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Abstract—Method call graphs are integral components of
many interprocedural static analyses which are widely used to
aid in the development and maintenance of software. Unfor-
tunately, the existences of certain dynamic features in modern
programming languages, such as Java or C++, can lead to
either unsoundness or imprecision in statically constructed call
graphs. We investigate a hierarchy of assumptions that a Class
Hierarchy Analysis (CHA) call graph construction algorithm
can make about dynamic features in Java. Each successive
level of the assumption hierarchy introduces new relaxations of
suppositions. These relaxations allow the call graph algorithm
to treat some uses of dynamic features more precisely and
still remain sound. The hierarchy includes a novel assumption
that dynamic features will respect encapsulation. We present
an empirical study in which a unique call graph algorithm
is implemented for each level of the assumption hierarchy.
This study shows that assuming that dynamic features will
respect encapsulation can lead to a call graph with 44%
fewer edges than the fully conservative graph. By incorporating
assumptions about casting operations and string values, it is
possible to remain conservative and reduce the number of
graph edges by 54% and graph nodes by 10% through the
use of various resolution techniques. This work demonstrates
that even a slight relaxation of assumptions can greatly improve
the precision of a call graph. It further articulates the exact
assumptions that a CHA call graph construction algorithm
must make in order to use advanced resolution techniques.

I. INTRODUCTION

Many modern software developers have come to rely

heavily on static analyses. These analyses are employed in

many modern compilers, IDE, and testing frameworks. A

vital component for numerous interprocedural static analyses

is a method call graph (e.g., [1], [2], [3], [4], [5], [6], [7], [8],

[9], [10], [11]). A call graph construction analysis produces

a method call graph. This graph abstractly represents the

calling relationships between program methods. The nodes

of a call graph represent methods and directed edges rep-

resent calls between methods. Without a call graph, many

interprocedural analyses simply cannot function.

The existence of dynamic Java features, whose exact run-

time behavior cannot be determined by solely examining

the static representation of the code, requires that call graph

construction algorithms make assumptions about the possi-

ble run-time effects of such features. These assumptions will

be reflected in the graphs generated by the algorithm. For

example, consider a call graph construction algorithm that

assumes the analyzed code does not make use of reflective

features. These features allow an executing application to

inspect itself and modify internal program properties. The

graphs produced by this naive algorithm will be unsound for

applications which do use reflection as the run time result

of the reflective calls will not be represented. It has been

shown that by disregarding dynamic features, call graphs

may not encode a significant portion of the actual run-time

calling relationships [12]. It is important for clients of a

Java call graph analysis to be cognizant of assumptions that

it makes about dynamic features. Such assumptions can have

ramifications on the soundness of a client analysis.

We present a novel structure for exploring the conse-

quences of the assumptions made by a call graph con-

struction algorithm. Specifically, we present a hierarchy of

assumptions that a Class Hierarchy Analysis (CHA) [13]

call graph construction algorithm could make about certain

dynamic features of Java. The hierarchy is rooted at the most

conservative assumption, which provides a sound yet very

imprecise treatment for dynamic features. Each consecutive

level of the hierarchy extends the preceding level by adding

more assumptions. These additional assumptions allow for a

more refined treatment of dynamic features. Consequently,

graphs created at each level of the hierarchy are subgraphs

of those generated by preceding levels. The hierarchy termi-

nates in a set of assumptions that allow for the use of (1) type

information from cast operations, (2) static string values,

and (3) dynamically gathered environment information to aid

in the precise resolution of calls to dynamic class loading

methods, reflective instantiation, and reflective invocation.

This work makes the following contributions:

• We propose a hierarchy of assumptions about dynamic

Java features for a CHA call graph construction al-

gorithm. This structure highlights the wide range of

assumptions such an algorithm could make and the fact

that many of these assumptions are interconnected. It

is our belief that the presented assumption hierarchy

could be extended to create a taxonomy from which

existing and future call graph construction algorithms

could be categorized.

• For each level of the hierarchy, we specify techniques

the analysis can use to address certain dynamic features.

These techniques include a novel approach based on

the assumption that dynamic features will respect data

encapsulation. They also include the use of a hybrid



string analysis [14]. We believe this to be the most

precise string analysis to be incorporated into a CHA

analysis to date.

• We implemented a version of the CHA analysis for each

level of the assumption hierarchies. These implementa-

tions were applied to 10 real-world Java applications in

an empirical study. This study demonstrates the effects

of each assumption and the corresponding resolution

techniques on the results of the analysis. The most

precise implementation created graphs that on average,

contain 10% fewer nodes and 54% fewer edges than

those created by the fully conservative version.

