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ABSTRACT
Software analytics libraries are widely used in mobile applications,
which raises many questions about trade-offs between privacy,
utility, and practicality. A promising approach to address these
questions is differential privacy. This algorithmic framework has
emerged in the last decade as the foundation for numerous al-
gorithms with strong privacy guarantees, and has recently been
adopted by several projects in industry and government. This paper
discusses the benefits and challenges of employing differential pri-
vacy in software analytics used in mobile apps. We aim to outline an
initial research agenda that serves as the starting point for further
discussions in the software engineering research community.

CCS CONCEPTS
• Security and privacy → Domain-specific security and privacy
architectures; • Software and its engineering → Dynamic anal-
ysis;
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1 INTRODUCTION
Software analytics libraries have strong presence in the mobile app
markets and are used by app developers for behavioral analytics,
app improvements, targeted advertising, and location tracking [12,
27]. With such data gathering, user privacy becomes a concern. This

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SWAN ’18, November 5, 2018, Lake Buena Vista, FL, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6056-2/18/11. . . $15.00
https://doi.org/10.1145/3278142.3278148

concern is amplified in the current environment, in which both
software users and legislative bodies are becoming increasingly
proactive in demanding privacy protections. In this context, it is
essential to understand and enforce meaningful trade-offs between
the benefits of data gathering and the privacy of software users.

Such trade-offs can be studied through the lens of privacy-pre-
serving data analysis. In particular, we consider differential pri-
vacy [8], an approach that quantifies these trade-offs and provides
a framework for disciplined algorithm design. Due to its attractive
properties, differential privacy has reigned as the gold standard of
statistical data privacy. This approach has recently found several
successful adoptions in industry—for example, Google’s use of RAP-
POR in the Chrome browser [11] and Apple’s use of differential
privacy in iOS-10 [1, 26].

The goal of this short position paper is to highlight the benefits
and challenges of applying differential privacy in the context of
software analytics used in mobile apps. We aim to outline an ini-
tial research agenda that serves as the starting point for further
discussions in the software engineering research community.

The rest of the paper is organized as follows. Section 2 provides
background on software analytics for mobile apps, with focus on
analytics for Android apps. Section 3 discusses differential privacy,
and in particular local differential privacy (LDP) which is especially
well suited for analyzing the behavior of mobile apps. Section 4
describes several dimensions in designing general and practical
LDP mechanisms for app analytics, and defines a series of research
questions to be addressed by future work. Section 5 summarizes
our conclusions and suggestions.

2 ANALYTICS FOR ANDROID APPS
There are many providers of analytics libraries for mobile apps.
Prominent examples include Google Analytics (GA) [16], its succes-
sor Firebase [15], Facebook Analytics [13], and Yahoo’s Flurry [23].
Recent examination [12] of a collection of Android apps identified
the following percentages of apps that use these analytics libraries:

Google Firebase 43%
Google Analytics 38%
Facebook Analytics 24%
Flurry (by Yahoo) 18%

Even though the policies of these analytics infrastructures require
that developers do not gather user-identifiable information, there is
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Figure 1: GA behavior flow of screen views and events.

no enforcement of such guidelines; as a result, users are vulnerable
to abuse and data leaks by app developers and library providers.

Analytics libraries allow a wealth of data to be collected and
analyzed. As one basic capability, an app developer can define
interesting events to be recorded when a specific action occurs: e.g.,
visiting a screen, making a purchase, or clicking a button. An event
could also have data parameters such as the price of a purchase.
The run-time occurrence of such an event is reported by the app
via calls to analytics library APIs. These calls send the data to the
analytics server (e.g., Google’s server). An app developer can query
the server to obtain, for example, a histogram of event frequencies.

Example. Google Analytics (GA) can be used to gather detailed
information about user behavior. For example, every time the user
views some screen in the app’s GUI, this event can be recorded. As
another example, data from e-commerce transactions could be col-
lected. The app uses library com.google.android.gms.analytics
to record the data. For example, the execution of tracker.send(new
HitBuilders.EventBuilder().setCategory("Action").set
Action("Share").build())will send toGoogle’s servers an event
that records a user action related to content sharing. GA gathers
data from multiple users—that is, from different instances of the
same app running on thousands of devices—and presents various
summary statistics to the developer of this app. (It is also possible
to drill down this information to the level of a single app user.)
From this data, GA generates various reports for event frequencies.
For example, Figure 1 illustrates observed frequencies for differ-
ent app screens and the events that trigger flow between screens,
accumulated over a collection of app users.

