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Abstract
Android software presents exciting new challenges for the static
analysis community. However, static analyses for Android are typ-
ically unsound. This is due to the lack of specification of the An-
droid framework, the continuous evolution of framework features
and behavior, and the absence of soundness arguments and stud-
ies by program analysis researchers. Our goal is to investigate
one important aspect of this problem: the static modeling of con-
trol/data flow due to interactions of the user with the application’s
GUI. We compare the solutions of three existing static analyses—
FlowDroid, IccTA, and GATOR—with the actual run-time behav-
ior. Specifically, we observe the run-time sequences of callbacks
and their parameters, and match them against the static abstractions
provided by these analyses. This study provides new insights into
the unsoundness of existing analysis techniques. We conclude with
open questions and action items for program analysis researchers
working in this increasingly important area.

Categories and Subject Descriptors F.3.2 [Logics and Meaning
of Programs]: Semantics of Programming Languages—Program
analysis

Keywords Android, static analysis, soundness

1. Introduction
Android is the most popular software platform for mobile de-
vices [11] and presents exciting new challenges for the static anal-
ysis community. These challenges are both foundational (e.g., how
to model general control/data flow) and in specific application areas
(e.g., security, performance, energy usage, etc.) However, due to
the framework-based, event-driven nature of the Android execution
model, there is lack of conceptual clarity on the run-time semantics
and how it can be represented by static abstractions. As a result,
static analyses for Android are typically unsound. The first goal of
our work is to highlight the challenges in developing sound static
analyses for Android, and to illustrate them with a case study of
three analyses [3, 18, 35]. The results of this study indicate that the
underlying techniques have several aspects of unsoundness. Based
on these results, our second goal is to outline a research agenda for
the program analysis community in order to measure, understand,
and reduce unsoundness in static analysis of Android software. We
hope this initial investigation will motivate other researchers to per-
form further in-depth studies of analysis soundness for Android.

Challenges for developing sound analyses There is a substan-
tial number of static analyses for Android. Many are motivated
by security-related problems; a representative example is the taint
analysis in FlowDroid [3], which will be discussed later. Others
consider problems such as battery drain (e.g., [25, 33]), leaks (e.g.,
[14, 37]), GUI exploration (e.g., [4, 36]), and responsiveness (e.g.,
[19, 32]). In our experience, existing work (including our own
work) almost never discusses the soundness of the proposed analy-
sis. One major reason is the lack of precise specification of Android
structure and behavior. Android applications are built by extending
the functionality of the Android framework (e.g., by subclassing
of framework classes and overriding framework methods) and/or
directly using framework entities (e.g., GUI widgets). The possi-
ble interactions between framework code and application code are
overwhelmingly complicated. Most static analyses for Android do
not analyze the framework code, because treating it as “plain old
Java” — and subjecting it to traditional static analyses for Java —
would lose much of the high-level framework semantics. Instead,
the typical approach is to (silently) select a subset of framework
features and to embed a model of their behavior in the analysis.

This is a highly unsatisfactory state of affairs, because the se-
lected features and their precise run-time behavior typically are
poorly specified by analysis designers—to a large extent, because
the framework itself is poorly specified. For many programming
languages, one can rely on a standardized language specification
and on formal semantic definitions for “interesting” subsets of
the language (e.g., a classic example is Featherweight Java [16]).
Such informal or formal semantics can be used to reason about the
(un)soundness of a proposed static analysis. In contrast, there is
no “Android framework specification”. Although various API doc-
uments exist, they are not at the level of rigor and completeness
that is expected of a language specification. How can an analysis
designer reason about soundness if there is no complete definition
of framework features and their run-time behaviors?

Another challenge is the evolution of the Android framework.
Currently there are 23 framework API revisions (“API levels”). Sig-
nificant new features have been introduced along the way. The run-
time behavior of commonly used features is sometimes changed
without any documentation. For example, we have observed undoc-
umented changes in the behavior of menu windows and the related
callbacks. Combined with the lack of a framework specification,
such changes present an obstacle for static analysis designers.