This work demonstrates a carefully reasoned approach to

evaluating the types of assumptions that most static analyses

must make about dynamic features in Java. The hierarchical

structure allows for the impact of each additional assumption

to be evaluated separately.

II. CHA AND DYNAMIC JAVA FEATURES

Call graphs are often created statically by analyzing a

representation of a program’s source code. In object-oriented

languages, such as Java and C++, virtual method calls

adds a degree of difficulty to the static construction of a

call graph. Virtual method calls arise due to the use of

polymorphism through which it is possible for a subtype

to override methods defined in its supertypes. The actual

target of a virtual call is determined at run time. This poses

a problem for a static analysis, since it does not benefit

from execution information and must statically determine a

conservative approximation of the possible run-time targets

of virtual calls.

CHA is a technique that conservatively estimates possible

receivers of dynamically-dispatched messages. For Java,

CHA uses the following basic operation: given a call site

x.m(), where the declared type of x is C, the possible run-

time type of x must be a non-abstract subtype of C. The run-

time target method for each such subtype can be determined

by a bottom-up traversal of the class hierarchy.

Dynamic dispatch is but one problem when attempting to

build an accurate call graph for complex programming lan-

guages. Below we describe several other dynamic features

of Java which pose a significant challenges to a CHA call

graph construction algorithm.

Custom class loaders are user extensions of

java.lang.ClassLoader. Class loaders are software

components that are responsible for loading Java class

files into the Java Virtual Machine (JVM). They verify

the structure of the class and initialize it by executing

its static initialization method [15] (further referred to

as clinit). Custom loaders are commonly used to

specify alternative locations from which to load class files,

instrument bytecode, and partition user defined classes in

servers. Since they can redefine the semantics of a class at

run time most static analyses are unsound in the presence

of custom loaders.

Dynamic class loading features allow applications to load

classes at run time. A commonly used dynamic class loading

method is Class.forName(x) where x is a String

specifying the fully qualified name of the class that is to be

loaded (see [14] for a list of dynamic class loading methods

available in the Java 1.4 libraries). These features return a

Class which is a metadata object that describes the newly

loaded class. They can also invoke the static initialization

method clinit of the loaded class. As clinits can be

arbitrarily complex, a call graph algorithm which ignores

dynamic class loading could miss vital method interactions.

Reflective instantiation makes it is possible to create

a new instance of any class loaded into the JVM by

invoking x.newInstance() where x is of type Class.

This action invokes the no argument constructor of the

class represented by x. A class can also be instanti-

ated by gaining access to a java.lang.Constructor

object using Class.getConstructor then calling

Constructor.newInstance. These invocations result

in an implicit execution of a class constructor. These indirect

calls will not be represented in a call graph created by a

naive call graph construction algorithm.

Reflective invocation allows applications to dynamically

invoke the methods of any class loaded into the JVM.

Consider an object x of type Class that represents a class

C. Through a call to x.getMethod(...), it is possible

to get a Method object for any method in C. Method is a

reflective object that can be used to invoke the method it rep-

resents via Method.invoke(Object,Object[ ]). It

implicitly invokes the represented method on Object ar-

gument with the parameters specified in Object[ ]. By

ignoring reflection, these implicit method calls will not be

represented in the call graph.

Native methods are methods that are written in native

programming languages. To allow for across language in-

terfacing, the Java platform provides its clients with the

Java Native Interface (JNI) [16]. JNI is an interoperable

interface that allows Java classes to callout to methods

contained in native libraries. It also allows native code

to make callbacks to Java methods. Through JNI, native

method can load classes, create, inspect, and modify objects

in a JVM. Essentially, a native method has all capabilities

of a standard Java method.

It is important to note that both reflection and call backs

from native methods do not have to respect encapsulation.

It is possible for these features to circumvent the attribute

visibility rules of Java (e.g., private).

III. CHA ASSUMPTION HIERARCHY

Making conservative assumptions about effects of un-

known external code is a common practice for static analyses

(e.g., [17], [18], [19], [2], [20], [21], [22], [23]). Many
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static analyses for Java applications make assumptions (ex-

plicitly or implicitly) about the effects of the language’s

dynamic features. In this section, we present a hierarchy

of assumptions for a CHA call graph construction analysis.

These assumptions pertain to the dynamic features of Java

discussed above. The hierarchy is displayed in Figure 1. As

shown, each level of the hierarchy extends the preceding

level. Thus, each level is the culmination of the assumption

presented at that level and of all the assumptions made in

the preceding levels. Note that the assumptions presented do

not constitute all possible assumptions such analyses could

make about these features nor do they cover all possible

Java features which could cause the analysis to be unsound.

