
Improving the Static Resolution of Dynamic Java Features

Dissertation

Presented in Partial Fulfillment of the Requirements for

the Degree Doctor of Philosophy in the

Graduate School of The Ohio State University

By

Jason Sawin

Graduate Program in Computer Science and Engineering

The Ohio State University

2009

Dissertation Committee:

Atanas Rountev, Advisor

Timothy Long

Neelam Soundarajan

ABSTRACT

In Java software, two important flexibility mechanisms are dynamic class loading

and reflection. Unfortunately, the vast majority of static analyses for Java handle

these features either unsoundly or overly conservatively. Our work targets techniques

that will increase static analyses’ ability to handle dynamic features in a more precise

manner.

Since many of these dynamic features rely on string values to specify their run-

time behavior, some static analyses have used string analysis to aid in resolution of

such features. There are two main concerns with this practice: (1) often a string

analysis is not powerful enough to accurately model the needed string values, and

(2) the computing costs associated with a precise string analysis make it impractical

to incorporate into many static analysis frameworks. We address the first concern

by presenting a novel semi-static approach for resolving dynamic class loading by

combining static string analysis with dynamically gathered information about the

execution environment. The insight behind the approach is that dynamic class load-

ing often depends on characteristics of the environment that are encoded in various

environment variables. Such variables are not static elements; however, their run-

time values typically remain the same across multiple executions of the application.

Additionally, we propose extensions of string analysis to increase the number of sites

that can be resolved purely statically. An experimental evaluation on the Java 1.4

ii

standard libraries shows that a state-of-the-art string analysis, Java String Analyzer

(JSA) [19], resolves only 28% of non-trivial sites while our approach resolves 74% of

such sites. We also demonstrate how the information gained from resolved dynamic

class loading can be used to determine the classes that can potentially be instantiated

through the use of reflection. Our extensions of string analysis greatly increase the

number of resolvable reflective instantiation sites.

For string analysis to be useful for resolution of dynamic features, it has to ex-

hibit practical cost in term of running time and memory usage. We propose several

techniques to improve the scalability of JSA thus making it more practical for in-

corporation into a static analysis framework. Our approach parallelizes a significant

portion of JSA, allowing it to take advantage of modern multi-core architectures. We

also present several new simplifications to JSA’s internal representation of the flow

of string values through an application. These simplifications reduce the amount

of irrelevant information processed by JSA. We applied an implementation of our

proposed enhancements to 25 benchmark applications. For all benchmarks, our im-

plementation realized a speedup when compared to the original version of JSA. For

two benchmarks, the speedup was over 180 times. Moreover, the original version of

JSA was unable to complete its analysis of three benchmark applications because it

exhausted the allotted 6Gb of heap memory. Our implementation was able to easily

complete the analysis of all 25 benchmarks.

With the cost of precise string analysis reduced, we incorporate it and our semi-

static approach into a Class Hierarch Analysis (CHA) call graph construction algo-

rithm. A call graph abstractly represents the calling relationships between methods

in a program. It is a critical component of many static analyses. We investigate how a

iii

hierarchy of assumptions allow for the incorporation of techniques to resolve instances

of certain dynamic features. We implemented a unique CHA call graph construction

analysis for each level of the assumption hierarchy. These implementations were ap-

plied to 10 benchmark applications in an experimental evaluation of the effects of the

assumptions and the corresponding resolution techniques. The results of this study

indicate that even a slight relaxing of the fully conservative assumption can lead to

a call graph with 44% fewer edges without the aid of any resolution techniques. By

incorporating assumptions about casting operations and string values, it is possible to

remain conservative and reduce the number of edges in the graph by 54% through the

use of various resolution techniques. On average, our most precise implementation

was able to resolve 6% of the reflective invocation sites, 50% of dynamic class loading

sites, and 61% of reflective instantiation sites encountered by the analysis.

This work is a step toward making static analysis tools better equipped to handle

the dynamic features of Java. These include tools that facilitate software develop-

ment, testing, and understanding. Increasing the precision of these tools can decrease

development costs and increase software reliability.

iv

To Mom and Pops

v

ACKNOWLEDGMENTS

Many people have helped to guide and support me on my journey to earning a

Ph.D., none more so than my academic adviser and mentor Atanas Rountev. Without

his constant feedback, guidance, and support, I doubt I would have achieved my goal.

He has taught me how to be a researcher, and more importantly how to be paranoid

about my work. Thank you Nasko.

I also need to thank all the faculty and staff of The Ohio State University’s

Computer Science and Engineering Department. They have provided me with an

excellent education. In particular, I would like to thank Timothy Long and Bruce

Weide for teaching me how to be an effective instructor of Computer Science and for

their valuable feedback on my research. Neelam Soundarajan has encouraged me and

helped to guide my research since my first year at OSU. Thanks guys. I also would like

to thank Peg Steele and Nikki Strader for teaching me how to advise undergraduate

students and for being so flexible.

Finally, I would like to thank all of my friends and family for their support and

help. I couldn’t ask for more supportive or better parents. Thanks for everything,

Mom and Dad. I took comfort in knowing that my brother and sisters were always

there to assist me if I stumbled. I cannot imagine a more supportive, understand-

ing, and loving companion than Heather Bandeen. I am eager to start our future

adventures together. Richard Sharp has not only been a great friend but has helped

vi

guide me through graduate school and beyond. When it was midnight and I was

burned out, I knew I always had a sympathetic ear with Matt Lang. Thanks Matt.

I also need to thank my many friends, and often times proofreaders: David Chiu,

Scott Kagan, Lindsay North, Raffi Khatchadourian, Julia Valigore, Gregory Buehrer,

Quentin Froemke, Kelly Streeter, Evan Elken, Brenda Sodowsky, Shawn Poindexter,

Becki Witherow, Adam Sommers, Mike Steffen and so many others.

Thank you everyone. Your help has meant more to me than I can possibly convey.

The material presented in this dissertation is based upon work supported by the

National Science Foundation under Grant No. 0546040. Any opinions, findings, and

conclusions or recommendations expressed in this material are those of the author(s)

and do not necessarily reflect the views of the National Science Foundation.

vii

VITA

June 2008 . M.S. Computer Science & Engineering,
The Ohio State University

May 1995 .B.A. Mathematics and Computer Sci-
ence, Lewis and Clark College

September 2003 – presentGraduate Research/Teaching/Admin-
istrative Associate, The Ohio State
University

August 29, 1976 . Born – Joseph, Oregon

PUBLICATIONS

Research Publications

J. Sawin, and A. Rountev. Improving Static Resolution of Dynamic Class Loading

in Java Using Dynamically Gathered Environment Information. In International
Journal of Automated Software Engineering (JASE), volume 16, number 2, pages

357-381, June 2009.

J. Sawin, and A. Rountev. Improved Static Resolution of Dynamic Class Loading
in Java. In IEEE International Working Conference on Source Code Analysis and

Manipulation, pages 143-154, October 2007.

R. Khatchadourian, J. Sawin, and A. Rountev. Automated Refactoring of Legacy
Java Software to Enumerated Types. In IEEE International Conference on Software

Maintenance, pages 224-233, October 2007.

J. Sawin, M. Sharp, and A. Rountev. Generating Run-Time Progress Reports for a

Points-to Analysis in Eclipse. In Eclipse Technology Exchange Workshop at OOPSLA,
pages 40-44, October 2006.

viii

J. Sawin, and A. Rountev. Estimating the Run-Time Progress of a Call Graph

Construction Algorithm. In IEEE International Workshop on Source Code Analysis
and Manipulation, pages 53-62, September 2006.

M. Sharp, J. Sawin, and A. Rountev. Building a Whole-Program Type Analysis in

Eclipse. In Eclipse Technology Exchange Workshop at OOPSLA, pages 6-10, October
2005.

A. Rountev, S. Kagan, and J. Sawin. Coverage Criteria for Testing of Object Inter-

actions in Sequence Diagrams. In Fundamental Approaches to Software Engineering,
pages 282-297, April 2005.

FIELDS OF STUDY

Major Field: Computer Science and Engineering

Studies in:

Software Engineering Prof. Atanas Rountev
Distributed Systems Prof. Gagan Agrawal
Database Systems Prof. Hakan Ferhatosmanoglu

ix

TABLE OF CONTENTS

Page

Abstract . ii

Dedication . v

Acknowledgments . vi

Vita . viii

List of Figures . xiii

List of Tables . xvi

Chapters:

1. INTRODUCTION . 1

1.1 Improved Resolution of Dynamic Class Loading 2

1.2 Improving the Scalability of String Analysis 6
1.3 Assumption Hierarchy for a CHA Call Graph Construction Algorithm 9

