 40, 43, 11, 7, 3]. These approaches require testing that exercises all possible

polymorphic bindings for certain elements of the tested software. Such requirements can be

encoded as coverage criteria. A coverage criterion is a program-based (structural, white-

box) test adequacy criterion [70] that defines testing requirements in terms of the coverage

of particular elements in the structure of the tested software. Coverage criteria can be

used to evaluate the adequacy of the performed testing and can also provide guidelines for

additional testing that leads to higher coverage.

In our work we focus on two coverage criteria for testing of polymorphism. The receiver-

classes criterion (denoted by RC) requires exercising of all possible classes of the receiver

object at a call site [41, 40, 43, 11]. The target-methods criterion (denoted by TM) requires

exercising of all possible bindings between a call site and the methods that may be invoked

by that site [64, 7].1 Clearly, RC subsumes TM. For example, consider the Java classes

in Figure 4.1, and suppose that reference variable a may refer to instances of classes A, B,

or C. The RC criterion requires testing of call site a.m() with each of the three possible

classes of the receiver object. Similarly, the TM criterion requires testing that invokes

each of the two possible target methods (i.e., both A.m and the overriding B.m).

1Other coverage criteria for polymorphism are also possible. For example, in addition to RC, [41]
proposes coverage of all possible classes for the senders and the parameters of a message. Our work can be
trivially extended to handle such criteria.

52

The testing requirements encoded by the above criteria have been advocated by several

authors [64, 41, 40, 43, 11, 7]. For example, Binder points out that “just as we would not

have high confidence in code for which only a small fraction of the statements or branches

have been exercised, high confidence is not warranted for a client of a polymorphic server

unless all the message bindings generated by the client are exercised” [7]. There is existing

evidence that such criteria are better suited for detecting object-oriented faults that the

traditional statement and branch coverage criteria [11].

4.1.2 Coverage Tools and Class Analysis

The use of coverage criteria is essentially impossible without coverage tools. A coverage

tool (1) analyzes the tested software to determine what elements need to be covered, (2)

inserts instrumentation that allows coverage tracking, (3) executes the test cases, and (4)

reports the degree of coverage and the elements that have not been covered. In order to

determine what software elements need to be covered, a coverage tool has to use some

form of source code analysis. Such an analysis computes the set of elements for which

coverage should be tracked, and determines the kind and location of all necessary code

instrumentation.

For simple criteria such as statement and branch coverage, the necessary source code

analysis is trivial. However, the RC and TM criteria require a more complex analysis. For

each call site, this analysis should determine the possible classes of the receiver object and

the possible target methods. The simplest approach for achieving this goal is to traverse

the class hierarchy. For example, for the call site a.m() in Figure 4.1, the type of reference

variable a is A. By transitively traversing all subclasses of A, we can determine that the

set of possible receiver classes is {A, B, C}, and the set of possible target methods is {A.m,

B.m}. While not explicitly stated, it appears that all previous work [64, 41, 40, 43, 11, 7]

uses this approach to determine the coverage requirements.

It is well known that using the class hierarchy to determine possible receiver classes is

often overly conservative. For example, suppose that call a.m() is immediately preceded by

statement a = new B(). In this case, source code analysis based on the class hierarchy will

53

produce infeasible testing requirements for receiver classes {A,C} and for target method A.m.

This problem can be addressed by using class analysis. Class analysis is a static program

analysis that determines the classes of all objects to which a given reference variable may

point. While initially developed in the context of optimizing compilers for object-oriented

languages, class analysis also has a variety of applications in software engineering tools.

We are interested in using class analysis to determine the coverage requirements for testing

of polymorphism in object-oriented software. Thus, for each call site x.m(), we will use

the class analysis solution for x to determine the possible receiver classes and the possible

target methods.

All class analyses are conservative—that is, they are guaranteed to report all classes

that could be actually observed at run time. In addition, class analyses may (and do)

report infeasible classes. More precise analyses produce fewer infeasible classes, but tend

to be more expensive. There is a large body of work on various class analyses with different

tradeoffs between cost and precision [44, 1, 2, 47, 19, 5, 28, 18, 10, 48, 52, 61, 65, 62, 38,

51, 27, 42]. However, there has been no previous work on using these analyses for the

purposes of testing of polymorphism.

4.1.3 Open Problems

The goal of our work is to investigate the use of class analysis for computing the RC and

TM criteria in coverage tools. In this context, there are two open problems that need to

be addressed: how to perform class analysis of partial programs, and how to ensure that

the class analysis is precise.

Analysis of Partial Programs

The large body of existing work on class analysis focuses on the problem of perform-

ing whole-program class analysis. However, testing is rarely done only on completed

programs—many testing activities are performed on partial programs. Any realistic cov-

erage tool should be able to work on partial programs, and therefore cannot incorporate

a whole-program class analysis. Clearly, what is needed here is some kind of fragment

54

class analysis. Later in this chapter we show how to construct such fragment analyses

from existing whole-program class analyses, based on the general methodology described

in Chapter 2.

Analysis Precision

We believe that analysis precision is a critical issue for the use of class analysis in realistic

coverage tools. Less precise analyses compute less precise coverage criteria—in other words,

some of the coverage requirements may be impossible to achieve. For example, a less precise

analysis may report a large set of possible receiver classes at a call site, while in reality only

a small subset of these classes is actually possible. Thus, regardless of the testing effort,

high coverage can never be achieved. In the presence of such imprecision, the coverage

metrics become hard to interpret: is the low coverage due to inadequate testing, or is

it due to analysis imprecision? This problem seriously compromises the usefulness of the

coverage metrics. In addition, the person that creates new test cases may spend significant

time and effort trying to determine the appropriate test cases, before realizing that it is

impossible to achieve the required coverage. This situation is unacceptable because human

time and attention are much more expensive than computing time.

In order to justify the use of a particular class analysis in a coverage tool, we need to

ensure that few (if any) infeasible requirements are generated by that analysis. Previous

work on class analysis only addresses the issue of relative analysis precision (e.g., how

much smaller is the solution computed by analysis Y , compared to the solution computed

by analysis X). However, we are interested in absolute analysis precision: what part

of the analysis solution is infeasible? To answer this question, in our experiments we

determined manually the highest possible coverage achievable with actual test cases. The

difference between the required and the actual coverage is due to analysis imprecision. We

believe that this kind of precision metric is absolutely necessary for justifying the use of

a particular class analysis in a coverage tool; however, to the best of our knowledge, such

metrics of absolute precision are not available in any previous work on class analysis.

55

4.2 A Coverage Tool for Java

We have built a test coverage tool for Java that supports the RC and TM coverage criteria.

In the context of this tool we have implemented and evaluated several class analyses. In

the future we plan to use the tool as the basis for investigations of other problems related

to the testing of polymorphism, and more generally, problems related to the testing of

object-oriented software.

The input of the tool contains a set Cls of classes that will be tested, as well as a set Int

of methods and fields from classes in Cls . These methods and fields define the interface

of Cls that is currently being tested.2 In general, Int could contain a small subset of all

fields and methods from Cls ; this corresponds to the case when the testing only targets a

subset of the functionality provided by Cls . A test suite for Int is any arbitrary Java class

that tests Int (i.e., calls interface methods and reads/writes interface fields) and does not

access any methods/fields from Cls that are not in Int . We denote by AllSuites(Int) the

set of all possible test suites for Int . We assume that Cls is closed with respect to Int :

for any arbitrary test suite S ∈ AllSuites(Int), any class that could be referenced during

the execution of S is included in Cls . In other words, we consider test suites that only

test interactions among classes from the given set Cls . In general, classes from Cls could

potentially interact with unknown classes from outside of Cls (e.g., with unknown future

subclasses of C ∈Cls); however, at the time the testing is performed, such interactions

cannot be exercised and therefore we do not consider test suites whose execution involves

such external classes.

In addition to Cls and Int , the tool takes as input one particular test suite T ∈

AllSuites(Int). As output, the tool reports the coverage achieved by T with respect to the

RC and TM criteria.

There are four tool components. The analysis component processes the classes in Cls

and computes the requirements according the RC and TM criteria (i.e., for each call site

c, it produces sets RC (c) and TM (c)). More precisely, the analysis answers the following

2We use “interface” to refer to the software engineering concept of an interface, not the interface

construct in Java. For our purposes, a Java interface is treated as an abstract Java class.

56

package station;

public abstract class Link

{ public abstract void transmit(String message); }
class NormalLink extends Link { ... }
class PriorityLink extends Link { ... }
class SecureLink extends Link { ... }
class LoggingLink extends Link { ... }

public class Station {
private Link link = new NormalLink();

private int message id = 0;

public void sendMessage(String m) {
c1: link.transmit(message id++ + " " + m);

if (message id == 10) link = new PriorityLink(); }
public void report(Link l) { c2: l.transmit("id = " + message id); } }

public class Factory {
private boolean secure = false;

public Link getLink() {
if (secure) return new SecureLink();

else return new NormalLink(); }
public void setSecure() { secure = true; } }

Figure 4.2: Package station with two polymorphic call sites c1 and c2.

question: For each call site, what may be the receiver classes and target methods with

respect to all possible S ∈ AllSuites(Int)? In other words, if it is possible to write some

test suite that tests Int and exercises a call site c ∈ Cls with some receiver class X or

some target method m, the analysis should include X in RC (c) and m in TM (c). These

computed coverage requirements are supplied to the instrumentation component, which

inserts instrumentation at call sites to record the classes of the receiver objects at run time

(using the reflection mechanism in Java). Instrumentation is only inserted at polymorphic

call sites—i.e., sites c for which RC (c) is not a singleton set. The instrumented code is

supplied to the test harness which automatically runs the given test suite T . The results

of the execution are processed by the reporting component, which determines the actual

coverage achieved at call sites.