Our assumptions are predicated on the assumption that the

analysis has access to all possible classes that could be

loaded during any execution of the program under analysis.

This set of classes will be henceforth known as AppClasses .

A. Well-Behaved Loaders

Custom class loaders can alter the code of any class it

loads. The only conservative assumption that can be made

in the presence of such a loader is that every method could

call every other method in the world. Fortunately, most

applications will use class loaders that do not alter the

semantics of the classes. A reasonable assumption about

loaders would be:

Well-Behaved Class Loaders (Behaved-CLs): It is

assumed that the loaders will not alter the seman-

tics of the classes they load and that all classes

can be uniquely identified in a single namespace.

This assumption does not address other dynamic features of

Java. To be fully conservative, certain implicit assumptions

are being made. Specifically, the following assumptions are

made for the given features:

• Dynamic class loading features: can invoke any

clinit in AppClasses .

• Reflective instantiation: can call any constructor

in AppClasses . It should be noted that calls to

Class.newInstance are limited to default con-

structors and should be represented appropriately.

• Reflective invocation: can call any concrete method in

AppClasses excluding clinits and constructors.

• Call to a native method: An edge is added to

NativeMethod, a synthetic method. This method

contains an edge, representing a potential call-

back, to every clinit, constructor, and method in

AppClasses .

B. Respecting Encapsulation

Behaved-CLs assumes that reflection and native methods

will break encapsulation (e.g., frameworks that use reflection

to conduct unit testing). However, for many applications

reflection will respect encapsulation. For such applications

the following assumption is appropriate:

Encapsulation Respecting Dynamic Features

(Encap-Respect): In addition to well-behaved

class loaders it assumes that all dynamic features

will respect encapsulation.

In Java, access level modifiers determine the visibility of

program components. There are two levels of access control:

(1) Top level—non-nested classes can be declared public

or package-private (the default when no modifier

is specified) and (2) Member level—fields, methods, and

nested classes can be public, protected, private

and package-private. The public modifier specifies

that the entity is accessible to all classes. Entities which are

package-private are only accessible in their own pack-

age. The modifier protected designates that members are

accessible in their own package and by its subclasses. A

member marked as private can only be accessed within

its own class.

Under this assumption a little extra consideration must be

given to nested classes. As a class member, member classes

are given a visibility modifier. Nested classes can access all

the members of outer classes, and outer classes have similar

access to all members declared in nested classes. However,

nested classes can access inherited protected methods of

their encapsulating classes. An outer class cannot access the

inherited protected methods of nested classes.

Under Encap-Respect the following assumptions must be

made:

• Dynamic class loading features: it is assumed that

these features can invoke any clinit in AppClasses1.

1The JVM invokes clinit methods, not the application code, and the
concept of encapsulation does not apply to calls made by the JVM.



• Reflective instantiation: can invoke any public con-

structor, any constructor marked package-private

in its package, and any constructor declared in the

surrounding class (including nested member classes and

outer classes). If the surrounding class is a local nested

class then it can call any constructor of other local

classes declared in the surrounding method.

• Reflective invocation: can call any public method,

any package-private method in its package, any

method in the surrounding class (including all declared

in nested member classes). If it resides in a nested class,

then Method.invoke can call all protected and

privatemethods of the outer classes (including those

visible through inheritance) and any method of local

classes declared in the surrounding method.

• Call to a native method: we view native members as

external code entities and, therefore, assume that they

will only access public methods and constructors.

In addition, it is assumed that it could still call any

clinit.

The above assumed actions for the dynamic features are

essentially the same actions that an analogous conventional

object-oriented code could take. Since these actions respect

encapsulation, we call them encapsulation safe.

C. Correct Casting

A common use of dynamic class loading methods is

to create an instance of the loaded class using reflective

instantiation and casting the newly created object to the ap-

propriate type. This casting information could be leveraged

under the following assumption:

Correct Casting Information Assumption (Correct-

Casting): This extension of Encap-Respect as-

sumes that casts of reflectively instantiated objects

will not cause a run-time exception.2

This assumption makes it possible to resolve any dynamic

class loading site DynoSite with the following characteris-

tics:

1) DynoSite is of form x = Class.forName(...)

(or a similar call to another dynamic class loading

method) and DynoSite is not a reaching definition of

x.

2) A statement, NewSite, of the form o =

x.newInstance() where x is of type Class

post-dominates DynoSite (in other words, there are

no paths of execution starting at DynoSite The only

reaching definition of x at NewSite is DynoSite, and

NewSite is not a reaching definition of o.