1.4 Outline . 11

2. BACKGROUND . 13

2.1 Dynamic Features of Java . 13

2.1.1 Dynamic Class Loading in Java 14
2.1.2 Reflection . 16

2.1.3 Native Methods . 18
2.1.4 Custom Class Loaders . 18

2.1.5 JVM Interactions and Implicit Calls 20
2.1.6 Dynamic Features and Static Analysis 23

2.2 Java String Analyzer . 24

x

2.2.1 The Front-End . 24
2.2.2 The Back-End . 28

2.2.3 The Assumptions of JSA 29
2.3 Multi-Core Architectures and Java 32

3. INCORPORATING DYNAMICALLY GATHERED ENVIRONMENT IN-

FORMATION . 35

3.1 Extending JSA . 36

3.1.1 Semi-Static Analysis . 36
3.1.2 Modeling Extensions . 41

3.2 Resolving Reflective Instantiation 43

3.2.1 Using Resolved Dynamic Class Loading Sites 45
3.3 Examining Assumptions . 46

3.4 Experimental Evaluation . 50
3.4.1 Manual Investigation . 50

3.4.2 Resolution of Dynamic Class Loading 53
3.4.3 Resolution of Reflective Instantiations 57

3.4.4 Summary of Experiments 59
3.5 Conclusions and Future Work . 60

4. IMPROVING THE SCALABILITY OF STRING ANALYSIS 61

4.1 Design of Parallel String Analysis Algorithm 63
4.1.1 Intuitive Design . 64

4.1.2 Reducing the Memory Footprint 68
4.1.3 Parallel Graph Simplification 71

4.2 New Flow Graph Simplifications 75

4.2.1 Concatenation Simplification 76
4.2.2 Removal of Extraneous Nodes 77

4.2.3 Propagation of Anystring Values 80
4.3 Experimental Evaluation . 83

4.3.1 Benchmarks and Experimental Setup 83
4.3.2 Evaluation of Proposed Algorithms on Front-End Running

Time and Memory Usage 85
4.3.3 Back-End Running Time 90

4.4 Conclusion . 92

5. ASSUMPTION HIERARCHY FOR A CHA CALL GRAPH CONSTRUC-
TION ALGORITHM . 94

5.1 May Be Loaded Analysis . 97

xi

5.1.1 Effects of Dynamic Features 100
5.2 Class Hierarchy Analysis . 102

5.2.1 CHA Call Graph Construction Algorithm 103
5.2.2 Effects of Dynamic Features 109

5.3 Assumption Hierarchies . 112
5.3.1 MBL Assumptions . 112

5.3.2 CHA Assumptions . 118
5.4 Experimental Evaluation . 130

5.4.1 Implementations . 130
5.4.2 Benchmarks and Experimental Setup 134

5.4.3 MBL Results . 136
5.4.4 CHA Results . 138

5.5 Conclusion . 146

6. RELATED WORK . 148

6.1 Analyses That Address Dynamic Features 148
6.2 Analyses Related to JSA . 152

6.3 Hybrid Analyses . 153
6.4 Scalable Static Analyses . 155

6.5 Call Graph Construction Algorithms 157

7. CONCLUSIONS AND FUTURE WORK 161

7.1 Incorporating Dynamically Gathered Information 161

7.2 Increasing the Scalability of String Analysis 162
7.3 Assumption Hierarchy for a CHA Call Graph Construction Algorithm164

7.4 Conclusion . 167

Appendices:

A. COMPLETE RESULTS FOR PARALLEL JSA EXPERIMENTS 168

B. COMPLETE RESOLUTION RESULTS OF THE CHA CALL GRAPH
EXPERIMENTS . 173

Bibliography . 177

xii

LIST OF FIGURES

Figure Page

2.1 Sample code from library class java.awt.EventDispatchThread. . . 15

2.2 Reflection example: prints the name and value of all final fields. . . 16

2.3 Example of a static initializer block. 21

2.4 Stages of JSA’s front-end. 24

2.5 Example of JSA’s treatment of native methods. 30

3.1 Sample code from library class java.awt.printer.PrinterJob. . . . 37

3.2 Entry points for environment variables. 39

3.3 Sample code from library class sun.awt.SunToolkit 45

3.4 Library methods used for dynamic class loading. 49

4.1 Parallel JSA design: intuitive. 64

4.2 Algorithm for the master stage. 65

4.3 Intuitive design: algorithm for slave object’s run method. 67

4.4 Parallel JSA design: reducing memory footprint. 68

4.5 Reducing memory footprint: algorithm for slave’s run method. 69

4.6 Parallel JSA design: parallel flow graph simplification. 71

xiii

4.7 Simplification algorithm for intraprocedural flow graphs. 73

4.8 Simplification algorithm for interprocedural flow graphs. 74

4.9 Concatenation example: not simplified. 76

4.10 Concatenation example: simplified. 76

4.11 Concatenation simplification: algorithm for new concatenation simpli-
fication. 77

4.12 Sample code from the JPWS benchmark. 78

4.13 JSA flow graph of JPWS sample code. 79

4.14 Algorithm to remove all nodes that cannot affect the value of hotspot
strings. 80

4.15 Sample code from the JEdit benchmark. 81

4.16 JSA flow graph of JEdit sample code. 82

4.17 AnyString propagation simplification: algorithm for propagating anys-

tring values through the flow graph. 82

4.18 Reduced flow graph of JEdit sample code. 82

5.1 CHA imprecision example: code and resulting call graph. 95

5.2 Simple May Be Loaded (MBL) analysis. 99

5.3 CHA algorithm notation. 103

5.4 Main procedure for CHA. 104

5.5 Processing the bodies of newly discovered reachable methods. 105

5.6 Adding edges to static initializer methods (i.e. clinits). 106

5.7 Resolving all possible targets of a virtual call. 107

xiv

5.8 Virtual dispatch. 108

5.9 Example that demonstrates complexities of when clinits are invoked. 110

5.10 An example of dynamic class loading from the JGap benchmark. . . 116

5.11 An example of a call to a dynamic class loading method from the JGap
benchmark. 117

xv

LIST OF TABLES

Table Page

3.1 Manual investigation of the Java 1.4 standard libraries: categorized

counts of invocations of dynamic class loading methods under various
open-world assumptions. 52

3.2 Precision of string analyses for the Java 1.4 standard libraries: number

of SD and EVD dynamic class loading sites resolved by JSA. The
percentages are with respect to 68, the total number of SD and EVD

sites from the manual investigation. 54

3.3 Analysis cost: running time (seconds per thousand Jimple statements)

and memory usage (MB). 56

3.4 Precision of string analyses for the Java 1.4 standard libraries: number
of reflective instantiation sites resolved by JSA. 57

3.5 Categorized counts of resolved dynamic class loading sites whose Class

objects flow to newInstance. 59

4.1 Benchmarks statistics: number of classes, Jimple statements, and hotspots.
84

4.2 Front-end time and memory results: Average speedup achieved for 22

benchmark applications. Column Mem. Red. displays the average

percentage memory reduction achieved; the results of JSA-ORIG were
used as the baseline. 86

4.3 Running time (in ms) for JSA-ORIG and JSA-NSIM. 91

4.4 Running time results in ms for JSA-NSIM. 92

xvi

5.1 Benchmarks statistics: number of classes, methods, Jimple statements,
invocations of dynamic class loading methods, newInstance methods,

Method.invoke, and native methods. 135

5.2 MBL analysis results: number of classes that will be loaded. AVE∆
is the average percentage increase with respect to column SDLA. . . 137

5.3 CHA call graph construction algorithm results: number of nodes and

edges in the graph created by the corresponding version. AVE∆ is the
average percentage decrease with respect to column WBCL. 139

5.4 Resolutions results: average percentage of resolved instance of dynamic

features. 142

A.1 Front-end time and memory results for the implementation of the intu-

itive parallel design (JSA-INTU). Time results are in ms and memory
results are in Mb. 169

A.2 Front-end time and memory results for the implementation of the re-

duced memory parallel design (JSA-RMEM). Time results are in ms
and memory results are in Mb. 170

A.3 Front-end time and memory results for the implementation of the par-

allel graph simplification design (JSA-PSIM). Time results are in ms
and memory results are in Mb. 171

A.4 Front-end time and memory results for the implementation of the paral-

lel JSA with three new graph simplifications (JSA-NSIM). Time results

are in ms and memory results are in Mb. 172

B.1 Number of dynamic features encountered and resolved by the WBCL,
ERDF, and CCIA implementations of the CHA call graph construction

analysis. 174

B.2 Number of dynamic features encountered and resolved by the CSIA and
SSEA implementations of the CHA call graph construction analysis. 175

B.3 Number of dynamic features encountered and resolved by the SCON

and SOOT implementations of the CHA call graph construction anal-
ysis. 176

xvii

CHAPTER 1: INTRODUCTION

Modern software applications need to be highly adaptable and flexible to stay

competitive. Long-running web systems must be able to swap out and update com-

ponents without interrupting services. Applications are expected to perform similarly

on multiple operating systems, under various execution environments. Software users

are demanding the ability to customize their applications to a degree that has never

been seen before. To meet this demand, more and more applications support third-

party extensions. The use of extensions allow these applications to stay current and

relevant without requiring them to absorb the resulting massive development costs.

This increased application flexibility limits what can be determined statically

about a program. One significant limitation is the lack of access to code for pro-

gram components, e.g., third-party extensions that are not available at analysis time,

or modules that have yet to be developed. However, even if all code entities are avail-

able, most static analyses would not be able to accurately analyze modern software

systems. This is because the language constructs that make this unprecedented level

of flexibility possible are largely viewed as a nuisance by the static analysis commu-

nity. We present techniques which will allow static analyses to more precisely address

a subset of these features.

1

1.1 Improved Resolution of Dynamic Class Loading

An example of dynamic constructs in Java are the methods that enable dynamic

class loading. These powerful language features allow Java applications to load classes

into the JVM at run time, requiring only a string representation of the class’ fully-

qualified name. The newly loaded classes can then be manipulated through the use of

reflection. In the most general case, there is no way to determine which entities will

be loaded until run time. As a result, many static analyses either choose to ignore

dynamic class loading constructs, thus producing an unsound result, or handle them

in such a conservative fashion that meaningful results are obfuscated by infeasible

interactions.

Some recent work has employed static string analysis to allow for a more precise

treatment of these dynamic features. Such an approach statically attempts to deter-

mine the value of the string that specifies the target class to be loaded. For example,

a call Class.forName(s) dynamically loads the class with the name represented by

the string expression s. If through static string analysis, the precise run-time value

of s could be determined, the statement could be treated as a static initialization of

the class specified by s. Current string analysis approaches have two potential points

of failure when trying to determine the value of s: (1) when the value of s is not a

compile-time constant, and truly depends on the run-time execution, and (2) when

the analysis is not powerful enough to model the flow of the string value through

the application. Unfortunately, the use of such truly-dynamic values and complex

string manipulations is common when designing a flexible application. For example,

many applications will inspect environment variables, configuration files, or particu-

lar directories to determine which extensions are available. In such cases any purely

2

static analysis will fail to produce a precise result. Similarly, many applications use

data structures and perform string operations that are currently beyond the modeling

capabilities of string analyses.

We present a novel semi-static approach which combines static string analysis with

dynamically gathered information about the execution environment. We implement

this approach as an extension to the current state-of-the-art string analysis for Java:

Java String Analyzer (JSA) [19]. The key insight behind this approach is the obser-

vation that dynamic class loading often depends on characteristics of the execution

environment that are encoded in various environment variables. Our investigation

of the Java 1.4 standard libraries revealed that over 40% of the client-independent

dynamic loading sites—i.e., ones that could not be affected directly by client code—

depend upon environment variables. Though such variables are not static elements

of an application, they are different from other forms of dynamic input data, because

their run-time values typically remain the same across multiple executions of the ap-

plication. Our approach identifies dynamic class loading sites that depend only on

such variables, and resolves them based on the current variable values. As part of this

approach, we also propose several extensions of static string analysis that improve

the tracking of the names of environment variables. These extensions increase the

ability of the string analysis to model the flow of string values, thus increasing the

number of sites that can be resolved.

