Hypergraph Partitioning for Automatic Memory Hierarchy
Management

Sriram Krishnamoorthy!
Atanas Rountev!

Umit Catalyurek?

Jarek Nieplocha®
P. Sadayappan'

! Dept. of Computer Science and Engineering, > Dept. of Biomedical Informatics
The Ohio State University
3 Pacific Northwest National Laboratory

Abstract

In this paper, we present a mechanism for automatic
management of the memory hierarchy, including sec-
ondary storage, in the context of a global address space
parallel programming framework. The programmer
specifies the parallelism and locality in the computation.
The scheduling of the computation into stages, together
with the movement of the associated data between sec-
ondary storage and global memory, and between global
memory and local memory, is automatically managed.
A novel formulation of hypergraph partitioning is used
to model the optimization problem of minimizing disk
I/O. Experimental evaluation of the proposed approach
using a sub-computation from the quantum chemistry
domain shows a reduction in the disk I/O cost by up to
a factor of 11, and a reduction in turnaround time by up
to 49%, as compared to alternative approaches used in
state-of-the-art quantum chemistry codes.

1 Introduction

The dramatic strides in hardware performance of mod-
ern high-end systems over the past decades have not
been matched by a corresponding improvement in the
ease of programming them. The increasingly complex
hardware and communication architectures, while en-
abling high performance, have resulted in an increasing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

SC2006 November 2006, Tampa, Florida, USA

0-7695-2700-0/06 $20.00 (C)2006 IEEE

amounts of detail being handled by the programmer to
achieve that performance.

From a programmer’s viewpoint, the complexity of the
code required to implement a given algorithm or simula-
tion is a function of the level of detail the programming
model exposes to the programmer, the number of deci-
sions and choices to be made, together with the level of
detail required to manage performance-related aspects
of the underlying hardware (such as memory hierarchy,
processor association, etc.) The higher level abstrac-
tions improve programmer productivity.

While existing global address space models simplify the
task of programming parallel applications, the problem
is compounded when programming out-of-core applica-
tions. In addition to handling the various aspects of par-
allelism, a programmer has to contend with the choice
of placement of data in the memory hierarchy, orchestra-
tion of the movement of data between disk and memory,
ensuring that the memory utilization does not exceed the
size of the available physical memory, and scheduling
the computation.

In this paper, we present an approach to automatic man-
agement of data movement and scheduling of computa-
tion for out-of-core programs, those with data too large
to fit into the collective physical memory of the parallel
system. This work is done in the context of a global ad-
dress space framework for programming parallel out-of-
core applications. To improve productivity, the frame-
work presents the user with a computation abstraction
that allows her to express the locality and parallelism in
the computation, organized as a set of independent tasks.
This abstraction operates on specific data structures that
present data of sufficient granularity for efficient disk
I/O and communication. In particular, in this paper, we
demonstrate the approach to automatic memory hierar-
chy management using block-sparse arrays that arise in
quantum chemistry calculations such as Coupled Clus-
ter methods [Crawford and III 2000].

There has been extensive research to optimize out-of-
core computations involving regular data structures such
as dense multi-dimensional arrays [Navarro et al. 1994;
Sahoo et al. 2005; Krishnan et al. 2003; Krishnan et al.
2004]. A typical solution in the case of dense multi-
dimensional arrays is tiling. Existing approaches do not
readily extend to more general data structures, such as
block-sparse arrays.

We use hypergraph partitioning for scheduling the com-
putation into stages so that each stage can be computed
by reading/writing the relevant data elements exactly
once. A novel partitioning scheme is proposed to reduce
memory consumption within a stage, thus increasing the
number of tasks that can be processed within a stage,
potentially reducing the disk I/O cost incurred. The per-
formance advantages over alternative approaches em-
ployed in the state-of-the-art implementation of com-
putation chemistry models in NWChem [High Per-
formance Computational Chemistry Group 2004] are
demonstrated.

The paper is organized as follows. Section 2 describes
the computational context. Section 3 distinguishes the
work in this paper from other related work. The data
and computation abstractions that form the basis of this
work are briefly described in Section 4. The hypergraph
partitioning scheme is detailed in Section 5. Experimen-
tal evaluation of our scheme is presented in Section 6.
Section 7 concludes the paper.

2 Motivation

One of the major motivations for the development of
the proposed approach is the quantum chemistry mod-
els such as Coupled Cluster methods [Crawford and IIT
2000]. Tensor Contraction Engine (TCE) [Baumgartner
et al. 2002] synthesis system is a domain-specific com-
piler for expressing ab initio quantum chemistry mod-
els. The TCE takes as input a high-level specification
of a computation, expressed as a set of tensor contrac-
tion expressions, and transforms it into efficient paral-
lel code. Each tensor contraction expression is com-
prised of a collection of multi-dimensional summations
of products of several block-sparse input arrays. Con-
sider the following tensor contraction from the domain
of quantum chemistry:

pl,p2,p3:0
Wl k2,3 :V
i0[pl,p2,h1,h2) += —t[pl, p3,hl, h3] xil[h3, p2,h2, p3]

where indices p3 and /3 are contracted out. Here O is
the number of occupied orbitals, and V is the number of
virtual orbitals. O and V are divided into segments. This
segmenting of the dimensions forms a cartesian grid that
divides the multi-dimensional array into blocks. An op-
eration on the indices of the segments that form a block
determines if that block is non-zero. The sizes of O and
V are such that the arrays are too large into fit into the
collective physical memory of a parallel system. The ar-
rays are usually stored on the local disks attached to the
compute nodes in a cluster so as to achieve scalable 1/O.