2Livshits et al. [12] make a similar assumption so that they can resolve
instances of dynamic class loading in their points-to analysis.

3) NewSite is post-dominated by a statement of the form

q = (CastType)o and the only reaching definition

of o is NewSite.

Since DynoSite is post-dominated by NewSite, and it is the

only reaching definition of x at NewSite, and DynoSite is

not a reaching definition of x at DynoSite (this can happen

in loops), it must hold that every execution of DynoSite is

followed by an execution of NewSite. It is also true that

the class being instantiated by NewSite is the same that

was loaded by DynoSite. A similar relationship is true for

NewSite and the casting operation that post-dominates it. For

dynamic class loading sites that meet these requirements,

it can be inferred that the loaded classes must be of type

CastType or a subtype of CastType. We call this set of

types (CastType and its subtypes) the resolving class set,

and we call the dynamic class loading sites cast resolvable.

This set of characteristics is easily extended to dynamic class

loading sites which are post-dominated by a NewSite of the

form o = con.newInstance() where con is of type

Constructor.

Notice that the NewSite statement above is also resolved.

If NewSite is of the form x.newInstance() where x

is of type Class, then it is assumed that NewSite can

implicitly invoke any default constructor in the resolving

class set (if a class does not declare a default constructor,

its superclasses are searched until one is found). If x is of

type Constructor, it is assumed NewSite could invoke

any constructor declared by a class, or a superclass of a

class in the resolving set.

The type information from resolved dynamic class loading

sites can be used to resolve reflective invocations. Consider

the statement m = c.getMethod(...). Assume that

the only reaching definitions of c are a set of resolved

dynamic class loading sites. Each of these resolved dynamic

class loading sites has a set of resolved classes associated

with it; we call the union of these sets ResolvedDyno. The

method represented by m must be declared in a class, or a

superclass of a class, contained in ResolvedDyno. Carrying

this reasoning forward, if for a statement of the form x =

m.invoke(...) all the reaching definitions of m come

from resolved instances of getMethod, then it is possible,

using similar logic, to determine the set of methods that

could possibly be invoked; we call this set of methods the

resolving method set.

With the capability to resolve certain dynamic features,

the CHA call graph construction algorithm’s treatment of

these features becomes more precise.

• Dynamic class loading features: if the feature is

cast resolvable, it is assumed that it could invoke any

clinit in its resolving class set. Otherwise, it is as-

sumed that it can invoke any clinit in AppClasses .

• Reflective instantiation: if the feature is cast resolv-

able, it is assumed that it could invoke any constructor

in its resolving class set. Otherwise it is assumed that



it has the same access as under the Encap-Respect

assumption.

• Reflective invocation: if the feature is cast resolvable,

it is assumed that it can call any encapsulation safe

method in its resolving method set (e.g., it can call all

public methods in the set). Otherwise it is assumed

that it has the same access as under the Encap-Respect

assumption.

• Call to a native method: treatment is the same as

under Encap-Respect.

D. Correct String Values

The use of casting information will not be able to re-

solve all instances of dynamic class loading and reflective

instantiation since not all uses of these features will be post-

dominated by a cast. Even if such features are resolved,

the resulting resolving class set could be quite large if the

casting type has many subtypes. It may be possible to resolve

more instances of dynamic class loading and reduce the

size of some resolving class sets by making the following

assumption:

Correct String Information (Correct-String): This

extension of Correct-Casting assumes that (1)

features such as reflection will not affect the

string-typed formal parameters of private and

package-private methods and private

fields whose string values flow to dynamic class

loading sites and (2) dynamic class loading sites

will not throw a ClassNotFoundException.

This assumption contains all previous assumptions including

that reflection will respect encapsulation. Correct-String fur-

ther assumes that reflection contained in a package or class

will not affect a very limited number of encapsulation safe

method parameters and fields. It also assumes that all string

values which flow to dynamic class loading sites designate

a valid class which could be loaded.

The Correct-Strings assumption allows the CHA call

graph construction algorithm to incorporate information

from a string analysis to aid in the resolution of dynamic

features. Specifically, we propose to use a modified version

of the Java String Analyzer (JSA) [2]. This version of

JSA is very conservative. It assumes that all methods in

AppClasses are reachable, and uses a CHA analysis (this

is a separate analysis from Correct-String which is the

client of JSA) to resolve only virtual calls that may affect

the values of string variables. It further assumes that the

only entities not affected by dynamic features are local

string variables, string formal parameters of private and

package-private methods, private fields and string

variables returned by private and package-private

methods, whose values flow to dynamic class loading sites.

