
Estimating the Run-Time Progress of a Call Graph Construction
Algorithm∗

Jason Sawin
Ohio State University

sawin@cse.ohio-state.edu

Atanas Rountev
Ohio State University

rountev@cse.ohio-state.edu

Abstract

This work considers static analysis algorithms that
are integrated with a development environment. In
this context, IDE users can benefit from continuously-
updated information about the run-time progress of the
analysis algorithm (i.e., what portion of the analysis
work is completed). IDEs can provide the means to
convey this information back to the user — for exam-
ple, the Java IDE in Eclipse achieves this by employing
GUI elements such as progress bars.

Precise tracking of the run-time progress of an anal-
ysis algorithm requires a priori knowledge of the total
running time of the analysis. Such knowledge is typ-
ically not available, and analysis builders need to em-
ploy various heuristics to estimate run-time progress.
In this paper we describe our initial work on defin-
ing and evaluating such heuristics for a whole-program
analysis in Eclipse. The analysis, based on the well-
known Rapid Type Analysis (RTA) approach, builds a
call graph for a Java program, for subsequent use in
various software tools. We propose multiple heuristics
to estimate run-time analysis progress; these heuristics
have been implemented in a publicly available Eclipse
plug-in. We report the results of evaluating each heuris-
tic on an large set of Java programs.

1 Introduction

Many modern integrated development environments
(IDEs) allow tool builders to define extension modules
or “plug-ins” to augment the IDE’s base functionality.
This trend can be observed in mainstream IDEs such
as Microsoft Visual Studio [4] and Eclipse [2]. Such ex-
tensions have become a valuable tool for researchers ex-
ploring various static analyses of program code. IDEs

∗This work was supported, in part, by an IBM Eclipse Inno-
vation Grant.

provide an off-the-shelf infrastructure that supplies re-
searchers with common low-level services that are of-
ten needed to perform static analyses — for example,
parsers, intermediate representations of code, editors,
GUI elements, platform-specific resources, etc. More
than just facilitating the building and refinement of an
analysis, plug-ins provide a vehicle to widely distribute
implementations of analyses that have hither-to been
primarily confined to academia.

The Eclipse tool platform is a prime example of an
IDE that encourages various extensions. There are
dozens of publicly-available Eclipse plug-ins for source
code analysis.1 These plug-ins have the potential to
contribute significantly to programmer productivity
and software quality, by providing sophisticated tool
support for program understanding, evolution, testing,
verification, and optimization.

In order to build production-quality implementa-
tions of static analyses for use by the general public,
static analysis researchers have to face numerous chal-
lenges. In addition to the traditional issues of scalabil-
ity and precision, analysis designers have to pay close
attention to the integration with the rest of the IDE,
and to the usability issues from the point of view of
an end-user (i.e., a programmer using the IDE). A sig-
nificant challenge for plug-in builders is creating front-
end user interfaces that are both meaningful and user
friendly. Often the IDE being extended provides a UI
framework to which the implementation of the anal-
ysis must conform. One typical component of such
frameworks is a progress bar ; an example of a progress
bar is shown in Figure 1. Progress bars provide valu-
able feedback to the users, assure them that the de-
sired task is making progress, and provide an estimate
of the remaining time to complete the running task.
Even though progress bars are an important part of

1For example, the Eclipse web site lists more than 30 plug-
ins that are related to code analysis. As another example, the
proceedings of the Eclipse Technology Exchange Workshop show
a large number of research plug-ins for code analysis.

1

UIs (as a mechanisms for user responsiveness), they
are often overlooked or implemented poorly [3]. For
a static analysis designer, an interesting challenge is
to provide the IDE with enough information to allow
a meaningful progress bar to be displayed while the
analysis algorithm is running.

Precise tracking of an application’s progress requires
a priori knowledge of the total amount of work per-
formed by the application. For example, an applica-
tion that downloads a file may use file size as a pri-
ori measure of the total amount of work that will be
performed. This application may indicate a unit of
progress has been completed, for example, for every
1KB downloaded. Unfortunately, it is typically impos-
sible to know ahead of time the amount of work that
will be performed by a static analysis. Thus, heuris-
tics must be employed to estimate the total running
time and the progress made during the analysis execu-
tion. Analysis designers are faced with the following
questions: What are possible heuristics for producing a
priori estimates of analysis running time? How should
the analysis estimate the progress it is making? What
are appropriate metrics of precision and cost for the
estimation techniques?

This paper presents our initial work on answering
these questions for a specific whole-program analysis
for Java, implemented as an Eclipse plug-in. The anal-
ysis, based on the well-known Rapid Type Analysis
(RTA) approach [1], builds a call graph for a Java pro-
gram in an Eclipse project. We consider this work to
be a first step in a longer-term research investigation
of accurate and efficient heuristics for tracking the run-
time progress of various static analyses. The specific
contributions of this work are as follows:

• We define two cases for tracking the progress of
a static analysis: initial analysis without any his-
tory, when the analysis is executed on a particular
program for the first time, and repeated analysis,
when the analysis is executed repeatedly on differ-
ent versions of the same program. We propose a
history-based approach for repeated analysis that
could potentially be used by various static analy-
ses to produce more accurate progress estimates.