In this context, perhaps one can only hope for a soundy static
analysis [21]: common features should be handled soundly and
more esoteric ones should be under-approximated. This distinc-
tion is quite valuable in established languages, where both the lan-
guage specification and the static analysis expertise have had time
to evolve and mature. For Android software, it is still very much
unclear what are the dimensions of such algorithm design deci-
sions. A significant body of future work is required to strengthen
our understanding of such foundational static analysis questions.
This paper aims to make a small contribution in this direction.
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Our proposal One key aspect in understanding and eliminating
various sources of unsoundness is to compare the static analysis
solution against some concrete run-time executions. Of course, this
idea is not new—static analysis developers often use it to debug
their analysis design and implementation. We propose to use an
instance of this approach for a restricted but critical aspect of run-
time behavior: control/data flow due to interactions of the user with
the application’s GUI. A major portion of an Android application’s
logic is in code that processes GUI events. GUI-related callback
methods, implemented by the application developer and invoked
by the framework code, drive the overall control flow. Along this
control flow, key categories of framework-managed objects (e.g.,
windows and widgets) flow back and forth between the frame-
work code and the application code, as parameters of these call-
back methods. Aspects of this control/data flow are almost always
a concern for existing static analyses for Android. For example,
mismanagement of GUI control flow (e.g., the callbacks for an ac-
tivity’s lifecycle, which are discussed shortly) is one of the major
sources of battery-drain defects [20, 25, 33].

One can draw an analogy with the classic problem of inter-
procedural control flow analysis in object-oriented programs: over
twenty years of work have been dedicated to this problem, because
of its foundational nature. We argue that control/data-flow analysis
of sequences of callbacks in Android is similarly important because
it serves as basis for many categories of analyses. In our work we
focus on common kinds of GUI-related callbacks, but future inves-
tigations should consider additional aspects of this problem.

We propose to observe the run-time sequences of callbacks and
their parameters, and to match them against static analysis abstrac-
tions. If a run-time sequence cannot be explained by a static anal-
ysis solution, it is clearly an example of unsoundness. Analyzing
the number and characteristics of such examples provides valuable
insights about the limitations of static analysis algorithms. The next
section defines the details of the proposed matching and describes
how it is applied to three existing static analyses: two versions of
FlowDroid [3, 18] as well as our prior work on a window transition
control-flow model in the GATOR analysis toolkit [30, 35]. Next,
we present a study on six Android applications and discuss the ob-
served unsoundness. We conclude with open questions and action
items for program analysis researchers in this area.

2. Control Flow Unsoundness
2.1 Dynamic Trace
The execution of an Android application exhibits a variety of run-
time events. A key aspect of this behavior is the sequence of call-
backs from the framework code to the application code. An ex-
ample of such a sequence is shown in Figure 1. The @xyz labels
are identifiers of parameter objects and will be discussed later.
This sequence was observed during the execution of a test case
for the APV PDF reader [1]. In this test case, when the user
starts the application, activity ChooseFileActivity is used to
select a PDF file. An activity is a key building block of an An-
droid application. Each activity corresponds to a window that in-
teracts with the user. Callback methods onCreate and onResume
defined in ChooseFileActivity are examples of lifecycle call-
backs used the manage the activity’s lifetime. Another example is
onCreateOptionsMenu, which is a lifecycle callback for a menu
window associated with the activity.