Since the assumptions JSA operates under are more con-

servative than the Correct-String assumption, a call graph

operating under Correct-String can use the information for

JSA without a loss of soundness.

The results of JSA can be integrated into the call graph

algorithm to aid in the resolution of dynamic class loading

sites. For example, consider a statement loadSite of the form

x = Class.forName(s) where s is of type String.

If JSA is able to determine a finite set classNames of

run-time values for s, it can be inferred that loadSite can

load any valid class whose name is in classNames . Since

Correct-String extends Correct-Casting, it assumes that type

information from cast operations are correct. Therefore, if

loadSite is cast resolvable, then string values in classNames

that do not specify the names of classes in the cast resolved

class set of loadSite can be discarded. We call the set of

valid classes the string resolved class set and we designate

loadSite as string resolvable. It has been shown [14] that

the type information from resolved dynamic class loading

sites can be used to resolve certain instances of reflective

instantiation. Instances of reflective invocation sites can also

be resolved in the same manner as described above for

Correct-Casting.

Under Correct-String the following assumptions are made:

• Dynamic class loading features: if the feature is

string resolvable, it is assumed that it could invoke any

clinit in its string resolving class set. Otherwise, it

is treated as specified by Correct-Casting.

• Reflective instantiation: if the feature is string resolv-

able, it is assumed that it could invoke any constructor

declared by a class, or a superclass of a class, in its

string resolving class set. Otherwise, it is treated as

specified by Correct-Casting.

• Reflective invocation: if the feature is string resolvable,

it is assumed that it can call any encapsulation safe

method in its string resolving method set. Otherwise, it

is treated as specified by Correct-Casting.

• Call to a native method: treatment is the same as

under Encap-Respect.

E. Dynamically Gathered Environment Information

Previous work [24], [14] has shown that the incorpora-

tion of dynamically gathered environment information can

increase JSA’s ability to resolve dynamic class loading and

reflective instantiation sites in the Java 1.4 standard libraries.

The following assumption allows this dynamically gathered

information to be used to increase the precision of the CHA

algorithm:

Correct Environment Assumption (Correct-Env):

This extension of Correct-Strings assumes

that (1) dynamic features will not affect the

string-typed formal parameters of private

and package-private visible methods

and private fields whose values flow to

environment variable access methods and (2) the

values of environment variables which can affect



App Classes Meths K Jimple Dyno NewInst Invoke Native

DB 15 175 3119 0 0 0 0

Javac 188 1320 26574 0 0 0 0

JEdit 851 6206 124830 313 6 16 0

JGap 174 1035 15331 25 8 4 0

Jpws 193 1616 28425 5 0 0 0

Mindterm 135 1072 30626 5 5 0 0

Muffin 278 2258 37748 11 4 0 0

Sablecc 267 2248 36155 2 0 0 0

VietPad 215 914 24998 22 5 8 3

Violet 130 636 9959 2 4 2 0

Table I
BENCHMARKS STATISTICS: NUMBER OF CLASSES, METHODS, JIMPLE STATEMENTS, INVOCATIONS OF DYNAMIC CLASS LOADING METHODS,

NEWINSTANCE METHODS, METHOD.INVOKE , AND NATIVE METHODS.

dynamic class loading sites will be the same at

analysis time and at run time.

This assumption allows our version of JSA to gather

string values from environment variables at analysis time.

For example, custom-defined event handlers can be spec-

ified in the sun.awt.exception.handler environ-

ment variable. This environment variable will hold the string

value of the custom event handler’s full qualified name.

At run time the handler will be dynamically loaded and

accessed through reflection. Java has a well defined API

which allows users to access environment variables (e.g.,

System.getProperty).

Just like the static version of JSA and Correct-Strings, the

hybrid version of JSA3 operates under a much more conser-

vative assumption than Correct-Env so its information can be

used by a client call graph analysis operating under Correct-

Env without a loss of soundness. Making this assumption

about environment variables means that the generated call

graph will be tailored to the system configuration (i.e., set

of environment variable values) under analysis. It will no

longer be sound in a global context. Instead, it will only be

sound for systems where the environment variables are the

same as those observed by the call graph analysis.

Under this assumption there is no change needed to the

algorithm’s treatment of dynamic features. It only enables

the string analysis to consider more sources of string values,

increasing the number of dynamic class loading sites that can

be precisely resolved.