• We define metrics that evaluate the quality of
progress-tracking heuristics. These metrics con-
sider both the precision of the generated progress
information, as well as certain aspects of its user-
friendliness (Section 4).

• We propose and implement multiple heuristics for
estimating the progress of a whole-program RTA
call graph construction algorithm for Java, both

for an initial analysis and for a repeated anal-
ysis (Section 3). These heuristics will serve as
the starting point for generalizing our approach
to other static analyses such as points-to analysis
and side-effect analysis.

• We present the results from an experimental study
of the heuristics on a large set of Java programs
(Section 5). This experimental evaluation provides
insights about the strengths and weaknesses of the
proposed techniques. The results of the study will
be used to decide which heuristics to incorporate
in the next public release of our analysis plug-in.

2 Background

This section provides brief descriptions of our anal-
ysis plug-in, the analysis algorithm it currently uses,
and the progress monitor interface in Eclipse.

2.1 TACLE

The problem considered in this paper was moti-
vated, in part, by our work on the TACLE project2 [7].
TACLE stands for type analysis and call graph con-
struction for Eclipse. The project produced an open-
source Eclipse plug-in that performs a whole-program
type analysis and call graph construction for a Java
program in the Java IDE in Eclipse.

Call graphs are essential for any form of interpro-
cedural static analysis. Instead of “rediscovering the
wheel”, implementers of such analyses could save valu-
able time and resources by interfacing with TACLE
and utilizing the call graph it produces.

In the current release of TACLE, the analysis algo-
rithm executes in the foreground and provides no feed-
back to the user until the processing has completed.
The inability to understand how the analysis makes
progress, and if such progress is made at all, could be
rather frustrating for Eclipse users, especially when the
analysis time is non-trivial (e.g., more that a few sec-
onds). There have been requests from TACLE users to
make the analysis more user-friendly, with the help of
the progress monitor interface defined by Eclipse (this
interface will be described shortly). After the addition
of progress monitoring, it becomes possible to provide
useful GUI representations as shown in Figure 1.

2.2 Rapid Type Analysis

TACLE implements a version of Rapid Type Analy-
sis (RTA) [1]. RTA takes a complete program as input

2Available at presto.cse.ohio-state.edu/tacle

2

Figure 1. Progress bar for TACLE in Eclipse

and produces type information and a call graph for
that program. The analysis constructs a set Reachable
of methods that are reachable from the main method
of the program, and a set Instantiated of class types
that are instantiated in reachable methods. Initially,
Instantiated is empty and Reachable contains the main
method. Whenever a method m is added to Reachable,
the body of the method is processed to (1) update set
Instantiated , due to expressions new X, and (2) update
set Reachable, based on the call sites inside m. The
virtual call sites in m are resolved based on the current
set of types in Instantiated . If later some class type is
added to Instantiated and this type implies additional
target methods at already-processed call sites, these
new target methods are added to Reachable.

To implement RTA, TACLE uses a worklist algo-
rithm. Initially, the only elements of the worklist are
the main method and the library methods executed at
JVM startup. When the algorithm removes a method
from the worklist, it considers two cases. First, if
the method is a user-defined method (i.e., not a li-
brary method), the analysis builds and processes the
method’s abstract syntax tree (AST) using Eclipse. To
reduce analysis time and memory, TACLE utilizes sum-
mary information about the standard Java libraries.
The library summary contains the information needed
to perform RTA — namely, library classes, methods,
call sites, and object creation sites. Thus, if the method
removed from the worklist is a library method, TACLE
examines the summary for this method and takes the
appropriate actions.

2.3 Run-time Progress in Eclipse

To improve the user-friendliness of TACLE, we uti-
lized the Eclipse Job API which allows clients to ex-
ecute tasks in separate threads. This service of the
Eclipse platform provides a rich functionality which, for
brevity, is not discussed in detail in this paper. The ba-
sic features of the service are as follows. Runnable work

is wrapped in subclasses of class Job. Jobs have prop-
erties similar to Java threads, in that they have sleep,
wakeup (similar to resume), join and run methods.
Jobs can be scheduled for immediate or delayed exe-
cution, and various rules can be associated with them.
An invocation of a method run declared in some sub-
class of Job results in the execution of the correspond-
ing job. A run method takes as its only parameter an
IProgressMonitor object. This method is invoked by
the scheduler when the job is at the head of the sched-
ule queue; in this call, the scheduler passes to run an
implementation of a progress monitor.

