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Abstract

Whole-program static analysis has been extensively studied and
widely used in the past few decades. For modern object-oriented
programs, scalability has become an important issue for using
whole-program analysis in real-world tools. In addition, the ever-
increasing size of libraries (e.g., the JDK library) and frameworks
exacerbates the scalability problems. To achieve the desired level
of analysis performance, an effective approach could be to gener-
ate and apply analysis summary information for library methods.
In this paper, such an approach is referred to as a summary-based
whole-program analysis. The challenges for this technique are two-
fold: (1) carefully designed abstractions and algorithms are needed
to create and use client-independent and analysis-specific library
summary information; and (2) support for summary generation and
application should be effectively incorporated into existing analysis
infrastructures.

This paper focuses on the second challenge. It uses Soot, a
widely-used program analysis framework for Java, as a vehicle
to explore some of the important issues in providing analysis in-
frastructures with capabilities for summary-based analysis. Exper-
imental studies are presented to show that significant savings can
potentially be achieved by making a whole-program alias analysis
summary-based. To actually achieve these savings, the paper pro-
poses to extend Soot to add support for summary-based analysis.
Finally, a brief discussion of the required framework extensions is
presented.

Categories and Subject Descriptors F.3.2 [Logics and Meaning
of Programs]: Semantics of Programming Languages—Program
analysis

General Terms Algorithms, measurement, experimentation

Keywords Summary, whole-program static analysis, library

1. Introduction

Whole-program static analysis is essential for a large variety of
tasks in the fields of programming languages and software engi-
neering. There has been a great deal of work on this topic over the
past few decades. Modern object-oriented languages, with their
complicated interprocedural flow of control, sophisticated data
structures, and extensive use of reusable components, present a
particularly important target for whole-program analysis.
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The scalability of whole-program analysis for large programs
can be a significant hurdle for practical use in real-world tools.
Even for programs that appear to be relatively small, the under-
lying library code can contribute thousands of methods to the static
call graph and to the scope of the whole-program analysis. For ex-
ample, for each program analyzed in our experiments, more than
50% of the nodes in the call graph are methods in the Java stan-
dard libraries; for most of these programs the percentage exceeds
80%. Motivated by such observations, we argue that a worthwhile
goal for designers/implementors of whole-program analyses (and
analysis infrastructures such as Soot [32, 35]) is to provide support
for preanalysis of reusable components. Examples of such compo-
nents include (1) standard libraries which form an integral part of
modern languages, (2) domain-specific libraries, and (3) powerful
extensible frameworks.

These large libraries and frameworks present a big challenge
for the scalability of whole-program static analyses. Analyzing
libraries is an expensive and repetitive task. In order for whole-
program analyses to work correctly, they should consider all code
that is potentially reachable at run time, which, of course, includes
code in the libraries. This means that library methods are analyzed
repeatedly in the context of different client programs. Even for the
same client program, it is often the case that the whole-program
analysis has to be rerun on a slightly modified version of the
program (e.g., to perform change impact analysis), which typically
includes reanalyzing the same library methods.

It is not always necessary to repeatedly perform these expensive
analyses on library methods. Depending on the underlying whole-
program analysis and on the properties of the library code, it may
be possible to perform a preanalysis of the library code once, inde-
pendently of any client programs, in order to produce library sum-
mary information. This information can then be reused when anal-
ysis of a specific client program is needed. We will refer to such an
approach as summary-based whole-program analysis. Such anal-
ysis could become more scalable, compared to traditional whole-
program analysis. Furthermore, for certain categories of analyses
that refine an initial imprecise solution until a client-defined time
budget is exhausted (e.g., [33]), the reduced cost could result in a
more refined (i.e., more precise) analysis solution under the same
time budget.

Challenges Support for summary-based analysis involves two
important challenges. First, the ability to create and use client-
independent library summary information presents a number of
technical challenges in terms of analysis abstractions and algo-
rithms. There is a body of work on various approaches to address
these challenges (e.g., [8, 11, 23, 27, 28, 39]). A second, very sig-
nificant problem is the need for infrastructure support to seamlessly
apply precomputed summary information. In this paper we focus
our discussion on the second problem. The specific question we
are interested in is the following: given an analysis infrastructure
for whole-program analysis, and several particular analyses built



on top of it, how should summary-based versions of these analy-
ses be implemented? Typically, the solution is to add ad hoc exten-
sions to the existing infrastructure. There are several problems with
this approach: (1) code changes, spreading everywhere in the in-
frastructure, are difficult to maintain; (2) extensions from different
analysis developers, even for the same kind of analysis, can differ
significantly in key design components (e.g., related to encoding
and storing of summary information); and (3) the achievable ben-
efits by making the analysis summary-based are limited due to the
lack of inherent support in the analysis infrastructure.