Another category of callback methods is GUI event handlers.
For example, onItemClick is an event handler callback that is
triggered when the user selects a list item from the list of PDF files
displayed in the window of ChooseFileActivity. In this exam-
ple the handler starts a new activity (OpenFileActivity) which
displays the selected file in a new window. The last four callbacks

1 <ChooseFileActivity:
void onCreate(android.os.Bundle)>@177466394

2 <ChooseFileActivity:
void onResume()>@177466394

3 <ChooseFileActivity:
boolean onCreateOptionsMenu(android.view.Menu)>@59596096

4 <ChooseFileActivity:
void onItemClick(AdapterView,View,int,long)>@45225503

5 <OpenFileActivity:
void onCreate(android.os.Bundle)>@59444588

6 <OpenFileActivity:
void onResume()>@59444588

7 <OpenFileActivity:
void onPause()>@59444588

8 <ChooseFileActivity:
void onResume()>@177466394

9 <OpenFileActivity:
void onStop()>@59444588

10 <OpenFileActivity:
void onDestroy()>@59444588

Figure 1. Sample sequence of run-time callbacks.

in the example show what happens when the user presses the hard-
ware BACK button to close the file and to return back to the list of
files: an interleaving of lifecycle callbacks for OpenFileActitivy
and ChooseFileActivity is triggered by the framework code,
ending with an activity lifetime termination callback onDestroy.

Each callback method in this sequence completes execution be-
fore the next one is invoked. In other words, the lifetimes of these
callback invocations are disjoint. In general, it is possible that dur-
ing the invocation of a callback method c, an Android API call
made by code in c (or by code in transitive callees of c) triggers
a nested callback invocation of another callback method. In our
current work we choose to focus only on the top-level callback
invocations—that is, the ones that are not nested in other callback
invocations. All callbacks shown in the example are top-level call-
backs. Both our dynamic analysis and the static abstractions we
consider model only these top-level invocations.

The sequence of top-level callback invocations can be easily
obtained through simple instrumentation. Since we focus on the
GUI-related control flow, in our implementation this instrumenta-
tion records only callbacks occurring in the GUI thread, which is
the main application thread. A variety of callbacks can be observed
in the resulting trace. It is natural to select certain core features and
the run-time callbacks related only to those features. This would en-
able characterization of static analysis unsoundness with respect to
these particular features. For our experiments, we choose the three
core categories of callbacks described below. Of course, studies for
other feature categories are essential for future work.
Category 1: lifecycle callbacks for activities. These methods are
some of the most important and semantics-rich components of
Android applications. We consider the standard activity lifetime
callbacks onCreate, onStart, onRestart, onResume, onPause,
onStop, and onDestroy.
Category 2: Category 1 + lifecycle callbacks for menus. Many win-
dows in Android applications are menus [34] and they often trigger
substantial changes to application state. In addition to Category 1,
we also consider menu lifecycle callbacks onCreateOptionsMenu,
onPrepareOptionsMenu, onOptionsMenuClosed, onCreate-
ContextMenu, and onContextMenuClosed.
Category 3: Category 2 + GUI event handlers. In addition to
lifecycle callbacks for activities and menus, the handlers of GUI
events (e.g., clicking on a button or selecting a list item) are
of considerable interest. A large number of static analyses in-
vestigate the effects of such event handlers. We focus on sev-
eral Android interfaces that describe listeners for specific events
(e.g., OnClickListener). Such interfaces define signatures for
callback methods that processes particular GUI events on cer-
tain GUI widgets. For example, a callback method with signa-
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ChooseFileActivity:onCreate

ChooseFileActivity:onResume

OpenFileActivity:onStop

OpenFileActivity:onDestroy

OpenFileActivity:onCreate

OpenFileActivity:onResume

ChooseFileActivity:onItemClick

ChooseFileActivity:onCreateOptionsMenu

OpenFileActivity:onPause

Figure 2. Callback sequence graph for FlowDroid.

ture onClick(View) is used to handle click events on the wid-
get (“view” in Android terminology) provided as a parameter to
the method. Another example is onItemClick from Figure 1, in
which the second parameter is the list item that was clicked. We
also consider two callback methods for clicking on items in menus:
onOptionsItemSelected and onContextItemSelected.