An implementation of IProgressMonitor is an ob-
ject that monitors the work being performed by the
job. The key methods defined in this interface are as
follows:

• void beginTask(String taskName, int
totalWork): this method notifies the progress
monitor that a task has started. Parameter
totalWork is the total number of work units the
task is projected to complete.

• void worked(int work): this method notifies
the monitor that task has completed the number
of work units indicated by work.

• void done(): alerts the monitor that the task has
completed its work.

These methods are used to drive the GUI progress
bar provided by Eclipse, as illustrated in Figure 1.3

With each invocation of method worked, the monitor
updates the progress bar. This continues until the in-
cremental installments of work equal totalWork, or
until done is invoked. Either of these events result in
the progress bar showing that 100% of the work has
been completed. It is left to the client of the API
to ensure that the progress monitor is initialized with
the correct totalWork value, and that methods worked
and done are invoked at the appropriate times with the
correct values.

In TACLE, the call graph construction algorithm
can be executed as a task. As a result, the user has the
ability to browse code in Eclipse even while that code
is being analyzed by our plug-in.

In this context, two obvious questions must be an-
swered. First, what is the total amount of work to be
used in the call to beginTask? Second, when and with

3Eclipse provides multiple styles of progress bars, falling into
two main categories: measured and indeterminate. A measured
bar displays the portion of work that has been completed. An
indeterminate bar indicates work is being conducted without pro-
viding information about the percent of effort completed. In this
work we consider only measured progress bars.

3

what work increments should worked be called to alert
the monitor that progress has been made? The next
section presents our initial work on answering these
questions. While the proposed techniques are specific
to this particular analysis algorithm, the two questions
from above will have to be answered by any static
analysis designer that intends to provide a measured
progress bar in Eclipse. Furthermore, these questions
are relevant not only for Eclipse-based analyses, but
also for any progress reporting inside a static analysis
tool.

3 Estimating Run-time Progress

Of course, it is impossible to know in advance the
precise amount of work RTA will perform on a given
program. Thus, the key challenge is to define some
heuristic estimate of the total amount of work, and to
provide it as a parameter of the call to beginTask.

The heuristics outlined in this paper consider two
separate cases. First, we focus on the case of an ini-
tial analysis, which is executed for the first time on a
given program. Next, we consider the case of a repeated
analysis, which is performed on a new version of a pro-
gram what had already been analyzed in the past. In
this case, some high-level historical information from
the last analysis execution is used to create estimates
for the current analysis run.

3.1 Initial Analysis

The following are the heuristic that we consider for
the case when no historical information is available
from previous runs of the analysis on the analyzed pro-
gram (or from runs on earlier versions of that program).

3.1.1 Naive Estimate

The bulk of the analysis processing time is spent in a
loop, where each loop iteration processes one worklist
element. Thus, the total amount of work for the analy-
sis is (roughly) proportional to the number of methods
reachable from the main method. We use an estimate of
this number as a parameter to the call to beginTask.
Subsequently, whenever a method is taken off the work-
list and processed, we make a call monitor.worked(1)
immediately after the processing, indicating that one
unit of work was performed.

The key question, of course, is how to obtain the es-
timate of the total number of reachable methods before
we run the RTA algorithm. In this simple heuristic, we
use a hard-coded, predefined estimate of 8101 reach-
able methods. This number was obtained as the av-

erage number of reachable methods across 15 distinct
Java programs. In our experiments, this heuristic (and
all other ones) was evaluated on a set of Java programs
that were different from the 15 programs used to obtain
this hard-coded estimate. The number is rather large
because of the significant number of library methods
that are transitively reachable from the main method.

In the case when the actual number of reachable
methods in the analyzed program is greater than 8101,
the progress bar will reach 100%, and will be “stuck” at
that point until the algorithm completes. On the other
hand, if the number of reachable methods is less than
8101, the progress bar will jump from some smaller
value (e.g., 70%) directly to 100% at the end of the
analysis. Clearly, both of these behaviors are unde-
sirable. Later in the paper we discuss metrics that
quantify the imprecision of this and other heuristics.

Note that another possible estimate of work could
be based on analysis time. For example, we could have
computed the average running time over the 15 pro-
grams, and used that value (e.g., as an integer value
in milliseconds) in the call to beginTask. During the
subsequent analysis of some program, we could have
called worked, at regular time intervals, with the ap-
propriate integer value representing the duration of the
last interval. However, such a time-based approach is
not practical for use by TACLE for the initial anal-
ysis. We plan to compute the hard-coded estimate
on a local machine in our department, and to include
it in the public distribution of TACLE. Since TACLE
users may use computers that are significantly different
from ours, the machine-dependent running time is not
a “portable” estimate. Later we discuss the use of a
time-based estimate for the case of a repeated analysis,
where the analysis is executed multiple times on differ-
ent versions of the same program, on the same physical
machine.

