
Precise Call Graph Construction in the Presence of Function Pointers∗

Ana Milanova Atanas Rountev Barbara G. Ryder
Department of Computer Science

Rutgers University
Piscataway, NJ 08854, USA

{milanova,rountev,ryder}@cs.rutgers.edu

Abstract

The use of pointers presents serious problems for soft-
ware productivity tools for software understanding, restruc-
turing, and testing. Pointers enable indirect memory ac-
cesses through pointer dereferences, as well as indirect pro-
cedure calls (e.g., through function pointers in C). Such in-
direct accesses and calls can be disambiguated with pointer
analysis. In this paper we evaluate the precision of a pointer
analysis by Zhang et al. [20, 19] for the purposes of call
graph construction for C programs with function pointers.
The analysis is implemented in the context of a production-
strength code-browsing tool from Siemens Corporate Re-
search. The analysis uses an inexpensive, almost-linear,
flow- and context-insensitive algorithm. To measure anal-
ysis precision, we compare the call graph computed by the
analysis with the most precise call graph obtainable by a
large category of pointer analyses. Surprisingly, for all our
data programs the analysis from [20, 19] achieves the best
possible precision. This result indicates that for the pur-
poses of call graph construction, even inexpensive analyses
can provide very good precision, and therefore the use of
more expensive analyses may not be justified.

1 Introduction

In languages like C, the use of pointers creates serious
problems for software productivity tools that use some form
of semantic code analysis for the purposes of software un-
derstanding, restructuring, and testing. Pointers enable indi-
rect memory accesses. For example, consider the following
sequence of statements:

∗This research was supported by NSF grant CCR-9900988 and by
Siemens Corporate Research.

1 *p = 1;
2 write(x);

The first statement contains an indirect memory access
through pointer p. At line 1 we need to know where p may
point to in order to determine what variables may be modi-
fied by the statement. This information is needed by a vari-
ety of applications: for example, when slicing with respect
to statement 2, a slicing tool needs to determine whether
statement 1 should be included in the slice. In addition,
pointers allow indirect procedure calls—for example, if fp
is a function pointer in C, statement (*fp)() may invoke
all functions that are pointed to by fp. Such indirect calls
significantly complicate the interprocedural flow of control
in the program.

Precise information about memory accesses and proce-
dure calls is fundamental for a large number of static anal-
yses used in optimizing compilers and software engineer-
ing tools. The goal of pointer analysis is to determine
the set of memory locations that a given memory location
may point to. For example, for the sample statements from
above, pointer analysis can determine what are the loca-
tions that p may point to. In addition, pointer analysis
determines which function addresses may be stored in a
given function pointer. Because of the importance of such
points-to information, a variety of analyses have been devel-
oped [10, 9, 5, 1, 18, 17, 20, 15, 11, 7, 4, 6, 3, 14, 8]. These
analyses provide different tradeoffs between cost and pre-
cision. For example, flow- and context-insensitive pointer
analyses [1, 17, 20, 15, 4] ignore the flow of control be-
tween program points and do not distinguish between dif-
ferent calling contexts of procedures. As a result, such anal-
yses are relatively inexpensive and imprecise. In contrast,
analyses with some degree of flow- or context-sensitivity
are typically more expensive and more precise.

The precision of different analyses has been tradition-



ally measured with respect to the disambiguation of indi-
rect memory accesses (e.g., what locations does p point to
in statement *p = 1). However, there has been no work
on measuring analysis precision with respect to the disam-
biguation of indirect procedure calls and its impact on the
construction of the program call graph. The goal of our
work is to measure the precision of a pointer analysis by
Zhang et al. [20, 19] (referred to by its authors as the FA
pointer analysis) for the purposes of call graph construction
for C programs with function pointers. The FA analysis is
a flow- and context-insensitive analysis with O(nα(n, n))
complexity, where n is the size of the program and α is the
inverse of Ackermann’s function. The analysis is relatively
imprecise and inexpensive, and is comparable to Steens-
gaard’s points-to analysis [17] in terms of cost and preci-
sion.