IV. EXPERIMENTS

To evaluate how the assumptions outlined above will

affect the results of a CHA analyses, we performed the

following empirical study. We implemented a unique version

of a CHA call graph construction algorithm for each level of

the assumption hierarchy presented in Section III and applied

them to 10 real-world benchmark applications. Our imple-

mentations were built upon the Soot analysis framework [25]

3The hybrid version of JSA executes very small portions of the applica-
tion under analysis in order to look up referenced environment variables.

which generates a Jimple intermediate representation of the

application.

Table I presents the benchmarks that were used in this

study. For each benchmark Classes shows the number of

class files that are unique to the application; this number

does not include library classes that may be referenced

by the application. Column Meths presents the number of

methods (including constructors and clinits) contained

in the application classes and column K Jimple displays

the number of Jimple statements they contain. Dyno presents

the number of invocations of dynamic class loading methods

present in the Jimple representation of the application’s

classes. Similarly, NewInst and Invoke display the num-

ber of invocations of newInstance (both Class and

Constructor) and Method.invoke, respectively. Col-

umn Native displays the number of native methods declared

in the application.

Table II presents the number of nodes and edges in the

call graphs created by each implementation of the analysis.

These call graphs include not only methods declared in

the application but methods called in the Java 1.4 standard

library. Column Behaved-CLs presents the results of the

most conservative implementation. This version is used as

the baseline to which the other implementations are com-

pared. The graph generated by Behaved-CLs for a particular

application is a supergraph of all other implementations’

graphs for that same application. Row AVE∆N displays

the average reduction in the number of nodes in the graphs

generated by the corresponding implementation, compared

to Behaved-CLs. Row AVE∆E contains similar information

but with respect to the number of edges.

A. The Nodes

The nodes of the call graph represent methods that are

reachable from the main method of an application. By

assuming that dynamic features will respect encapsulation,

an average of 10% of the nodes are removed from the fully

conservative graph. With the addition of each technique—

using (1) type information from casting operations, (2)

constant string values, and (3) environment variable string



Number of Nodes

Apps Behaved-CLs Encap-Respect Correct-Cast Correct-String Correct-Env

DB 32537 29060 29046 29045 29044

Javac 33662 30180 30167 30166 30165

JEdit 39083 35640 35625 35624 35624

JGap 32890 29404 29391 29390 29388

Jpws 34663 31162 31148 31148 31145

Mindterm 33268 29779 29764 29762 29761

Muffin 33976 30416 30400 30400 30399

SableCC 33807 30364 30349 30348 30347

VietPad 33647 30157 30144 30144 30143

Violet 33577 30143 30130 30129 30126

AVE∆N – 10.2% 10.2% 10.2% 10.2%

Number of Edges

DB 1696889 921170 831580 779502 774273

Javac 1761197 967652 874079 820521 815220

JEdit 2626960 1513423 1401168 1075290 1069333

JGap 1792150 975737 880632 819586 814309

Jpws 1823623 1005794 907518 848529 842952

Mindterm 1743252 951832 854017 800711 795385

Muffin 1800537 985564 886112 826637 821207

SableCC 1466806 845363 749460 730955 725507

VietPad 2019676 1076309 981160 920010 914611

Violet 1834669 997052 896791 842490 836950

AVE∆E – 44.8% 50.2% 54.1% 54.4%

Table II
CHA CALL GRAPH CONSTRUCTION ALGORITHM RESULTS: NUMBER OF NODES AND EDGES IN THE GRAPH CREATED BY THE CORRESPONDING

VERSION. AVE∆ IS THE AVERAGE PERCENTAGE DECREASE WITH RESPECT TO COLUMN Behaved-CLs.

values—the number of nodes in the corresponding graphs

are reduced, but not significantly. This trend can be seen

in columns Correct-Casting, Correct-String, and Correct-

Env. The reason that more nodes are not removed is due

to the treatment of unresolved Method.invoke calls and

calls to native methods. Starting at Correct-Env in the

assumption hierarchy it is assumed that both native methods

and unresolved Method.invoke calls could potentially

call all public methods. This has the effect of making all

public methods reachable. Consequently the only methods

that will not be reachable (and not represented in the graph)

are those not reachable from a public method. Every execu-

tion of the analysis encountered both unresolved instances

of Method.invoke and calls to native methods either in

application classes or classes in the Java 1.4 standard library.