3.1.2 Number of User-Defined Methods

This technique uses estimates based on the program
that is about to be analyzed with RTA. The estimate
of total work in the call to beginTask is the num-
ber of user-defined methods in the Java project (in-
side the Eclipse Java IDE) for the program being an-
alyzed. In Eclipse, it it easy and relatively cheap to
find this number before RTA starts. During the anal-
ysis, monitor.worked(1) is called immediately after a
user-defined method is taken off the worklist and pro-
cessed.

Note that there are two sources of imprecision for
this technique. First, there may be user-defined meth-
ods that are not reachable from the main method. Typ-

4

ical examples are methods that contain code related to
testing, as well as deprecated methods. More impor-
tantly, the user-defined methods are only a small por-
tion of the total number of reachable methods — most
of the methods in the call graph are methods from the
standard Java libraries.

3.1.3 Number of User-Defined Methods and
Library Entry Methods

This approach refines the user-methods-based tech-
nique presented above. The estimate of total work
is the number of user-defined methods in the Java
project plus the number of library methods called
by these user-defined methods. For all user-defined
classes in the Java project, we build the corresponding
ASTs and count the number of library methods that
are static targets (i.e. compile-time targets) of calls
inside the ASTs. During RTA, monitor.worked(1)
is called whenever the analysis processes (1) a user-
defined method, or (2) a library method that was
counted in the definition of the estimate. Since the
processing of library methods contributes significantly
to the analysis cost, taking into account some of the
reachable library methods may produce better progress
estimates, compared to just using the number of user-
defined methods.

3.2 Repeated Analysis

The estimation techniques presented above are
severely constrained in terms of the information they
have about the analyzed program. However, once the
analysis has been executed once on a program, cer-
tain historical information can be saved and used sub-
sequently when modified versions of this program are
analyzed in the future. In Eclipse, this information
can be saved in the workspace of the Java project be-
ing analyzed, and can be used later when the analysis
is executed again on the same project. Of course, we
assume that some changes have occurred in the code of
the project between successive invocations of the anal-
ysis; if no changes have been made, progress estimation
based on historical data is trivial.

This approach assumes that the analysis is likely to
be applied on multiple versions of the same program.
This is a legitimate assumption, for example, we plan
to use TACLE as part of our tool for reverse engineer-
ing of UML sequence diagrams [5, 6]. Such reverse-
engineered diagrams can be used to ensure that succes-
sive modifications of the analyzed program still adhere
to the original design. In this case, the analysis would
be run multiple times on slightly different versions of

the same application. More generally, it is quite com-
mon for the same static analysis to be applied multiple
times to an evolving program.

3.2.1 Number of Reachable Methods

Similarly to the naive estimate for the initial analysis,
this technique uses the number of reachable methods to
estimate the total amount of work. However, there is
no hard-coded predicted number of reachable methods.
Instead, this approach uses the number of reachable
methods from the last execution of the analysis on this
program — more precisely, on the earlier version of
the program at the time of that last run. During the
worklist algorithm, every processed method (in user
code or in library code) corresponds to a unit of work.

3.2.2 Methods Weighted by Relative Time

Not all methods contribute equally to the cost of the
analysis. In order to refine the naive approach from
above, each execution of the analysis saves (1) the list
of reachable methods, and (2) the percent of analy-
sis time that was spent processing the body of each
method. These method weights are subsequently used
in runs of the analysis on a modified version of the
program. The total amount of work is computed as
the sum of the weights, and the parameter of the call
to worked is the method’s weight. If the analysis pro-
cesses a method that was not reachable in the previous
analysis run (e.g., because this method was added to
the program after the last run), the analysis does not
make a call to worked.

3.2.3 Elapsed Time

A very simple technique for estimating progress is the
following. Each execution of the analysis saves its total
running time. This time is used as an estimate for
the total amount of work the next time the analysis
is executed. At regular intervals, the analysis reports
the appropriate unit of work to worked. If the total
running time of the analysis is exactly the same as in
the previous run, this approach will produce perfect
progress information.

4 Evaluation of Progress Reports

There are several properties that determine the
quality of a progress monitor. The first is the abil-
ity to accurately represent the progress of a running
application. For example, a progress monitor that in-
dicates an application is 75% complete when in reality
it is only 25% complete is very misleading to the user.

5

Figure 2. Measurements for progress reports

To evaluate the accuracy of our heuristics, every time
a call to worked was made, we recorded (1) the heuris-
tic’s current estimate of progress, and (2) the actual
system time for which the analysis has been running
up to this point. Upon completion of the analysis, the
total running time was used to evaluate the actual per-
centage of running time that the application had com-
pleted for each estimation point. These measurements
are illustrated in Figure 2. Each estimation time point
ti corresponds to a call to worked. The values of ti are
in the interval (0, 1] — that is, they are normalized by
the total running time of the analysis. The last esti-
mation point is tlast = 1, corresponding to the end of
the analysis.