The proposed approach produces results that are sound with respect to the cur-

rent execution environment and the configuration of the analyzed application, but

do not apply to all possible environments and configurations. For many clients of

static analyses, this is both reasonable and desirable. For example, consider program

3

understanding tools such as SHriMP [131] or Rigi [100]. Such tools have the poten-

tial to overwhelm their users with too much information [132]. If such tools tried to

account for every class that can potentially be loaded at dynamic class loading sites

for all possible combinations of environment variable values, their usefulness may be

compromised. Instead, by using our approach, the user can obtain information that is

sound for her own local environment (i.e., for the specific environment variable values

that capture component configurations, operating system parameters, etc.).

This work makes the following contributions:

• We propose a fully automated semi-static approach that utilizes the system’s

current configuration information to aid in the resolution of dynamic class load-

ing in Java applications. This approach defines a useful and practical relaxation

of purely static approaches for handling of dynamic class loading.

• We present several extensions of string analysis that not only enable our ap-

proach to resolve more instances of dynamic class loading sites which depend

on environment variables, but also allow for a greater number of purely static

instances to be resolved.

• We describe an experimental study in which the approach was applied to the

entire Java 1.4 standard libraries. The results of this experiment indicate that

the approach is able to resolve 46% more client-independent sites than the

state-of-the-art static string analysis, with an increase in analysis cost of a few

tenths of a second per thousand statements. Through comprehensive manual

investigation we also determined that our approach identifies 87% of all sites

4

that are, in fact, truly static or environment variable dependent, which implies

high analysis precision.

• We present a second study that demonstrates how information gained from

resolved dynamic class loading sites can be used to aid in the determination of

classes that can potentially be instantiated through the use of reflection. The

results of this study show that the additional information gained through the

use of our approach increases the number of resolvable reflective instantiation

sites from 6 to 37 in the Java 1.4 standard libraries. Moreover, 70% of the

resolved instantiation sites transitively depend on environment variables and

thus could not be resolved through purely static techniques.

These experimental results indicate that the proposed approach represents a sig-

nificant improvement for the handling of dynamic class loading in static analysis

for Java, compared to current techniques. Such an improvement could be valuable

for a range of software tools that employ static analyses to support software under-

standing, transformation, verification, and optimization. However, before JSA can

be integrated with many of these tools, its scalability will need to be improved. Our

study applied JSA to the individual packages of the Java 1.4 standard libraries. The

resource utilization measurements of the experiments suggest that JSA scales well to

this size of input. However, when we attempted to apply JSA to the entire library or

even just multiple packages, it exhausted the allotted 1.5 Gb heap and failed to com-

plete its analysis. This lack of scalability implies that JSA, in its current form, may

not be practical for use by interprocedural analysis such as call graph construction

analyses. These analyses often analyze thousands of classes, an input size to which

JSA does not scale well.

5

1.2 Improving the Scalability of String Analysis

Many static analysis frameworks could benefit from the incorporation of a string

analysis. As described above, a string analysis can aid in the resolution of dynamic

features such as dynamic class loading, thus increasing the precision of certain static

analyses. String analysis has also been used in frameworks attempting to statically

validate dynamically generated SQL statements [53,54,60]. It has even been employed

to aid in the understanding of software application interfaces [92]. Clearly, being able

to answer the question “What are the possible run-time values represented by a string

variable?” can benefit many different static analyses.

Unfortunately, many static analyses have been slow to adopt existing string anal-

yses. For example, the analyses presented in [71,126,139,144] could all improve their

precision through the careful incorporation of a robust string analysis1. However, at

best, they incorporate a very imprecise analysis that will only validate hard coded

string literals even though there are several publicly available string analysis libraries

which are much more powerful. This hesitation to incorporate a more powerful string

analyses may be due in part to the computing expense associated with precise modern

implementations of string analyses.

Currently one of the most precise string analyses for Java is JSA. The input to

JSA is a set of Java classes (application classes) and a set of expressions or “hotspots”.

JSA conservatively estimates the possible run-time string values at all instances of

those hotspots in the input classes. JSA’s design consists of two distinct components:

(1) a front-end component creates a graph which represents the possible flow of string

1All of these analyses rely on or construct a method call graph which does not provide a precise
treatment of dynamic class loading and reflection.

6

values through the input classes and (2) a back-end converts the graph into a context-

free grammar and ultimately generates an over-approximating finite state automaton

for each hotspot discovered in the input classes. Our experiments show that the

running time and memory usage of JSA can vary greatly even for inputs of similar

size (in terms of number of bytecode instructions). For example, the applications

JFlex and JGap both contain a little over 15,000K instructions. JSA can fully analyze

JFlex in under 10 seconds using only 30MB of memory, however it will exhaust a 6Gb

heap and fail to finish analyzing JGap after hours of running.

We explore a variety of techniques to reduce the memory footprint and running

time of JSA. First, we present a series of algorithmic transformations to JSA’s front-

end component. These transformations allow the majority of the work performed by

this portion of JSA to run in parallel. Such a design allows JSA to take advantage of

modern multi-core systems.

We also present several new simplifications to the flow graph generated by JSA’s

front-end. These simplifications preserve the relevant details of the graph but have

the potential to greatly reduce the running time of the back-end.

The specific contributions of this work are:

• We propose a series of algorithmic transformations to JSA. These transforma-

tions represent an evolution from the most intuitive parallelization of JSA to

a more efficient version. This exploration details many of the challenges that

developers will face when designing Java applications for modern multi-core

architectures. On average, the most advanced transformation enabled JSA to

7

realize an average speedup of 1.54 times when compared to the front-end build-

ing times of the sequential version of JSA. Our transformations also reduced

the average memory footprint of JSA by 43%.

• We present three new reductions to the flow graphs created by JSA’s front-end.

These simplifications preserve all relevant details of the graph while removing

much of the extraneous information. These reductions increase the average run-

ning time of JSA’s front-end by a few 100 milliseconds but have the potential

to greatly reduce the running time of the back-end. For two benchmarks appli-

cations in our empirical study, these simplifications produced a speedup of over

180 times. Moreover, the simplifications allow JSA to complete an analysis of

three applications that previously exhausted memory resources.

• We implemented all of our proposed transformations to JSA. These implementa-

tions are applied to 25 benchmark applications in an extensive empirical study.

This study not only demonstrates the speedup realized by our proposed en-

hancements, but also provides insights into some of the challenges faced by the

developers of parallel Java applications.

By lowering the overhead associated with precise string analysis, we are making

it more feasible to incorporate into existing static analyses frameworks. Frameworks

that could benefit from a string analysis include those which create fundamental

artifacts such as method call graphs (a basic building block of many other static

analyses). Increasing the precision of such an analysis would transitively increase the

precision of numerous other analyses.

8

1.3 Assumption Hierarchy for a CHA Call Graph Construc-

tion Algorithm

A call graph construction analysis produces a method call graph. This graph

abstractly represents the calling relationships between program methods. The nodes

of a call graph represent methods and directed edges represent calls between methods.

A call graph is a vital component for numerous interprocedural static analyses, e.g.,

[19, 41, 42, 45, 46, 62, 71, 78, 104, 107,109,111,128,143].

The existence of dynamic Java features, whose exact run-time behavior cannot be

determined by solely examining the static representation of the code, requires that call

graph construction algorithms make assumptions about the possible run-time effects

of such features. These assumptions will be reflected in the graphs generated by the

algorithm. For example, consider a call graph construction algorithm that assumes

the analyzed code does not make use of reflective features. The graph it produces

for applications that do use reflection will not be sound (i.e., it will not represent all

possible run-time calling relationships) as the reflective calls will not be represented. It

has been shown that by disregarding dynamic features, call graphs may not represent

a significant portion of the actual run-time calling relationships [89]. It is important

for clients of a Java call graph analysis to be cognizant of the assumptions that it

makes about dynamic features. Such assumptions could have ramifications on the

soundness of a client analysis.

We present a hierarchy of assumptions that a Class Hierarchy Analysis (CHA) call

graph construction algorithm [27] could make about the dynamic features of Java.

At the top of the hierarchy is the most conservative assumption, which provides a

sound, yet very imprecise, treatment for certain dynamic features. Each consecutive

9

level of the hierarchy extends the preceding level by adding more assumptions. These

additional assumptions allow for a more refined treatment of certain dynamic features.

Consequently, graphs created at each level of the hierarchy are subgraphs of those

generated by the preceding levels. The hierarchy terminates in a set of assumptions

that allows for the use of (1) type information for cast operations, (2) static string

values, and (3) semi-static string values to aid in the precise resolution of certain calls

to dynamic class loading methods, reflective instantiation, and reflective invocation.

We also propose a similar assumptions hierarchy for a May Be Loaded (MBL)

analysis. Given an application P , this analysis estimates the set of classes that may

be loaded into the JVM during any execution of P . This analysis is often used to

determine the set of classes that a CHA analysis must consider when building a call

graph for P . The results of MBL are fundamental to the closed-world assumption

under which CHA operates.

This work makes the following contributions:

• We present a detailed discussion of how custom class loaders, dynamic class

loading, native methods, and reflection can cause both an MBL analysis and a

CHA analysis to be unsound. This discussion highlights many challenges that

interprocedural static analyses of Java will have to address in order to be sound.

• We propose a hierarchy of assumptions about these dynamic Java features for

a CHA call graph construction algorithm and a MBL analysis. The CHA as-

sumption hierarchy could be extended to create a taxonomy from which existing

and future call graph construction algorithms could be categorized. For each

level of the hierarchy we specify techniques the analysis can use to address cer-

tain dynamic features. These techniques include a novel approach based on the

10

assumption that dynamic features will respect data encapsulation. They also

include using our semi-static string analysis introduced above. We believe this

is the most precise string analysis to be incorporated into a CHA analysis to

date.

• We implemented a version of the CHA analysis and the MBL analysis for each

level of their assumption hierarchies. These implementations were applied to 10

real-world Java applications in an empirical study. This study provides a con-

crete example of the effects of each assumption and the corresponding resolution

techniques on the results of these analyses. On average, the implementation of

CHA that incorporated all of our resolution techniques was able to resolve 6%

of the reflective invocation sites, 50% of dynamic class loading sites, and 61% of

reflective instantiation sites it encountered. This capability enabled this version

to generate graphs that, on average, contain 10% fewer nodes and 54% fewer

edges than the graphs created by the fully conservative version.