Example. Consider package station in Figure 4.2. Class Station models a station

that connects to the rest of the system using a variety of links. Initially, messages are

57

package harness;

public abstract class TestSuite

{ public abstract void run(); }

package stationtest;

import station.*;

public class StationTestSuite extends harness.TestSuite {
public void run() {

Station s = new Station();

Factory f = new Factory();

Link l;

for (int i=0; i < 10; i++) {
s.sendMessage("message " + i);

l = f.getLink();

s.report(l); } } }

Figure 4.3: Simplified test suite for package station. This suite achieves only 50% RC
coverage for call sites c1 and c2 from class Station.

transmitted using a normal-priority link. After certain number of messages have been

processed, the station starts using a high-priority link. In addition, the station may be

required to report its current state on some link provided from the outside. External code

may use class Factory to gain access to normal or secure links.

Suppose that we are interested in testing the functionality that package station

provides to non-package client code. In this case Int contains Station.sendMessage,

Station.report, Factory.getLink, Factory.setSecure, and Link.transmit (plus the

constructors of Station and Factory). Given the package and Int , the tool computes

sets RC (ci) and TM (ci) for the call sites in Station. For example, using one of the

class analyses presented later in the chapter, the analysis component may produce sets

RC (c1) = {NormalLink, PriorityLink} and RC (c2) = {NormalLink, SecureLink} with

the corresponding sets TM (ci). Given this information, the instrumentation component

inserts instrumentation at the two call sites. At run time this instrumentation records the

classes of the receiver objects using method Object.getClass.

Suppose that the tool is used to evaluate the test suite from package stationtest

shown in Figure 4.3. The test harness automatically loads and executes the test suite,

and then the reporting component provides the coverage results to the tool user. In this

58

particular case, the test suite achieves 50% coverage for call site c1 because the site is never

executed with receiver class PriorityLink. Similarly, the coverage for c2 is 50% because

receiver class SecureLink is not exercised. Note that the suite achieves 100% statement

and branch coverage for class Station, but this is not enough to achieve the necessary

coverage of the polymorphic calls inside the class. To achieve 100% coverage for c1 and

c2, we need to add at least one more iteration to the loop in StationTestSuite, and we

also need to introduce a call f.setSecure().

4.3 Fragment Class Analysis

In this section we describe a general method for constructing fragment class analyses for

the purposes of testing of polymorphism in Java. This method can be applied to a large

number of existing whole-program class analyses [2, 5, 28, 18, 48, 61, 62, 65, 38, 51, 27, 42]

in order to derive fragment class analyses from them. The fragment analyses constructed

with this method can be used in coverage tools to compute the requirements of the RC

and TM coverage criteria.

Our approach is designed to be used with existing (and future) whole-program flow-

insensitive class analyses. Flow-insensitive class analyses do not take into account the

flow of control within a method, which makes them less costly than flow-sensitive analy-

ses. The approach is applicable both to context-insensitive and to context-sensitive anal-

yses. Context-insensitive analyses do not attempt to distinguish among the different in-

vocation contexts of a method. This category includes Rapid Type Analysis (RTA) by

Bacon and Sweeney [5], the XTA/MTA/FTA/CTA family of analyses by Tip and Pals-

berg [65], Declared Type Analysis and Variable Type Analysis by Sundaresan et al. [62],

the p-bounded and p-bounded-linear-edge families of class analyses due to DeFouw et

al. [18, 27], 0-CFA [58, 27], 0-1-CFA [28], Steensgaard-style points-to analyses [48, 38],

and Andersen-style points-to analyses [61, 38, 51]. Our approach can be applied to all of

these context-insensitive whole-program class analyses.

Context-sensitive analyses attempt to distinguish among different invocation contexts

59

Program → MainMethod ClassDecl+ LocalDecl → Type LocalId
MainMethod → main() { Body } Var → LocalId | FormalId | this
ClassDecl → class ClassId [extends ClassId] Stmt → if (..) Stmt+ else Stmt+

{ MemberDecl∗ } | switch (..) Stmt+

MemberDecl → FieldDecl | ConstructorDecl | | while (..) Stmt+

MethodDecl | Var = Var
FieldDecl → Type FieldId | Var = Var.FieldId
ConstructorDecl → ClassId() { Body } | Var.FieldId = Var
MethodDecl → (Type|void) MethodId(FormalDecl∗) | [Var =] Var.MethodId(Var∗)

{ Body } | Var = new ClassId()
FormalDecl → Type FormalId | Var = (Type) Var
Body → LocalDecl∗ Stmt+ | ReturnVarId = Var

Type → ClassId

Figure 4.4: Grammar for the simplified Java-like language. Terminals are shown in bold-
face. Each method has an auxiliary variable (represented by ReturnVarId) that is assigned
all values returned by the method.

of a method. As a result, such analyses are potentially more precise and more expen-

sive than context-insensitive analyses. In parameter-based context-sensitive class analyses,

calling context is modeled by using some abstraction of the values of the actual parameters

at a call site. Call-chain-based context-sensitive class analyses represent calling context

using a vector of k enclosing call sites. Our approach can be applied both to parameter-

based analyses (e.g., the Cartesian Product algorithm due to Agesen [2], the Simple Class

Set algorithm by Grove et al. [28], and the parameterized object-sensitive analyses by

Milanova et al. [42]) and to call-chain-based analyses (e.g., the standard k-CFA analyses

[58, 27], as well as the k-1-CFA analyses by Grove et al. [28, 27]).

4.3.1 Simplified Language

For the purpose of this presentation, we consider the Java-like language described in Fig-

ure 4.4. We use this simplified language to make the formal description shorter and more

readable. Our approach can be trivially extended to handle other language features of

Java (e.g., non-default constructors, static methods/fields, interfaces, arrays, etc.). The

actual implementations of fragment class analyses for our experiments handle the entire

Java language.

60

4.3.2 Structure of Fragment Class Analysis

Recall that the input to the tool is a set of classes Cls , as well as a set Int of methods

and fields that defines the interface of Cls that is currently being tested. A test suite for

Int is any arbitrary Java class that tests Int (i.e., calls interface methods and reads/writes

interface fields) and does not access any methods/fields from Cls that are not in Int . Let

AllSuites(Int) be the set of all possible test suites for Int .

The goal of the tool is to compute the requirements according to the RC and TM

criteria (i.e., for each call site c, to produce sets RC (c) and TM (c)). For this, it needs

to answer the following question: For each method call, what may be the receiver classes

and target methods with respect to all possible S ∈ AllSuites(Int)? More precisely, if it is

possible to write some test suite that tests Int and exercises a call site c ∈ Cls with some

receiver class X or some target method m, the tool should include X in RC (c) and m in

TM (c).

To compute RC (c) and TM (c), the tool needs to use fragment class analysis. We define

an entire family of such class analyses in the following way: first, we create placeholders

that simulate the effects of the unknown code from all possible test suites. The placeholders

are added to the tested classes, the result is treated as a complete program, and the solution

engine of some whole-program class analysis is applied to it. In Section 4.5 we prove the

correctness of this method with respect to all whole-program class analyses listed in the

beginning of this section. It is important to note that the created placeholders are not

designed to be executed as an actual test suite; they are only used for the purposes of the

fragment class analysis.

4.3.3 Placeholders

In our approach we create a placeholder main method that contains a variety of placeholder

statements, as shown in Figure 4.5. For each class X∈Cls , there is a placeholder variable

ph X that serves as a representative for all unknown external reference variables of type

X. Different placeholder statements represent different kinds of statements that could

occur in the unknown code. For example, ph X = new X() represents the fact that the

61

main() {
// placeholder variable ph X for every class X ∈Cls
X ph X;

// for every class X whose constructor is in Int
ph X = new X();

// for every field f ∈ Int declared in class X with type Y

ph Y = ph X.f; ph X.f = ph Y;

// for every method m ∈ Int declared in class X with signature W m(Y,..,Z)

ph W = ph X.m(ph Y,..,ph Z);

// for every subclass Y of class X
ph X = ph Y; ph Y = (Y)ph X;

}
Figure 4.5: Placeholder method and placeholder statements.

unknown external code may create instances of X and assign them to reference variables

of type X. Some of the placeholder statements represent the effect of accessing fields and

methods from Int . Finally, the last two categories of placeholder statements represent the

possible effects of assigning variables of one type to variables of another type (including

the possible effects of casting).

Example. Consider package station in Figure 4.2. Suppose that we are inter-

ested in testing the functionality that this package provides to non-package client code.

In this case Int contains Station.sendMessage, Station.report, Factory.getLink,

Factory.setSecure, and Link.transmit (plus the constructors of classes Station and

Factory). Given the package and Int , the fragment analysis creates the placeholders

shown in Figure 4.6. These placeholders are added to station and the result is analyzed

using the engine of some whole-program class analysis. In Section 4.4 we present examples

of the solutions computed by two such whole-program analysis engines.

4.4 Precision of Fragment Class Analysis

The approach presented above allows us to construct safe fragment class analyses from a

large number of existing (and future) whole-program class analyses. The quality of the

information produced by the fragment analyses depends on the underlying whole-program

analysis engine.