The FA analysis was implemented in the context of a
source code browser for C developed at the Software Engi-
neering Department of Siemens Corporate Research. The
standard version of the browser provides syntactic cross-
reference information and a graphical user interface for ac-
cessing this information. The PROLANGS group at Rut-
gers University worked on extending the browser function-
ality to provide and display semantic information obtained
through static analysis. In particular, we implemented the
FA pointer analysis and used its output to augment the call
graph information provided by the browser. In the stan-
dard syntax-based browser version, indirect procedure calls
could not be handled. By using the output of the FA anal-
ysis, the browser became capable of providing correct and
complete information about the program call graph.

To measure analysis precision, for each of our data pro-
grams we compared the call graph computed by the FA
analysis with the “most precise” call graph. In Section 4
we discuss in detail our definition of “most precise”, but
intuitively, this was the best call graph that could be com-
puted by a wide variety of existing pointer analyses (in-
cluding analyses that are theoretically more precise than
the FA analysis, and substantially more expensive in prac-
tice). By comparing these two call graphs, we wanted to
evaluate the imprecision of the FA analysis and to gain in-
sight into the sources of this imprecision. Surprisingly, in
all our data programs there was no difference between the
two call graphs. This result indicates that for the purposes
of call graph construction, even analyses at the lower end
of the cost/precision spectrum can provide very good pre-
cision, and therefore the use of more expensive analyses
may not be justified. This finding is particularly interest-
ing because existing empirical evidence shows that for the
purposes of disambiguating indirect memory accesses (e.g.,
in *p = 1), the use of more expensive analyses provides
substantial precision benefits.

typedef int (*PFB)();

struct parse table {
char *name;
PFB func; };

int func1() { ... }
int func2() { ... }

struct parse table table[] = {
{"name1", &func1},
{"name2", &func2} };

PFB find p func(char *s) {
1 for (i=0; i<num func; i++)
2 if (strcmp(table[i].name,s)==0)
3 return table[i].func;
4 return NULL; }

int main(int argc, char *argv[]) {
...

5 PFB parse func=find p func(argv[1]);
6 if (parse func)
7 (*parse func)();
8 else { ... } }

Figure 1. Table dispatch.

Contributions The contributions of our work are the fol-
lowing:

• We present the first empirical study of pointer analy-
sis precision with respect to disambiguation of indirect
procedure calls and call graph construction.

• On a set of eight publicly available realistic C pro-
grams, we show that a relatively imprecise and inex-
pensive pointer analysis produces the most precise call
graph. Therefore, for the purposes of call graph con-
struction, the use of more expensive analyses may not
be justified.

Outline The rest of this paper is organized as follows.
Section 2 presents several examples of function pointer us-
age in C. Section 3 describes the FA pointer analysis. The
notion of most precise call graph is discussed in Section 4.
Section 5 describes our empirical results and the conclu-
sions from these results. Related work is discussed in Sec-
tion 6.

2 Usage Patterns for Function Pointers in C

This section presents several examples that illustrate typ-
ical uses of function pointers in C programs. These exam-
ples are representative of the stylistic patterns we encoun-
tered in our benchmarks.



struct chunk { ... };

struct obstack {
struct chunk *chunk;
struct chunk *(*chunkfun) ();
void (*freefun) (); };

void chunk fun(struct obstack *h,
void *f) {

h->chunkfun=
(struct chunk *(*)())f; }

void free fun(struct obstack *h,
void *f) {

h->freefun = (void (*)()) f; }

int main() {
struct obstack h;
chunk fun(&h,&xmalloc);
free fun(&h,&xfree); ... }

Figure 2. Extendable functionality.

2.1 Table Dispatch

Consider the example in Figure 1. Table table maps a
name to a function address. Function find p func takes
a name as an argument and returns the address of the func-
tion that corresponds to that name in the map. Therefore,
the function invoked at run time at the indirect invocation
site at line 7 is either func1 or func2, depending on the
value of the first command line argument. Storing function
addresses in large function tables is widely used. At run
time the functions are typically dispatched from the table
based on user input (e.g., command line option, command
line argument, or spreadsheet function).