1.4 Outline

The remainder of this dissertation is organized as follows: Chapter 2 presents an

overview of certain dynamic Java features. It also provides a description of JSA as

well as background information about parallelism in Java. Chapter 3 presents our

approach for incorporating dynamically gathered information from the execution en-

vironment into a string analysis, and how this information can improve the resolution

of certain dynamic Java features. Chapter 4 discusses our proposed techniques for

improving the scalability of JSA. Chapter 5 presents our evaluation of the effects of

various assumptions pertaining to dynamic features of Java on a MBL analysis and

11

a CHA call graph construction analysis. Past work which relates to this dissertation

is described in Chapter 6. Finally, Chapter 7 describes possible future directions of

this work and concludes the dissertation.

12

CHAPTER 2: BACKGROUND

This chapter provides background information that relates to topics covered in

the remainder of the dissertation. It includes an overview of dynamic Java features,

a design description of the Java String Analyzer library [19], and a discussion of

parallelism in Java.

2.1 Dynamic Features of Java

The flexibility of the Java platform has helped propel it to its current level of pop-

ularity. The fact that Java is designed to be executed by a virtual machine means that

it is platform-independent. Dynamic features, such as reflection and dynamic class

loading, allow Java applications to incorporate third party extensions increasing their

customizability. Through the use of native methods, Java programs can interface with

legacy applications, access platform specific resources, and execute high-performance

code. These and other features, combined with the relative ease of programming,

have made Java a natural choice for many large and complex applications.

Though these features are of great benefit to application developers, they pose

significant challenges to creators of static analyses. The recent explosion of Java ap-

plications that support extensions increases the chance that an analysis will not have

access to all relevant code. The interactions that take place between Java applications

and native methods will often go unaccounted for, or at best, be poorly modeled due

to lack of access to the native method’s source code. Even if the source code of a

13

native method was available, the vast majority of Java analyses would not be able to

analyze them since, by definition, they are not written in Java.

Even if an analysis had access to all the program components of an application

and was able to address all the language features of each, in the most general case,

it would still be impossible to precisely model all possible run-time interactions of

an application. This somewhat disheartening situation is due to the truly dynamic

nature of some of the Java constructs. This section provides an overview of some of

the more commonly used dynamic Java features.

2.1.1 Dynamic Class Loading in Java

The Java Virtual Machine (JVM) is one of the defining components of the Java

platform [87]. It interprets Java bytecode, allowing Java applications to be platform

independent. It also supports dynamic class loading, which is the ability to load

classes at run time [86]. This is a powerful mechanism that allows classes to interface

with software components that are specified at run time and, in fact, do not even

need to exist at compile time. This feature is a key mechanism that allows modern

applications to achieve the desired level of flexibility.

Loading classes into the JVM is the responsibility of class loaders. At its simplest,

a class loader takes a string representation of the fully-qualified name of the class that

is to be loaded and performs a search for the corresponding class file. Upon finding

the class file, the loader loads the bytecode into the JVM and returns a Class object.

This is a metadata object through which the program can access the class (e.g., to

create class instances).

14

1 private final String handlerPropName =

2 "sun.awt.exception.handler";

3 private String handlerClassName = null;

4
5 private boolean handleException(Throwable thrown) {

6

7 /* Get the class name stored in environment

8 * variable sun.awt.exception.handler */

9 handlerClassName = (String) AccessController.doPrivileged(

10 new GetPropertyAction(handlerPropName));

11

12 /* Load the class and instantiate it */

13 Object h;

14 Class c = Class.forName(handlerClassName,...);

15 h = c.newInstance();

16

17 }

Figure 2.1: Sample code from library class java.awt.EventDispatchThread.

Example. Figure 2.1 illustrates the flexibility an application can gain from the

use of dynamic class loading. We revisit this example several times throughout the rest

of the dissertation. The code is from java.awt.EventDispatchThread and allows

custom-defined event handlers to be loaded in a running application. If a client wishes

to use a custom event handler, all she needs to do is create the appropriate class and

set the environment variable with the key sun.awt.exception.handler to the string

representing the fully-qualified name of this class. The method handleException

contained in EventDispatchThread queries this environment variable to retrieve the

specified class name (lines 9 and 10) and stores the value in field handlerClassName.

The custom handler is then loaded at line 14. Method forName is one of several

methods in the Java libraries that can be used to dynamically load classes. A call to

newInstance is used to create a new object of the class; this call has the same effect

as calling the no-arguments constructor of the class.

15

1 private void printGlobals () throws Exception{

2 Class clz = this.getClass();

3 Field [] flds = clz.getFields();

4 for(int i = 0; i < flds.length; i++){

5 if(Modifier.isFinal(flds[i].getModifiers())){

6 System.out.println(flds[i].getName()+"="+flds[i].get(this));

7 }

8 }

9 }

Figure 2.2: Reflection example: prints the name and value of all final fields.

2.1.2 Reflection

A Java feature that is commonly used in conjunction with dynamic class loading is

reflection. Through the use of reflection, Java applications are able inspect their struc-

ture and modify their behavior at run time. The reflective aspects of Java are imple-

mented in the standard Java libraries’ package java.lang.reflect. The entry points

for this functionality are instances of class java.lang.Class—the return type of dy-

namic class loading methods. Through Class objects, the program can make reflec-

tive calls to methods getDeclaredFields, getDeclaredMethods, getConstructors,

etc. The objects returned by these methods make it is possible to modify the values

of fields, invoke methods, and create new instances of the underlying class.

The printGlobals method shown in Figure 2.2 demonstrates how reflection can

be leveraged to efficiently (in terms of lines of code) display the values of final

fields contained in a class. The method first gets the Class object for its declaring

class via the call to getClass. This is a method that every class inherits from

java.lang.Object. It returns the Class meta-data object for the calling instance.

The getFields() method invoked at line 3 is a reflective call that returns an array

16

containing Field objects. Field is a metadata object similar to Class that provides

information about, and dynamic access to, a single field. The call to getModifiers

at line 5 returns the Java language modifiers for the field represented by flds[i]. If

the modifier is final, then the name of the field and its current values are printed to

stdout. The name of the field is retrieved through the call flds[i].getName(), and

its current value for the object pointed to by this is retrieved by flds[i].get(this).

(If the field is static, the parameter in the call to get is irrelevant.)

Without reflection, the coding of a method that prints all the final fields of a

class could be a potentially arduous task. Consider a class that declares hundreds of

such fields. Without reflection, each field fld would require a line of code similar to

System.out.println("<name>"+this.fld). Moreover, such a method would have

to be updated every time a field was added or removed.

Of course, reflection is much more powerful than just printing field values. For

example, through the Field method set(Object,Object), it is possible to modify a

field’s value. Class Method contains the method invoke(Object,Object[]) which

can be used to execute the method represented by Method on Object with the pa-

rameters specified in Object[]. It should be noted that Method cannot represent

constructors or static initializer methods (these are artificial methods which initialize

static elements of a class). However, new instances of objects can also be created

using the newInstance method of java.lang.reflect.Constructor, or through

invocations of Class.newInstance().

Reflection does not need to respect encapsulation. By using AccessibleObject,

it is possible for objects of type Field, Method, and Constructor to circumvent the

attribute visibility rules of Java. The superclass of Field, Method, and Constructor

17

is AccessibleObject from which they inherit the setAccessible(boolean) method.

By invoking this method with the boolean value true, a reflective object can suppress

the Java language access checking, thus gaining access to all attributes even if they

have protected, package, or private visibility.

2.1.3 Native Methods

Native methods are methods that are written in native programming languages.

There are many situations where it is necessary for a Java application to interface with

native methods. For example, a systems that has migrated from C to Java may still

need to be able to interface with legacy components written in C. Often, situations

occur where a platform-independent Java application requires access to platform-

dependent resources (e.g., modem or I/O systems). Such resources are typically

accessed through native methods. It may be desirable to implement computationally

expensive components of a system in a more efficient native method. For all of the

these reasons and more, the Java platform provides its clients with the Java Native

Interface (JNI) [85]. JNI is an interoperable interface that allows Java classes to

callout to methods contained in native libraries. It also allows native code to make

callbacks to Java methods.

Through the use of JNI, it is possible for a native method to create, inspect, and

modify objects in a JVM. Native methods can even load new classes into the JVM;

essentially a native method has all capabilities of a standard Java method.

2.1.4 Custom Class Loaders

As stated above, Java is an interpreted language. This means that Java applica-

tions differ from applications written in conventional compiled languages such as C

18

or C++. A Java application is not packaged into a single executable file; rather, it

consists of many separate class files. The class files of a single application need not,

and often are not, loaded into memory at the same time. Typically, classes are loaded

into the JVM on demand.

Class loaders are software components that are responsible for loading Java class

files into the JVM. During the loading process a typical class loader first locates

the file containing the bytecode for the class that is to be loaded. It then verifies

that the class is structurally well-formed and does not perform any actions that are

not allowed. If the class passes verification the loader prepares for its initialization,

which involves allocation of memory for static members of the class, and creation of

various structures such as the method tables and object templates. Finally, the class

loader initializes the class which requires the execution of the class’ static initialization

method.

We say these are the actions of a “typical” class loader because custom class

loaders need not follow this behavior. Custom class loaders are user extensions of

java.lang.ClassLoader. Custom class loaders are commonly used to specify alter-

native locations from which to load class files, instrument bytecode, and partition

user defined classes in servers.

The existence of custom class loaders presents a significant challenge to most static

analyses. Since custom loaders can load classes from sources that are not included

on the classpath, or even on the current system, it can be difficult for whole-program

analyses to determine all the possible classes that may be loaded during the execution

of an application. The ability of custom class loaders to instrument the bytecode of a

class means that the semantics of the class can change between compile time and run

19

time. Moreover, custom loaders need not load the class specified but could substitute

another class or dynamically create a new class.

2.1.5 JVM Interactions and Implicit Calls

There are many different implementations of the Java Virtual Machine specifica-

tion [87]. Some of the implementations are designed to allow Java applications to

run on specific operating systems, others are designed to allow higher performances.