Goals This paper uses Soot [32, 35], a widely-used program anal-
ysis framework for Java, as a vehicle to explore some of the is-
sues in providing frameworks with capabilities for summary-based
analysis. First, we perform a case study on a whole-program alias
analysis [38]. This analysis exhibits features typical for many other
whole-program analyses—for example, traversals of intraprocedu-
ral and interprocedural program representations, as well as usage
of intermediate data structures produced and consumed by differ-
ent stages of the algorithm. We demonstrate the potential for sav-
ings that would be achieved by adding support for library summary
information. Next, we briefly discuss the major Soot components
that are important for obtaining benefits from summarization. In
summary, the goals of this paper are to present:

• A case study of a Soot-based alias analysis for Java;

• An evaluation of the potential benefits of using library sum-
maries in the alias analysis;

• A discussion of the components of Soot that need to be consid-
ered to make the framework more amenable to summary-based
whole-program analysis.

2. Case Study: An Alias Analysis

Alias analysis is one of the most commonly used whole-program
analyses. As such, it can benefit from careful design and imple-
mentation to handle large, complicated libraries and frameworks.
As a case study, this section examines an alias analysis originally
proposed in our previous work [38]. This analysis formulates a
demand-driven analysis algorithm for Java as a CFL-reachability
problem. There are two stages in this approach: (1) construction
of an abstracted program representation, and (2) CFL-reachability
computation on this representation.

2.1 Construction of an Abstracted Program Representation

The analysis uses the context-insensitive call graph constructed
by Soot’s Spark component [21] as a starting point to build a
program representation referred to as an interprocedural symbolic
points-to graph (ISPG). To build the ISPG, symbolic points-graphs
(SPGs) for individual methods are first constructed through purely
intraprocedural analysis. An SPG for a method is a locally-resolved
points-to graph, containing all points-to facts that can be obtained
within a method, and using placeholder nodes for unknown external
objects. Then, the intraprocedural SPGs are connected together to
form the ISPG. This is done by examining the method invocation
statements in each method, and adding ISPG edges to represent
calls and returns.

Each intraprocedural symbolic points-to graph has the follow-
ing types of nodes and edges: (1) local variables v ∈ V; (2) alloca-
tion nodes o ∈ O; (3) symbolic nodes s ∈ S representing outside
objects; (4) edges v → oi ∈ V × O representing that variable v
may point to allocation node oi; (5) edges v → si ∈ V × S repre-
senting that variable v may point to an object defined outside of the
current method, with the symbolic node si used as a placeholder

for that object; (6) edges oi
f
−→ oj ∈ (O∪S)×Fields × (O∪S)

representing that the field f of oi may point to oj .

The majority of the cost for building this abstracted program
representation comes from building the intraprocedural SPGs.
However, the local nature of this construction presents opportu-
nities for optimization. For example, the intraprocedural SPGs for
library methods can be precomputed only once and stored as sum-
mary information. For any whole-program alias analysis performed
later, this summary information can be applied to avoid reconstruct-
ing SPGs for these library methods. Measurements of potential
savings from this approach are reported in Section 3.

Of course, this technique is not restricted only to the particu-
lar alias analysis discussed here. Many other forms of intermediate
data structures are used in various static analyses; typical exam-
ples are control-flow graphs and dependence graphs. In many cases
these data structures have an intraprocedural component which, for
a particular library method, does not depend on the rest of the pro-
gram. Sometimes even interprocedural components of these data
structures can be precomputed in advance for library classes (e.g.,
when call sites in the library can be fully and precisely resolved
without any information about the client code [27]). It is natural
to consider an approach that precomputes these data structures for
library methods, stores the results in some compressed format in
summary files, and retrieves them on demand when whole-program
analyses are performed.