2.2 Extendable and Customizable Functionality

Figure 2 shows part of a memory management library.
Functions chunk fun and free fun allow the library
client to choose memory allocation and deallocation rou-
tines initially associated with each obstack. The library
client may also redefine chunkfun and freefun of an
obstack at any time.

We also observed libraries that define global data struc-
tures with function pointer fields. These fields are initialized
to point to functions that provide default functionality. The
library provides an interface which allows the client to re-
define or extend this functionality by changing the values of
the function pointer fields.

2.3 Polymorphic Behavior

In some cases formal parameters are declared as function
pointers in order to allow the enclosing function to behave

in a polymorphic manner. For example, the goal of function

void sentence(FILE *f,void (*process)())

may be to read all sentences from a given file, parse each
sentence, and then process that sentence. If sentence is
invoked from a word counting routine, the processing rou-
tine process will be counting the words in a sentence.
If sentence is invoked from a spell checking routine,
process will be checking for spelling mistakes.

3 The FA Pointer Analysis

The FA analysis [20, 19] is a pointer alias analysis1 for
C that is flow-insensitive and context-insensitive. Flow-
sensitive analyses take into account the flow of control be-
tween program points inside a procedure, and compute sep-
arate solutions for these points. Flow-insensitive analyses
ignore the flow of control between program points, and
therefore can be less precise and more efficient than flow-
sensitive analyses. Context-sensitive analyses distinguish
between the different contexts under which a procedure is
invoked, and analyze the procedure separately for each con-
text. Context-insensitive analyses do not separate the dif-
ferent invocation contexts for a procedure, which improves
efficiency at the expense of some possible precision loss.

The FA analysis is based on an algorithm that uses a
fast UNION-FIND data structure and has almost-linear time
complexity. The analysis is a relatively imprecise and com-
putationally inexpensive approach for memory disambigua-
tion, and belongs at the low end of the pointer analysis spec-
trum with respect to cost and precision. This analysis is
similar to a popular unification-based pointer analysis by
Steensgaard [17]. The most important difference between
the FA analysis and Steensgaard’s analysis is that the FA
analysis is able to distinguish between structure fields. For
example, if there is a structure with two pointer fields f and
g and if s is a variable of that structure type, Steensgaard’s
analysis will always determine that s.f and s.g point to
the same memory locations, because it associates a single
alias set with *(s.f) and *(s.g). The FA analysis com-
putes distinct alias sets for *(s.f) and *(s.g).

In this section we briefly describe the FA analysis at a
high level; we do not intend to provide all details of its de-
sign and implementation. The analysis is described in detail
in [20, 19].

The algorithm first computes an equivalence relation, re-
ferred to in [20, 19] as the PE (Pointer-related Equality)
equivalence relation. The PE relation is then used to derive
another equivalence relation, referred to as the FA (Flow-
insensitive Alias) equivalence relation. The FA relation pro-
vides aliasing information.

1Aliasing occurs when multiple names refer to the same memory loca-
tion. For example, after the statement p=&x, *p and x are aliases.



p = &x;
p->f = &z;
tt = p;

Figure 3. Sample set of statements.

3.1 The PE Equivalence Relation

Memory locations and addresses of memory locations
are referred to as object names. For example, the set of
object names for the statements from Figure 3 is

p,&x,x,p->f,*p,&z,z,tt

These are the names that appear syntactically in the pro-
gram. Name *p is added because it appears as a prefix of
(*p).f. Names x and z appear in &x and &z, respec-
tively.

If a pair of object names is in the PE relation, that means
that the expressions denoted by these names may have the
same value at run time. For example, for pointers this means
that the two pointers may point to the same memory lo-
cations. The relation defines a partition of the set of ob-
ject names into equivalence classes. To compute the re-
lation, the analysis builds a graph referred to as the GPE

graph. The nodes in this graph are equivalence classes of
object names; the edges are either dereference edges labeled
with *, or field edges labeled with a field identifier.