Once a category has been chosen for investigation, the callback
trace is filtered to contain only callbacks from this category. The re-
sulting sequence C = c1, c2, . . . , cn, where ci is a callback method
defined by the application, can be compared with a static solution.
The measurement we have used in our study is the following: for a
parameter p, each subsequence of C of the form ci, ci+1, . . . , ci+p

is compared against the static solution. The percentage of such sub-
sequences that are not captured by this static solution is used to
characterize the degree of unsoundness in the corresponding static
analysis. The next section provides such measurements for six ap-
plications, three static analyses, and two values of p.

2.2 Static Analysis: FlowDroid and IccTA
FlowDroid [3] is a static taint analysis tool for Android applica-
tions. As part of the taint analysis, an artificial main method is cre-
ated to simulate the callbacks triggered by the framework code. In
our experiments we used the publicly available version 1.0 of Flow-
Droid1 released in May 2013. We also considered the newer Ic-
cTA tool [18], which combines FlowDroid with an inter-component
analysis. The analysis version was retrieved in February 2016.2

1 github.com/secure-software-engineering/soot-infoflow-android/releases
2 github.com/lilicoding/soot-infoflow-android-iccta

Launcher

a1:ChooseFileActivity

 event:LAUNCH

 a1:onCreate

 a1:onResume

a2:OpenFileActivity

 event:itemclick

  a1:onItemClick

 a2:onCreate

 a2:onResume

 event:BACK

 a2:onPause

 a1:onResume

 a2:onStop

 a2:onDestroy

Figure 3. Window transition graph.

Both tools create the artificial main using the Jimple intermedi-
ate representation from the Soot framework [31]. Some of the state-
ments in this method are invocations of lifecycle callback methods
such as onCreate and GUI event handler callback methods such
as onItemClick. The standard intraprocedural control-flow graph
of this main method implicitly encodes sequences of callback in-
vocations. To make these sequences explicit, we derive another
control-flow representation, the callback sequence graph (CSG).
In the CSG a node represents a callback method and an edge repre-
sents that, in some run-time execution, the target method may occur
immediately after the source method.

To construct the CSG, we remove each CFG node that does
not contain an invocation for a callback method from the cate-
gory under investigation (i.e., Category 1, 2, or 3). When a node
is removed, each predecessor is connected with each successor.
The final graph (the CSG) directly represents possible callback se-
quences, as determined by this static analysis. Figure 2 shows the
CSG for the running example, for Category 3 callbacks.

2.3 Static Analysis: GATOR

In recent work we introduced the window transition graph [35] as
another control-flow representation for Android GUI control flow.
This model has been used to perform static energy-drain defect
detection [33], test generation for leaks [37], and responsiveness
profiling [32]. The control-flow analysis is part of the publicly
available GATOR toolkit for static analysis for Android.

Figure 3 shows this model for the running example. Graph
nodes correspond to windows and edges correspond to transitions
between windows. Each edge is annotated with the event that trig-
gered the transition (e.g., “launch the application”, “click on a list
item”, “press the hardware BACK button”). An edge is also labeled
with the sequence of callbacks that occur due to this transition.
An additional edge label (not discussed in this paper) captures the
push/pop effects on the stack of currently-opened windows. This la-
bel can be used to identify valid paths [32, 33, 35, 37] in a manner
similar to matching of calls and returns (i.e., call stack push/pop)
in interprocedural analysis [28].

The callback sequence graph (CSG) is derived from this model.
Each occurrence of a callback method along a transition is rep-
resented by a CSG node. A CSG edge connects (1) two adjacent
callbacks along the same transition, and (2) the last callback of
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one transition and the first callback of a successor transition. Next,
methods not from the category under investigation (i.e., Category
1, 2, or 3) are removed, as was done earlier for FlowDroid’s static
model. In the example, the CSG for Category 3 is a chain contain-
ing 9 nodes, starting from ChooseFileActivity:onCreate and
ending with OpenFileActivity:onDestroy. As with the CSG
derived from the FlowDroid-created main method, this CSG cap-
tures all ordering constraints that are implied by GATOR’s solution.