The y axis in Figure 2 corresponds to the cumulative
progress made up to this estimation point. These val-
ues are also normalized to belong to the interval (0, 1].
More precisely, we have

pi = (Σk≤iworkedk)/totalWork

where workedk is the amount of work reported by the
call to worked at time tk. For an estimation point at
time ti, we compute

∆i = |pi − perfect i|

where perfect i is the progress report that would have
been made by a “perfect” estimation technique.4 The
average value of ∆i over all estimation points ti can
be used as an overall indicator of the accuracy of an
estimation technique. Note that in some cases, the
estimates may reach 1 before the actual analysis has

4Since both ti and pi are normalized, ∆i = |pi − ti|.

Comp .java .class Meths ReachMeths
javacup h 39 41 382 5665
javacup i 39 41 382 5665
javacup j 40 42 391 5673
jflex1.3.3 48 60 446 7903
jflex1.3.4 48 60 447 7904
jflex1.3.5 48 60 447 7904
jgraph5.7.4.6 58 137 1467 11505
jgraph5.7.4.7 58 137 1467 11505
jgraph5.8 59 137 1475 11518
jpws.2.0 89 141 1130 12246
jpws.3.0 103 187 1459 12712
jpws.3.1 104 193 1491 12771
sablecc.2.8 210 249 2108 7327
sablecc.3.1 198 267 2138 7528
sablecc.3.2 198 267 2137 7517
verbos.1.4 50 57 479 10947
verbos.1.5 52 58 513 10988
verbos.1.7 54 60 545 11117
vietpad.1.2 79 197 577 11128
vietpad.1.2.1 79 197 578 11135
vietpad.1.3 97 215 596 11186

Table 1. Subject Programs

completed; in this case, the values of pi are equal to 1
for the rest of the analysis running time. Ideally, the
average value of ∆i should be close to 0.

The second desirable property of a progress monitor
is the smoothness at which it progresses. A monitor
that only indicates progress at 25%, 75%, and 100% is
not particularly useful. The smoothness depends on (1)
the number of times when progress is indicated through
a call to worked, (2) the length of time between the
calls to worked and (3) the amount of work indicated
at each call to worked. Since worked is called relatively
frequently, factors (2) and (3) are the important ones.

Intuitively, the smoothness can be estimated by con-
sidering the slope of the “perfect” and “real” functions
in Figure 2.5. For each estimation point ti we compute
the difference between the slopes, as follows

εi = |1 − (pi − pi−1)/(ti − ti−1)|
The average value of εi over all estimation points ti is
an indication of the smoothness of the progress reports.
Ideally, this average value should be close to 0.

For heuristics that report a variable amount of com-
pleted work with each call to worked we need an-
other metric to evaluate the amount of clustering.
Clustering occurs when a monitor makes reports of
progress in concentrated groups with intervals of in-
activity between groups. For heuristics that report a
fixed amount of work being completed with every call
to worked the smoothness metric will reflect cluster-
ing. To achieve the ideal slope of 1, such heuristics

5If these were continuous functions, we would compare their
first derivatives; the “perfect” function has a derivative f ′(x) = 1

6

(1) (2) (3)
Program Avg ∆i Avg εi Avg ∆i Avg εi PreProc Avg ∆i Avg εi PreProc

javacup h .13 .70 .09 3.30 5.6% .12 2.91 33.9 %
javacup i .13 .72 .10 3.07 3.9% .12 2.81 33.1%
javacup j .12 .74 .10 3.17 5.4% .12 2.92 34.1%
jflex1.3.3 .04 1.06 .12 3.69 1.8% .14 3.28 28.4%
jflex1.3.4 .03 1.07 .12 3.84 1.6% .14 3.44 24.6%
jflex1.3.5 .04 1.06 .12 3.77 3.1% .14 3.36 25.7%
jgraph5.7.4.6 .15 4.55 .17 6.27 .5% .15 5.48 17.9%
jgraph5.7.4.7 .15 4.55 .17 6.05 .7% .16 5.48 17.9%
jgraph5.8 .15 4.71 .18 6.18 .7% .17 5.60 17.6%
jpws.2.0 .21 2.71 .04 4.23 .5% .05 3.40 22.7%
jpws.3.0 .27 5.18 .05 6.35 .6% .05 5.29 20.7%
jpws.3.1 .27 5.55 .04 6.45 .6% .04 5.60 19.5%
sablecc.2.8 .18 10.19 .09 8.57 .3% .09 9.76 9.9%
sablecc.3.1 .07 12.91 .10 10.62 .1% .11 11.32 11.0%
sablecc.3.2 .07 13.03 .10 10.89 .1% .11 11.03 10.8%
verbos.1.4 .20 1.32 .11 4.75 .6% .09 2.83 16.9%
verbos.1.5 .20 1.31 .10 4.43 .6% .09 2.63 16.8%
verbos.1.7 .20 1.30 .12 4.21 .6% .09 2.55 17.7%
vietpad.1.2 .26 12.07 .27 16.30 .1% .33 13.00 3.9%
vietpad.1.2.1 .26 12.07 .27 18.49 .1% .33 12.95 3.9%
vietpad.1.3 .26 11.18 .25 18.59 .1% .33 13.17 4.2%