Despite being a variant of matrix-matrix multiplication,
the block-sparsity in tensor contractions leads to irregu-
lar data access patterns that are not easily tractable. In
addition, the difficulty in determining an accurate closed
form solution to the size of non-zero data within a tile
makes the use of standard out-of-core dense matrix mul-
tiplication algorithms a non-trivial task. The wide vari-
ation in the sizes of the non-zero blocks, together with
the accompanying variation in the data access pattern,
makes effective tile-size selection that minimizes the to-
tal disk I/O cost a challenging task.

Given such a computation consisting of a set of inde-
pendent tasks, with each data brick potentially accessed
by more than one task, our objective is to determine a
schedule for the movement of data bricks between disk
and memory, and the processing of the tasks, such that
the total disk I/O cost is minimized.

3 Related Work

Abstractions for block-sparse matrices exist in the con-
text of linear algebra and iterative solvers [Duff et al.
1997]. Aztec [Tuminaro et al. 1999] is a parallel it-
erative solver package that provides a global view of
a distributed matrix. Advanced partitioning techniques
[Hendrickson and Leland 1994] are used to determine
the computation distribution and mapping. Our goal is
to provide a general-purpose abstraction for implement-
ing parallel algorithms operating on semi-structured
data, with block-sparse matrices as the first data struc-
ture we have targeted. The computation abstractions and
the mechanisms for optimization are not tightly coupled
with block-sparse matrices, and can be utilized in a wide
range of contexts.

Dynamic load-balancing based on work-stealing has
been studied, particularly for state-space search [Sinha
and Kalé 1993] . Charm++ [Kalé and Krishnan 1993]

supports dynamic load-balancing by object migration.
Cilk [Randall 1998] supports load-balancing of compu-
tations based on work-stealing. OpenMP exploits par-
allelism at the loop level by distributing different itera-
tions to different processors. Data locality is not explic-
itly taken into consideration in any of these systems.

Catalyiirek and Aykanat [Catalyiirek and Aykanat 1999;
Catalyiirek and Aykanat 1996] have used hypergraph-
partitioning to parallelize sparse matrix-vector multipli-
cations. Chang et al. [Chang et al. 2001] performed par-
allel data aggregation based on hypergraphs. Khanna
et al. [Khanna et al. 2005] present a hypergraph-based
approach to scheduling tasks with batch shared 1/0. All
these and many other applications of hypergraph par-
titioning focus on obtaining an effective mapping of a
parallel computation on to the processors of a paral-
lel system. We focus on using hypergraph partitioning
for scheduling, i.e., for sequencing of computations and
data movement - not a natural match to hypergraph par-
titioning.

Our start-time optimizations are similar, in spirit, to the
inspector-executor model used in Chaos [Saltz et al.
1995]. There is an extensive body of research on op-
timizing computations involving dense matrices, ac-
cessed by regular memory reference patterns [Ahmed
et al. 2000; Kodukula et al. 1997; Lim and Lam 1998;
Lim et al. 2001; Krishnan et al. 2003; Krishnan et al.
2004]. We are not aware of any work that develops
integrated compile/runtime approaches for data locality
optimization, computational load balancing, and mini-
mization of disk I/O for computations accessing semi-
structured and unstructured data.

4 Locality-Aware Abstractions

In this section, we briefly discuss the data and computa-
tion abstractions that constitute the global address space
framework under consideration. Note that the computa-
tion abstraction is decoupled from the data abstractions
and can be leveraged for other data structures as well.
The details of these abstractions can be found in [Krish-
namoorthy et al. 2006].

4.1 Abstraction for Block-Sparse Matri-
ces

An abstraction is provided to manipulate multi-
dimensional block-sparse matrices that occur in the con-
text of the TCE. The user specifies a brick size along
each dimension, which is used to divide the dimensions
of the array, so that the non-zero blocks can be stored as
collections of bricks. Each brick is uniquely identified
by a brick number, derived from its position in the array.
A brick is the basic unit of communication and I/O. A
disk array is provided that distributes the bricks amongst
the local disks of the processors. Collective I/O opera-
tions enable reading from and writing to collections of
bricks in the disk arrays.

The disk array has an in-memory counterpart — the
memory brick collection. The memory brick collection
is a global distributed data structure that supports one-
sided communication to an arbitrary brick in the collec-
tion, given the brick number.

Manipulating a data array involves creating a memory
brick collection and populating it with the set of bricks
to be accessed by that memory brick collection. Mem-
ory is then allocated to accommodate the bricks. Col-
lective I/O operations can now be used to move all
the bricks in the memory brick collection between the
global memory and disk.

4.2 Abstraction For
Load Balancing

Locality-Aware

The computation abstraction provided to the user en-
ables the specification of a set of independent tasks,
without any dependences, to be executed in parallel.
Each task is sequential and is associated with a set of
data elements in a globally addressed data structure such
as the one described above. An estimate of the execution
time of each task is also specified. The task is processed
using a user-supplied function that is assumed to be op-
timized for sequential execution.