Consider package station in Figure 4.2. If we simply examine the class hierarchy to

62

import station;

main() {
Station ph Station;

Factory ph Factory;

Link ph Link;

String ph String;

ph Station = new Station();

ph Factory = new Factory();

ph String = new String();

ph Station.sendMessage(ph String);

ph Station.report(ph Link);

ph Link = ph Factory.getLink();

ph Factory.setSecure();

ph Link.transmit(ph String);

}

Figure 4.6: Placeholders for package station in the case when Int contains all methods
visible outside of the package.

determine the possible receiver objects at call sites, we would have to conclude that RC (ci)

contains all four subclasses of Link, which is too conservative and will result in infeasible

testing requirements. In fact, the tool will never report more than 50% coverage for the

two call sites in Station, even if in reality the achieved coverage is 100%.

Now suppose that we add the placeholders from Figure 4.6 and we run the engine

of Rapid Type Analysis (RTA) [5]. RTA is a popular whole-program class analysis that

performs class analysis and call graph construction in parallel. It maintains a worklist of

methods reachable from main, and a set of classes instantiated in reachable methods. In the

final solution, the set of classes for a variable v is the set of all instantiated subclasses of the

declared type of v. In this example, RTA determines that class Factory is instantiated

in main. This implies that call site ph Factory.getLink() may be executed with an

instance of Factory, which means that method getLink is reachable from main. By

processing the body of getLink, RTA determines that NormalLink and SecureLink are

instantiated. Similarly, because Station is instantiated in main, the analysis determines

that sendMessage is reachable, which implies that PriorityLinkmay also be instantiated.

At the end, RTA determines that the only instantiated subclasses of Link are NormalLink,

PriorityLink, and SecureLink, and therefore RC (ci) contains only these three classes.

63

ph Station - o1

-

-

link

link

o2

o3

ph Link

-

-

o4

o5

�

�

l

o1 ⇒ new Station() in main

o2 ⇒ new NormalLink() in Station

o3 ⇒ new PriorityLink() in Station

o4 ⇒ new SecureLink() in Factory

o5 ⇒ new NormalLink() in Factory

Figure 4.7: Some points-to edges computed by Andersen’s analysis.

Unlike analysis of the class hierarchy, RTA is capable of filtering out infeasible receiver

class LoggingLink. Still, some imprecision remains because infeasible class SecureLink

is reported for c1 and infeasible class PriorityLink is reported for c2.

As another example, suppose that we use the solution engine of Andersen’s whole-

program points-to analysis for Java [61, 38, 51]. This engine constructs a points-to graph in

which the nodes represent reference variables and objects, and the edges represent points-

to relationships between the nodes. Figure 4.7 shows some of the edges in the points-to

graph computed for our example. (Full description of the analysis and the computed

points-to graph is beyond the scope of this presentation.) From this graph it is clear that

RC (c1) contains NormalLink and PriorityLink, while RC (c2) contains NormalLink and

SecureLink. Because the analysis engine is more powerful than RTA, it is capable of

filtering out the additional infeasible receiver classes. Table 4.1 summarizes the solutions

computed by the different analyses.

It is important to note that any class analysis could potentially compute infeasible

classes. In this particular case, every receiver class reported by Andersen’s analysis is

feasible, but in general this need not be true. To realistically evaluate the quality of

different analyses for the purposes of testing of polymorphism, for every reported receiver

class we need to determine if this class is actually feasible—that is, if there exists some test

suite that exercises this receiver class. Only analyses that report few (if any) infeasible

classes should be used in coverage tools; otherwise, the coverage metrics become hard

to interpret, and tool users may waste time and effort trying to satisfy infeasible testing

requirements. We obtained such precision metrics during the experiments presented in

64

NormalLink PriorityLink SecureLink LoggingLink

c1 c2 c1 c2 c1 c2 c1 c2

Class Hierarchy • • • • • • • •
RTA • • • • • •
Andersen • • • •

Feasible • • • •

Table 4.1: Sets RC (c1) and RC (c2) computed by the fragment class analyses. The last
row shows the receiver classes that are actually feasible.

Section 4.6.

4.5 Safety of Fragment Class Analysis

The goal of this section is to prove the safety of the fragment analyses constructed with

our approach. In particular, we are interested in proving the safety of any fragment class

analysis that uses the solution engine of one of the whole-program analyses listed in the

beginning of Section 4.3. All of these whole-program analyses are instantiations of a

general framework for class analysis defined by Grove et al. [28, 27].

To prove the safety of the corresponding fragment analyses, we use the following ap-

proach. First, we define two particular whole-program analyses that are instantiations of

the framework from [28, 27]. The first analysis, denoted by Ap, is a parameter-based

context-sensitive analysis similar to Agesen’s Cartesian Product algorithm [2]. The sec-

ond analysis, denoted by Ac, is a call-chain-based context-sensitive analysis similar to the

k-1-CFA analysis from [28]. These two analyses are relatively precise instantiations of the

framework from [28, 27] and they represent two points at the high end of the precision

spectrum for context-sensitive class analysis (with parameter-based sensitivity in Ap and

call-chain-based sensitivity in Ac). As discussed below, by proving safety with respect

to these two analyses, we can guarantee safety with respect to any instantiation of the

framework from [28, 27] that is less precise than Ap or Ac.

After defining Ap and Ac, we prove that the corresponding fragment class analyses are

safe. Let A′
p be the fragment class analysis that creates the placeholders from Figure 4.5

and then runs the solution engine of Ap. Similarly, let A′
c be the fragment class analysis

that uses the engine of Ac. In Section 4.5.2 we prove that both A′
p and A′

c are safe fragment

65

analyses.

Consider an arbitrary whole-program class analysis A that is less precise than Ap or

Ac—that is, A always computes a solution that is a superset of the solution computed by

Ap or by Ac. Based on the safety of A′
p and A′

c, it is easy to show that the fragment analysis

that uses the solution engine of A is also safe. Because of the properties of the framework

from [28, 27], each of the whole-program analyses listed in the beginning of Section 4.3

is either less precise than Ap, or less precise than Ac; this implies the correctness of our

approach for all of these existing whole-program analyses. Furthermore, this result means

that in the future our approach can be applied to any new whole-program class analysis

that is less precise than Ap or Ac.

4.5.1 Whole-program Analyses Ap and Ac

The whole-program class analyses are defined in terms of three sets. Set V contains all

variables in the analyzed program, as defined by the non-terminal Var in Figure 4.4. Set O

contains names for all objects created at object allocation sites (i.e., sites of the form v =

new C()). For each allocation site we use a separate object name oi ∈ O. Set F contains

all fields in the program.

The analyses consider different abstractions of the calling context of a method. Analysis

Ap defines and uses a set of contexts C = {ε} ∪ O ∪ O2 ∪ O3 ∪ Each context is a tuple

of object names. For a method that has formal parameters f1, f2, . . . , fn (where f1 is the

implicit parameter this), context (o1, o2, . . . , on)∈C represents invocations of the method

when formal parameter fi points to oi. The empty context ε represents the invocation of

main.

Analysis Ac represents calling context with a vector of at most k enclosing call sites.

Let CallSites be the set of all call sites in the program. The set of contexts is defined as C =

{ε}∪CallSites∪CallSites2∪. . .∪CallSitesk. For any method m, context (s1, s2, . . . , sn)∈C

represents invocations of m from call site s1 when the method containing s1 is invoked

from call site s2, etc. Again, the empty context ε represents the invocation of main.

To distinguish among invocations of the same method under different contexts, the

66

analyses create multiple copies of formal parameters and local variables. Each variable

v∈V is replicated for each of the possible contexts of the method that declares v. We will

use vc to denote the replica of v for context c ∈ C.

The analyses constructs points-to graphs containing two kinds of edges. Edge (vc, o) ∈

(V × C) × O shows that variable v may point to object o when the method declaring v is

invoked with context c. Edge (oi.f, oj) ∈ (O × F) ×O shows that field f of object oi may

point to object oj . The elements in the analysis lattices L are points-to graphs. As usual,

the partial order ≤ in L is defined as G1 ≤ G2 iff G1 ⊇ G2, and the meet operation ∧ is

G1 ∧ G2 = G1 ∪ G2.

The analyses associate a transfer function f : L → L with each statement in the

program; this function encodes the semantics of the statement. In addition, for each

method m the analyses maintain a set Cm ⊆ C of contexts that have been observed at calls

to m. In the beginning of both analyses, Cmain = {ε} and Cm = ∅ for all other methods

m. The transfer functions for assignment statements have the following form (m is the

method containing the statement):

• for p = new C(): f(G) = G ∪
⋃

c∈Cm
{(pc, oi)}, where oi corresponds to new C()

• for p = q: f(G) = G ∪
⋃

c∈Cm
{(pc, o) | (qc, o) ∈ G}

• for p = q.f : f(G) = G ∪
⋃

c∈Cm
{(pc, o) | (qc, o2) ∈ G ∧ (o2.f, o) ∈ G}

• for p.f = q: f(G) = G ∪
⋃

c∈Cm
{(o1.f, o2) | (pc, o1) ∈ G ∧ (qc, o2) ∈ G}

• for p = (T)q: f(G) = G ∪
⋃

c∈Cm
{(pc, o) | (qc, o) ∈ G ∧ compatible(o, T)}

Each of the above transfer functions considers all contexts that have been observed at

calls to the method m containing the statement. For each such context c∈Cm, the corre-

sponding context replicas of formal parameters and local variables are processed according

to the semantics of the statement. A statement of the form “p = new C()” creates a new

edge (pc, oi), where oi is a unique object name corresponding to this particular object

allocation site. Other assignment statements have similar effects by creating new edges.

67

For the last statement, an edge (pc, o) is created only if object o could be casted to type

T according to the casting rules in the Java language.