Table 2. Initial analysis: (1) naive, (2) number of user-defined methods, (3) number of user-defined
methods and library entry methods

must report progress uniformly along the time axis,
any deviation will result in an εi that is greater than 0.
However, heuristics that vary the amount of work be-
ing reported may be able to achieve a perfect or near
perfect slope even in the presence of clustering. For
example, consider a monitor that accurately reports
progress at 10%, 15%, 20%, and 70%. Since these
reports are accurate (i.e. the time intervals between
reports are proportional to the percent of work com-
pleted) εi will be 0. Unfortunately, the long period of
apparent inactivity between 20% and 70% may lead the
user to believe that the application has stalled or other-
wise malfunctioned. To evaluate clustering we measure
the standard deviation of the time interval between re-
ports of progress — that is, the standard deviation of
ti+1 − ti, where ti+1 and ti represent two consecutive
estimation points. We then normalize this result as
a percentage of the total running time. Clearly, the
smaller this value is the more uniform the distribution
of reports of progress.

An important issue to consider is the run-time cost
for computing the estimates. While in some cases this
cost is trivial (e.g., for the naive approach from Sec-
tion 3.1.1), for other techniques the cost could have an
impact on the user. This is especially important for the
pre-RTA computation that estimates the total amount
of work. Until this estimation is completed, a progress
monitor cannot be initialized and displayed. A lengthy
pre-computing step may lead the user to believe that

the task has stalled.

5 Experimental Study

This section describes an experimental study of the
estimation techniques defined earlier. For the exper-
iments we used several versions of open-source Java
applications, as shown in Table 1. Columns “.java”
and “.class” show the number of java files and class
files present in the application respectively. Column
“Meths” shows the number of user-defined methods
in the program, while column “ReachMeth” shows the
number of reachable methods reported by RTA, includ-
ing all reachable library methods.

5.1 Initial Analysis

Table 2 contains the evaluation results for the three
estimation techniques for the initial analysis (Sec-
tion 3.1). Columns “Avg ∆i” show the average differ-
ence between pi and perfect i for all estimation points,
as described in Section 4. Recall that smaller aver-
age values for ∆i indicate better accuracy; ideally, the
value should be close to 0. Columns “Avg εi” shows the
average difference between the slopes of the estimated
curve and that of the perfect slope (Section 4). Smaller
values mean better smoothness, with ideal values being
close to 0. Finally, columns “PreProc” contain the pre-
processing time needed to obtain the initial estimate

7

(1) (2) (3)
Program Avg ∆i Avg εi Avg ∆i Avg εi STDEV PreProc Avg ∆i Avg εi

javacup i .07 1.01 .02 .53 .2% .7% .01 .09
javacup j .07 1.04 .02 .51 .1% 1.0% .01 .11
jflex1.3.4 .05 1.11 .01 .63 .1% .7% .02 .04
jflex1.3.5 .05 1.16 .02 .63 .1% 0.9% .03 .01
jgraph5.7.4.7 .16 3.00 .07 1.71 .0% .1% .009 .009
jgraph5.8 .17 3.12 .08 1.73 .0% .1% .01 .02
jpws.3.0 .03 3.24 .03 2.00 .0% .1% .05 .03
jpws.3.1 .04 3.53 .02 1.98 .1% .1% .02 .02
sablecc.3.1 .08 14.79 .08 7.35 .3% .02% .001 .006
sablecc.3.2 .08 14.90 .03 6.59 .3% .02% .05 .57
verbos.1.5 .03 .96 .02 .62 .0% .2% .009 .06
verbos.1.7 .03 .95 .01 .62 .0% .5% .03 .01
vietpad.1.2.1 .32 8.53 .16 4.42 .1% .03% .004 .01
vietpad.1.3 .32 8.49 .16 4.47 .1% .03% .02 .07

Table 3. Repeated analysis: (1) number of reachable methods, (2) methods weighted by relative time,
(3) elapsed time

(e.g., to count the number of user-defined methods for
technique 2), as percent of the total running time of
the analysis.