A single Java application given the same user inputs may exhibit different run-time

behaviors on two different implementations of the JVM even though both implementa-

tions are correct with respect to the specifications. This is due to the nondeterminism

present in the specification.

One example of this nondeterminism is the requirement for startup of the VM.

The specification states that

The Java virtual machine starts up by creating an initial class, which is
specified in an implementation-dependent manner, using the bootstrap

class loader.

In other words, it is up to the developer of a specific implementation as to exactly how

the JVM should begin execution. Some VM implementations will load and initialize

a number of Java library classes that are commonly used by applications [8]. This can

increase the efficiency of a running application that accesses one of these classes since

the class is already loaded. This nondeterminism means that the VM can perform

actions on startup that could possibly affect the run-time behavior of an application.

Another ambiguous requirement is the JVM’s invocation of a finalize method.

The root class Object contains a protected method finalize that can be overrid-

den by subclasses. The JVM specification requires that the VM invoke an object’s

20

1 class Grigri{

2 static Boolean useGrigri;

3 static{ //static initializer block

4 if(ATC.useATC){

5 System.err.println("Already belaying with an ATC");

6 useGrigri = false;

7 }else{

8 useGrigri = true;

9 }

10 }

11 public static void beginBelay(...){

12 ...

13 }

14 }

Figure 2.3: Example of a static initializer block.

finalize method before its storage is reclaimed by the garbage collector. The intent

of this method is to allow for the release of resources that cannot automatically be

released by the garbage collector. However, there is no requirement for exactly when

the VM should invoke a finalize method. Moreover, the method may never be

invoked if the VM exits without performing a final garbage collection.

There are a number of code entities like finalize that are meant to be called

implicitly by the JVM. For example, some classes contain a static initializer block.

This block of code is similar to a static method except that it has no method name,

no return type, and no parameters. A common use of static initializer blocks is to

initialize static fields, but the code contained in a block can be arbitrarily complex.

An example of a static initializer block is shown in Figure 2.3 at lines 3-10. In the

example, class Grigri first examines a static field of class ATC before setting the values

of its own static field useGrigri. It is possible for a class to declare multiple static

initializer blocks. When a class is compiled, the compiler combines all static initializer

21

blocks and static variable initializers in the order in which they appear in the code

into a single static initializer method [39] (for the remainder of the dissertation we

will refer to this method as clinit). The JVM will invoke any class X’s clinit only

once, immediately before one of the following actions:

• An instance of X is created

• A subclass of X is initialized

• A non-constant static field of X is assigned or used

• A static method of X is invoked

• X is initialized due to certain reflective methods

• X is initialized due to JVM startup

Another method that is implicitly called by the JVM is Thread.run. As will be

discussed in Section 2.3, a programmer can specify the code that is to run in a thread

by extending the Thread class and overriding the run method. At a call of the form

x.start(), where x is an instance of a subclass of Thread, the JVM implicitly calls

x.run(). This allows the concurrent running of two threads, the current thread (the

one calling x.start()) and the thread whose execution starts with x.run().

Similar to Thread.run is the run method of a PrivilegedAction object. This

method contains computations that are to be performed with privileges enabled,

meaning that the code in run has access to more resources than the code which

caused its invocation. Instances of PrivilegedAction are passed to invocations of

AccessControler.doPriviledged. This method performs a security check to ensure

that it is safe to invoke the code with privileges enabled. If the action is allowed, the

run method is called by the JVM.

22

2.1.6 Dynamic Features and Static Analysis

The Java features described in Sections 2.1.1–2.1.5 are examples of what we are

broadly referring to as “dynamic features”. In the general case, these are features

whose exact behavior cannot be determined until run time. Dynamic features pose a

significant challenge to static analyses.

By definition static analyses analyze static representations of program. These

types of analyses are typically designed to discover information about “static” fea-

tures that appear explicitly in the program code (e.g., method calls and assignments).

Traditionally, when a static analysis encountered an instance of a dynamic feature in

a program it was analyzing, it would either (1) ignore the feature, possibly producing

unsound results, or (2) attempt to model the feature’s implicit effects in a conser-

vative manner, often generating a very imprecise result. Recent work has proposed

techniques that enable static analyses to use static information to provide a more

precise treatment for certain dynamic features.

In the subsequent chapters, we present an investigation of the dynamic features

listed above and techniques that allow static analyses to provide a more precise treat-

ment for more instances of them. In Chapter 3 we propose extensions to string

analysis that better equip it to precisely resolve string values used at calls to dy-

namic class loading methods. We also show how the type information from resolved

dynamic class loading sites can be used to resolve instances of reflective instanti-

ation (e.g., Class.newInstance()). In Chapter 5 we explore several assumptions

that a CHA call graph construction algorithm and a MBL analysis could make about

dynamic features. The different assumptions allow these analyses to incorporate

different treatments and resolution techniques for dynamic class loading, reflection,

implicit calls made by the JVM, and native methods. The different treatments for

these features can have a profound effect on the results generated by the analyses.

23

App.

Classes

Make

Intraprocedural

CFGs

Per Method

Liveness

Analysis

Per Method

Alias Analysis

Per Method

Reaching

Definitions

Analysis

Per Method

Interprocedural

Flow Graph

All Methods

Simplify Flow

Graph

BACKEND

Figure 2.4: Stages of JSA’s front-end.

2.2 Java String Analyzer

One of the most powerful string analysis currently available for Java is the Java

String Analyzer (JSA) library [19]. The input to JSA is a set of Java classes (appli-

cation classes) and a set of expressions (hotspots). JSA conservatively estimates the

possible run-time string values at all instances of these hotspots in the input classes.

It should be noted that JSA uses the Soot analysis framework [144] to generate the

Jimple intermediate representation of the application classes. It is this representation

that JSA uses to begin its analysis. For the rest of this dissertation this conversion

from bytecode to Jimple code is considered a preprocessing step.

JSA’s design consists of a front-end and a back-end. The front-end takes the

Jimple representation of the input classes and constructs a flow graph that abstractly

represents the flow of string values through the application. This flow graph is the

input to the back-end. The back-end builds a context-free grammar based on the

information represented in the graph. From the grammar it ultimately generates an

over-approximating finite state automaton for each hotspot in the input classes.

2.2.1 The Front-End

Figure 2.4 depicts an overview of the algorithmic design of JSA’s front-end. It

consists of six stages:

24

1. Intraprocedural CFGs: JSA assumes that all methods in the input classes

could be executed at run time. This stage creates a control flow graph (CFG)

for each of these methods, including clinit methods. The nodes of the graph

represent statements of an intermediate representation specific to JSA. This

representation is a further abstraction of the Jimple code. Nested Jimple ex-

pressions are flattened by using synthetic local variables and assignments. JSA

is only concerned with determining string values, thus only operations that per-

tain to variables of type String, StringBuffer, StringBuilder, and Array

with a base type of String, method calls, and return statements are modeled

precisely in the CFGs. All other operations are modeled by special NOP nodes.

In this stage, JSA uses the class hierarchy analysis available in Soot to deter-

mine all possible targets of virtual calls. For each target discovered, JSA creates

a unique branch and a unique Call node in the CFG.

2. Liveness Analysis: This stage performs an intraprocedural liveness analy-

sis [3] on each of the CFGs created in Stage 1. A liveness analysis determines

which variables are live at each “point” in a program. A variable is considered

live at a specific program point if it can be used in computations past that

point. In the case of JSA, the liveness analysis determines which variables are

live at each node in the CFG. This information is saved in a Map data structure

to be used in later stages.

3. Alias Analysis: The results from the liveness analysis and the CFGs are inputs

to this stage. JSA performs an intraprocedural must/may alias analysis on each

of the CFGs. This flow analysis identifies pairs of variables that must point to

the same memory location and pairs that may point to the same location. The

25

results of the liveness analysis are used to identify and eliminate pairs in which

one variable is no longer live.

4. Reaching Definitions Analysis: The results of the previous two flow analyses

are used in an intraprocedural reaching definitions analysis [3]. A definition (a

statement) s of variable v reaches a CFG node n if there exists a path from s

to n on which v is not redefined. The results of the liveness analysis are used

to remove variables that are no longer live. The results of the alias analysis are

used to ensure that all definitions that are possible through aliasing relationships

are accounted for.

5. Interprocedural Graph Building: After the dataflow analyses have been

completed, JSA uses the results to aid in the creation of the final flow graph.

First JSA creates the nodes of the graph. This is achieved by iterating over all

statements in every method contained in the input classes. For each variable

defined by a statement (including those which could be affected due to aliasing)

JSA creates one of the following nodes depending on the type of statement:

Init, Join, Concat, BinaryOp, and UnaryOp. Init nodes represent the initial-

ization of a string (e.g. String s = "sloper"). Such a node does not have

incoming edges and is associated with a finite state automaton which represents

the value of the string. Join nodes model assignments and control join points.

Concat nodes represent string concatenation, UnaryOp nodes represent unary

string operations such as reverse, and BinaryOp nodes model binary string

operations such as insert.

Once the nodes have been created, JSA adds the edges to the flow graph. The

edges represent a def/use relationship. They are created by, again, iterating

over all statements in all methods. Each statement s has two sets of variables

26

associated with it: dv (variables defined by s) and uv (variables used by s).

For each variable uv i ∈ uv an edge is added from the nodes associated with

the reaching definitions of uv i to the nodes associated with the variables in dv .

This process is straightforward for the majority of statements. However, this

stage introduces the first interprocedural connections.

For Call statements of the form x = y(p1, p2, . . .) the node associated with x

is linked to all nodes of the reaching definitions for all variables that could be

returned by y. Similarly, all arguments pi of type Array, StringBuffer, or

StringBuilder are linked to the reaching definitions of y’s corresponding alias

parameters api at all of y’s return statements. For each Methodhead statement

(a synthetic entry statement generated by JSA for each method), JSA iterates

over all possible call sites of the corresponding method; this information is

recorded earlier during the building of the CFGs. The arguments of each call

site are linked to the nodes of the parameters of the called method.

Assignments to array elements, of the form a[i] = s, also receive special treat-

ment. Since arrays are treated as sets of values represented by one variable a,

JSA first links all previous definitions of a to the current node, and then links

the definition of s.