B. The Edges

Edges in a call graph represent calling relationships

between methods. Unlike the nodes, there was a dramatic

reduction in the number of edges created by consecutive

versions of the analysis. By simply assuming that dynamic

features will respect encapsulation, an average of 44%

of the edges can be trimmed from the fully conservative

graphs (column Encap-Respect). By further incorporating

information from cast operations to resolve dynamic features

an average of 50% of the edges can be removed (column

Correct-Cast). The use of a static string analysis by Correct-

String allows it to produce graphs that, on average, contain

54% fewer edges than the fully conservative graphs. By

including dynamically gather environment variable values in

the string analysis, the number of edges is further reduced

(column Correct-Env). Thus, by assuming that (1) reflection

will respect encapsulation, (2) cast operations and dynamic

class loading will not generate exceptions, (3) dynamic

features will not affect certain string values which flow to

dynamic class loading sites, and (4) values of environment

variables which are used in dynamic class loading operations

will remain constant, it is possible to generate call graphs

which, on average, will contain 54% fewer edges than the

fully conservative call graph.

C. Resolution of Dynamic Features

Table III presents the average percentage of reflective sites

each version was able to resolve for all benchmark applica-

tions. Row Dyno Loading displays the average percentage

of dynamic class loading sites each version was able to

resolve. Row newInstance shows the percentage of calls to

newInstance (for both Class and Constructor ob-

jects) that were resolved. Row Invoke presents the percentage

of Method.invoke calls that were resolved.

The use of casting information appears to be only mod-

erately effective at resolving instances of dynamic class

loading. Correct-Casting could only resolve an average of

16% of such sites. However, it is much more successful at

resolving calls to newInstance (on average it was able to

resolve 56% of such sites). One of the reasons this technique

was not more successful in resolving instances of dynamic

class loading is due to the fact that the post-dominance



and reaching definitions analyses used by Correct-Cast were

intraprocedural. In most instances, if a reflective instantiation

of a class is used in a casting operation, it is instantiated and

casted in the same method. However, it is not uncommon for

the Class objects from dynamic class loading sites to flow

through multiple methods before being instantiated. Addi-

tionally some of the dynamic class loading sites were not

post-dominated by cast operations thus casting information

could not be used.

Correct-String incorporation of a static string analysis

enabled it to be much more successful at resolving dynamic

class loading sites. On average, it resolved 46% of the

dynamic loading sites encountered. This increased precision

enabled it to resolve 58% of the newInstance sites it

encountered. It was not able to resolve sites that depended

on (1) string values that flowed from formal parameters of

public or protected methods which were not used

under the assumption that these values could be affected by

unresolved reflective calls and native code, (2) string values

passed through structures, such as HashMaps, which the

string analysis is not powerful enough to model, or (3) string

values that flowed from dynamic sources (e.g., environment

variables or configuration files.)

Correct-Env extends Correct-String with a hybrid string

analysis. This version performs a lookup of environment

variables whose values flow to dynamic class loading sites

(see [14] for a detailed description.) The addition of dynami-

cally gathered environment information allowed Correct-Env

to resolve 50% of all dynamic class loading sites and 61%

of newInstance sites.

None of the implementations were effective at resolv-

ing calls to Method.invoke. We performed a manual

investigation of the 27 unresolved instances that Correct-

Env discovered for the DB benchmark. All 27 were located

in the Java 1.4 standard libraries. Two of them relied on

Method objects which flowed from dynamic class loading

sites contained in the same method. The string analysis

was unable to resolve these dynamic class loading sites

due to values flowing from formal parameters of public

methods. The remaining 25 Method.invoke sites relied

on Method objects that were created in other procedures,

meaning that our intraprocedural analysis was not capable

of tracking their flow.

V. RELATED WORK

The challenges caused by the use of dynamic class load-

ing, reflection and native methods have been addressed in

other static analyses with various degrees of sophistication.

In this section we present a few of the most relevant

approaches.

Some analyses (e.g., [26], [27], [25], [12], [28]) give

their clients the option to manually specify the precise

effects of certain dynamic features. This method is only as

sound and precise as the information entered by the user.

The identification of these features and their effects can be

laborious and challenging as many of them will exist in third

party libraries. Our approach is automatic and conservative.

The CHA call graph construction in the Soot anal-

ysis framework [25] allows the user to choose from

several options that specify the treatment of certain

dynamic features. The most conservative option pro-

vides treatment for dynamic class loading calls of the

form Class.forName(String), and newInstance

calls of the form Class.newInstance(). It re-

solves Class.forName(lit) calls where lit is a

string literal value. If it is unable to resolve a call to

forName, it will add an edge to all clinit meth-

ods in AppClasses . For Class.newInstance calls,

it adds an edge to every no argument constructor in

AppClasses . Soot’s CHA analysis does not address calls

to native methods, reflective invocations, calls of the form

Constructor.newInstance(...), or dynamic class

loading methods other than Class.forName. Our analysis

provides a conservative treatment for all of these features.