A majority of practical parallel applications have outer
serializing loops (representing sequencing in time or it-
eration till convergence), but within those outer-serial
loops, they exhibit considerable “forall” parallelism. A
significant number of engineering codes using finite-
element, finite-difference, and finite-volume methods fit
this model. For these applications, an abstraction of in-
dependent tasks within each iteration of the outer loop

is appropriate, as is the case for the TCE application that
motivates this work.

A task pool is created and populated with all the tasks
to be processed. Before starting the processing of any
task in the task pool, the task pool is sealed to signify
the completion of population operations. At this stage,
the tasks in the task pool are analyzed for data reuse and
a schedule for I/O and computation is determined.

The computation and I/O schedule, once determined,
can be used to process the set of tasks in the task pool
multiple times. For example, in TCE, a given sequence
of tensor contractions is evaluated many times for con-
vergence. Thus the start-time cost of optimization is
paid once and is amortized over multiple executions of
the task pool.

All global data structures are initially assumed to be dis-
tributed amongst the local disks attached to the proces-
sors in a cluster. Movement of data from the distributed
data structures in disk to their in-memory counterparts is
done collectively. Once the data is in the global memory,
the computation proceeds asynchronously with each
process evaluating the next task in the sequence of tasks
to be executed.

The memory left unused after allocating the distributed
data structures is used to accommodate a LRU cache.
The cache reduces the overall communication cost and
network contention in the system.

5 Hypergraph Partitioning

In this section, we present a novel application of hyper-
graph partitioning to automatically determine the com-
putation and I/O schedule. We begin with a definition
of the problem and explain the hypergraph partitioning
problem. The limitations of a direct application of the
hypergraph partitioning model are discussed. We then
present an alternative formulation that better solves our
problem of interest.

5.1 Problem Definition

We are given a computation consisting of a set of in-
dependent tasks, with each task accessing a set of data
elements. The data elements are in secondary storage
and each data element is potentially accessed by more

than one task. The objective is to determine a computa-
tion schedule, so as to minimize the total disk I/O cost.
The schedule for a computation consists of a sequence
constructed from the following five operations:

Read Read a brick into physical memory
Write Write a brick to disk

Allocate Allocate memory for a brick
Deallocate Free memory allocated to a brick
Compute Process a task

Note that buffers for all data elements (henceforth called
bricks) need to be allocated and de-allocated, whereas
the disk I/O schedule is to be determined only for the
input and output bricks. The schedule is required to en-
sure that at any point in the processing of the tasks, the
total memory allocated to the data bricks is less than the
memory available. In the case of a parallel system, the
aggregate memory available is the constraint imposed
on the I/O schedule.

5.2 Hypergraph Partitioning Problem

A hypergraph is a generalization of an undirected graph
in which an edge, referred to as a net, can connect more
than two vertices. The hypergraph partitioning problem
is concerned with dividing a hypergraph into a set of P
sub-hypergraphs, for a given P, such that the cost of in-
terconnection between the parts is minimized. The cost
is influenced by the nets shared between more than one
part, with a variety of metrics defined on them. The prin-
cipal idea behind the definition of the objective function
is to minimize the cost incurred by assigning related en-
tities, represented by vertices connected by a net, to dis-
tinct parts. In the rest of the section, we shall present a
formal description of the hypergraph partitioning prob-
lem and define relevant cost metrics.

A hypergraph H = (V,N) is defined by a set of vertices
V and a set of nets (hyper-edges) N among those ver-
tices, where each net n; € N is a set of vertices from
V. Weights (w;) and costs (c;) can be assigned to the
vertices (v; € V) and edges (n; € N) of the hypergraph,
respectively. IT={V},V,,...,Vp} is a P-way partition of
H if (1) each part V; is a non-empty subset of V, (2) the
parts are pairwise disjoint, and (3) union of the P parts
is equal to V. A partition is said to be vertex-weight-
balanced if

Wy, < Wye(l+¢e)for1 <p <P

where W), = ¥, cy, wi is the sum of the vertex weights
of part V,, Wyye = (3,,ev wi)/P is the weight of each
part under the perfect load balance condition, and ¢ is a
predetermined maximum imbalance ratio allowed.

In a partition IT of H, a net that has at least one vertex
in a part is said to connect that part. The connectivity A;
of a net n; denotes the number of parts connected by #;.
A net n; is said to be a cut if it connects more than one
part (i.e., A; > 1). The cut nets are also referred to as
external nets, and their set is denoted by Ng.

A P-way partition IT of H can also be viewed as in-
ducing (P + 1)-way net partitioning, with P internal
net sets and one external net set Ng; that is, IT =
{N1,N»,...,Np,Ng}. Here for all internal nets n; € N,
all the vertices of those nets belong to the same part,
ie, njCV, for 1 < p <P. Similarly to a vertex-
weight-balance partition, a partition is said to be net-
cost-balanced if

Cp <Cauy(l+e)for1 <p<P

where C, = ¥, .en, ¢ is the sum of the internal net costs
of part p, and Cavg = (3u,en—n; €j)/P denotes the av-
erage internal net cost under the perfect load balance
condition.