In the initial GPE graph there is a singleton equivalence
class for each object name. For our sample set of state-
ments, the initial graph contains the following edges:

{p
∗

−→ *p, *p
f

−→ p->f, &x
∗

−→ x, &z
∗

−→ z}

The analysis processes all program statements and merges
nodes corresponding to expressions that may have the same
value. For example, for each assignment, the analysis
merges the two nodes corresponding to the equivalence
classes that contain the left-hand side and the right-hand
side of the assignment. If there are outgoing edges that
have the same label, their target nodes are merged recur-
sively. For our example, after processing p=&x the analysis
merges nodes p and &x. Nodes *p and x are merged as
well because there are outgoing edges labeled * from p to
*p and from &x to x. Nodes p->f and &z are merged due
to statement p->f=&z; no recursive merge follows because
p->f has no outgoing edges. Similarly, nodes tt and p are
merged due to the last statement.

The nodes in the final GPE graph define the PE equiva-
lence relation. The graph for our example contains the fol-
lowing equivalence classes, represented as graph nodes:

{p,&x,tt}, {*p,x}, {p->f,&z}, {z}

Example 1 Recall the set of statements in Figure 1. The
initial GPE graph contains the following edges:

table[]
name

−→ table[].name

table[]
func

−→ table[].func

&func1
∗

−→ func1 &func2
∗

−→ func2

When table is initialized, singleton equivalence classes
{table[].func} and {&func1} are merged first. Then
nodes {table[].func,&func1} and {&func2} are
merged. Because there are outgoing edges with the same
label from these nodes to nodes {func1} and {func2} re-
spectively, {func1} and {func2} are merged as well. As
a result of the initialization of table, the analysis creates
the following equivalence classes (connected with a deref-
erence edge):

{table[].func, &func1, &func2}

{func1, func2}

After line 3 the created equivalence classes are

{ret find p func, table[].func,

&func1, &func2}

{func1, func2}

where ret find p func contains the return values of
find p func. At line 5 the equivalence class which
contains ret find p func is merged with the singleton
class {parse func}. As a result of the recursive merge,
the following equivalence classes are produced:

{ret find p func, table[].func,

&func1, &func2, parse func}

{func1, func2, *parse func}

The GPE graph contains additional nodes and edges (e.g.,
related to argv and s); for brevity, the rest of the graph is
not shown.

3.2 The FA Relation

The FA relation is derived from the PE relation in the fol-
lowing manner. Suppose that two object names o1 and o2

belong to the same equivalence class n ∈ GPE . If n has an
outgoing edge labeled with * and if the target node of that
edge contains object names o′1 and o′2 that are derived from
o1 and o2, then the pair (o′1, o

′

2) is in the FA relation. For
example, for the statements in Figure 3, p and &x belong to
node {p,&x,tt}, which has an outgoing dereference edge
whose target is node {*p,x}; therefore, the pair (*p,x) is
in the FA relation. In general, the relation holds for any pair
of object names o′1 and o′2 that belong to the same equiva-
lence class m ∈ GPE and for which (i) there is a path in



GPE from n to m labeled a1, a2, . . . , ak such that at least
one ai is a dereference, and (ii) o′1 and o′2 are derived from
o1 ∈ n and o2 ∈ n by applying a1, a2, . . . , ak.

Given the GPE graph, it is straightforward to compute
the FA relation. It can be proven that if two object names
may be aliased at some program point, they are guaranteed
to be in the FA relation [20, 19]. For our example, the FA
equivalence classes are:

{p}, {tt}, {*p,x}, {p->f}, {z}

The meaning of FA equivalence class {*p,x} is that *p
and x may be aliased at some program point.

For the purposes of our investigation, we examined the
FA equivalence class of *fp for each function pointer fp
in the program. This information was used to determine the
possible targets of all indirect calls through fp.

Example 2 Recall Example 1 from Section 3.1. After
constructing the GPE graph, the analysis computes the fol-
lowing FA equivalence classes:

{ret find p func}, {table[].func},

{parse func},

{*parse func, func1, func2}

Therefore, the possible targets of the indirect call at line 7
in Figure 1 are func1 and func2.