The transfer function for a call statement “r = p.m(q1, . . . , qn)” encodes the context-

sensitivity of the analysis. For the parameter-based analysis Ap, the transfer function has

the form

f(G) = G ∪
⋃

c∈Cm

{resolve(G,m, orcv , o1, o2, . . . , on, rc) | (pc, orcv) ∈ G ∧ (qc
i , oi) ∈ G}

where resolve is defined as follows:

resolve(G,m, orcv , o1, o2, . . . , on, rc)

let c2 = (orcv , o1, o2, . . . , on)

let mj(this , f1, . . . , fn, ret) = dispatch(orcv ,m)

add c2 to Cmj

return {(this c2 , orcv), (f
c2
1 , o1), . . . , (f

c2
n , on)} ∪ {(rc, o)|(ret c2 , o) ∈ G}

At the call site, the analysis considers all possible tuples of objects that are pointed to

by p and qi; each such tuple creates a separate calling context. For each context, resolve

determines the method mj that is actually invoked at run time for receiver object orcv .

The analysis then updates Cmj
and processes the necessary context copies of this and

formal parameters fi. Finally, the return value of mj (stored in auxiliary variable ret , as

described in Section 4.3.1) is propagated back to the call site.

The transfer function used by the call-chain-based analysis Ac has the form

f(G) = G ∪
⋃

c∈Cm

{resolve(G,m, c, s, orcv , qc
1, q

c
2, . . . , q

c
n, rc) | (pc, orcv) ∈ G}

where s∈CallSites is the call site. Function resolve is defined as follows:

resolve(G,m, c, s, orcv , qc
1, q

c
2, . . . , q

c
n, rc)

let c2 = prepend k(s, c)

let mj(this , f1, . . . , fn, ret) = dispatch(orcv ,m)

add c2 to Cmj

return {(this c2 , orcv)} ∪ {(f c2
i , o)|(qc

i , o) ∈ G} ∪ {(rc, o)|(ret c2 , o) ∈ G}

At the call site, the analysis processes separately each of the possible receiver objects

and determines the method mj invoked for each receiver orcv . Function prepend k(s, c)

68

creates a new context by adding call site s to the beginning of call chain c. If the resulting

call chain has k + 1 elements (where k is a parameter of the analysis), the last element

of the chain is removed. This is a standard approach for ensuring that the analysis only

considers call chains with length at most k.

Both Ap and Ac start with an empty points-to graph and apply the transfer functions

for program statements until no more edges can be added to the graph. For any variable

v∈V , the final class analysis solution is

Classes(v) = {X | DeclMethod (v) = m ∧ c ∈ Cm ∧ (vc, o) ∈ Gfinal ∧ ClassOf (o) = X}

4.5.2 Safety of Fragment Analyses A′
p and A′

c

Let A′
p be the fragment class analysis that creates the placeholders from Figure 4.5 and

then runs the solution engine of whole-program analysis Ap. Similarly, let A′
c be the

fragment class analysis that uses the solution engine of Ac. In this section we prove the

safety of these two fragment analyses.

Consider an arbitrary test suite S ∈AllSuites(Int). Recall that by definition S is an

arbitrary Java class that tests Int (i.e., calls interface methods and reads/writes interface

fields) and does not access any methods/fields from Cls that are not in Int . Without loss

of generality, we assume that S only contains method main; clearly, if S contains any other

methods, it is trivial to inline them in main.

For any variable v declared in Cls , let ClassesAp(v) be the solution for v computed

by Ap for the whole program containing Cls and test suite S. Below we prove that the

solution ClassesA′
p
(v) computed by A′

p is a superset of ClassesAp(v). Similarly, we prove

that ClassesAc(v) ⊆ ClassesA′
c
(v). Therefore, the two fragment analyses are safe: if it is

possible to write some test suite that tests Int and exercises a call site c ∈ Cls with some

receiver class X, it is guaranteed that A′
p and A′

c will include X in the coverage criterion

RC (c).

Consider an arbitrary whole-program class analysis A that is less precise than Ap.

Clearly, for the fragment analysis A′ derived from A, the solution ClassesA′(v) is a superset

of the solution computed by A′
p. This implies the safety of A′: if it is possible to write

69

some test suite that tests Int and exercises a call site c ∈ Cls with some receiver class X,

A′ will include X in RC (c). Similarly, if whole-program analysis A is less precise than Ac,

the corresponding fragment analysis A′ is safe.

Whole-program analyses Ap and Ac are instances of the general framework for class

analysis defined by Grove et al. [28, 27]. All whole-program analyses listed in the beginning

of Section 4.3 are also instances of that framework, and in fact are less precise instances

than Ap and Ac. Therefore, our approach for constructing fragment class analyses can be

safely applied to all of these existing whole-program analyses. Furthermore, the approach

can be applied to any future whole-program analysis that is less precise than Ap or Ac

(e.g., to other instances of Grove’s framework).

Parameter-based Fragment Analysis

To show the safety of A′
p, we need to prove that ClassesAp(v) ⊆ ClassesA′

p
(v) for any

variable v declared in Cls . We start by defining several abstraction relations between

elements of Ap and elements of A′
p.

Let VCls be the set of all variables in Cls , and V ′ be VCls together with the place-

holder variables. Similarly, let OCls be the set of all object names corresponding to

object allocation sites in Cls , and O ′ be OCls together with the object names for al-

location sites in placeholder statements. The fragment analysis uses a set of contexts

C′ = {ε} ∪ O′ ∪ (O′ ×O′) ∪ The lattice elements in the fragment analysis are points-

to graphs with edges (vc′

, oi) ∈ (V ′ × C′) × O′ and (oi.f, oj) ∈ (O′ × F) × O′, where F ′ is

the set of all fields in Cls .

We can define several abstraction relations between elements of Ap and elements of

A′
p. Let V and O be the set of variables and the set of object names in Ap, respectively.

The following relations hold:

• α(v, v) for any v ∈ VCls

• α(v, ph X) for any v ∈ (V − VCls) of type X

• α(o, o) for any o ∈ OCls

70

• α(o, o′) iff o ∈ (O − OCls), o′ ∈ O′ is created at a placeholder statement, and

ClassOf (o) = ClassOf (o′)

• α(c, c′) for c = (o1, . . . , on) ∈ C and c′ = (o′1, . . . , o
′
n) ∈ C′ iff α(oi, o

′
i) for 1 ≤ i ≤ n

• α(e, e′) for e = (vc, o) ∈ (V × C) × O and e′ = (wc′

, o′) ∈ (V ′ × C′) ×O′ iff α(v, w) ∧

α(c, c′) ∧ α(o, o′)

• α(e, e′) for e = (o1.f, o2) ∈ (O × F) × O and e′ = (o′1.f, o′2) ∈ (O′ × F ′) × O′ iff

α(o1, o
′
1) ∧ α(o2, o

′
2)

• α(G,G′) iff for every edge e in points-to graph G there exists an edge e′ in points-to

graph G′ such that α(e, e′)

Intuitively, these definitions encode the idea that in the fragment analysis A ′
p, variables

and object names from Cls are represented by themselves, while all unknown external vari-

ables and object names are represented by placeholder variables and placeholder object

names, respectively. This abstraction is generalized for contexts, context replicas of vari-

ables, points-to edges, and points-to graphs.

Suppose we can prove that α holds between the final points-to graphs computed by

the two analyses. It is easy to see that this implies ClassesAp(v) ⊆ ClassesA′
p
(v) for any

variable v declared in Cls , which guarantees analysis safety. To show that α holds between

the final points-to graphs, we prove a particular property that relates the transfer functions

in the whole-program analysis with the transfer functions in the fragment analysis. This

property has the following form: suppose that

• α holds between points-to graphs G and G′

• for each method m and for each reaching context c ∈ Cm in the whole-program

analysis, there exists a reaching context c′ ∈ C′
m in the fragment analysis such that

α(c, c′)

Then, for every transfer function f in the whole-program analysis, there exists a set of

transfer functions {f ′
1, . . . , f

′
k} in the fragment analysis such that

71

• α(f(G), (f ′
1 ◦ . . . ◦ f ′

k)(G
′))

• for any new reaching context c added to some Cm due to the application of f , the

corresponding application of f ′
i results in a set C ′

m that contains a context c′ such

that α(c, c′)

Intuitively, the property ensures that the effects of any transfer function application in

the whole-program analysis can be “simulated” by the fragment analysis, both in terms

of creating new points-to edges and in terms of introducing new reaching contexts. A

straightforward corollary of this property is that α holds between the final points-to graphs

computed by Ap and A′
p.

To prove the above property, we distinguish two cases. First, consider any statement

in Cls with a transfer function f in the whole-program analysis and a transfer function f ′

in the fragment analysis. It is straightforward to show that α(f(G), f ′(G′)). Furthermore,

it is easy to prove that for any call statement in Cls, the new reaching contexts created

by the whole-program analysis are matched by corresponding calling contexts created by

the fragment analysis.

Next, consider how the whole-program analysis processes a statement that is located

outside of Cls . For each such statement, in the fragment analysis there exists a set of

placeholder statements that “simulate” the effects of the external statement. For example,

suppose that Cls contains a class A and a subclass B, and that the external statement is

“a = new B()”, where a is some external variable of type A. The effects of this statement

are represented by the sequence of placeholder statements “ph B = new B(); ph A =

ph B ;”. In general, it can be proven that for each external statement with a transfer

function f , there exist placeholder statements with transfer functions f ′
1, . . . , f

′
k such that

α(f(G), (f ′
1 ◦ . . . ◦ f ′

k)(G
′)). Furthermore, if f adds a new reaching context c to some Cm,

the application of f ′
i adds to C′

m a context c′ such that α(c, c′).