There are various ways of defining the cut-size) (IT) of
a partition I1. The two relevant ones for our context are
cut-net and connectivity-1, defined as follows:

x () = 2, ¢j (1

n;eNg

x (M) = ZV cj(Aj—1))

njeNg

With the cut-net metric (1), each cut net n; contributes
its cost to the cut, whereas with the connectivity-1 met-
ric (2), each cut net ; contributes c¢j(A; — 1) to the cut-
size. The hypergraph partitioning problem can be de-
fined as the task of dividing a hypergraph into two or
more parts such that the cut-size is minimized, while a
given balance criterion either among the part weights or
net costs is maintained. Algorithms based on the multi-
level paradigm, such as hMETIS [Karypis et al. 1997]
and PaToH [Catalyiirek and Aykanat 1999], have been
shown to compute good partitions quickly for this NP-
hard problem.

5.3 Disk I/O Minimization: One-Level
Partitioning

In this section, we describe a direct application of hy-
pergraph partitioning to the disk I/O minimization prob-
lem. The construction of the hypergraph is described,
followed by the partitioning procedure to derive a valid
computation and I/O schedule.

A task-brick hypergraph is constructed from the set of
tasks and the set of data bricks accessed by them. For
each task and data brick, a vertex and a net is added to
the hypergraph, respectively. For each data brick, a net
is constructed that connects the vertices corresponding
to the tasks that access that brick. The cost associated
with the net corresponds to the communication cost in-
curred by the data corresponding brick. We model this
cost to be the size of the brick. The weight associated
with each vertex is proportional to the computation cost
associated with the corresponding task. In the evalu-
ation of our scheme, this is specified to be number of
operations involved.

Common applications of hypergraph partitioning deal
with parallelization, and hence have a pre-specified
number of parts into which the hypergraph needs to be
partitioned. We are interested in partitioning the compu-
tation into stages such that the memory requirement at
any point in the computation does not exceed the mem-
ory available.

We model this problem using hypergraph partitioning
together with the memory usage constraint. We recur-
sively partition the given hypergraph into two stages
when the computation represented by it cannot be ex-
ecuted without violating the memory constraint. The
memory usage of a part is determined as the sum of
weights of all nets incident or internal to the correspond-
ing sub-hypergraph. We shall refer to the solution thus
obtained as the one-level partition.

Fig. 1 illustrates a one-level partition of a task-brick hy-
pergraph. The computation involves nine tasks and six
data elements. The figure shows the tasks as squares and
the data elements as nets (set of edges connected by cir-
cles.) All data elements are assumed to be of the same
size. Let the memory in the system be large enough to
hold three data elements. The partitioning of the hyper-
graph into three stages, indicated by the three enclosing
rectangles, is shown. Each partition requires three data
elements to complete processing. Two of the nets, la-
beled ny and ny, are cut-nets and are accessed in more
than one stage. For each cut-net, dummy vertices are

Figure 1: Illustration of one-level partitioning

introduced in each partition on which it is incident, to
represent its contribution to the memory cost of that par-
tition. The total I/O cost is 9 data elements, the number
of data elements within each part in the partition.

Given such a partition, the computation schedule is
shown in Algorithm 1. The schedule corresponds to
reading all input bricks relevant to a part, computing the
relevant tasks and writing out any output bricks back to
disk. In a parallel system the processing of tasks is done
using a simple load-balancing mechanism in which each
idle process chooses the next task to execute from an to-
tal order of all tasks to be executed in the current stage.
There is no reuse of data across the different stages.
Thus, a reduction in the number of stages is generally
beneficial. The algorithm also shows the schedules for
memory allocation and deallocation.

Algorithm 1 Computation schedule for One-Level Par-
titioning
1: for all p € P do
2: for all b € N, UN;, do
Allocate b
if b € Ng then Read b
for all v € V;, do Compute v
forallbe N, UN]p do
if b € Ny then Write b
Deallocate b

AN AR

5.4 Read-Once Partitioning

The above approach is simplistic in the measurement of
the memory cost for each stage. It ignores the poten-

tial for reuse across the stages. In addition, the reuse
is determined to be between all the tasks in a given
stage. While hypergraph partitioning improves the data
reuse within a stage, the available memory can be bet-
ter utilized by further investigating the reuse relation-
ships between the tasks in a stage. This would enable
the scheduling of computation and disk I/O so that only
a subset of the data elements in a given stage need to
be allocated memory at any moment. This improves the
memory utilization and potentially reduces the disk I/O
cost.

We present an alternative use of hypergraph partitioning
that achieves this. We shall refer to such a partitioning
as read-once partitioning.

A read-once partition is a partition of a task-brick hy-
pergraph such that the sum of the sizes of the cut-nets,
corresponding to data bricks accessed in more than one
part, and the size of data uniquely accessed in any part
does not exceed the available memory. This partition
induces a schedule in which the processing of tasks is
organized into steps, one for each part in the partition.
The processing is preceded by moving all data elements
accessed by more than one step, referred to as shared
bricks, into memory. Each step is processed by first al-
locating memory for data elements local to that step and
performing the necessary disk I/O. The tasks in the cur-
rent step are then processed and the updated bricks local
to this step are written back to disk. The memory al-
located for the local bricks are finally reclaimed. The
procedure is then repeated for the next step. After pro-
cessing all the steps, any updated shared bricks are writ-
ten to disk. The computation schedule for a read-once
partition is shown in Algorithm 2.

Thus a set of tasks, while requiring data elements that
together cannot fit in the memory available, can poten-
tially be scheduled to be processed using the available
memory. By keeping all cut-nets in memory throughout
the computation of the given set of tasks, this approach
also avoids redundant I/O for any accessed data element.