Google provides other services to facilitate the analysis and pre-
sentation of GA and Firebase data. Data Studio enables developers
to generate more readable and complex reports. Another related
service is BigQuery, which is used to query large datasets. All raw
GA data related to events and users could be exported to BigQuery.
Developers can then use SQL-like syntax to query the data.

Analytics frameworks for mobile apps provide weak privacy
protections. For example, a developer-defined configuration param-
eter in GA can eliminate the last component of the IP address. As
another example, the best-effort privacy in GA and Firebase is to
prohibit developers from including “personally identifiable infor-
mation such as names, social security numbers, or email addresses,
even in hashed form”.1 While such restrictions are useful, there
1https://support.google.com/firebase/answer/6317519 and https://support.google.com/
analytics/answer/2795983

is no indication that they are being systematically checked. Even
more troubling, it is well known that anonymization provides no
protection against more sophisticated privacy attacks that cross-
reference data from several sources. In this day and age, both in
society and (increasingly) in law, privacy is becoming a major con-
cern. Privacy-preserving software analytics for mobile apps is an
important and challenging instance of this problem, which can be
addressed in a foundational manner using differential privacy.

3 DIFFERENTIAL PRIVACY
In the last decade, differential privacy [8, 10, 21] has emerged as a
powerful protection mechanism against privacy attacks. The sce-
nario under consideration is the following. After a planned public
release of some data, an adversary attempts to learn private informa-
tion from that data—for example, to achieve person re-identification,
linking of records from different sources, or differencing attacks.
The data is released to government, businesses, or researchers for
legitimate reasons. The adversary can also access the data and, in
addition, may know what kinds of data sanitization and aggrega-
tion were performed before the release. Here “adversary” should
be considered in the broadest possible sense: e.g., data released to a
company may later be obtained and misused by another company
(e.g., as part of a corporate takeover), or may be subpoenaed by law
enforcement. Anonymizing or removing personally-identifiable
information does not provide strong protections, as demonstrated
by many researchers [6, 18, 19, 25]. For example, Narayanan and
Shmatikov [18] analyzed the anonymized data in the Netflix Prize
dataset and identified users by cross-linking with IMDB data.

Differential privacy (DP) provides theoretical guarantees against
such attacks. Intuitively, when an adversary observes the results
of a DP analysis, she will reach essentially the same conclusion
about an individual’s private information, regardless of whether
that individual’s data is part of the analysis input [21]. Many DP
solutions have been proposed for various analysis problems. As
one example, the output of a non-DP analysis could be perturbed
using random noise with Laplacian or Gaussian distribution.

Descriptions of this vibrant research area are available elsewhere
[10, 21]. DP solutions have been deployed by companies such as
Google, Apple, and Uber. As another example, last year it was
announced that the U.S. Census Bureau will use differential privacy
in the 2020 census. Given the rapid emergence of large-scale data
analytics and machine learning, and their detrimental effects on
privacy, the importance and urgency of privacy solutions (including
differential privacy) will continue to increase.

Local differential privacy (LDP) [17] is a variant of DP in which
each user performs local data perturbation. The modified data is
sent to an untrusted data curator, where data analysis is performed
and the analysis results are released to clients. There exist several
practical realizations of LDP algorithms. Google’s RAPPOR identi-
fies URLs in the Chrome browser [11, 14]. Apple gathers analytics
data for emoji and quick type suggestions, search hints, and health-
related usage [1, 26]. Samsung’s Harmony collects data from smart
devices [20]. Microsoft uses LDP to collect telemetry data [5].

The LDP model is particularly well suited for app analytics for
mobile devices, as it provides privacy guarantees to the app user
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regardless of the actions of the app developer or the analytics in-
frastructure company (e.g., Google). For the widely-used analytics
frameworks discussed in Section 2, there is no prior work on achiev-
ing LDP analytics. The next section outlines several challenges for
achieving the rigorous privacy/utility trade-offs provided by LDP.

4 CHALLENGES FOR DIFFERENTIALLY
PRIVATE MOBILE APP ANALYTICS

We illustrate LDP using a fundamental problem in data analytics:
event frequencies. This problem is closely related to many analytics
problems, including counting queries, histograms, heavy hitters,
distribution estimation, regression, clustering, and classification.