4 The Most Precise Pointer Solution

In our comparison experiments, we wanted to deter-
mine the difference between the call graph computed by
the FA analysis and the best possible call graph (i.e., the
call graph computed from the most precise pointer anal-
ysis solution). Our notion of a “most precise solution”
is defined with respect to a specific category of pointer
analyses. More precisely, we defined a formal model
that describes a wide variety of existing pointer analyses
(flow-sensitive/flow-insensitive, context-sensitive/context-
insensitive). In essence, this model characterizes the vast
majority of the standard commonly-used pointer analysis
technology. Inside this model, we define the notion of a
most precise pointer solution. Any analysis that fits in this
model computes a solution that is either the same as, or an
over-approximation of the most precise solution. To sim-
plify the presentation, we omit the formal description of
our model (the details can be found in [12]), and we only
describe the major points of the model and the correspond-
ing most precise solution.

We consider analyses that represent the program using an
interprocedural control flow graph (ICFG) G = (N, E, n0)
which contains control flow graphs for all procedures in the

program. The set of nodes N represents all program state-
ments and the set of edges E represents the flow of control
between these statements. Each procedure has associated
a single entry node (node n0 is the entry node of the start-
ing procedure) and a single exit node. Each call statement
is represented by a pair of nodes, a call node and a return
node. For each direct call, there is an edge from the call
node to the entry node of the called procedure, as well as an
edge from the exit node of the called procedure to the return
node in the calling procedure. For indirect calls, G does not
contain edges (call,entry) or (exit,return); such edges are
discovered during the analysis.

The model uses rules, where each rule represents the
meaning of an individual program statement. Each rule
takes as input a points-to graph (i.e., a set of points-to edges
(x, y), representing the fact that memory location x con-
tains the address of memory location y). The rule produces
a new points-to graph by adding new points-to edges and re-
moving “killed” points-to edges. In addition, the rule may
add newly discovered edges (call,entry) and (exit,return) at
indirect calls.

A realizable path in the ICFG is a path on which every
procedure returns to the call site that invoked it [16, 10, 13];
only such paths represent potential sequences of execution
steps. Note that some of these paths are not apparent in
the initial ICFG (because of indirect calls), and are only
discovered during the analysis.

For each realizable path p = (n0, . . . , ni), let Gp be the
points-to graph which results from applying the rules for all
nodes in the path in the order specified by the path. Let
RP(n0, n) be the set of all realizable paths from starting
node n0 to any node n. For each n ∈ N , the most precise
solution (MPS) at n is defined as

MPS (n) =
⋃

p∈RP(n0,n)

Gp

Intuitively, with respect to the category of pointer anal-
yses that fit the above model, the most precise solution
MPS (n) represents the best possible approximation of the
points-to relationships that are created at run time on possi-
ble execution paths to node n. Thus, MPS (n) is at least as
precise as the solutions computed by the majority of exist-
ing pointer analyses (including analyses that, at least theo-
retically, are significantly more precise than the FA analysis
described earlier).

For each of our data programs, we considered all n ∈ N

that represent indirect calls. For each such n, we exam-
ined the program source code and we manually computed
MPS (n). The resulting “best possible call graph” is the
most precise call graph obtainable with the standard, widely
used pointer analysis technology.



Name Description LOC Indirect Calls
diction 0.8 GNU diction command 2652 3
gdbm 1.8.0 GNU database routines 5577 1
072.sc 6.1 Spreadsheet program 9192 2
find 4.1 GNU find command 15200 22
minicom 1.83.0 UNIX communication program 15607 6
m4 1.4 GNU macro processor 16375 17
less 3.40 GNU less command 20397 4
unzip 5.40 Extraction utility 26273 307

Table 1. Description of data programs.

5 Empirical Results

We performed experiments on a set of eight realistic C
programs, ranging in size from 2652 to 26273 lines of code.
The description of the data programs is given in Table 1.
Each program employs function pointers; the number of in-
direct calls in the program is shown in the last column of
Table 1.

For each data program, we compared the FA-based call
graph with the best possible call graph. Our comparison
showed no differences between the two graphs. This sur-
prising result can be explained with the fact that the usage
of function pointers in C programs is simpler than the us-
age of data pointers; as discussed in Section 2, we observed
several stylistic patterns of function pointer usage.