The scheme uses a pessimistic upper-bound in its cal-
culation of the memory cost due to the allocation of all
cut-nets at once, even though a cut-net might be used
only much later. Despite this apparent inaccuracy, this
scheme significantly improves memory utilization by
deallocating nets internal to a step once they are used,
thus allowing more related tasks to be processed within
a stage.

Note that the number of parts (steps) in a read-once par-

tition is not significant, as increasing the number of parts
does not increase the disk I/O cost. But choosing an
arbitrarily large number of parts can distribute related
tasks, increasing the total size of the cut-nets, thus mak-
ing a read-once partition infeasible. We choose a sim-
ple scheme of a linear search for the number of parts,
starting from two. For each choice of the number of
parts, a net-cost-balanced hypergraph partitioning with
cut-net metric is computed, and the result is checked
to be a feasible read-once partition (i.e., cutsize +C), <
memory_limit for 1 < p < P). If it is not, we continue the
search for a read-once partition by increasing the num-
ber of parts. In the current implementation, we limit
the number of parts being searched to be less than 128,
which we found to be sufficiently large in practice.

Algorithm 2 Computation schedule for a Read-Once
Partition
1: for all b € Ng do
Allocate b
3 if b € Ng then Read b
4: for all p € P do
5 for all b € N, do
6: Allocate b
7
8
9

if b € Ng then Read b
for all v € V;, do Compute v
for all b € N, do
10: if b € Ny then Write b
11: Deallocate b
12: for all b € Ng do
13: if b € Ny then Write b
14: Deallocate b

5.5 Integrated Approach: Two-Level

Partitioning

The integrated algorithm, TwoLevel, is shown in Algo-
rithm 3. It returns a set of ordered pairs, each pair spec-
ifying the set of tasks in that stage and the computa-
tion schedule obtained using read-once partitioning. If a
read-once partition exists that satisfies the memory con-
straint, using the procedure ReadOnce, the set of tasks
together with the computation schedule is returned. If
not, the algorithm proceeds recursively by partitioning
the set of tasks to balance the net-weights, using the rou-
tine denoted by NetBalancePartition, and solving the two
parts independently and combining the result.

The outer-level partitioning scheme is identical to that
used in one-level partitioning. They differ primar-
ily in mechanism used to decide whether a part (sub-

hypergraph) needs to be further partitioned.

Fig. 2 shows a possible partitioning of the same com-
putation as in Fig. 1 using the two-level approach. The
stages in the computation, corresponding to the parts in
the outer-level partition are indicated by enclosing rect-
angles. Enclosing circles are used to show the parts in
the read-once partitions within each stage. Nets n; and
ny are the cut-nets, similar to the partition determined
in Fig. 1. Two of the stages produced by the one-level
partitioning approach now form the two steps of a read-
once partition in a single stage. Net n; is a cut-net
for that read-once partition and is retained in memory
through the processing of both the steps in the stage.
This is indicated by the single representative vertex for
n; in that stage being shared by both the steps. The
memory constraint is still satisfied as the memory us-
age does not exceed the size of three data elements at
any point. The total disk I/O cost for this partitioning is
equal to the size of eight data elements, as compared to
nine for the partitioning in Fig. 1.

Note that the illustration shows only one possible par-
titioning and there maybe many equivalent partitions.
Also, unlike in the illustration, the partitions produced
by the two-level partitioning approach need not, in gen-
eral, correspond to any one-level partitioning that is the
best possible for the given hypergraph.

Algorithm 3 Two-Level Partitioning Algorithm:
TwoLevel
: IT — ReadOnce (V)
. f < true
: for all p € P(IT) do
f— £ A (Np(TD) + N (I1) < M)
if f = true then
Return < V,II >
else
< V1,V, > — NetBalancePartition (V)
TwoLevel (V) U TwoLevel (V5)

—_

R A I A o

Definition 1. A valid part in a one-level partition is de-
fined as a sub-hypergraph of the task-brick hypergraph
such that the sum of weights of its incident and internal
nets does not exceed the memory available.

Lemma 1. A valid part p in a one-level partition corre-
sponds to a trivial read-once partition.

Proof. Since p is a valid part in a one-level partition,
the sum of nets accessed by the corresponding sub-
hypergraph satisfies the memory constraint. Given such
a sub-hypergraph, the read-once partitioning algorithm
can construct a trivial read-once partition with only one

Figure 2: Illustration of two-level partitioning

part. All nets accessed in that partition are global to the
read-once partition, with no nets being local to the only
part. O

Lemma 2. Barring the termination condition, both the
algorithms form the same recursive bisection trees.

Proof. Both use the same partitioning algorithm to di-
vide a hypergraph into two sub-hypergraphs. Since both
procedures recursively partition a given hypergraph into
two parts, they form identical recursion trees in which
each node corresponds to a hypergraph that is parti-
tioned into its children. O

Lemma 3. The sub-hypergraphs encountered in the re-
cursive procedure for the two-level partition are a sub-
set of the sub-hypergraphs encountered in the recursive
procedure for the one-level partition.