6. Flow Graph Simplification: After the complete flow graph has been created,

JSA performs several reductions on it. It first merges nodes which are equiva-

lent. Two nodes are equivalent if they are the same type (i.e., Join, Concat,

. . .) and have the same incoming edges. Init nodes are equivalent if their as-

sociated automata are equivalent. Equivalent nodes are merged by arbitrarily

deleting one node and its incoming edges. The deleted node’s outgoing edges

are then added to the remaining node.

27

Next, JSA removes self loops on Join nodes. This is accomplished by simply

deleting the looping edge. After looping edges have been removed, Join nodes

are examined to determine if they have more than one incoming edge. If they

don’t, they are removed by deleting the node and adding its one incoming edge

to each of its successor nodes. This has the effect of compressing sequences

of single assignments. Lastly, JSA bypasses concatenation nodes if the first

argument of the node has exactly one edge and it comes from an initialization

node representing the empty string (i.e., s=""+z;). This is accomplished by

replacing the Concat node with a Join and deleting the edge to the empty

string Init node.

The simplification are applied to the graph in an iterative manner until no

further simplifications can be performed.

2.2.2 The Back-End

The back-end of JSA takes the flow graph and constructs a context-free grammar.

For each node n in the graph, a nonterminal An is added to the grammar along with

a set of productions corresponding to the incoming edges of n. These productions

are determined by the type of n. For example, if n were a Concat node and nodes

x and y were predecessors of n, the following rule would be added to the grammar:

An → AxAy. The production for an Init node n is An → reg where reg corresponds to

a regular language. JSA then utilizes the Mohri-Nederhof algorithm [98] to transform

the grammar into a strongly-regular context-free grammar. The collection of resulting

regular languages are then stored in a multi-level automaton structure (MLFA). An

MLFA is a hierarchical directed acyclic graph of nondeterministic finite automata

that compactly stores the information for all string expressions in the input classes.

From this structure an individual finite state automaton can be extracted for a given

28

hotspot. The language produced by the automaton is a superset of the possible string

values that can occur at that hotspot. It should be noted that the extraction of a

finite automaton from the MLFA is, in the worst case, a doubly exponential processes,

though Christensen et. al. [19] did not observe any such blowups in their experiments.

2.2.3 The Assumptions of JSA

The version of JSA documented in [19] is said to “conservatively take care of

interaction with external classes”. This appears to be the extent of the published

documentation that details JSA’s open-world assumption. In this section we infer

the details of this assumption through an investigation of the JSA 1.1.3 source code.

Our investigation revealed that if during its analysis JSA discovers a call to a

method which is not contained in the set of input classes, the mutable arguments

(those of type StringBuffer, StringBuilder and Array) and the return value of the

method call are assigned the anystring value. This value signifies that JSA assumes

these variables can be any Unicode string value. For the remainder of the dissertation

if a variable is said to be corrupted it is assumed that it can be any Unicode string

value. From this we infer that JSA defines external classes to be any class not included

in the set of input classes provided by the user. Thus, any library classes which are

automatically loaded by Soot are also considered to be external entities.

JSA corrupts formal parameters of type String, StringBuffer, StringBuilder,

and Array with base type of String of public methods. It also corrupts all assign-

ments to and from fields. From this it can be inferred that JSA assumes that external

code and dynamic features such as reflection could affect all public methods and all

fields. Since these are the only formal parameters it corrupts, it can be inferred that

JSA assumes that the set of classes provided by the user contains all relevant calls

29

1 Class A{

2 ...

3 private native String returnName();

4 void foo(){

5 System.out.println(returnName());

6 }

7 }

Figure 2.5: Example of JSA’s treatment of native methods.

to private, protected, and package-private methods, and dynamic features of Java

will not affect these methods.

JSA does not corrupt the return values on any of the methods contained in the set

of user-provided classes. This implies that JSA assumes that the set of input classes

contains all methods that could be called through polymorphism and whose return

values could affect hotspots.

JSA’s treatment of calls to native methods is problematic. Consider the code

shown in Figure 2.5. Assume that class A is an input class to JSA and instances of

System.out.println are hotspots. In this example, the method foo makes a call

to the native method returnName which returns a string value. Since JSA does not

have access to the code of the native method, it should return the anystring value

for the System.out.println hotspot. However, JSA does not distinguish the Java

declaration of native methods from other methods and it will erroneously process

returnName as it would any other method. Since returnName does not contain a

code body JSA would simply create a method “shell” for it. The shell would return

an empty value so JSA would return an empty string (i.e. "") for the hotspot.

This problem does not occur if the native method is not declared in the set of input

classes, since JSA would then treat it as any other external method. Therefore, it can

30

be inferred that JSA assumes that none of the input classes declare a native method

whose invocation could affect string values at hotspots.2

JSA does not make special provisions for reflective calls or calls to dynamic class

loading methods. The compile-time types returned by such calls are not of type

String, StringBuffer, StringBuilder, or Array with base type of String; thus,

JSA does not precisely model their values. The assumptions JSA makes about the

possible implicit effects of such calls are stated above.

To summarize, we have inferred from an examination of JSA 1.1.3 source code

that JSA makes the following assumptions: (1) the set of input classes contains all the

code that could call private, protected and package-private methods whose formal

parameters could affect string values at hotspots; (2) the set of input classes contains

all methods that could be called through polymorphism and whose return values could

affect hotspots; (3) none of the input classes declare a native method whose invocation

could affect the value of a hotspot; (4) reflection and external code will not affect

the values of formal parameters of type String, StringBuffer, StringBuilder, and

Array with base type of String of private, protected and package-private methods

whose values flow to hotspots.

In Chapter 3 we present several extensions to JSA. One of these extensions in-

corporates dynamically gathered configuration information. We also present several

extensions that increase JSA’s ability to statically model the flow of string values.

We show how these extensions increase JSA’s usefulness in finding string values used

at dynamic class loading sites. In Chapter 4 we introduce techniques that increase

JSA’s scalability, making it more feasible to incorporate into existing static analyses.

Finally, in Chapter 5 we show how the information from JSA can aid a CHA call

graph construction algorithm to resolve instances of certain dynamic Java features.

2For our experiments we altered JSA to corrupt all arguments passed to, and values returned by
calls to native methods and reflective calls.

31

2.3 Multi-Core Architectures and Java

Modern computer designers are running into the upper bounds of Moore’s Law [99]

due to overheating problems and power consumption. Rather than increasing the

frequency of a single processor, many designers are choosing to use a multi-core

architecture. The term multi-core processor refers to a processor which has two or

more processing cores on a single chip. Since all the cores run in parallel, a multi-core

processor can achieve application speedup by dividing the working load among the

cores.

There are a variety of cache and memory access configurations for multi-core

systems. The popular Intel R© CoreTM Duo processors use a shared-cache architec-

ture [138]. Each core has its own L1 cache and share the L2 cache and memory

controller. The cores access main memory through a shared bus even if there are

multiple chips containing multiple cores. AMD Opteron platforms use a Non-Uniform

Memory Architecture (NUMA) [1,74]. In this configuration every core has a distinct

cache hierarchy and therefore there is no shared cache. Cores on the same chip share

a memory bus but each chip has its own unique bus.

Different configurations have different strengths and weakness. For example, by

not sharing an L2 cache a NUMA system’s caches are closer to the core so access is

faster and the contention between cores is reduced. However, the shared design of

the CoreTMDuo allows threads executing on separate cores to share the same cached

data. It also means that if only one core is being used there is more cache available.

Java applications can benefit from multi-core systems in a variety of ways. First,

the JVM is multi-threaded and therefore its efficiency can increase on the new systems.

On a multi-core system, one core can be dedicated to the task of performing garbage

collection while another can execute the application. This enables both processes to

32

run in parallel. Possibly the most benefit for an individual application comes from

the Java APIs [52] that allow applications to be multi-threaded.

The Java standard library contains many components designed to aid developers

of multi-threaded applications. One of the fundamental structures used to create

multi-threaded applications is the Thread type. Every thread of execution in a Java

application is associated with a Thread object. A programmer can specify the code

that is to run in a thread by extending the Thread type and overriding the run method

with the code that is to run in parallel. (Alternatively, the Runnable supertype could

be used.) The Thread class includes many useful methods for thread management.

A few of the most relevant are: start, which initializes the execution of the thread;

sleep, which causes a thread to pause for a specified amount of time; interrupt,

which interrupts the thread; and join, which instructs the calling thread to wait until

the called thread has finished executing.

Multiple Thread objects can often access the same objects, fields, and methods

which can lead to thread interference. The simplest method to avoid thread inter-

ference is to require threads to obtain a lock before using a critical resource. If a

thread cannot immediately acquire a lock, it must wait until the thread that does

hold the lock releases it. In Java every object contains a lock, and access to this lock

is specified through the keyword synchronized. A synchronized method or block of

code for a given object can only be executed by one thread at a time.

There are several disadvantages to creating a multi-threaded application in Java

as opposed to a compiled language such as C or C++. Since the JVM does act as an

intermediary between an application and the system hardware, it is very difficult for

applications to gain access to low-level memory controls. This can lead to contention

33

for memory resources. The JVM itself also represents a challenge, for it is a highly-

customizable application and can be a difficult to precisely tune. In general there are

three common bottlenecks for multi-threaded Java applications:

1. Excessive allocations

2. Synchronization

3. Untuned Java heap configuration

Excessive allocation can lead to increased garbage collection and demands on the

memory management system [67]. A large amount of thread interaction that requires

synchronization increases the possibility of threads becoming serialized, thus limiting

the scalability of the application. Since it is the JVM that performs the memory

management, it is vital to properly tune it to limit contention for memory resources.

In Chapter 4 we explore techniques that reduce the execution costs (in terms of

time and memory) of JSA. One obvious approach is to parallelize JSA so that it can

take advantage of the modern multi-core architectures described above. Since JSA is

written in Java, we use the Java libraries APIs in our implementation.

34

CHAPTER 3: INCORPORATING DYNAMICALLY

GATHERED ENVIRONMENT INFORMATION

Most static analyses have taken one of two approaches for the handling of dynamic

class loading in Java: (1) ignore it or (2) treat it in an overly conservative fashion.