The case of function dispatch from a dispatch table based
on a string is the most frequently occurring pattern of func-
tion pointer usage (recall the example in Figure 1). The
string that is used to select the function from the table is
either (i) evaluated at run time, (ii) determined based on a
command line argument or option, or (iii) determined based
on interactive user input. Therefore, even using the most
precise pointer solution, we cannot do better but conclude
that all functions in the table can be potentially selected.

We encountered several libraries that used structure
fields to store function pointers. Although the libraries pro-
vide functionality for changing the default functions pointed
to by the function pointers, this functionality is not used by
the library clients—that is, the function pointer fields are
initialized once and are not modified later in the code. As a
result, the FA analysis is able to conclude that the points-to
set associated with each function pointer field is a single-
ton, and therefore the achieved precision is the same as in
the most precise solution. For this pattern of usage, it is
crucial that the FA analysis is able to distinguish between
structure fields. To illustrate this point, recall the example
in Figure 2. Steensgaard’s points-to analysis [17], which
is a popular analysis similar to the FA analysis, does not
distinguish between structure fields within the same struc-
ture. Therefore this analysis will erroneously infer that the

possible targets at indirect calls through h.chunkfun are
xmalloc and xfree. The same imprecision occurs at in-
direct calls throughh.freefun. The imprecision is due to
the fact that the points-to sets of chunkfun and freefun
are merged because the analysis does not distinguish the
fields in structure obstack.

Finally, consider the following example which summa-
rizes another frequently used pattern:

void f(void (*fp)()) {...(*fp)()...}

Suppose that there is a path from the entry node of the pro-
gram to a given call site for f, and there is a path from the
entry node of f to the indirect call site (*fp)() (otherwise
the indirect call would be dead code). For all such cases in
our benchmarks, the function address is taken at the actual
call site—that is, the call has the form f(&g). Clearly, in
the most precise pointer solution, the points-to set of fp
contains all functions g whose addresses are used as actuals
at calls to f. The FA analysis adds these functions to the FA
equivalence class of *fp, and for our benchmarks these are
the only elements of that equivalence class.

The results from this experiment indicate that inexpen-
sive pointer analyses such as the FA analysis may provide
sufficient precision for the purposes of call graph construc-
tion. In this context, the use of more expensive pointer anal-
yses may not be necessary.

6 Related Work

There is a large body of work on various pointer analy-
ses for C with different degrees of cost and precision [10,
9, 5, 1, 18, 17, 20, 15, 11, 7, 4, 6, 3, 14, 8]. Traditionally,
the precision of these analyses has been evaluated with re-
spect to the disambiguation of indirect memory reads and
writes (e.g., in *p=1). Our work evaluates the precision of
pointer analysis with respect to indirect procedure calls and
call graph construction.

Existing work makes only relative evaluation of analysis
precision (i.e., how does the solution computed by analysis
X differ from the solution computed by analysis Y ). Our



work evaluates the absolute precision of the FA analysis, by
comparing it with the best precision that could be achieved
with the standard pointer analysis technology.

Previous work by Antoniol et al. [2] provides a compre-
hensive study of the impact of function pointers on the call
graphs of C programs. Similarly to our work, this study uses
pointer analysis to determine the possible targets of indirect
calls. The goal of the work in [2] is to evaluate the impact
of function pointers on the call graphs of C programs. The
conclusion of this study is that indirect calls deeply affect
the structure of the call graph, and therefore pointer analy-
sis should be employed to take into account such calls. The
goal of our work is to evaluate the precision of the FA anal-
ysis in the context of this problem. Our results indicate that
precise call graph construction is possible even with inex-
pensive pointer analyses.

7 Conclusions and Future Work

We present an empirical evaluation of the precision of
the FA pointer analysis [20, 19] with respect to disambigua-
tion of indirect calls in eight realistic C programs. Our re-
sults show that in the context of this problem, a relatively
imprecise and inexpensive pointer analysis such as the FA
analysis is capable of achieving the best precision obtain-
able with the standard pointer analysis technology. These
findings indicate that pointer analyses at the lower end of
the cost/precision spectrum may be sufficiently precise for
the purposes of call graph construction in the presence of
function pointers.