Proof. From Lemma 2, the recursion trees of both the
algorithms are identical, barring the termination condi-
tion. From Lemma 1, when the one-level approach de-
termines a valid part and stops further partitioning, the
two-level approach determines a read-once partition and
stops as well. Note that the two-level partition might de-
termine a sub-hypergraph encountered in the recursion
procedure to be a valid read-once partition and stop fur-
ther refinement, while it might not be a valid part in a
one-level partition. This might lead to further refine-
ment being required in the one-level approach that the
two-level approach. O

Theorem 1. The solution obtained by two-level parti-
tioning is no worse than that obtained by one-level par-
titioning.

Proof. From Lemma 3, only a subset of the recursion
tree from the one-level approach is encountered in the
two-level approach. Thus, there is no new or different
partitioning in the two-level scheme as compared to the
one-level scheme. Since only partitioning can increase
the disk I/O cost, the I/O cost for the two-level approach
is no worse than that for the one-level approach. U

In the experimental evaluation, we will focus on evalu-
ating the two-level partitioning scheme.

6 Experimental Evaluation

We evaluate our approach in the quantum chemistry do-
main described in Section 2. In particular, we use the
following Coupled Cluster Doubles (CCD) [Crawford
and IIT 2000] sub-computation:

p3,p4,pS,p7:V

h1,h2,h6,h8 : O

input-output arrays : i0,#,v1,v2

intermediate arrays : il

i1[h6, p3,h1, p5]+= v1[h6, p3,hl1, p5]

i1[h6, p3,h1, pS]|+= t[p3, p7,h1,h8] xv2[h6,h8, p5, p7]
i0[p3, p4,h1,h2]+= t[p3, p5,h1,h6] xil[h6, p4, h2, p5]

O is set to have four segments (40,40,20,20), and V is
divided into the four segments (100,100,60,60). The in-
put/output arrays are assumed to be created and passed
as inputs to the execution environment. The first oper-
ation initializes the intermediate array. The subsequent
arrays produce and consume the intermediate. The ini-
tialization operation is implemented in a data-parallel
fashion with each process initializing the data bricks lo-
cal to it.

We evaluate our approach, henceforth also referred to
as HpGraph, by comparing it with the approach taken
in state-of-the-art quantum chemistry packages such
as NWChem [High Performance Computational Chem-
istry Group 2004]. In this scheme, the data elements,
stored in a bricked form, are replicated across the lo-
cal disks of the processors. A simple load-balancing
scheme is used to distribute the computation amongst
the processors. Each process chooses the next brick of
the output array to be computed, in a linear ordering
of the non-zero bricks, and proceeds to process it by

fetching the required bricks from the input arrays and
computing the partial products. The computation is per-
formed by transforming the data layouts to ensure conti-
guity of the contracted indices, following an invocation
of DGEMM. The resulting output brick is then written
to the replicated copy of the array on the local disk. Be-
fore the output array can be used as an input in another
tensor contraction, the local modifications to the repli-
cated array need to be reconciled. This is essentially
an accumulation operation in which all partial contribu-
tions to the individual bricks are added together in an
operation similar to MPI_AlIReduce. This scheme was
implemented using our data abstraction, with suitable
extensions to replicate and reconciles disk arrays.

This alternative scheme will be referred to as GetNext,
in the spirit of the computation distribution scheme
adopted in it. The inputs are assumed to be replicated
when evaluating this scheme. A reconcile operation is
carried out on il before it is consumed to produce 0.
In addition, the output array i0 is reconciled as the final
step. All inputs are assumed to be distributed when eval-
uating our scheme, and no cost is incurred in reconciling
any of the arrays.

The memory limit for our scheme was set to 1 GB on
each of the systems. While under-utilizing the memory
increases the overall cost of the computation, the results
show efficient utilization of even a portion of the mem-
ory leads to significant improvements. In addition, the
unutilized memory can be used for optimizations such
as a caching to further reduce the communication cost.
Note that utilizing the entire memory for the computa-
tion might degrade performance due to interference with
the operation of the operating system and the disk buffer
cache.

We evaluated the two schemes on the following three
systems:

ia64-osc A cluster with dual Itanium-2 900MHz nodes,
each with 4GB physical memory, and 80GB local
disk, and a Myrinet 2000 interface. GM is the un-
derlying communication protocol.

ia64-pnl A cluster with dual 1GHz Itanium-2 nodes,
each with 6GB physical memory, 80GB hard drive
and GM interconnection network.

p4-osc A cluster with each node containing two
2.4GHz Pentium 4 processors and 4GB physical
memory, 80GB local disk, and an Infiniband inter-
connection network.

900

GetNext-ia64-osc —H—
HpGraph-ia64-osc —l— |

Per-process I/0 cost(secs)

#procs

Figure 3: Average per-process I/O cost, in seconds, on
ia64-osc

The sub-computation was evaluated on the three sys-
tems by varying the number of nodes between 1 and 8.
Note that only one CPU in each node was utilized in all
three clusters.

The average disk I/O costs per process for ia64-osc,
ia64-pnl, and p4-osc are shown in Figs. 3, 4, and 5,
respectively. On ia64-osc and p4-osc, the effective or-
chestration of the data movement leads to a reduction
in the disk I/O cost even in the sequential case. The
improvement over the alternative scheme increases with
the number of processors, achieving a factor of 11 on
p4-osc for 8 processors. We believe the worsening disk
I/O cost for two processors for GetNext on ia64-osc is
due to an ineffective task distribution that results in both
processes accessing most of the data bricks, while the
data access pattern increases the miss rate on the system
buffer cache for disk I/O.