We feel that static analysis frameworks such as Soot could

benefit from our hierarchical approach to assumptions about

dynamic features. Our structure allows clients to precisely

choose the level of risk they are willing to assume.

Our analysis uses a hybrid version of the powerful string

analysis JSA created by Christensen et al. [2]. They present

a small case study that investigates the ability to resolve

calls to Class.forName. In [14], [24] we extended

JSA to considers a much wider range of dynamic class

loading methods and include dynamically gathered environ-

ment variable information. We showed that this information

greatly increase JSA’s ability to resolve instances of dynamic

class loading which in turn allowed us to resolve more

instances of reflective instantiation [14]. The work presented

in this paper represents the first time that information from

a hybrid string analysis was incorporated into a CHA call

graph construction algorithm.

The work of Livshits et al. [12] proposes a tiered ap-

proach to the resolution of dynamic class loading and

reflection that is similar to our approach. They present a

static analysis algorithm that uses points-to information to

determine the objects that could be loaded dynamically.

Their algorithm tracks constant string values that flow to

instances of dynamic class loading and reflection. For cases

where they are unable to resolve the target string’s value,

they utilize casting information. If such information is not

present, their approach relies on user specifications. We

use similar techniques in a CHA call graph construction

algorithm. Our techniques could enhance the automation and

precision of their analysis. We employ a more advanced

string analysis and incorporate information that currently

has to be manually provided to their analysis by the user.

Our encapsulation safe treatment for unresolved instances

of dynamic features also provides an alternative to user



Features Correct-Cast Correct-String Correct-Env

Dyno Loading 16% 46% 50%

newInstance 56% 58% 61%

Invoke 0% 6% 6%

Table III
RESOLUTIONS RESULTS: AVERAGE PERCENTAGE OF RESOLVED INSTANCE OF DYNAMIC FEATURES.

specifications.

Some existing work [29], [30], [31], [32], [33], [34]

circumvents the typical shortcomings of static analyses by

developing online algorithms. All of the above approaches

require either (1) modifications to the JVM services that

handle dynamic class loading and reflection or (2) instru-

mentation of application code. These alterations allow the

analyses to observe the actual execution of an application,

which can be used to resolve any ambiguity introduced

by the use of dynamic class loading. However, as with

any purely-dynamic analysis, the results are unsound and

represent only properties of the observed execution, not of

all possible executions. Our most relaxed implementation

of CHA a has a more restricted form of unsoundness, as

defined in [14].

To the best of our knowledge, our incorporation of the

hybrid version of JSA into a CHA call graph construction

algorithm represents the most precise string analysis to be

used to resolve instances of dynamic class loading for this

type of analysis. None of the analyses cited above use an

encapsulation safe approach for conservative treatment of

unresolved dynamic features. To date, the empirical study

presented in Section IV is the most comprehensive study of

the effects of assumptions about dynamic features on a CHA

call graph construction algorithm.

VI. CONCLUSION AND FUTURE WORK

We present a hierarchy of assumptions a Class Hierarchy

Analysis call graph construction algorithm could make about

the dynamic features of Java. At the top of the hierarchy is

the most conservative assumption which generates an im-

precise call graph for an application making use of dynamic

features. Each consecutive level of the hierarchy represents

a slight relaxation of the preceding level. Consequently, a

graph created under each level of the hierarchy is a subgraph

of the one generated by the preceding level. These relax-

ations allow the algorithm to incorporate various techniques

that attempt to precisely resolve instances of dynamic class

loading, reflective invocation, and reflective instantiation.

We implemented a version of the CHA analysis for each

level of the assumption hierarchies. These implementations

were applied to 10 real-world Java applications in an em-

pirical study. This study provides a concrete example of the

effects of each assumption and the corresponding resolution

techniques on the results of these analyses. On average, our

most precise implementation of CHA was able to resolve

50% of dynamic class loading sites, 61% of reflective

instantiation sites, and 6% of reflective invocation sites. This

capability enabled the implementation to generate graphs

that, on average, contain 10% fewer nodes and 54% fewer

edges than the graphs generated by the fully conservative

implementation.

An obvious extension of this work would be to apply

similar assumptions and resolution techniques to a more

precise call graph construction algorithm. A natural choice

would a Rapid Type Analysis [35] call graph construction

algorithm. It would also be interesting to explore new

techniques for the treatment of native methods and reflective

invocation as well as techniques for newer versions of Java.
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