Naive estimate. The results for the naive ap-
proach show that the accuracy of the estimates depends
the number of reachable methods in the call graph. Ap-
plications with a total number of reachable methods
close to the 8101 method estimate, such as sablecc
and jflex, have low ∆is. However, applications with
a much larger or lower number of total reachable meth-
ods have much greater values of ∆i, as much as .27 in
some cases. This indicates that the estimated progress
is 27 percentage points off on average. The variance
seen in the smoothness results can be attributed to the
differing composition of the applications. Since this
approach reports that one unit of work is completed
every time a method is processed, to achieve the ideal
slope, every method must take the exact same time
to process. This of course is not the case — not only
do methods often vary greatly in size and complexity,
but the analysis itself processes library methods differ-
ently then user defined methods (Section 2.2). In some
cases, such as sablecc, series of small methods may
be processed very quickly producing sections of very
steep slope. Other methods in the same application
may take a very long time to process and will produce
a very flat slope. This combination of very steep and
very flat slopes leads to a large discrepancy between
the average slope of the estimates and the ideal slope.
This, of course, indicates that the heuristic does not
generate a very smooth result.

Number of user-defined methods. For the esti-
mation technique based on the number of user-defined
methods, the overhead of counting all user-defined
methods is not an issue (column “PreProc”), and the

user will not be affected by this delay. The comparison
with the naive approach shows that the second tech-
nique is slightly more accurate, but the progress is less
smooth. The reduction in smoothness is not surprising,
since the user-defined methods are a small subset of all
reachable methods, and their processing is not neces-
sarily uniformly distributed throughout the duration of
the analysis.

Number of user-defined methods and library
entry methods. The last portion of the table shows
the results for the technique that takes into account the
number of library methods called by user-defined meth-
ods (Section 3.1.3). Compared with techniques (1) and
(2), (3) does not provide any significant increase in ac-
curacy. This is due to the fact that the number of data
points added — by including the library entry methods
— is relatively small. For example, in javacup h only
42 unique library methods were identified and added
to the estimate. The highest number of library meth-
ods, 409, was added for vietpad.1.3. However, this
number is still low when compared to the total number
of reachable methods. The increased number of data
points did provide a slightly smoother result than that
of technique (2). However, any improvement seen in
technique (3) is overshadowed by the prohibitive pre-
processing time it requires. In smaller applications the
cost of pre-building the ASTs (which is how the calls
to the library methods were found) can increase the
running time as much as 34%, making the heuristic
impractical for use.

Conclusions. Of the techniques we investigated
for the initial analysis, it appears that basing the esti-
mation on the number of user-defined methods is the
most practical approach for TACLE. It provided the
most consistently accurate estimation for an accept-

8

(1) (2) (3)
Program Avg ∆i Avg εi Avg ∆i Avg εi STDEV Avg ∆i Avg εi

javacup i .07 1.05 .05 .73 .2% .35 .82
javacup j .07 .98 .03 .84 .2% .39 .90
jflex1.3.4 .05 1.23 .01 .84 .1% .46 1.01
jflex1.3.5 .05 1.08 .02 1.02 .2% .42 .52
jgraph5.7.4.7 .15 3.49 .08 2.12 .0% .64 1.27
jgraph5.8 .18 3.42 .08 2.07 .0% .64 1.35
jpws.3.0 .04 3.86 .03 2.55 .1% .67 1.05
jpws.3.1 .04 3.45 .02 2.89 .1% .65 .98
sablecc.3.1 .08 19.96 .11 9.47 .3% .71 1.52
sablecc.3.2 .08 18.71 .05 8.96 .3% .70 1.44
verbos.1.5 .03 1.14 .02 .82 .0% .41 .86
verbos.1.7 .03 .94 .01 1.16 .0% .39 .47
vietpad.1.2.1 .33 13.27 .16 6.20 .1% .53 .46
vietpad.1.3 .32 13.45 .16 7.01 .2% .55 .87

Table 4. Repeated analysis under load: (1) number of reachable methods, (2) methods weighted by
relative time, (3) elapsed time

able amount of pre-processing time. It has a distinct
advantage of not appearing to stall at 100% for long
periods of time, as is the case for technique (1) if the
application contains significantly more reachable meth-
ods than the hard-coded estimate.

5.2 Repeated Analysis

To evaluate the estimation techniques for repeated
analysis, we considered each pair of consecutive pro-
gram versions (e.g., jflex1.3.4 and jflex1.3.5).
The earlier version was executed to obtain historical
information, as described in Section 3.2. This informa-
tion was then used to create estimates for the analysis
of the later version.

Table 3 shows the results of these experiments.
There are several interesting observations that can be
made about the results. First, comparing techniques
(1) and (2), it is clear that the finer-grain information
about relative method weights is beneficial for improv-
ing the precision of the estimates. Since the meth-
ods that take longer to process are weighted to show
more work, (2) produces a dramatically smoother re-
sult. Since (2) does report variable amounts of work
being completed with every call to worked we do have
to be concerned about clustering (see Section 4). Re-
call, to evaluate the amount of clustering we take the
standard deviation of the time intervals between re-
ports of progress and normalize that value as a per-
centage of total running time. These results are shown
in column STDEV. For all the applications the stan-
dard deviation is less then .4% of the total running
time of the analysis. This indicates that for these ap-
plications clustering is not a concern. It is also clear
that the cost of pre-processing for technique (2) is neg-

ligible: basically, this is the cost of reading from disk a
list of reachable methods together with their weights.