In our future work we would like to reconfirm the results
from this study for more programs and for programs that are
larger than the ones in our current data set. To compute the
most precise pointer solution for larger programs, we are
considering techniques for filtering out parts of the program
that are irrelevant with respect to the generation and prop-
agation of function pointer values. Finally, we would like
to investigate approaches for adapting the FA analysis for
incomplete programs (e.g., libraries), and to evaluate em-
pirically the precision of the resulting call graphs.

References

[1] L. Andersen. Program Analysis and Specialization for
the C Programming Language. PhD thesis, DIKU,
University of Copenhagen, 1994.

[2] G. Antoniol, F. Calzolari, and P. Tonella. Impact of
function pointers on the call graph. In European Con-
ference on Software Maintenance and Reengineering,
pages 51–59, 1999.

[3] B. Cheng and W. Hwu. Modular interprocedural
pointer analysis using access paths. In Conference on

Programming Language Design and Implementation,
pages 57–69, 2000.

[4] M. Das. Unification-based pointer analysis with direc-
tional assignments. In Conference on Programming
Language Design and Implementation, pages 35–46,
2000.

[5] M. Emami, R. Ghiya, and L. Hendren. Context-
sensitive interprocedural points-to analysis in the pres-
ence of function pointers. In Conference on Program-
ming Language Design and Implementation, pages
242–257, 1994.

[6] M. Fähndrich, J. Rehof, and M. Das. Scalable context-
sensitive flow analysis using instantiation constraints.
In Conference on Programming Language Design and
Implementation, pages 253–263, 2000.

[7] J. Foster, M. Fähndrich, and A. Aiken. Polymorphic
versus monomorphic flow-insensitive points-to analy-
sis for C. In International Static Analysis Symposium,
LNCS 1824, pages 175–198, 2000.

[8] N. Heintze and O. Tardieu. Ultra-fast aliasing analysis
using CLA. In Conference on Programming Language
Design and Implementation, pages 254–263, 2001.

[9] M. Hind, M. Burke, P. Carini, and J. Choi. Inter-
procedural pointer alias analysis. ACM Transactions
on Programming Languages and Systems, 21(4):848–
894, May 1999.

[10] W. Landi and B. G. Ryder. A safe approximation algo-
rithm for interprocedural pointer aliasing. In Confer-
ence on Programming Language Design and Imple-
mentation, pages 235–248, 1992.

[11] D. Liang and M. J. Harrold. Efficient points-to analy-
sis for whole-program analysis. In Symposium on the
Foundations of Software Engineering, LNCS 1687,
pages 199–215, 1999.

[12] A. Milanova, A. Rountev, and B.G. Ryder. Precise call
graph construction in the presence of function point-
ers. Technical Report DCS-TR-442, Rutgers Univer-
sity, 2001.

[13] T. Reps, S. Horwitz, and M. Sagiv. Precise inter-
procedural dataflow analysis via graph reachability.
In Symposium on Principles of Programming Lan-
guages, pages 49–61, 1995.

[14] A. Rountev and S. Chandra. Off-line variable substi-
tution for scaling points-to analysis. In Conference on
Programming Language Design and Implementation,
pages 47–56, 2000.



[15] M. Shapiro and S. Horwitz. Fast and accurate flow-
insensitive points-to analysis. In Symposium on Prin-
ciples of Programming Languages, pages 1–14, 1997.

[16] M. Sharir and A. Pnueli. Two approaches to inter-
procedural data flow analysis. In S. Muchnick and
N. Jones, editors, Program Flow Analysis: Theory and
Applications, pages 189–234. Prentice Hall, 1981.

[17] B. Steensgaard. Points-to analysis in almost linear
time. In Symposium on Principles of Programming
Languages, pages 32–41, 1996.

[18] R. Wilson and M. Lam. Efficient context-sensitive
pointer analysis for C programs. In Conference on
Programming Language Design and Implementation,
pages 1–12, 1995.

[19] S. Zhang. Practical Pointer Aliasing Analyses for C.
PhD thesis, Rutgers University, August 1998.

[20] S. Zhang, B. G. Ryder, and W. Landi. Program decom-
position for pointer aliasing: A step towards practical
analyses. In Symposium on the Foundations of Soft-
ware Engineering, pages 81–92, 1996.