2.4 Matching with Dynamic Trace
Let C = c1, c2, . . . , cn be the dynamic trace of top-level callback
invocations, filtered to contain only callbacks from a chosen cate-
gory. Further, let Sp be the set of all contiguous subsequences of C
of the form ci, ci+1, . . . , ci+p where p is a parameter. The cover-
age of Sp is defined as κ(Sp) = |Tp|/|Sp|where Tp is the subset of
Sp containing all and only callback sequences that are covered by
the CSG. A run-time callback sequence s = ci, ci+1, . . . , ci+p is
covered by the static CSG if there exists a path in that graph whose
node sequence matches s exactly.

3. Data Flow Unsoundness
Another significant complication is the data flow through parame-
ters of callbacks. As illustrated in Figure 1, callback methods can
have various parameters (including this). The values of these pa-
rameters are managed by the framework. Importantly, the same
value could appear as a parameter of several callbacks. A trivial ex-
ample are callbacks 1, 2, and 8 in Figure 1: all three have the same
this parameter, which is an activity object managed “behind the
scenes” by the framework. In this case it is easy to model statically
the fact that all three parameters have the same value. However, in
general, this data flow could involve a wide variety of objects, some
of them carrying internal state that is read/written by multiple call-
backs. A sound static analysis should model this data flow.

We consider one particular instance of this problem: for each of
the callbacks described in the previous section, there is an object
that represents the entity for which the callback implements a core
functionality. For example, this for activity lifecycle methods
refers to the activity object being processed. Similarly, the Menu
parameter in onCreateOptionsMenu (event 3 in Figure 1) refers
to the menu object whose lifetime is affected. In general, a lifecycle
callback operates on a window that is easy to map to a callback
parameter. Similarly, GUI event handlers from Category 3 process
user actions on GUI widgets. For example, the View parameter in
onItemClick (event 4 in Figure 1) is the list item being clicked.

Our instrumentation gathers the hash code of the corresponding
callback parameter object (via System.identityHashCode), and
stores it as part of the trace. In Figure 1, the hash codes of these
activity/menu/widget objects are shown as labels @xyz. For all life-
cycle callbacks and event handler callbacks in Category 3, we have
manually created a specification of the parameter that should be
recorded for each callback. This specification was created by exam-
ining the high-level semantics of the callbacks (based on Android
documentation) and was used as input to the instrumentation com-
ponent. When the instrumented application is executed, the result-
ing dynamic trace is of the form C = [c1,o1], [c2,o2], . . . , [cn,on]
where ok is the relevant run-time object for callback method ck.

The three static analyses we evaluated create abstractions of
these run-time objects. Each node in the CSG can now be consid-
ered a pair [c,ô] where ô is a static analysis entity which abstracts
a dynamic object. For example, in FlowDroid and IccTA, new X
expressions are created in the artificial main and they serve the role
of ô. GATOR’s window transition graph uses static abstractions for
windows and widgets [29]. For all static analyses, we use the iden-
tity hash code of the corresponding analysis object to create CGS
nodes of the form [c,ô].

Given the generalized trace and CSG, consider a run-time sub-
trace of the form s = [ci,oi], [ci+1,oi+1], . . . , [ci+p,oi+p]. Assume
we have a CSG path ŝ = [ci,ôi], [ci+1,ôi+1], . . . , [ci+p,ôi+p] that
matches the callback sequence ci, ci+1, . . . , ci+p as defined ear-
lier in Section 2.4. Does ŝ match the objects ok in s? To answer
this question, we consider a basic feature of static analyses: there
should exist an abstraction function α that maps each run-time en-
tity to a corresponding static entity. We can attempt to construct a
function that maps each ok to the corresponding ôk. If such a func-
tion α cannot be constructed, ŝ does not match s.