The sequential disk I/O cost of HpGraph is observed to
be worse than GetNext on ia64-pnl. We believe this is
due to the increased memory size that supports a larger
system buffer cache, resulting in an improved reuse for
the alternative approach. But an increase in the num-
ber of processors leads to performance trends similar to
those on the two systems.

The turnaround times are shown in Table 1. In addition
to improving the disk I/O cost, the turnaround times for
HpGraph, including the cost of hypergraph partitioning,
are consistently better than that for GetNext. On p4-
osc for eight processors, HpGraph leads to a 49% im-
provement over GetNext, with similar trends observed
for other processes. Note that the input arrays are as-
sumed to be replicated for the GetNext scheme. The

500

Gethext—ia%4—pnl a—
450 F HpGraph-ia64-pnl —&— |

Per-process I/0O cost(secs)

.

1 2 3 4 5 6 7 8
. #procs .
Figure 4: Average per-process I/O cost, in seconds, on

ia64-pnl

3000

GetNext-p4-osc —S—
HpGraph-p4-osc —@&—

2500 |
2000
1500 f

1000 f

Per-process I/0 cost(secs)

500 f

#procs

Figure 5: Average per-process I/O cost, in seconds, on
p4-osc

GetNext-ia64-osc —H—
HpGraph-ia64-osc —l—
8 [GetNext-p4-osc —O—
HpGraph-p4-osc —@&—
| GetNext-ia64-pnl
HpGraph-ia64-pnl

Speedup
w

1 2 3 4 5 6 7 8

. #procs .
Figure 6: Speed-ups for the CCD sub-computation on
the three systems.

Table 1: Turnaround times, in seconds, for the CCD sub-

computation
System Scheme nprocs

1 2 4 8
ia64-osc GetNext 9710 5760 3403 2281

HpGraph 9244 5110 2408 1271
p4-osc GetNext 13717 7988 4562 2739
HpGraph 11700 5886 2899 1390
GetNext 7928 4453 2731 1868
HpGraph 7564 4283 1968 1081

ia64-pnl

improvements obtained would be even higher if the cost
of replicating the input arrays is included in the execu-
tion time of GetNext.

The speed-ups are shown in Fig. 6. The HpGraph
scheme achieves close to linear speed-up, a significant
improvement over GetNext. For HpGraph, while the I/O
cost decreases with the number of processors, the com-
munication cost increases. Note that GetNext, which
uses replicated data, does not incur any communication
costs, except while reconciling arrays. The low com-
munication times in p4-osc lead to the observed super-
linear speed-up. We intend to investigate communica-
tion reduction mechanisms such as overlap of computa-
tion and communication to further improve the perfor-
mance of HpGraph.

The average percentage of total execution time spent
performing DGEMM, the core useful computation in
the application, is shown in Fig. 7. It shows the consis-
tent high efficiency achieved by HpGraph, despite the
additional overhead of hypergraph partitioning.

100

90

80

(%)

70

60

Computation

50 | GetNext-ia64-osc —H—
HpGraph-ia64-osc —i—

GetNext-p4-osc —6—
40 I HpGraph-p4-osc —@—
GetNext-ia64-pnl —4&—
HpGrap.h—ia64—lpnl —A—

30 .
1 2 3 4 5 6 7 8

rocs

. #pr . .
Figure 7: Percentage of total time spent in computation

7 Conclusions

In this paper, we presented a framework for automatic
management of the memory-disk hierarchy in the con-
text of block-sparse tensor contractions. A novel for-
mulation using hypergraph partitioning was used to op-
timize disk I/O costs. Experimental evaluation using a
sub-computation from quantum chemistry demonstrated
significant improvements in disk I/O cost, overall per-
formance, scalability, and computation efficiency.

Acknowledgments

We thank the National Science Foundation for the sup-
port of this research through grants 0121676, 0403342,
and 0509467, and the U.S. Department of Energy
through award DE-AC05-000R22725. We thank the
Molecular Sciences Computing Facility (MSCF) at the
Pacific Northwest National Laboratory (PNNL) and the
Ohio Supercomputer Center (OSC) for the use of their
computing facilities.

References

AHMED, N., MATEEV, N., AND PINGALI, K. 2000.
Synthesizing transformations for locality enhance-
ment of imperfectly nested loops. In Proc. ACM Intl.
Conf. on Supercomputing, 141-152.

BAUMGARTNER, G., BERNHOLDT, D., COCIORVA,
D., HARRISON, R., HIRATA, S., LaM, C., NOOI-
JEN, M., PITZER, R., RAMANUJAM, J., AND SA-

DAYAPPAN, P. 2002. A High-Level Approach to
Synthesis of High-Performance Codes for Quantum
Chemistry. In Proc. of Supercomputing 2002.

CATALYUREK, U. V., AND AYKANAT, C. 1996.
Decomposing irregularly sparse matrices for paral-
lel matrix-vector multiplications. In Proceedings
of 3rd International Symposium on Solving Irregu-
larly Structured Problems in Parallel, Irregular’96,
Springer-Verlag, vol. 1117 of Lecture Notes in Com-
puter Science, 75-86.

CATALYUREK, U. V., AND AYKANAT, C. 1999.
Hypergraph-partitioning based decomposition for
parallel spars e-matrix vector multiplication. IEEE
TPDS 10,7, 673-693.