2.2 CFL-Reachability Computation

Once the ISPG for a whole program is built, alias queries can be
answered by graph traversals to perform single-source-single-target
CFL-reachability computations. For a query on two local variables
x, y ∈ V , the analysis considers any nodes ox, oy ∈ (O ∪ S) that
they point to, respectively. Starting from one of the nodes (e.g.,
ox), the analysis traverses the graph to see whether there is a path
to the other node (e.g., oy). The edge labels along the path should
have certain matching parentheses properties (as described by a
context-free language over these labels), in order to model context
sensitivity and field sensitivity.

Among all paths in the graph, consider the subset of paths con-
sisting of only nodes from the intraprocedural SPG of the same
method m or of m’s callees (including transitive callees). Further-
more, suppose that the call and returns on these paths are balanced.
These paths, representing flows starting from calls into a m and
ending at exits from m, will be referred as partial balanced paths
for m. For methods that are invoked many times (i.e., methods with
many incoming edges in the static call graph), their partial balanced
paths might be traversed repeatedly in the alias analysis, as part of
the traversal of some other longer paths. To avoid such repeated
work, the partial balanced paths can be computed in advance and
saved as summary information. During graph traversals performed
by a summary-based whole-program analysis, the summary infor-
mation can be applied to eliminate redundant graph retraversal and
reduce analysis running time. Experimental results related to this
technique are reported in Section 3.

A similar approach has been (or could be) applied to many other
whole-program analyses: partial analysis results are computed in-
traprocedurally, or in some cases even interprocedurally, and are
stored for subsequent reuse during the analysis. Given such an anal-
ysis algorithm, that natural next step could be taken: partial results
for library methods could be precomputed in advance, indepen-
dently of any client code, and could be used for creating summary
information.

3. Evaluation

The alias analysis described in Section 2 was implemented using
the Soot 2.3.0 program analysis framework for Java. To be consis-
tent with our previous work [38], the Sun JDK 1.3.1 01 library was
used in all studies. Experiments were performed on a machine with



Benchmark Methods Libraries
compress 2352 2283 (97.1%)
db 2362 2296 (97.2%)
jack 2617 2299 (87.8%)
javac 3537 2382 (67.3%)
jess 2782 2317 (83.3%)
mpegaudio 2547 2291 (89.9%)
mtrt 3501 3297 (94.2%)
sootc 4616 2343 (50.8%)
sableccj 9013 7165 (79.5%)
jflex 4094 3598 (87.9%)
muffin 4419 3786 (85.7%)
jb 2453 2312 (94.3%)
jlex 2445 2314 (94.6%)
java cup 2637 2328 (88.3%)
polyglot 2350 2309 (98.3%)
antlr 3043 2317 (76.1%)
bloat 5063 2566 (50.7%)
jython 4142 2475 (59.8%)
ps 5532 4688 (84.7%)

Table 1. Characterization of the context-insensitive call graph.

a 3.4GHz Intel i7-2600 processor. A total of 19 Java programs were
studied in our experiments.

Methodology To simulate how a client analysis would use the
alias analysis, we implemented a simple data dependence client
that performs alias queries regarding variables x and y for all pairs
of heap dereference statements that access the same field f (i.e.,
x.f and y.f ) where at least one statement writes to f . If x and y
may alias, the two statements may access the same heap location
and thus may have a data dependence. All possible pairs of heap
dereference statements are considered so that the alias queries used
for evaluation are not biased. Dependence analysis is an important
component of many software analyses and tools, and presents an
interesting client for an alias analysis.

Table 1 shows characteristics of the context-insensitive call
graphs built by Spark [21] for the studied programs. Column
“Methods” shows the total number of nodes in the call graph. Col-
umn “Libraries” shows the number of nodes representing methods
from the Java standard library. The percentage of these nodes in
the call graph is given in parentheses. This percentage is higher
than 50% for each program, and exceeds 80% for 13 out of the 19
programs. These large numbers of library methods indicate that the
benefits of using summary information for these library methods
could be significant, and warrant more in-depth investigation.