Ignoring these features produces a result that is unsound and may miss vital program

entity interactions. It renders an analysis impractical for use on modern Java appli-

cations; for example, there is evidence [89] that significant portions of the program

call graph can be omitted by a static analysis which disregards dynamic features such

as dynamic class loading. Conversely, the conservative approach assumes that any

class can be loaded and instantiated. However, the relevant information can be easily

obfuscated by the number of infeasible interactions inferred by this technique. Some

analyses [89, 139] require that the user manually specify the classes which could be

loaded at dynamic class loading sites. However, this technique can be time consuming

and error prone. Livshits et al. [89] presents another approach that utilizes casting

information to reduce the number of classes that need to be considered. However,

such an approach would fail for the code presented in Figure 2.1 since no cast of the

dynamically loaded class is performed.

Since string values specify the classes that are to be loaded at dynamic class

loading sites, a string analysis has the greatest potential to precisely resolve such

instances without requiring input from the user. Several approaches [19, 89, 144]

employ various forms of string analysis in an attempt to determine the possible run-

time values of these target strings. However, such analyses have two points of possible

35

failure when attempting to precisely determine the run-time values of a string-typed

expression: (1) the value of the expression depends upon values that the analysis

does not have knowledge of (e.g., the args[] array passed to a main method), or

(2) the analysis is not powerful enough to model the flow and manipulation of the

string values.

In this chapter we present several techniques which increases the ability of string

analysis to resolve instances of dynamic class loading.

3.1 Extending JSA

To increase JSA ability to resolve instances of dynamic class loading, Section 3.1.1

proposes an extension to JSA which increases the number of relevant string values

available to the analysis, and Section 3.1.2 presents several extensions that improve

JSA’s overall modeling capabilities.

3.1.1 Semi-Static Analysis

Consider the code example presented in Figure 2.1. If some JSA client specifies the

call forName(str,...) as a hotspot, then JSA will attempt to resolve the possible

run-time values of parameter str. However, in this example, JSA will return the

value anystring for handlerClassName. This indicates that under JSA’s model, the

parameter could be any Unicode string. This occurs, in part, due to the fact that

JSA views environment variables as run-time inputs to the program and thus assumes

that it has no access to the values stored in them.

Unfortunately, applications that utilize dynamic class loading often rely on string

values that are not statically contained in their own code. It is rare, however, that

a needed string value flows from direct user input (e.g., from stdin). A much more

36

1 public static PrinterJob getPrinterJob() {

2

3 return (PrinterJob)java.security.AccessController.doPrivileged(

4 new java.security.PrivilegedAction() {

5 public Object run() {

6 String nm = System.getProperty("java.awt.printerjob");

7 try {

8 return Class.forName(nm).newInstance();

9 } catch (ClassNotFoundException e) {

10

11 }

Figure 3.1: Sample code from library class java.awt.printer.PrinterJob.

common case is that such values flow from system environment variables, such as in

the example above. Environment variables are key/value pairs that are stored in the

execution environment and can be accessed by all programs. These variables provide

the program with information about the type of environment in which it is operating.

It is possible that the user could manipulate these values between consecutive runs of

an application. This, however, is not the intent of many of these variables. Consider

the Java system property with key os.name; clearly, this property is not meant to

be modified by the user. Moreover, many of these variables will be consistent across

a large number of the host environments that the application will be executed on,

and certainly across multiple runs on the same host. For example, the library class

shown in Figure 3.1 queries an environment variable to determine which class to load

in order to create a job that will facilitate printing for the current installation of

an application (line 6). Such a variable will be consistent across many systems. A

common default PrinterJob used to create Win32 print jobs on Windows operating

systems is sun.awt.windows.WPrinterJob. Unless the application uses a custom

extension of PrinterJob or the operating system changes, it is likely that the value

of nm will be constant for a given system. As long as the value of the environment

37

variable remains constant, the same class will always be loaded and instantiated at

line 8.

We propose an extension to JSA that will allow it to make use of the values

stored in environment variables. Our approach requires only alterations to the graph

model that JSA builds to represent the flow of string values. We present only the

end alterations to the graph; for brevity, the details of the intermediate stages are

not discussed.

In our approach we identify a set of Java library methods that serve as entry points

for the values of environment variables; the set of methods we consider are shown in

Figure 3.2. All of these methods take a key string parameter which specifies the en-

vironment variable that is to be accessed. In the example presented in Figure 2.1, the

constant field handlerPropName contains the key "sun.awt.exception.handler".

Several of these methods take a second default string parameter. These methods

return the value stored in default if the value of key does not specify an environment

variable with a set value. Since these parameters are strings, we can add a special

env-hotspot node to the JSA graph for each encountered call to a method that is an

environment variable entry point. By leveraging the existing techniques in JSA, it is

often possible to resolve the potential run-time values that both the key and default

parameters can assume.

If JSA is able to resolve the key and default parameters, our approach performs

an analysis time look-up of the key/value pair in the environment. This look-up

is achieved by executing the method call represented by the env-hotspot node. We

term this step “semi-static” since all possible key values are statically estimated and

then the env-hotspot is executed for each unique value. We views this limited hybrid

approach to essentially be a look-up of a “static” entity. The values returned from this

look-up are treated as constant strings and are propagated to dynamic class loading

38

java.lang.System.getProperty(String)

java.lang.System.getProperty(String,String)

java.security.Security.getProperty(String)

sun.security.action.GetPropertyAction(String)

sun.security.action.GetPropertyAction(String,String)

java.awt.Toolkit.getProperty(String,String)

Figure 3.2: Entry points for environment variables.

sites. In general, the idea of examining the values of environment variables could also

be applied to other static analyses; Section 3.3 provides a detailed discussion of the

assumptions under which such an approach is applicable.

The outcome of a look-up will result in one of three possible modifications to the

graph, as described below.

Single value return. The most straightforward case occurs when both the key

and default (if it exists) parameters for an env-hotspot resolve to a single value. In

such situations it is guaranteed that the look-up step will return a single string value:

if the key/value pair exists it will return the value, and if the pair does not exist

it will return the value specified in default or null.3 In such cases our approach

replaces the env-hotspot node with an Init node. The value associated with this

Init node is the result of the environment variable look-up. Due to this change of

the flow graph, all strings that were dependent upon the original method call are now

dependent upon the looked-up value.

Multiple value return. Of course, more than one string value may flow to

key, to default, or to both. In such situations the look-up executes the env-hotspot

method for every possible pair of a key value and a default value. Every value that

the look-up step discovers, including all defaults when applicable, is assigned to a

3JSA does provide treatment of null string values.

39

new artificial Init node. The env-hotspot node is then replaced by a Join node and

an edge is added from every new Init node to this new Join. Since Join nodes are

analogous to φ functions (see Section 2.1.1), this has the effect of unioning all the

returned look-up values. Thus, all entities that were originally dependent upon the

method invocation are now dependent upon the set of possible values that could be

returned at run time.

Variable corruption. It is entirely possible that, for some env-hotspot, JSA will

not be able to resolve the key parameter, the default parameter, or both. If the key

value is unresolvable there is no precise way to determine the appropriate environment

variable to look up. Thus, our approach replaces the env-hotspot node with an Init

node assigned the anystring value. This is also the action taken if the default

parameter is unresolvable and one of the key parameter values is an environment

variable which is not set (i.e., does not have a key/value pair in the environment). This

has the affect of “corrupting” all other strings that are dependent upon the original

method call. It should be noted that it is possible to access environment variable

through the use of reflection. Our approach does not precisely model String values

which flow from reflective calls and therefore such values would also be corrupted.

The result of this extension is a solution that is sound with respect to all possible

run-time executions during which the configuration values are the same as the values

that were observed during the analysis. This semi-static approach differs from both a

completely static analysis (which produces a solution describing all possible run-time

executions) and a completely dynamic analysis (which produces a solution describing

the specific observed run-time execution). Additional discussion of this approach is

presented in Section 3.3.

40

3.1.2 Modeling Extensions

Even with the addition of the semi-static technique described above, the current

publicly available version of JSA would still not be able to determine the possible

run-time values of handlerClassName at line 14 in Figure 2.1. This is due to JSA’s

inability to accurately model all possible flows of string values. For example, JSA

currently does not track the flow of string values to and from fields. All string values

that flow from fields are corrupted (i.e., assigned the anystring value).

We propose a more precise handling of fields. Our technique models fields similarly

to the manner that JSA handles method invocations in that both are treated in a

context-insensitive manner. Currently, we only consider private and package-private

fields of type String and in some special cases, arrays with a base type of String.

The approach first identifies all accesses to a given field x in the input classes. It then

unions all values that flow to instances of x. In the final flow graph, this is modeled

by adding edges from every Join node that represents an assignment to x to a newly

synthesized Join node. An edge from this synthesized node is then added to the node

representing the field. Consequently all sites that read the value of x will be modeled

as potentially receiving all possible values that could be assumed by every instance

of x. This approach of modeling fields is similar to previous work [20, 134]. Note

that in the open-world versions of the analysis described in Section 3.3, anystring

is propagated to fields that could be modified by code outside of the input classes.

Thus, our proposed treatment of fields is sound under the assumption that the input

classes comprise a complete package.

During our manual investigation of the Java libraries, described in Section 3.4, we

discovered several instances of dynamic class loading that depended on string values

defined in static final array fields, as illustrated by the following example:

private static final String[] codecClassNames =

41

{"com.sun.media.sound.UlawCodec","com.sun.media.sound.AlawCode"}

This structure encapsulates the strings specifying the two possible subclasses of

SunCodec that could be loaded at run time by class com.sun.media.sound.SunCodec.

For such cases, our approach treats the array as a single String field. Synthesized

Init nodes are created for each statically defined array entry. These values are

unioned together in the fashion described above. Any access of an element in an ar-

ray is treated as a read of a field. For the above example, if an access of the form x =

codecClassNames[0] were discovered, JSA would assume that the value of x could

be "com.sun.media.sound.UlawCodec" or "com.sun.media.sound.AlawCode".

Even after increasing JSA’s ability to model fields, it would still not be able to

resolve the possible run-time values of handlerClassName from the running example.

This is due to the limited number of variables types which are given precise treatment

by JSA. In its original form JSA only models variables of type String, StringBuffer,

StringBuilder and arrays with a base type of String. However, in the code dis-

played in Figure 2.1, the look-up of the variable sun.awt.exception.handler is ac-

complished by creating an instance of sun.security.action.GetPropertyAction

(line 10). This convenience class implements java.security.PrivilegedAction.