4.1 Frequency Estimates
Consider n app users and let each user is identified by an id i ∈
{1, . . . ,n}. Each user has a data item vi . The data items are from
some data dictionary D that is pre-defined by the app developer
based on her analytics needs. For any v ∈ D, its frequency f (v) is
the number of users that hold this v . The app developer’s goal is to
obtain all f (v)—or, at least, accurate estimates of these frequencies.
The analytics frameworks for mobile apps described earlier gather
such frequencies and present them to app developers.

An LDP solution to this problem will apply a local randomizer
R : D → Z to each user’s item vi . The resulting zi = R(xi ) is sent
to the server. The server uses all zi to determine estimates f̂ (v) for
all actual frequencies f (v). There are various ways to define R. For
example, the popular RAPPOR approach [11] represents the data
of user i as a bit vector of length |D|, where only bit vi is set to
1. Then each bit could be randomly inverted using a biased coin.
The server processes the resulting bit vectors and accounts for the
randomization when computing the estimates f̂ (v).

R is parameterized by a parameter ϵ . Two key properties of the
ϵ-LDP protocol based on R are privacy and accuracy. The privacy
is due to the design of R: for any v,v ′ ∈ D and z ∈ Z, we have

Pr[R(v) = z] ≤ eϵPr[R(v ′) = z]
The randomization achieves privacy trough plausible deniability: if
a user has item v and as a result z = R(v) is reported to the server,
the observation of that z (by the server or by a third party) does
not reveal “too much” information about which item was held by
that user, since the probability that the item was some other v ′ is
close to the probability that the item was the actualv . The accuracy
is measured based on the ℓ∞ norm of the difference between the
vector of actual frequencies and the vector of estimates—that is, the
largest value of | f̂ (v) − f (v)| over all v . Larger values of parameter
ϵ result in less privacy but higher accuracy.

4.2 Problem Dimensions
The simplified problem defined above provides a useful baseline
for considering the theoretical properties of LDP data analytics.
However, practical application of these ideas to real-world mobile
apps demands that various more complex problem dimensions be
considered. Some of these issues have been addressed by existing
work in differential privacy, but most have not. This presents an
exciting opportunity for software engineering researchers to define
and pursue a new research agenda for LDP software analytics.

4.2.1 Simple vs Rich Data/Analyses. The problem from Section 4.1
considers a single data item per user and a basic frequency analysis
of these items. Typically, the data collected from a user’s execu-
tion of an app is much more complex. In general, one could model
this data as a temporal sequence of data tuples drawn from some
database schema. For illustration, if we consider one specific code
example from the documentation of Google Analytics, we could
model the data sent to the server as a tuple ("P12345","Warhol
T-Shirt","Apparel/T-Shirts","Google", "Black") from a con-
ceptual database table with columns “product id”, “name”, “cate-
gory”, “brand”, and “color”. Clearly, the definitions of privacy loss
and analysis accuracy may have to consider the structure of this
information. The type of analysis will also affect the considera-
tions of privacy and accuracy. Rather than simple counts of items,
much more powerful analyses could be performed—for example,
how many records are returned from some complex database query.
The DP literature already considers a range of such analyses (e.g.,
heavy hitters [2, 4], distribution estimation [7], clustering [22],
learning [17], and convex optimization [24]) but the use of these
theoretical approaches to achieve practical analyses of real app data
remains to be seen.

4.2.2 One-Shot vs Continuous Data Collection. Given the events
from multiple instances of an app running on many users’ devices,
the simplified problem defined in Section 4.1 considers “one-shot”
data collection. Each user runs the app for a while; during this
period, information is recorded locally. At the end of the data col-
lection period, the data is sent to the server. The server aggregates
the information from all n users and reports the results to the app
developer. This completes the entire data collection process.

In reality, the observation is continuous and data is sent to the
server many times. More precisely, consider an (infinite) sequence
of moments in time t1, t2, . . . Here t1 can be thought of as the time
the app is published in the app market. Let Tj be the time period
from ti to ti+1,Uj be the set of users that actively use the app during
Tj , and U be the union of all Uj . Let nj = |Uj | and n = |U|. As
before, each u ∈ U is identified by an id i ∈ {1, . . . ,n}.