Technique (3) provides the most accurate and
smoothest results. The inaccuracies seen are due to the
slightly different running times seen between versions.
The smoothness of this approach is very nearly ideal, as
it is designed to report progress in increments that are
exactly proportional to the amount of time that passes
between reports (i.e. 1 = (pi − pi−1)/(ti − ti−1)). The
cost of pre-processing for this technique is the same as
technique (1), a read of one line from a file, which is
negligible.

Unfortunately, the quality of estimates produced by
technique (3) depends on the execution environment
in which the analysis is operating. The results in Ta-
ble 3 were gathered on a pristine environment, meaning
the analysis was the only user-level application execut-
ing in the operating system. Table 4 shows the same
experiments (including the same history summaries)
conducted on a system with load. The load was gener-
ated by concurrently running Google Earth6, a CPU
and memory intensive program. This represents a more
“real world” situation for TACLE, where the amount of
load can easily vary between executions. In the case of
the experiments under load, the total running time of
the analysis was significantly longer then the estimates
gained by technique (3) from the no-load summary in-
formation. Thus, the progress monitor was “overly op-
timistic” — it reported significant progress percentages
based on the elapsed time, while in reality the analysis
had made very little progress, being off as much as 71
percentage points on average for sablecc. Note that
the other two techniques for repeated analysis were not

6http://earth.google.com/

9

as susceptible to environmental changes. The approach
from Section 3.2.1 — technique (1) — is clearly inde-
pendent of the machine load. The approach from Sec-
tion 3.2.2 — technique (2) — considers relative times,
not absolute ones. Therefore, if the machine load does
not change significantly during the execution of the
analysis, the weights computed at one load level should
also be valid at another load level. The slight differ-
ences in accuracy for (1) and (2) between the loaded
and the unloaded environments are likely due to the
fact that the load generated by Google Earth was not
completely constant.

Considering technique (3)’s reliance on a consistent
environment, we feel that technique (2) is best suited
for use in TACLE, because it provides an accurate low-
cost estimation and is relatively robust.

6 Conclusions and Future Work

This paper presents an initial investigation into the
difficulties of estimating the run-time progress of static
analyses. For the specific analysis considered in our
work, we propose and evaluate several techniques for
progress estimation. In the case of an initial analy-
sis without any historical information, the counting of
user-defined methods is a simple and reasonable solu-
tion. For a repeated analysis, methods weighted with
relative times from past executions appear to be a good
choice for TACLE.

Clearly, the problem we consider has much broader
applicability than the specific RTA-based analysis we
discuss. We believe that other static analysis design-
ers may have to face the problem of estimating anal-
ysis progress, especially when the analysis is part of a
modern software development environment or tool. In
this paper we provide such designers with quantifiable
metrics that may be applicable when evaluating their
efforts. Our experience also provides evidence that uti-
lizing summary information in consecutive runs of the
analysis produces much more accurate progress esti-
mates.

In the future we plan to implement other whole-
program analyses in TACLE (e.g., side-effect analy-
sis and dependence analysis), and to investigate tech-
niques for estimating their run-time progress. A long
term goal of TACLE is to make these analyses incre-
mental. Incremental analyses will require a new set
of estimation heuristics that can provide accurate esti-
mates for just the portion of the application currently
under analysis. We also plan to consider usability test-
ing to establish user-acceptable thresholds for our met-
rics.

References

[1] D. Bacon and P. Sweeney. Fast static analysis
of C++ virtual function calls. In Conference on
Object-Oriented Programming Systems, Languages,
and Applications, pages 324–341, 1996.

[2] Eclipse: An Open and Extensible IDE.
http://www.eclipse.org.

[3] J. Johnson, editor. GUI Bloopers: Don’ts and Do’s
for Software Developers and Web Designers. Mor-
gan Kaufmann Publishers Inc., San Francisco, CA,
USA, 2000.

[4] Microsoft Visual Studio.
http://msdn.microsoft.com/vstudio.

[5] A. Rountev and B. H. Connell. Object naming anal-
ysis for reverse-engineered sequence diagrams. In
International Conference on Software Engineering,
pages 254–263, 2005.

[6] A. Rountev, O. Volgin, and M. Reddoch. Static
control-flow analysis for reverse engineering of UML
sequence diagrams. In ACM SIGPLAN-SIGSOFT
Workshop on Program Analysis for Software Tools
and Engineering, pages 96–102, 2005.

[7] M. Sharp, J. Sawin, and A. Rountev. Building a
whole-program type analysis in Eclipse. In Eclipse
Technology Exchange Workshop, pages 6–10, 2005.

10