CHANG, C., KURC, T., SUSSMAN, A., CATALYUREK,
U. V., AND SALTZ, J. 2001. A hypergraph-based
workload partitioning strategy for parallel data aggre-
gation. In Proceedings of the Eleventh SIAM Confer-
ence on Parallel Processing for Scientific Computing,
SIAM.

CRAWFORD, T., AND III, H. S. 2000. An Introduc-
tion to Coupled Cluster Theory for Computational
Chemists. In Reviews in Computational Chemistry,
K. Lipkowitz and D. Boyd, Ed., vol. 14. John Wiley
& Sons, Ltd., 33-136.

DUFF, 1. S., MARRONE, M., RADICATI, G., AND VIT-
TOLI, C. 1997. Level 3 basic linear algebra sub-
programs for sparse matrices: a user-level interface.
ACM Trans. Math. Softw. 23, 3, 379-401.

HENDRICKSON, B., AND LELAND, R. 1994. The
Chaco user’s guide: Version 2.0. Tech. Rep.
SANDY94-2692, Sandia National Laboratories.

HIGH PERFORMANCE COMPUTATIONAL CHEMISTRY
GROUP. 2004. NWChem, A Computational Chem-
istry Package for Parallel Computers, Version 4.6. Pa-
cific Northwest National Laboratory.

KALE, L., AND KRISHNAN, S. 1993. CHARM++: A
Portable Concurrent Object Oriented System Based
on C++. In Proceedings of OOPSLA’93, ACM Press,
A. Paepcke, Ed., 91-108.

KARYPIS, G., AGGRAWAL, R., KUMAR, V., AND
SHEKHAR, S. 1997. Multilevel hypergraph parti-
tioning: Applications in VLSI domain. In Proc. of
34th Design Automation Conference.

KHANNA, G., VYDYANATHAN, N., KURrRc, T.,
CATALYUREK, U., WYCKOFF, P., SALTZ, J., AND

SADAYAPPAN, P. 2005. A Hypergraph Partitioning
Based Approach for Scheduling of Tasks with Batch-
shared I/O. In Proceedings of the 5th IEEE/ACM In-
ternational Symposium on Cluster Computing and the
Grid (CCGrid 2005). To Appear.

KODUKULA, I., AHMED, N., AND PINGALI, K. 1997.
Data-centric multi-level blocking. In Proc. SIGPLAN
Conf. Programming Language Design and Implemen-
tation, 346-357.

KRISHNAMOORTHY, S., CATALYUREK, U,
NIEPLOCHA, J., ROUNTEV, A., AND SADAYAPPAN,
P. 2006. An extensible global address space frame-
work with decoupled task and data abstractions. In
Proc. IPDPS Workshop on Next Generation Software.

KRISHNAN, S., KRISHNAMOORTHY, S., BAUMGART-
NER, G., COCIORVA, D., LAM, C., SADAYAPPAN,
P., RAMANUJAM, J., BERNHOLDT, D., AND CHOP-
PELLA, V. 2003. Data Locality Optimization for Syn-
thesis of Efficient Out-of-Core Algorithms. In Proc.
10th Annual International Conference on High Per-
formance Computing (HiPC), Springer Verlag, 406—
417.

KRISHNAN, S., KRISHNAMOORTHY, S., BAUMGART-
NER, G., LAM, C.-C., RAMANUIJAM, J., SADAYAP-
PAN, P., AND CHOPPELLA, V. 2004. Efficient syn-
thesis of out-of-core algorithms for tensor contrac-
tions using a nonlinear optimization solver. In The
18th International Parallel and Distributed Process-
ing Symposium.

Lim, A. W., AND LAM, M. S. 1998. Maximizing par-
allelism and minimizing synchronization with affine
partitions. Parallel Computing 24, 3-4 (May), 445—
475.

LM, A., LiAO, S., AND LAaM, M. 2001. Blocking
and array contraction across arbitrarily nested loops
using affine partitioning. In Proc. 8th ACM SIGPLAN
Symposium on Principles and Practices of Parallel
Programming, ACM Press, 103—112.

NAVARRO, J., JUAN, A., AND LANG, T. 1994. MOB
Forms: A Class of Multilevel Block Algorithms for
Dense Linear Algebra Operations. In Proc. ACM In-
ternational Conference on Supercomputing.

RANDALL, K. H. 1998. Cilk: Efficient Multithreaded
Computing. PhD thesis, MIT Department of Electri-
cal Engineering and Computer Science.

SAHOO, S. K., KRISHNAMOORTHY, S., PANUGANTI,
R., AND SADAYAPPAN, P. 2005. Integrated loop
optimizations for data locality enhancement of ten-
sor contraction expressions. In Proc. Supercomputing
(SC 2005).

SALTZ, J., PONNUSAMY, R., SHARMA, S., MOON,
B., AND DAS, R. 1995. A manual for the CHAOS
runtime library. Tech. Rep. CS-TR-3437 and
UMIACS-TR-95-34, University of Maryland, De-
partment of Computer Science and UMIACS, March.

SINHA, A., AND KALE, L. 1993. A load balancing
strategy for prioritized execution of tasks. In Seventh

International Parallel Processing Symposium, 230—
237.

TuMINARO, R. S., HEROUX, M., HUTCHINSON,
S. A., AND SHADID, J. N. 1999. Official Aztec
user’s guide: Version 2.1. Tech. rep., Sandia National
Laboratories.