More precisely, consider a partitioning of the elements of s into
equivalence classes based on the run-time object being accessed.
In the example in Figure 1, the equivalence classes are {1, 2, 8}
(i.e., all events that access activity 177466394), {3} for menu
59596096, {4} for widget 45225503, and {5, 6, 7, 9, 10} for ac-
tivity 59444588. If two elements [ck,ok] and [cm,om] of run-time
subtrace s belong to the same equivalence class, the corresponding
elements [ck,ôk] and [cm,ôm] of path ŝmust be such that ôk = ôm;
in other words, we must have α(ok) = α(om).

4. Experimental Study
We studied six open-source Android applications for which we had
prior experience creating tests with high GUI coverage. To obtain
run-time traces, we manually developed tests to cover all windows
and transitions between them. To ensure this coverage, we also
examined the source code. The tests were executed on a Nexus 5X
smartphone with Android 6.0. Instrumentation was inserted using
Soot. The run-time trace contained method entry/exit events in the
GUI thread together with identity hash codes of parameter objects.
From this trace we derived the sequence of top-level callbacks.

4.1 Coverage Measurements
Table 1 shows measurements of coverage κ1 = κ(S1) and κ2 =
κ(S2) of run-time callback sequences. That is, κ1 shows how many
run-time subsequences ci, ci+1 were covered by the static solution,
while κ2 is the coverage for ci, ci+1, ci+2. The first subtable cor-
responds to Category 1 (lifecycle callbacks for activities), the sec-
ond one to Category 2 (added lifecycle callbacks for menus), and
the third one to Category 3 (added GUI event handler callbacks).
Table 2 shows similar measurements for coverage of run-time sub-
sequences [ci,oi], [ci+1,oi+1] and [ci,oi], [ci+1,oi+1], [ci+2,oi+2].

In all cases, the run-time sequences correspond to relatively
simple aspects of run-time behavior. For example, κ1 in Table 1
corresponds to pairs of consecutive callbacks observed at run time.
Even for this simple run-time behavior, the unsoundness of the
static analyses is quite clear. It is important to note that FlowDroid
and IccTA were designed for the purpose of taint analysis, and the
unsoundness they exhibit may be harmless in this context. How-
ever, they may not be well suited for other purposes that require
more general control/data flow modeling. GATOR also shows vari-
ous limitations, as discussed below.

4.2 Causes of Unsoundness
We manually examined some of the cases where coverage was less
than 100%. While this is not a comprehensive study, it provides
some insights about the limitations of these analyses.

GATOR Unsoundness One of the reasons for low coverage in
BarcodeScanner is that the control-flow analysis [35] does not
consider implicit intents. Intents are the standard mechanism for
starting a new activity. A explicit intent contains the name of
the activity being started; GATOR analyzes them and represents
their effects. Implicit intents “declare a general action to perform,
which allows a component from another app to handle it” [12].
However, it is possible that a component from the same app is used
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App GATOR FlowDroid IccTA
κ1 κ2 κ1 κ2 κ1 κ2

APV 1.00 1.00 0.41 0.14 0.35 0.10
BarcodeScanner 0.86 0.74 0.64 0.41 0.64 0.41
OpenManager 1.00 1.00 1.00 1.00 1.00 1.00
SuperGenPass 1.00 1.00 0.83 0.67 0.83 0.67
TippyTipper 1.00 1.00 0.41 0.09 0.41 0.09
VuDroid 1.00 1.00 0.50 0.00 0.50 0.00
APV 0.92 0.77 0.54 0.39 0.50 0.35
BarcodeScanner 0.88 0.77 0.69 0.47 0.54 0.30
OpenManager 1.00 1.00 0.89 0.75 0.89 0.75
SuperGenPass 1.00 1.00 0.90 0.82 0.90 0.82
TippyTipper 1.00 1.00 0.41 0.11 0.41 0.11
VuDroid 1.00 1.00 0.40 0.00 0.40 0.00
APV 0.90 0.71 0.45 0.32 0.59 0.45
BarcodeScanner 0.85 0.75 0.67 0.50 0.61 0.43
OpenManager 0.95 0.92 0.50 0.33 0.77 0.58
SuperGenPass 1.00 1.00 0.82 0.75 0.82 0.75
TippyTipper 1.00 1.00 0.39 0.11 0.39 0.11
VuDroid 1.00 1.00 0.56 0.29 0.22 0.00