Call-chain-based Fragment Analysis

The safety proof for A′
c is very similar to the proof for A′

p. The analysis uses a set of

contexts C ′ = {ε}∪CallSites ′ ∪ (CallSites ′×CallSites ′)∪ . . ., where CallSites ′ denotes the

72

set of all call sites in Cls and in the placeholder method main. The abstraction relation

for contexts can be defined as

• α(s, s) for any call site s ∈ Cls

• α(s, s′) iff call site s /∈ Cls and s′ is a placeholder call site with the same static target

method as s

• α(c, c′) for c = (s1, . . . , sn) ∈ C and c′ = (s′1, . . . , s
′
n) ∈ C′ iff α(si, s

′
i) for 1 ≤ i ≤ n

The abstraction relations for other analysis entities (variables, object names, etc.) are

the same as for A′
p. The correctness proof is also similar: we prove the same property

as before, which implies that α holds between the final points-to graphs computed by Ac

and A′
c. Therefore, ClassesAc(v) ⊆ ClassesA′

c
(v) for any variable v declared in Cls , which

guarantees the safety of the fragment analysis.

4.6 Empirical Results

For our experiments we used a set of Java packages including the standard packages

java.text and java.util.zip, as well as the publicly available packages gnu.math (from

www.gnu.org/software/kawa) and com.lowagie.text from the iText library for creating

PDF files (www.lowagie.com). We then defined and performed several testing tasks. The

goal of each task was to write a test suite that exercised some particular functionality

provided by these packages. For example, one task exercised the functionality related to

identifying boundaries in text (i.e., word boundaries, line boundaries, etc.), as provided

by a set of classes from java.text. As another example, a task was designed to exercise

the functionality from java.util.zip related to ZIP files. The first three columns in

Table 4.2 briefly describe the testing tasks and the functionality they exercise.

For each task, we determined the set Int of interface methods and fields for the tested

functionality. We then computed the set of methods that were directly or transitively

reachable from the interface methods; in this reachability computation, the targets of

method calls were resolved conservatively by considering the class hierarchy. Only such

reachable methods could potentially be executed when the tested functionality is eventually

73

Task Package Functionality #Classes #PolySites

task1 java.text boundaries in text 12 12

task2 java.text formatting of numbers/dates 13 79

task3 java.text text collation 12 2

task4 java.util.zip ZIP files 8 5

task5 java.util.zip ZIP output streams 8 18

task6 gnu.math complex numbers 8 194

task7 com.lowagie.text paragraphs in PDF docs 24 199

task8 com.lowagie.text lists in PDF docs 24 169

Table 4.2: Description of testing tasks. Last two columns show the number of directly
related classes and the number of polymorphic sites in these classes, according to the class
hierarchy.

exercised by some client code. Among all classes that contained reachable methods, only

some were directly related to the tested functionality; the rest of the classes were servers

of these directly related classes. We considered each call site that was in a directly related

class and for which there was more than one possible receiver class, according to the class

hierarchy. Let PolySites denote the set of all such call sites. Table 4.2 shows the number

of directly related classes for each task and the number of call sites in PolySites .

For each task we wrote a test suite that exercised the tested functionality, and we used

the tool to execute the suite and to determine what receiver classes were exercised for

each call site from PolySites . Our goal was to write a test suite that exercised all possible

receiver classes for each call site. Substantial effort was put into writing the test suites.

For each task, two people (working independently of each other) thoroughly examined the

code and wrote tests that exercised all possible receiver objects. For each call site, the

sets of exercised receiver classes obtained by the two people were carefully compared to

ensure that there were no differences. As a result, for each task we had a test suite that

exercised all possible receiver classes and target methods for each call site in PolySites .

Once we had test suites that exercised all possible classes/methods, we measured the

coverage statistics reported by the tool for these suites. These statistics were based on the

output of the fragment class analysis used by the tool: the analysis computed a set of pos-

sible classes/methods for each c∈PolySites , and the tool reported what percentage of these

classes/methods was actually exercised by the test suite. In general, this reported coverage

74

may be less than 100% because the analysis produces RC and TM requirements that are

overestimates of the coverage that could be actually achieved—that is, the analysis may

report infeasible receiver classes and infeasible target methods. Clearly, the goal of tool

designers should be to use a class analysis that produces few infeasible classes/methods.

As a precision metric we used the coverage that was reported by the tool for our test

suites (which in reality exercise all possible classes/methods). When using a more precise

analysis, the tool reports higher coverage; in the best case, the tool would report 100%

coverage.

For our experiments we evaluated three fragment class analyses. All three analyses

were designed using the general approach presented in Section 4.3: we first created the

placeholders from Figure 4.5, and then we ran the solution engine of a whole-program

class analysis. The first fragment class analysis (denoted by RTAf) was derived from

Rapid Type Analysis (RTA) [5]. RTA is a popular whole-program class analysis that

performs class analysis and call graph construction in parallel. It maintains a worklist of

methods reachable from main, and a set of classes instantiated in reachable methods. In

the final solution, the set of classes for a variable v is the set of all instantiated subclasses

of the declared type of v. RTA represents a point at the lower end of the cost/precision

spectrum of class analysis.

The second fragment class analysis (denoted by ANDf) was derived from a whole-

program points-to analysis for Java [51] which is based on Andersen’s points-to analysis

for C [4]. This whole-program analysis is a context-insensitive version of analyses Ap

and Ac from Section 4.5,3 and represents a point at the high end of the cost/precision

spectrum for flow- and context-insensitive class analyses. Even though the analysis has

cubic worst-case complexity, there are efficient implementation techniques that make it

practical [51].

The third fragment class analysis (denoted by 0-CFAf) is derived from a variation of the

whole-program points-to analysis from [51]. In this variation, the whole-program analysis

engine creates a single object name for all object allocation sites for a given class C—i.e.,

3More precisely, it is an instance of Ac for k = 0.

75

Task Hierarchy RTAf 0-CFAf ANDf

CRC CTM CRC CTM CRC CTM CRC CTM

task1 100% 100% 100% 100% 100% 100% 100% 100%

task2 67% 63% 67% 63% 76% 72% 76% 72%

task3 50% 100% 50% 100% 100% 100% 100% 100%

task4 31% 63% 45% 71% 100% 100% 100% 100%

task5 18% 21% 88% 92% 100% 100% 100% 100%

task6 76% 85% 76% 85% 97% 98% 98% 98%

task7 10% 15% 32% 48% 82% 93% 87% 93%

task8 5% 9% 18% 29% 62% 62% 62% 62%

Table 4.3: Reported coverage. More precise analyses result in higher reported coverage.

instead of having a separate object name oi for each new expression as in [51], there is a

single object name oC for all expressions “new C”. This version of the analysis is essentially

equivalent to the 0-CFA class analysis [58, 18, 27],4 and even though it is potentially less

precise than the points-to analysis from [51], it still has cubic worst-case complexity and

belongs at the high end of the cost/precision spectrum for flow- and context-insensitive

class analyses.

Inside our coverage tool we used these three fragment class analyses to compute the

RC and TM coverage requirements. We then ran our test suites (which in reality exercise

all possible classes/methods), and we computed the achieved coverage with respect to RC-

RTAf , TM-RTAf , etc. More precisely, for each analysis, we computed the sum S1 of the

number of possible receiver classes over all sites in PolySites as determined by the analysis,

as well as the sum S2 of the number of actually observed receiver classes at these sites. The

tool reported the ratio CRC = S2/S1 as a coverage metric for the RC criterion. A similar

ratio CTM was computed for the TM criterion. The results from these experiments are

shown in Table 4.3. The column labeled “Hierarchy” represents the coverage with respect

to the RC and TM criteria that were computed by just examining the class hierarchy.

Class analyses that are more precise result in higher reported coverage percentages. In the

best case, the analyses introduce no imprecision (i.e., they do not report infeasible receiver

classes), and the reported coverage is 100%.

4The only difference is that our analysis is more precise with respect to inherited fields. For example, if
class B inherits a field f declared in class A, our analysis distinguishes between A.f and B.f, while 0-CFA
does not make this distinction.

76

Task 0-CFAf (sec) ANDf (sec)

task1 4.7 8.6

task2 12.8 25.1

task3 2.9 5.3

task4 5.3 6.4

task5 3.6 4.3

task6 12.2 35.8

task7 13.8 18.1

task8 15.4 20.4

Table 4.4: Analysis running times.

There are two important conclusions from these results. First, using the class hierarchy

and RTAf to determine the coverage requirements often results in infeasible receiver classes

and target methods. Thus, even for test suites that in reality achieve high coverage, the

tool may report low coverage statistics. This situation is clearly unacceptable, and there is

a need to use more precise analyses. Second, 0-CFAf and ANDf perform very well, and in

fact in half of the cases they achieve prefect precision. This indicates that these analyses

are good candidates for inclusion in realistic coverage tools for testing of polymorphism.

As part of our experiments, we also measured the cost of computing the coverage

requirements. All measurements were performed on a 360MHz Sun Ultra-60 machine with

512MB memory. The reported times are the median values out of three runs. Using the

class hierarchy or RTAf has linear worst-case complexity, and in reality had negligible cost

(less than 5 seconds for each testing task). The cost of using 0-CFAf and ANDf is shown

in Table 4.4; this is the cost of analyzing all methods that are directly or transitively

reachable from the interface methods, both in directly related classes and in their server

classes. Despite the cubic worst-case complexity, the two more precise analyses clearly

have practical cost, due to the implementation techniques described in [51].

77

Chapter 5

Related Work

To the best of our knowledge, the techniques from Chapter 2 are the first attempt to

define a general framework for interprocedural dataflow analysis of software fragments.