For the frequency estimation problem discussed earlier, assume a
user i ∈ Uj generates a finite sequence of valuesvi,1,vi,2, . . . during
time period Tj . A user i < Uj does not generate any events during
Tj . For any v ∈ D, its frequency during Tj is fj (v) = |{(i,k) ∈
{1, . . . ,n} × N : vi,k = v}|. The histogram defined by fj (v) for
all v ∈ D is computed by the server and made accessible to the
app developer at the end of each period Tj . Note that from one
time period to the next, some new users may be added (due to
new app installs) and some existing users may be dropped (due to
app uninstalls). Further, a user may be completely inactive during
one time period, but active in previous/following time periods.
It is necessary to develop research solutions that consider these
generalizations of LDP analytics for mobile apps.

The continuous collection of data also raises issues of privacy
loss (as exemplified by [9]). As a fundamental theoretical prop-
erty, each subsequent observation of new public data derived from
private data leads to further reduction of privacy guarantees. An
important question—both for an app developer and for an analyt-
ics infrastructure provider such as Google or Facebook—is how to
“forget” previously-observed data. Although this question has been
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considered for time-series data [3], broader investigations should
be part of the research agenda for developing LDP app analytics.

4.2.3 Black-Box vs White-Box Analysis. Several deployment sce-
narios can be considered for LDP analytics of mobile apps.

Scenario 1: Black-box analytics infrastructure. The analytics frame-
works described in Section 2 are not designed with DP capabilities.
Suppose an app developer wants to use some existing infrastructure
and APIs to collect information from mobile apps in a LDP manner.
In this scenario, the app must use calls to the standard analytics
APIs but needs to introduces it own implementation layer on top
of these APIs (e.g., in order to add randomization). The server is
completely unaware of the fact that there is any differential privacy
aspect to the data collection and analysis. On the user’s device,
there are no changes to the API implementations—i.e., there are
no changes to the analytics library that implements the APIs and
connects to the server. After the server reports its results, they
have to be post-processed by the app developer to obtain the actual
estimates of the desired analytics data. Such a “black-box” solu-
tion is easy to deploy today. However, it requires substantial new
algorithmic developments, since all existing work on differential
privacy assumes that both the user’s local environment and the
server’s operation are under the control of the protocol designer.

Scenario 2: Local changes, black-box server. Another scenario is
when the app implementation layer is combined with a modified
version of the analytics libraries running locally on the user’s device.
The analytics server is still unmodified and LDP-unaware. The mod-
ified libraries, created by a trusted party (e.g., privacy researchers),
can live side-by-side with the original analytics libraries and can
be made available to LDP-aware apps. Clearly, this solution is more
intrusive and harder to deploy than the black-box one described
earlier. It is interesting to consider what additional capabilities can
be achieved in this case, compared to Scenario 1.

Scenario 3: White-box analytics infrastructure. A fully general
deployment scenario is where both the analytics libraries on mobile
devices and the analytics server are modified. In this case there is
great flexibility in achieving and fine-tuning LDP. This scenario
requires substantial infrastructure changes and does not allow for
an immediate deployment of a LDP solution. Further, such changes
require the buy-in of infrastructure companies such as Google
and Facebook. However, this scenario is still worth considering in
exploring the trade-offs between theoretically-superior solutions
and real-world deployment constraints.

4.2.4 Practical Considerations. The performance of DP analyses
depends on various parameters: for example, the privacy loss pa-
rameter ϵ , the size of the data dictionary D, the number of users n,
the number of hash functions used to map the data into compressed
representations [2, 11], etc. Accuracy, privacy, and time/memory/
communication cost all depend on such parameters. Demonstrating
useful trade-offs for these factors under realistic usage scenarios
(e.g., using data streams obtained from app executions on real de-
vices) is an important open problem. Creating benchmarks and
prototype analysis implementations, and then sharing them with
the research community, are also of great importance.

5 SUMMARY
In an environment where data analytics and machine learning are
becoming increasingly prevalent, privacy should be a major con-
cern for the designers and users of analytics solutions. Many apps
for mobile devices already collect and analyze data with the help
of analytics frameworks, but with little or no privacy considera-
tions. Differentially-private mobile app analytics is an attractive
but unexplored solution that combines rigorous theoretical reason-
ing, algorithm design for a wide range of analytics problems, and
challenging issues of practical usability and deployment. The soft-
ware engineering research community can find many important
and exciting problems in this emerging research area.
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