Potential Savings in SPG Construction The first set of experi-
ment measures the running time reduction that could potentially be
achieved when the SPGs for library methods are precomputed as
summary information. For each program, we measure (1) the time
taken to compute the SPGs for all library methods in the call graph,
and (2) the total time to build the ISPG. When the ratio between
these two numbers is high, the savings from summary-based anal-
ysis in SPG construction could be substantial. Figure 1(a) shows
these ratios for each program. These measurements provide upper
bounds on the savings that could be achieved by an implementation
of a summary-based analysis. In an actual analysis, additional costs
will be present—e.g., to read summaries from disk and to create the
necessary data structures in memory. As discussed later, efficient
implementation of such enabling functionality is a desirable addi-
tion to an analysis infrastructure such as Soot. The measurements
indicate significant potential for savings, and motivate further stud-
ies of summary-based analyses and the necessary enabling features
of the underlying infrastructure.
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Figure 1. Potential for running time reduction: (a) SPG construc-
tion, and (b) CFL-reachability computation.

Potential Savings in CFL Reachability Computation In the sec-
ond experiment, we measure the potential for time reduction when
the balanced partial paths for library methods are precomputed and
applied as summary information. These paths are first computed
and remembered (in memory), based on the whole-program ISPG.
The alias analysis is then run in “summary mode”: whenever the
graph traversal is about to enter a library method, the summary for
that method is applied. As a result, repeated traversals of the same
library method are avoided. Figure 1(b) compares the total running
times of the alias analysis with and without the use of summary in-
formation. As with SPG construction, these measurements indicate
promising upper bounds on potential improvements, and motivate
additional investigation into the design and efficient implementa-
tion of a summary-based version of the analysis.

Although the average potential improvements are high, this
is not uniform across programs. For programs that exhibit low
potential savings, we manually examined some of the code and
the alias queries. Multiple factors that could affect the analysis
running time were considered. These factors include the percentage
of alias queries that require analysis of library methods, the number
of times each library method has to be analyzed when summary
information is not available, the cost of analyzing each library
method, and so on. The investigation indicated that there is not
one single factor that strongly correlates with the measurements.
It remains an open question to find a composite metric (i.e., a
combination of several individual factors) that can provide a good
estimation of the benefits of summarization. Such metrics can guide
analysis developers when designing summary-based analyses.

Other Potential Savings In addition to SPG construction and
traversals, other components of the overall analysis cost could po-
tentially be reduced with the use of summary information. The first
possible target is the generation of the Jimple intermediate repre-
sentation in Soot. Both for this specific alias analysis and for other



whole-program analyses, if summary information is already avail-
able for the library methods, is it absolutely necessary to pay the
cost of constructing their complete Jimple representation? Is it pos-
sible to employ a simpler, more lightweight version of Jimple for
such methods, or even to completely circumvent Jimple creation?
In a complex system such as Soot, with a large number of interde-
pendent analyses, the answers to these questions are far from trivial,
and deserve careful consideration.

Similar questions can be asked for the whole-program call graph
(and points-to) analysis performed by Spark, as well as for other
call graph analyses available in Soot. A whole-program call graph
is essential for almost any whole-program analysis. Is it possible
to perform summary-based call graph construction in Soot? How
can such an analysis be designed to easily support many differ-
ent summary-based whole-program analyses built on top of it? Can
Jimple generation be avoided in the context of this call graph anal-
ysis? Further investigation of these questions represents a valuable
target for future work. The next section contains additional discus-
sion of these and related issues.

4. Discussion

As demonstrated in Section 3, the running time of a whole-program
analysis could potentially be reduced by making it summary-based.
However, to achieve such savings, support is needed from the
underlying analysis infrastructure. This section briefly discusses
how to provide better support for summary-based analysis.

Configuration Mechanisms Plugins provide a popular way of
extending large software systems with specialized functionality.
Soot also takes this approach to allow users to define customized
analysis phases and organize phases into packs. For example, the
data dependence client described in Section 3 is implemented as a
whole-program analysis phase in the wjtp pack, and executed im-
mediately after Spark, another whole-program analysis phase. Cus-
tomization of plugins needs to be generalized to allow summary-
based analyses. For example, it may be possible to design analyses
that completely avoid the generation of the Jimple representation
for certain library methods. This would require easy-to-use cus-
tomization for the jb (or jj) phase, without requiring the “average”
analysis writer to understand the internals of Soot.

The dependences between different analyses also have to be
managed carefully. For example, suppose that the output of one
whole-program analysis is used as input to another whole-program
analysis. If one of these analyses is modified to be summary-
based, how would this affect the other analysis? This question is
of particular importance when one of the analyses is a call graph
construction algorithm such as Class Hierarchy Analysis or the
subset-based points-to analysis used by Spark, since many other
whole-program analyses depend on it.