In the context of particular analyses, previous work proposes a variety of techniques to

address specific limitations of the traditional model of whole-program analysis. These

techniques can be broadly classified in two categories: (i) approaches for describing the

possible effects of parts of a program in order to analyze the rest of the program, and

(ii) approaches for analyzing parts of a program without any information about the rest

of the program. In this chapter we only describe previous work that belongs in these

two categories—for example, we do not discuss whole-program pointer analyses and class

analyses which employ techniques that are not relevant to fragment analysis.

5.1 Describing the Effects of Software Fragments

Various approaches in previous work attempt to create descriptions of the behavior of a

software fragment and to use these descriptions when analyzing software that interacts

with that fragment.

5.1.1 Summary Information Dependent on the Rest of the Program

One of the first uses of whole-program interprocedural analysis is in the Rn programming

environment for Fortran [14]. The need for such analysis is motivated by the limitations

of the intraprocedural analyses and optimizations that a compiler can perform when sep-

arately compiling an individual procedure. For example, the lack of information about

the effects of calls to other procedures inhibits a number of intraprocedural optimizations.

78

To address this problem, the environment uses interprocedural whole-program analysis

to compute and store summary information that is subsequently used for intraprocedural

compiler optimizations. For example, a whole-program interprocedural side-effect analysis

determines the set of variables that may be modified by each call statement in the program.

This information is subsequently used during the compilation of individual procedures to

improve intraprocedural analyses and optimizations. The similarity between this work

and our framework for fragment analysis is that in both a program fragment is analyzed

using some available information about the rest of the program. However, there are two

conceptual differences. First, in Rn the analyses that use the summary information are

intraprocedural (employed by the compiler when compiling a single procedure), while we

consider a more general problem in which these analyses are interprocedural. Furthermore,

we are interested in situations in which whole-program analysis is not possible and cannot

be used to compute summary information for use by a subsequent fragment analysis. For

example, Chapter 3 presents an approach for constructing library summary information

without having access to the rest of the program.

There are various interprocedural whole-program analyses that construct summary

information about a procedure and use this information when analyzing the callers of that

procedure. One common category of approaches is based on the idea of constructing the

summary information by analyzing not only the procedure under consideration, but also all

procedures that are directly or transitively called by that procedure. For example, several

existing whole-program analyses [10, 13, 8, 67, 12, 52, 37] perform a bottom-up traversal of

the program call graph and compute a summary function for each visited procedure. This

summary function is then used when analyzing the callers of that procedure and when

constructing their summary functions. Summary functions can also be created in top-

down manner, by introducing all possible contexts at the entry of the analyzed procedure

and by computing the effects of the procedure (including the effects of its callees) for each

context [31].

One serious limitation of these approaches is the implicit assumption that a called

procedure can be analyzed either before its callers are analyzed, or while its callers are

79

being analyzed. For example, if there is no available source code or summary information

for a called procedure, the analysis of its callers either cannot be performed, or has to

be performed with conservative assumptions about the possible effects of the procedure.

Furthermore, callee procedures may not even exist at the time when their callers are

analyzed. A classical example of this situation is the use of the callback mechanism

(e.g., calls through function pointers in C, or calls to unknown overridden methods in

Java). When designing the approach from Chapter 3 for creating summary information

for precompiled C libraries, one of our goals was to avoid the above limitation.

5.1.2 Summary Information Independent of the Rest of the Program

Several analysis approaches compute summary information for a software fragment in-

dependently of the callers and callees of that fragment. One particular approach is to

compute partial analysis results for each fragment, to combine the results for all fragments

in the program, and then to perform the rest of the analysis work. For example, the

points-to analysis due to Das [17] processes each compilation unit separately, produces a

partial points-to graph for that unit, combines all such graphs, and performs additional

work to obtain a points-to graph for the entire program.

The above approach improves the scalability of the analysis and reduces the amount

of necessary work after a program change. However, the computed summary information

is specific to the particular analysis, and even the particular analysis implementation.

Heintze [32] takes a different approach and creates summary information that only encodes

the structure of the source code of the fragment, without performing any analysis work in

advance. The advantage of this approach is that the resulting summary information can

be used for many different analyses, and can be reused in the context of different compilers

and tools. Our approach for creating summary information for precompiled C libraries

(presented in Chapter 3) is based on the same idea: we create summaries that represent

the structure of the source code of the library, and that can be used to perform a variety

of points-to and side-effect analyses of library clients. In addition, we propose summary

optimizations that filter out parts of the summary that are irrelevant with respect to the

80

clients of the library. Thus, unlike [17, 32], we do not maintain a complete description

of the library, and as a result we reduce the cost of the analysis that uses the summary

information.

Flanagan and Felleisen [24] present a componential set-based analysis for Scheme. This

analysis creates a system of constraints for each program component. Similarly to the

summaries from Chapter 3, the system of constraints encodes the potential effects of

the component on the rest of the program, without describing all interactions within

the component. The systems for all program components are combined and information

is propagated among them in order to create a global solution. This solutions is then

propagated to the individual components. Conceptually, the component-level constraint

systems in [24] are similar to the optimized summaries from Chapter 3, and the global phase

of the analysis is similar to our summary-based fragment analysis of the client module.

However, our approach targets a different language and analysis, and uses summaries and

summary optimizations different from the ones in [24].

5.1.3 User-defined Summary Information

While the approaches described above construct the summary information automatically,

there have been proposals for employing summary information provided by the analysis

user (e.g., programmer, tester, etc.). Guyer and Lin [29] propose annotations for describing

libraries in the domain of high-performance computing. The annotations encode high-level

semantic information (e.g., points-to and side-effect properties) and are produced by a

library expert. Similarly, Rugina and Rinard [53] propose the use of design information

in the context of optimizing compilers. In particular, they present summary information

that describes how a called procedure affects points-to relationships and how it accesses

regions of arrays; this information is used to perform automatic program parallelization.

In essence, the approaches from [29, 53] use summary functions provided by the analysis

user. Dwyer [20] presents a modular dataflow analysis for verifying correctness properties

of concurrent programs. Information about the surrounding environment of a module

is represented using an environment automaton. This automaton describes the possible

81

interactions between the module and the environment, and is provided by the user (based

on design artifacts or existing code).

Approaches based on user-defined summary information are capable of achieving preci-

sion that is very hard (or even impossible) to achieve automatically. Their key advantage

is the ability to employ high-level user knowledge. On the other hand, constructing user-

defined summary information may be hard, time-consuming, and error-prone.

5.2 Using Conservative Assumptions about External Code

The second broad category of related work consists of approaches for analyzing a software

fragment when there is no available information about the surrounding environment. In

essence, these approaches perform fragment analysis using conservative assumptions about

the possible effects of unknown external code. In previous work, specific techniques have

been proposed in the context of particular kinds of analyses. To the best of our knowledge,

the approach presented in Chapter 2 is the first one that provides a general framework for

addressing this problem.

Harrold and Rothermel [31] describe an approach for applying Landi-Ryder’s whole-

program pointer analysis for C [35] to a software module. All possible contexts are intro-

duced at the entry of the module, and then information is propagated in top-down manner

inside the module. The approach assumes that there is available summary information

for all other modules that are being called by the analyzed module. Our method for per-

forming fragment points-to analysis of a library module (described in Chapter 3) addresses

a problem similar to the one from [31]. While the analysis from [31] is based on Landi-

Ryder’s flow- and context-sensitive analysis, our approach can be applied to the entire

category of flow- and context-insensitive points-to analyses (e.g., [4, 60, 69, 56, 17, 32]).

Unlike [31], we present an approach that can be used when there is no available informa-

tion about called modules. We also provide empirical results that confirm the practicality

of our approach.

Chatterjee et al. [10] present a flow- and context-sensitive whole-program points-to

analysis for object-oriented languages, which subsequently has been modified to perform

82

analysis of library modules [9]. The library analysis processes the library and all of its

callees in bottom-up manner, and then performs a top-down traversal that essentially prop-

agates conservative assumptions about the clients of the library. This approach addresses

the same problem as the fragment class analyses described in Chapter 4. Our approach for

constructing fragment class analyses is more general and can be applied to a large number

of existing whole-program analyses [2, 5, 28, 18, 48, 61, 62, 65, 38, 51, 27, 42]. Furthermore,

we present empirical results that evaluate the absolute precision of our fragment analyses

and confirm their effectiveness.

Previous work presents several analyses for fragments of Java programs, performed

without having any information about the callees or callers of the analyzed fragment.

Sreedhar et al. [59] define extant analysis that determines whether a reference variables

may point to instances of unknown classes. This information is used to perform compiler

optimizations in the presence of dynamic class loading. Sweeney and Tip [63] describe

analyses and optimizations for the removal of unused functionality in Java modules. Con-

servative assumptions are used to approximate the effects of code located outside of the

optimized modules. We believe that the fragment analyses from Chapter 4 can be easily

generalized to handle unknown callees, which would make it possible to apply them to the

problems addressed in [59] and [63]. Ghemawat et al. [26] present several analyses of the

properties of fields in Java modules. Analysis results are used to perform various compiler

optimizations such as removal of redundant run-time tests and compile-time resolution of

virtual calls. A variety of whole-program escape analyses [67, 13, 8] can be modified to an-

alyze a Java software fragment without having any information about the callers or callees

of the fragment. For example, Vivien and Rinard [66] present an incrementalized escape

analysis that is based on the whole-program analysis from [67]. The analysis dynamically

grows the analyzed program region, and makes conservative assumptions about the rest

of the program.

Harrold and Rothermel [30] present a method for performing def-use analysis of a

given class for the purposes of dataflow-based unit testing in object-oriented languages.

Their approach is based on a whole-program def-use analysis for C by Pande et al. [45].