Table 1. Coverage of callback sequences.

to handle the intent. In BarcodeScanner, a GUI event handler
uses an implicit intent to start a new activity from this application.
The corresponding transition is missing from the window transition
graph. Such unsoundness could be eliminated by employing one of
the many existing intent analyses for Android (e.g., [24]).

Another source of unsoundness is the use of ActionBar. This
feature, introduced in Android 3.0, changes the behavior of an op-
tions menu (a menu associated with an activity). Lifecycle callback
onCreateOptionsMenu is invoked when the menu is initialized.
In earlier Android versions, this happens when the user presses the
hardware MENU button. However, with the introduction of action
bars, the menu may be shown when the activity itself is shown,
without any action from the user. Whether this behavior occurs
depends on screen size and application layout. The control-flow
analysis in GATOR assumes the menu is only shown when click-
ing the MENU button, and does not capture the possibility that
onCreateOptionsMenu happens directly after activity creation.
This example illustrates the challenges due to Android evolution.

FlowDroid and IccTA Unsoundness In both approaches, the in-
terleaving of callbacks across two activities is not represented in its
most general form. Consider events 7, 8, and 9 from Figure 1. These
callbacks occur when the hardware BACK button is pressed to
close OpenFileActivity and return to ChooseFileActivity.
Events 7 and 9 are callbacks on the first activity while event 8 is a
callback on the second one. The artificial main method soundly en-
codes callback ordering constraints inside each individual activity,
but not the interleaving 7, 8, 9. Some client analyses may be unaf-
fected by this source of unsoundness, but this conceptual limitation
should be taken into account by designers of new clients.

In addition to this issue, we discovered that FlowDroid’s main
method misses several onClick event handlers, as well as an in-
stance of onItemSelected handler. Further, one lifecycle callback
onCreateOptionsMenu is missed because it is defined in an activ-
ity class (BaseViewerActivity in VuDroid) that is not declared
in the XML manifest file and thus not analyzed. However, this class
is the superclass of two other activities in the code. Similar omis-
sions were observed in IccTA’s main method.

Discussion This study illustrates the difficulty of achieving sound
static analysis for Android GUI control/data flow. Of course, the
scope of the study is limited with respect to observed run-time be-
haviors, analyzed features, and metrics of unsoundness. Further,
this style of evaluation cannot be used to argue that one analysis is

App GATOR FlowDroid IccTA
κ1 κ2 κ1 κ2 κ1 κ2

APV 0.97 0.93 0.55 0.20 0.55 0.20
BarcodeScanner 0.88 0.73 0.62 0.39 0.62 0.39
OpenManager 1.00 1.00 1.00 1.00 1.00 1.00
SuperGenPass 1.00 1.00 0.79 0.69 0.79 0.69
TippyTipper 1.00 1.00 0.46 0.11 0.46 0.11
VuDroid 1.00 1.00 0.43 0.00 0.43 0.00
APV 0.81 0.53 0.69 0.47 0.69 0.47
BarcodeScanner 0.90 0.76 0.67 0.46 0.54 0.30
OpenManager 1.00 0.40 0.35 0.25 0.35 0.25
SuperGenPass 1.00 0.86 0.85 0.77 0.85 0.77
TippyTipper 1.00 1.00 0.45 0.12 0.45 0.12
VuDroid 1.00 1.00 0.33 0.00 0.33 0.00
APV 0.84 0.56 0.68 0.49 0.72 0.54
BarcodeScanner 0.87 0.79 0.66 0.50 0.62 0.44
OpenManager 0.98 0.73 0.33 0.14 0.53 0.19
SuperGenPass 1.00 0.87 0.81 0.74 0.81 0.74
TippyTipper 1.00 1.00 0.43 0.12 0.43 0.12
VuDroid 0.93 0.92 0.40 0.08 0.20 0.00

Table 2. Coverage of callback sequences and parameter flow.