To the best of our knowledge, there are no general mechanisms
in Soot to achieve such configurability and to manage inter-analysis
dependences of this nature. As a result, analysis developers need
to rely on ad hoc solutions to modify the framework in order to
achieve the desired effect. The design of general configuration
mechanisms and interfaces is a challenging task for a complex
system such as Soot.

Management of Summary Information Different analyses may
require different kinds of summary information, and the most effi-
cient ways to store this information may differ significantly from
analysis to analysis. Even for the same analysis, different compo-
nents or phases of the analysis may require different summary for-
mats. For example, as discussed in Section 3, two different kinds
of summary information are used in two phases of the alias analy-
sis: method-level SPGs in ISPG construction, and balanced partial
paths for CFL reachability computation.

The capabilities for summary information management should
provide analysis developers with a set of unified summary APIs
that allow them to (1) define customized ways of storing, retriev-
ing, and verifying summary information, and (2) register/unregister
summary information management callbacks. Developers should
be free to define analysis-specific summary formats, and to store
the information in a way that is best for the analysis. Existing tech-
niques for efficient serialization and deserialization of data struc-
tures [1–4, 14, 17–19, 24, 34, 37] could prove to be a useful addi-
tion to the infrastructure services provided by Soot.

Verification of Summary Information To ensure correctness, the
summary information should be verified before being used. First,
the file containing the summary should remain unchanged com-
pared to when it was written. Second, the summary information in
the file should be consistent with the code being analyzed. A typ-
ical way to check consistency is to use checksums, but developers
should be free to define any other verifying methods. As a default
mechanism, the md5 checksum of a method’s bytecode can be com-
puted and stored together with the method’s summary. Before the
method summary is applied, the checksum of the bytecode can be
recomputed and compared with the one stored in the summary.

5. Related Work

Various techniques have been used to achieve a certain degree of
modularity in static analysis. For example, several whole-program
analyses construct summary information for a procedure, and then
use it when analyzing the procedure’s callers. A common approach
is to construct the summary by analyzing not only the procedure,
but also all procedures that are directly or transitively called by
it. Several analyses [5–9, 22, 29, 36] employ algorithms based on
this approach. Other techniques compute summary information in-
dependently of the callers and callees of the analyzed component
(e.g., [12, 13, 15, 23, 26]). Other relevant work, focusing on general
aspects of defining and computing summary information, is pre-
sented in [11, 25, 27, 28, 30, 39]. Our prior work on the alias anal-
ysis described earlier [38], as well as subsequent work of similar
nature [31], compute and use method summaries for certain meth-
ods during the whole-program analysis, but do not make a distinc-
tion between library code and client code. When one-time summary
generation is performed for the libraries in advance, before any sub-
sequent whole-program analyses for different client programs, the
potential for cost savings is substantial, as discussed in Section 3.

Several frameworks have been built for static analysis of Java
programs, but none of them put a strong emphasis on using precom-
puted summary information. In the Chord analysis framework [10],
online summarization is provided as part of its implementation
of graph-reachability-based interprocedural dataflow analyses [25].
Summary support for other analyses is not available, and relies
on developer’s ad hoc extensions if needed. WALA [16] provides
an interface for defining method summaries and saving them into
XML files. The method summary in WALA is organized as a set of
SSA instructions, so individual whole-program analyses still have
to analyze and transform the summary information into their re-
spective desired format. Expensive reanalysis of complicated meth-
ods is not entirely avoided using this approach. A recent retrospec-
tive on Soot [20] proposes to build extensions to allow serialization
of generated Jimple code for library methods. This technique re-
duces the Soot startup time; however, specific analyses still have to
analyze the Jimple code repeatedly.

Efficient serialization and deserialization of object graphs is an
enabling technology that could simplify the storage and manage-
ment of summary information. There are several approaches (e.g.,
[1–3, 14, 18, 34]) and tools (e.g., [4, 17, 19, 24, 37]) that could be
used to provide such support.



6. Conclusions

This paper examines an interprocedural alias analysis to explore the
issues related to extending Soot for summary-based whole-program
analysis. Experimental studies show that applying precomputed
library summaries could potentially achieve significant savings in
analysis running time. Actual achievable savings are limited by the
lack of infrastructure support. A brief discussion highlights some of
the challenges in making Soot more amenable to summary-based
whole-program analysis.
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