83

The method in [30] constructs a placeholder driver that represents all possible sequences

of method invocations initiated by client code; however, the driver does not take into

account the effects of aliasing, polymorphism, and dynamic binding. The placeholder

main method presented in Chapter 4 is essentially a placeholder driver that models these

features, and therefore can be used to perform dataflow-based testing of individual classes

and collections of classes.

84

Chapter 6

Summary and Future Work

The traditional model of whole-program dataflow analysis has several limitations that make

it unsuitable for many real-world software systems. Whole-program analysis cannot be

applied to incomplete programs, to programs containing unanalyzable modules, and to very

large programs. The impact of dataflow analysis research can be broadened significantly

if the limitations of whole-program analysis are addressed and resolved. To achieve this

goal, in this thesis we propose the paradigm of fragment dataflow analysis.

6.1 Theoretical Foundations

Fragment dataflow analysis is an interprocedural dataflow analysis that analyzes software

fragments rather than complete programs. The input to the analysis is a software fragment

and some knowledge about the environment in which the fragment will operate. The goal of

the analysis is to determines properties of the possible run-time behaviors of the fragment

in that environment.

We have developed a theoretical framework for constructing fragment dataflow analy-

ses. This framework allows analysis designers to construct fragment analyses and to reason

about their properties. The key idea of our approach is to derive fragment analyses from

existing whole-program analyses, in order to reuse existing algorithmic techniques and

implementations of whole-program analyses. The essence of the approach is to construct

fragment analyses that “simulate” the behavior of the underlying whole-program analy-

ses with respect to all whole programs that could contain the analyzed fragment. Our

framework provides a sound theoretical basis for adapting the large body of existing work

on whole-program analysis to solve many problems that currently cannot be solved with

85

whole-program analysis.

6.2 Points-to Analysis and Side-effect Analysis for C Programs Built

with Precompiled Libraries

We present an approach for performing points-to analysis and side-effect analysis for C

programs that are built with precompiled library modules. Points-to and side-effect anal-

yses compute information that is of fundamental importance for many other analyses and

optimizations. Our work targets flow- and context-insensitive points-to analyses, as well as

side-effect analyses based on such points-to analyses. We first propose fragment analyses

of a library module; these analyses can be used without any available information about

the callers and callees of the library. The key idea of our approach is to create placeholders

that simulate the possible effects of unknown external code. We also show how to perform

fragment analyses of a client module without having the source code of the used library

modules, based on a technique for constructing summary information that precisely de-

scribes the possible effects of library modules. The summary information is optimized to

exclude details that are irrelevant with respect to client modules. Our empirical results

confirm the practicality and effectiveness of this approach. As a result of this work, many

existing (and future) techniques for points-to and side-effect analysis can be adapted to

programs that are built with precompiled components.

6.3 Class Analysis for Testing of Polymorphism in Java Software

We have defined a general method for performing class analysis for the purposes of testing

of polymorphism in Java. Class analysis is a fundamental dataflow analysis for object-

oriented software that has a wide variety of uses in optimizing compilers and software engi-

neering tools. We consider the use of fragment class analysis in a coverage tool for testing

of polymorphism, in order to determine the test coverage requirements. Our method allows

many existing and future flow-insensitive whole-program class analyses to be adapted for

use in such coverage tools. Our empirical results clearly show that appropriately chosen

analyses have high precision and low cost, and therefore are good candidates for inclusion

86

in real-world testing tools. This work is the first one to show how to construct high-quality

coverage tools for testing of polymorphism in Java software.

6.4 Future Work

One possible direction for future work is to generalize the techniques from Chapter 3 for

flow- or context-sensitive points-to analyses. In particular, it is interesting to evaluate

empirically how different levels of detail in the library summary affect the precision of

analyses that use the summary. A related direction of future work is approaches for

summarizing the effects of object-oriented libraries for the purposes of class analysis of

library clients. This problem is of particular importance because object-oriented software

systems are often built on top of already existing large and complex infrastructure (e.g.,

standard libraries, virtual machines, middleware), and re-analysis of this infrastructure for

each analyzed program is infeasible.

Another interesting problem is to generalize the fragment class analyses from Chapter 4

for situations when some of the callees of the fragment are not available. It is particu-

larly interesting to consider how such analyses can be useful for compiler optimizations

(e.g., for optimization of reusable libraries) and for software engineering tools (e.g., for

program understanding). Any such analysis has to be evaluated empirically with respect

to its intended application. For example, for software engineering applications where high

imprecision is unacceptable, experiments would have to determine absolute precision by

comparing analysis results with the actual set of possible run-time values (similarly to the

experiments from Chapter 4).

As a more general direction of future work, it is important to investigate different

categories of summary information for software components, and the use of this informa-

tion for analyzing component interactions in software systems that are built with these

components. A variety of interesting questions remain open: what are important kinds

of summary information, how to compute it precisely and efficiently, and how to make it

reusable for different clients and different analyses. The importance of this research area

is significant because of the widespread use of component-based software systems. In this

87

context, it is crucial to be able to analyze systems that are built with components, in

order to understand, modify, optimize, test, and verify such systems. We believe that the

approaches presented in this thesis are a step toward solving this problem.

88

References

[1] O. Agesen. Constraint-based type inference and parametric polymorphism. In Static
Analysis Symposium, LNCS 864, pages 78–100, 1994.

[2] O. Agesen. The cartesian product algorithm. In European Conference on Object-
oriented Programming, LNCS 952, pages 2–26, 1995.

[3] R. Alexander and J. Offutt. Criteria for testing polymorphic relationships. In Inter-
national Symposium on Software Reliability Engineering, pages 15–23, 2000.

[4] L. Andersen. Program Analysis and Specialization for the C Programming Language.
PhD thesis, DIKU, University of Copenhagen, 1994.

[5] D. Bacon and P. Sweeney. Fast static analysis of C++ virtual function calls. In
Conference on Object-Oriented Programming, Systems, Languages, and Applications,
pages 324–341, 1996.

[6] R. Binder. Testing object-oriented software: a survey. Journal of Software Testing,
Verification and Reliability, 6:125–252, December 1996.

[7] R. Binder. Testing Object-Oriented Systems: Models, Patterns, and Tools. Addison-
Wesley, 1999.

[8] B. Blanchet. Escape analysis for object-oriented languages. Applications to Java. In
Conference on Object-Oriented Programming, Systems, Languages, and Applications,
pages 20–34, 1999.

[9] R. Chatterjee and B. G. Ryder. Data-flow-based testing of object-oriented libraries.
Technical Report DCS-TR-433, Rutgers University, April 2001.

[10] R. Chatterjee, B. G. Ryder, and W. Landi. Relevant context inference. In Symposium
on Principles of Programming Languages, pages 133–146, 1999.

[11] M. H. Chen and M. H. Kao. Testing object-oriented programs—an integrated ap-
proach. In International Symposium on Software Reliability Engineering, pages 73–83,
1999.

[12] B. Cheng and W. Hwu. Modular interprocedural pointer analysis using access paths.
In Conference on Programming Language Design and Implementation, pages 57–69,
2000.

[13] J. Choi, M. Gupta, M. Serrano, V. Sreedhar, and S. Midkiff. Escape analysis for
Java. In Conference on Object-Oriented Programming, Systems, Languages, and Ap-
plications, pages 1–19, 1999.

89

[14] K. Cooper, K. Kennedy, and L. Torczon. The impact of interprocedural analysis and
optimization in the Rn programming environment. ACM Transactions on Program-
ming Languages and Systems, 8(5):491–523, October 1986.

[15] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixed points. In Symposium
on Principles of Programming Languages, pages 238–252, 1977.

[16] B. Cox. The need for specification and testing languages. Journal of Object-Oriented
Programming, 1(2):44–47, June 1988.

[17] M. Das. Unification-based pointer analysis with directional assignments. In Confer-
ence on Programming Language Design and Implementation, pages 35–46, 2000.

[18] G. DeFouw, D. Grove, and C. Chambers. Fast interprocedural class analysis. In
Symposium on Principles of Programming Languages, pages 222–236, 1998.

[19] A. Diwan, J.Eliot B. Moss, and K. McKinley. Simple and effective analysis of
statically-typed object-oriented programs. In Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications, pages 292–305, 1996.

[20] M. Dwyer. Modular flow analysis of concurrent software. In International Conference
on Automated Software Engineering, pages 264–273, 1997.

[21] M. Emami, R. Ghiya, and L. Hendren. Context-sensitive interprocedural points-to
analysis in the presence of function pointers. In Conference on Programming Language
Design and Implementation, pages 242–257, 1994.

[22] M. Fähndrich, J. Foster, Z. Su, and A. Aiken. Partial online cycle elimination in
inclusion constraint graphs. In Conference on Programming Language Design and
Implementation, pages 85–96, 1998.

[23] M. Fähndrich, J. Rehof, and M. Das. Scalable context-sensitive flow analysis us-
ing instantiation constraints. In Conference on Programming Language Design and
Implementation, pages 253–263, 2000.

[24] C. Flanagan and M. Felleisen. Componential set-based analysis. ACM Transactions
on Programming Languages and Systems, 21(2):370–416, March 1999.

[25] J. Foster, M. Fähndrich, and A. Aiken. Polymorphic versus monomorphic flow-
insensitive points-to analysis for C. In Static Analysis Symposium, LNCS 1824, pages
175–198, 2000.

[26] S. Ghemawat, K. Randall, and D. Scales. Field analysis: Getting useful and low-cost
interprocedural information. In Conference on Programming Language Design and
Implementation, pages 334–344, 2000.