“better” than another one without considering the expected clients
and the overall precision (i.e., what parts of the static solution are
feasible at run time).3 Nevertheless, these results provide a motiva-
tion for more studies and new developments in static analysis for
Android. Section 6 outlines thoughts for some such developments.

5. Related Work
Our discussion focuses on modeling of GUI control flow (and
sometimes the related data flow) in prior Android analyses. We do
not aim to present a comprehensive description and comparison of
existing control-flow models. Such a study, which should focus on
both theoretical properties as well as experimental comparisons, is
a highly-desirable target for future work.

Many security analyses [7, 9, 10, 13, 15, 22, 23] capture some
aspects of Android control/data flow (e.g., possible sequences of
callbacks) but do not provide a comprehensive model, nor do they
make arguments about soundness. Other static analyses also model
the sequences of callbacks in Android, for the purposes of GUI ex-
ploration (e.g., [4, 36]), responsiveness (e.g., [19, 32]), leak anal-
ysis (e.g., [14]), and static checking (e.g., [26, 38]); all these ap-
proaches employ ad hoc control-flow modeling that lacks general-
ity. Attempts to formally capture aspects of Android operational se-
mantics (e.g., [27, 29]) have limited scope and much work remains
to be done in this direction. Recent work on automatic creation of
semantic models for Android framework code [2, 5, 17] presents a
promising step in this direction.

As discussed earlier, FlowDroid [3] and IccTA [18] use an arti-
ficial main method to represent callback sequences. This approach
does not model the full generality of event handlers or the inter-
leaving of callbacks from multiple activities. Our earlier work on
the window transition graph in GATOR [34, 35] presents another ap-
proach for modeling the GUI control flow, but it also suffers from
unsoundness problems, as described in Section 4.

Studies of unsoundness in static analysis are highly desirable.
A recent example is work by Christakis et al. [8] in which unsound
assumptions in the Clousot static analyzer for .NET are examined
at run time for violations. The evaluation of the Droidel tool [5]
compares a dynamic call graph with the static call graphs from this
tool and from FlowDroid. There is also a large body of work on
improving soundness for challenging features such as reflection,
including techniques that leverage dynamic information (e.g., [6]).

3 In manual studies [35], this precision for GATOR appears to be high.
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6. Conclusions and Future Work
This is a very preliminary study, but it does highlight the chal-
lenges for static analysis researchers in the increasingly important
area of Android software. Addressing these challenges can lead to
several interesting directions for future work. One natural first step
is to establish a suite of microbenchmarks. For each Android fea-
ture from a well-chosen set of core features, there should be mi-
crobenchmarks containing (1) code that uses this feature, (2) test
cases that execute the feature under several usage scenarios, and
(3) run-time traces for several Android API versions. Popular core
features could be selected by mining textual documentation (e.g.,
from developer.android.com) and a large corpus of apps.

The microbenchmarks, as well as real-world apps, can then be
used to understand the (un)soundness of various static analyses.
This would require additional metrics of coverage, some of which
should embed client-specific notions of soundness (e.g., “sound for
solving problem X”). There is a significant scope for performing
new studies similar in spirit to the one presented here, but with
more refined metrics and deeper experiments.

One significant challenge is the lack of formal semantics for
Android run-time behavior. Some initial attempts for semantics
definitions have been made [27, 29] but much more work is needed
in terms of (1) covered Android features, and (2) validating the
semantics against a rich variety of run-time behaviors. Finally, it
is important to be able to identify and eliminate new aspects of
unsoundness for an existing analysis, caused by the evolution of
the Android framework. This could be done through incremental
(and, ideally, automated) soundness checking and patching.
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