[27] D. Grove and C. Chambers. A framework for call graph construction algorithms.
ACM Transactions on Programming Languages and Systems, 23(6):685–746, Novem-
ber 2001.

90

[28] D. Grove, G. DeFouw, J. Dean, and C. Chambers. Call graph construction in object-
oriented languages. In Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications, pages 108–124, 1997.

[29] S. Guyer and C. Lin. Optimizing the use of high performance software libraries. In
Workshop on Languages and Compilers for Parallel Computing, LNCS 2017, pages
227–243, 2000.

[30] M. J. Harrold and G. Rothermel. Performing data flow testing on classes. Symposium
on the Foundations of Software Engineering, pages 154–163, 1994.

[31] M. J. Harrold and G. Rothermel. Separate computation of alias information for reuse.
IEEE Transactions on Software Engineering, 22(7):442–460, July 1996.

[32] N. Heintze and O. Tardieu. Ultra-fast aliasing analysis using CLA. In Conference on
Programming Language Design and Implementation, pages 254–263, 2001.

[33] M. Hind, M. Burke, P. Carini, and J. Choi. Interprocedural pointer alias analysis.
ACM Transactions on Programming Languages and Systems, 21(4):848–894, May
1999.

[34] M. Hind and A. Pioli. Which pointer analysis should I use? In International Sympo-
sium on Software Testing and Analysis, pages 113–123, 2000.

[35] W. Landi and B. G. Ryder. A safe approximation algorithm for interprocedural
pointer aliasing. In Conference on Programming Language Design and Implementa-
tion, pages 235–248, 1992.

[36] D. Liang and M. J. Harrold. Efficient points-to analysis for whole-program analysis.
In Symposium on the Foundations of Software Engineering, LNCS 1687, pages 199–
215, 1999.

[37] D. Liang and M. J. Harrold. Efficient computation of parameterized pointer informa-
tion for interprocedural analyses. In Static Analysis Symposium, LNCS 2126, pages
279–298, 2001.

[38] D. Liang, M. Pennings, and M. J. Harrold. Extending and evaluating flow-insensitive
and context-insensitive points-to analyses for Java. In Workshop on Program Analysis
for Software Tools and Engineering, pages 73–79, 2001.

[39] T. Marlowe and B. G. Ryder. Properties of data flow frameworks: A unified model.
Acta Informatica, 28:121–163, 1990.

[40] T. McCabe, L. Dreyer, A. Dunn, and A. Watson. Testing an object-oriented applica-
tion. Journal of the Quality Assurance Institute, 8(4):21–27, October 1994.

[41] R. McDaniel and J. McGregor. Testing the polymorphic interactions between classes.
Technical Report 94-103, Clemson University, March 1994.

[42] A. Milanova, A. Rountev, and B. G. Ryder. Parameterized object sensitivity for
points-to and side-effect analyses for Java. In International Symposium on Software
Testing and Analysis, 2002.

91

[43] J. Overbeck. Integration Testing for Object-Oriented Software. PhD thesis, Vienna
University of Technology, 1994.

[44] J. Palsberg and M. Schwartzbach. Object-oriented type inference. In Conference on
Object-Oriented Programming, Systems, Languages, and Applications, pages 146–161,
1991.

[45] H. Pande, W. Landi, and B. G. Ryder. Interprocedural def-use associations in C
programs. IEEE Transactions on Software Engineering, 20(5):385–403, May 1994.

[46] D. Perry and G. Kaiser. Adequate testing and object-oriented programming. Journal
of Object-Oriented Programming, 2(5):13–19, January 1990.

[47] J. Plevyak and A. Chien. Precise concrete type inference for object-oriented lan-
guages. In Conference on Object-Oriented Programming, Systems, Languages, and
Applications, pages 324–340, 1994.

[48] C. Razafimahefa. A study of side-effect analyses for Java. Master’s thesis, McGill
University, December 1999.

[49] T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural dataflow analysis via
graph reachability. In Symposium on Principles of Programming Languages, pages
49–61, 1995.

[50] A. Rountev and S. Chandra. Off-line variable substitution for scaling points-to anal-
ysis. In Conference on Programming Language Design and Implementation, pages
47–56, 2000.

[51] A. Rountev, A. Milanova, and B. G. Ryder. Points-to analysis for Java using an-
notated constraints. In Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications, pages 43–55, 2001.

[52] E. Ruf. Effective synchronization removal for Java. In Conference on Programming
Language Design and Implementation, pages 208–218, 2000.

[53] R. Rugina and M. Rinard. Design-driven compilation. In International Conference
on Compiler Construction, LNCS 2027, pages 150–164, 2001.

[54] B. G. Ryder, W. Landi, P. Stocks, S. Zhang, and R. Altucher. A schema for inter-
procedural modification side-effect analysis with pointer aliasing. ACM Transactions
on Programming Languages and Systems, 23(2):105–186, March 2001.

[55] M. Shapiro and S. Horwitz. The effects of the precision of pointer analysis. In Static
Analysis Symposium, LNCS 1302, pages 16–34, 1997.

[56] M. Shapiro and S. Horwitz. Fast and accurate flow-insensitive points-to analysis. In
Symposium on Principles of Programming Languages, pages 1–14, 1997.

[57] M. Sharir and A. Pnueli. Two approaches to interprocedural data flow analysis. In
S. Muchnick and N. Jones, editors, Program Flow Analysis: Theory and Applications,
pages 189–234. Prentice Hall, 1981.

92

[58] O. Shivers. Control-Flow Analysis of Higher-Order Languages. PhD thesis, Carnegie
Mellon University, 1991.

[59] V. Sreedhar, M. Burke, and J. Choi. A framework for interprocedural optimization
in the presence of dynamic class loading. In Conference on Programming Language
Design and Implementation, pages 196–207, 2000.

[60] B. Steensgaard. Points-to analysis in almost linear time. In Symposium on Principles
of Programming Languages, pages 32–41, 1996.

[61] M. Streckenbach and G. Snelting. Points-to for Java: A general framework and an
empirical comparison. Technical report, U. Passau, September 2000.

[62] V. Sundaresan, L. Hendren, C. Razafimahefa, R. Vallee-Rai, P. Lam, E. Gagnon,
and C. Godin. Practical virtual method call resolution for Java. In Conference on
Object-Oriented Programming, Systems, Languages, and Applications, pages 264–280,
2000.

[63] P. Sweeney and F. Tip. Extracting library-based object-oriented applications. In
Symposium on the Foundations of Software Engineering, pages 98–107, 2000.

[64] N. N. Thuy. Testability and unit tests in large object-oriented software. In Proc. 5th
International Software Quality Week. Software Research Institute, 1992.

[65] F. Tip and J. Palsberg. Scalable propagation-based call graph construction algo-
rithms. In Conference on Object-Oriented Programming, Systems, Languages, and
Applications, pages 281–293, 2000.

[66] F. Vivien and M. Rinard. Incrementalized pointer and escape analysis. In Conference
on Programming Language Design and Implementation, pages 35–46, 2001.

[67] J. Whaley and M. Rinard. Compositional pointer and escape analysis for Java pro-
grams. In Conference on Object-Oriented Programming, Systems, Languages, and
Applications, pages 187–206, 1999.

[68] R. Wilson and M. Lam. Efficient context-sensitive pointer analysis for C programs.
In Conference on Programming Language Design and Implementation, pages 1–12,
1995.

[69] S. Zhang, B. G. Ryder, and W. Landi. Program decomposition for pointer aliasing:
A step towards practical analyses. In Symposium on the Foundations of Software
Engineering, pages 81–92, 1996.

[70] H. Zhu, P. Hall, and J. May. Software unit testing coverage and adequacy. ACM
Computing Surveys, 29(4):366–427, December 1997.

93

Vita

Atanas Rountev

1995 B.S. in Computer Science and Engineering, Technical University, Sofia, Bul-
garia.

1996–2002 Research Assistant, Department of Computer Science, Rutgers, The State
University of New Jersey.

1999 M.S. in Computer Science, Rutgers, The State University of New Jersey.

1999 Atanas Rountev, Barbara G. Ryder, and William Landi. Data-flow analysis
of program fragments. In Proceedings of the 7th ACM SIGSOFT Sympo-
sium on the Foundations of Software Engineering, September 1999.

2000 Atanas Rountev and Satish Chandra. Off-line variable substitution for
scaling points-to analysis. In Proceedings of the ACM SIGPLAN Conference
on Programming Language Design and Implementation, June 2000.

2001 Atanas Rountev and Barbara G. Ryder. Points-to and side-effect analyses
for programs built with precompiled libraries. In Proceedings of the 10th
International Conference on Compiler Construction, April 2001.

2001 Atanas Rountev, Ana Milanova, and Barbara G. Ryder. Points-to analysis
for Java using annotated constraints. In Proceedings of the Conference
on Object-Oriented Programming, Systems, Languages, and Applications,
October 2001.

2002 Ana Milanova, Atanas Rountev, and Barbara G. Ryder. Parameterized ob-
ject sensitivity for points-to and side-effect analyses for Java. In Proceedings
of the ACM SIGSOFT International Symposium on Software Testing and
Analysis, July 2002.

2002 Ana Milanova, Atanas Rountev, and Barbara G. Ryder. Constructing pre-
cise object relation diagrams. In Proceedings of the IEEE International
Conference on Software Maintenance, October 2002.

2002 Ana Milanova, Atanas Rountev, and Barbara G. Ryder. Precise call graph
construction in the presence of function pointers. In Proceedings of the
Second IEEE International Workshop on Source Code Analysis and Ma-
nipulation, October 2002.

2002 Ph.D. in Computer Science, Rutgers, The State University of New Jersey.