Instances of PrivilegedAction are typically passed to invocations of priviledged

granting AccessController.doPrivileged method. This results in the execution of

PrivilegedAction.run with privileges enabled. In the case of GetPropertyAction,

the run method simply wraps an invocation of method System.getProperty. The

problem is that the return type of PrivilegedAction.run is java.lang.Object.

Even though String is a subclass of Object, JSA does not model objects with a

compile-time type of Object which are of type String.

It is a common practice to use an instance of PrivilegedAction to wrap accesses

to environment variables. Thus, it is paramount for the success of our semi-static

42

approach that JSA be able to properly model such occurrences. We propose a ex-

tending JSA so that it can conservatively determine variables with compile-time types

of Object that are actually of type String. To achieve this, we augment JSA to also

consider variables of type Object. Suppose that the only actions performed on such a

variable in the input classes are: (1) assignment from a variable with a compile-time

type of Object that is actually of type String, (2) cast to a String variable, and (3)

assignment from a String variable or a string literal. If this is the case, we direct JSA

to treat the variable as a String. If any action outside of those specified above occurs,

such as the Object being assigned a dynamic type other than String, the variable is

conservatively corrupted and, transitively, all string values dependent upon it. This

approach is quite conservative and more powerful type inferencing techniques could

reveal more instances of Object variables which are really of type String. Still, our

experimental results show that this approach is sufficient to model the flow of most

string values which are utilized at dynamic class loading sites in the Java 1.4 standard

libraries.

3.2 Resolving Reflective Instantiation

Being able to determine the classes that can be instantiated by dynamic class

loading is a valuable ability for many static analyses. Consider the example shown

in Figure 2.1. By resolving the instance of dynamic class loading at line 14 the

resolved classes will be identified as being part of the application and their static

initializers will be identified as being reachable. However, dynamic class loading is

just one of Java’s dynamic features. Consider the method call c.newInstance()

at line 15 of Figure 2.1, which is an example of reflective instantiation. As stated

earlier, an invocation of newInstance has the same effect as calling the no-arguments

constructor of the class being represented by c.

43

To illustrate the importance of being able to resolve instances of reflective instanti-

ation, consider the well-known Rapid Type Analysis (RTA) [7] call graph construction

algorithm. RTA produces a graph in which the nodes represent methods and edges

represent possible calling relationships between methods. The analysis starts at the

main method of the program. As calls to methods are discovered, the appropriate

nodes and edges are added to the graph and the bodies of called methods are ana-

lyzed. RTA maintains a set Instantiated of classes that could be instantiated in meth-

ods reachable from the main method. Virtual call sites are resolved based on these

classes. The set Instantiated is updated whenever RTA encounters new X expressions.

If an update of Instantiated implies additional target methods at already-processed

call sites, the call graph is updated to reflect the newly discovered relationship.

An implementation of RTA which ignores dynamic instantiations of classes may

create a call graph that is unsound for applications utilizing reflection. Since dy-

namically instantiated classes would not be added to Instantiated unless they are

instantiated by conventional means elsewhere in the application, RTA will not con-

sider them when resolving virtual call sites. In this case, the resulting call graph would

be missing valid call edges. Conversely, if RTA treated even one instance of reflective

instantiation conservatively by assuming that all classes could be instantiated at such

a site, Instantiated would contain all possible classes. This would result in the consid-

eration of all classes when estimating potential receivers of dynamically-dispatched

messages. The resulting call graph would be identical to the graph generated by the

imprecise CHA [27]. Thus RTA’s efforts would be rendered superfluous. Similarly to

RTA, many other call graph construction algorithms face problems due to reflective

instantiations.

44

1 public SunToolkit() {

2

3 String tgName = System.getProperty("awt.threadgroup", "");

4

5 Constructor ctor = Class.forName(tgName).

6 getConstructor(new Class[] {String.class});

7 threadGroup = (ThreadGroup)ctor.

8 newInstance(new Object[] {"AWT-ThreadGroup"});

9

10 }

Figure 3.3: Sample code from library class sun.awt.SunToolkit

3.2.1 Using Resolved Dynamic Class Loading Sites

The key to determining which classes could be instantiated by an invocation of

Class.newInstance, is identifying the classes represented by the Class object. Thus,

a natural extension of the work from Section 3.1 is to track the Class objects from

resolved dynamic class loading sites to invocations of Class.newInstance. If for

a given call x.newInstance(), where x is of type Class, all possible values of x

flow from resolved instances of dynamic class loading sites, then transitively the call

to newInstance is resolved. All possible entities represented by x as determined by

string analysis are also the possible classes instantiated by the call x.newInstance().

As shown in Figure 3.3, Class.newInstance is not the only reflective method

that can dynamically instantiate a class. In this example, the class specified by the

awt.threadgroup system property is dynamically loaded. The resulting Class object

is queried to retrieve the class’s constructor. The outcome is a Constructor object,

which represents the constructor of the class that takes a single String parameter.

The call to newInstance at line 8 has the same effect as invoking the constructor,

passing it the string "AWT-ThreadGroup".

45

Determining the classes that could potentially be instantiated by invocations of

Constructor.newInstance is similar to resolving calls to Class.newInstance. For

calls of the form c.newInstance(Object[]), where the type of c is Constructor,

it is necessary to determine the Class objects to which c could refer. If all such

Class objects flow from resolved dynamic class loading sites, they are the ones that

could be instantiated by c.newInstance(Object[]). It should be noted that we

only determine which classes could be instantiated, and we are not concerned with

the specific constructor that is being invoked.

This approach for resolving reflective instantiation is another example of the ben-

efits of relaxing the restrictive assumptions made by purely static analyses. Since the

foundation for this approach is our semi-static resolution of dynamic class loading,

the set of classes returned for resolved reflective instantiation sites will be tailored to

the specific system configuration being analyzed. Section 3.4 presents a study of re-

solving reflective instantiation in the Java 1.4 standard libraries which demonstrates

the precision gained by exploiting information from environment variables and by our

JSA modeling extensions.

3.3 Examining Assumptions

Assumptions about environment variables. A key assumption of our ap-

proach for resolving both dynamic class loading sites and reflective instantiation sites

is that values from environment variables will remain the same between analysis time

and run time. Our techniques treat these values as constants. This is a relaxation

of assumptions made by purely static analyses which view such inputs as purely dy-

namic. This assumption reduces the number of program states that will be examined

by the analysis. States are limited to all possible program executions where the values

of environment variables which flow to dynamic class loading sites are the same as

46

those observed at analysis time. This relaxation increases the precision of the analy-

sis at the cost of soundness. It does introduce two new ways in which the soundness

of analysis results could be compromised. First, the execution environment could

be modified between analysis time and run time, changing an environment variable

whose value is used at a dynamic class loading site. Second, an execution of the

application could modify an environment variable at run time and that value could

later be used to dynamically load a class.

It is likely that other static analyses can also benefit from such relaxing assump-

tions. The use of environment variables is not restricted to Java, nor is the application

of their values restricted to dynamic class loading. Furthermore, the concept of semi-

static input values is not limited to environment variables. These values can originate

from any source which remains predominately constant between and during execu-

tions of an application. Such sources could include configuration files, file directory

structures, and certain database data. Similar to our treatment of environment vari-

ables, it may be possible to identify the values being accessed from these sources and

treat them as known constants at analysis time.

In Chapter 5 we demonstrate how the precision of a CHA call graph construction

algorithm can be increased by making use of environment information. Static analyses

which perform program specialization [44] are other obvious examples of analyses

that could make use of semi-static inputs. Program specialization is a technique of

program optimization where, given a program p and static data d , a transformation

is performed to create pd . This new program, pd , is formed by precomputing the

parts of p that depend only on d , typically creating a more efficient version of the

program with respect to d . This is similar to our approach in that pd has a limited

the number of possible execution states when compared to p. As a matter of fact,

if a program p were specialized with respect to the environment variable values env

47

and these values were only used at dynamic class loading sites, then our analysis of

p would consider the exact state-space of penv . Of course, values from environment

variables have many more uses than just designating the classes that are to be loaded

at run time. By specializing with respect to the semi-static values, it may be possible

to create efficient version of programs which are tailored to a user’s current system

configuration. Other static analyses such as those that address code testing and

verification, program understanding, and code refactoring may also benefit from the

use of semi-static inputs.

Open-world assumptions. JSA is designed to analyze partial programs: its

input is a set of classes that does not necessarily form a complete program. Our

extensions also operate under an open-world assumption. Specifically, it is assumed

that certain string values can be affected by unknown client code or by unresolved

instances of reflection. For soundness, JSA assumes that the values of these strings

could be any Unicode string. In the design of our approach, we take a more nuanced

view and consider the following open-world assumptions:

1. Omnipotent client interactions (OCI): This is a fully open-world assumption

which assumes that through the use of reflection, all methods and fields can be

manipulated by client code, potentially breaking encapsulation for private and

package-private entities.

2. Standard client interactions (SCI): Under this assumption, client code and the

use of reflection will respect standard encapsulation practices and will only affect

public and protected entities.

3. Limited client interactions (LCI): This is an optimistic approach which assumes

that client code will only affect the values of target strings through invocations

of public methods and manipulations of public fields. Further, it assumes that

48

java.lang.Class.forName(String)

java.lang.Class.forName(String,boolean,...)

java.lang.ClassLoader.loadClass(String)

java.lang.ClassLoader.loadClass(String,boolean)

java.lang.ClassLoader.defineClass(String,...)

java.lang.ClassLoader.defineClass(String,...,ProtectionDomain)

java.lang.ClassLoader.findClass(String)

java.lang.ClassLoader.findSystemClass(String)

java.lang.ClassLoader.findLoadedClass(String)

java.security.SecureClassLoader.defineClass(String)

sun.reflect.misc.ReflectUtil.forName(String)

sun.reflect.misc.MethodUtil.findClass(String)

sun.reflect.misc.MethodUtil.loadClass(String,Boolean)

Figure 3.4: Library methods used for dynamic class loading.

none of the target string values could be affected by the use of reflection either

in client code or library code.

The assumptions form a hierarchy in which each new assumption embodies more

inherent risk than the previous one. The results of the investigation presented in

Section 3.4 indicate that willingness to assume greater risk can produce significantly

more precise results.

Assumptions about class loaders. We identified 13 Java 1.4 library methods

that are used to dynamically load classes into the JVM; they are shown in Figure 3.4.

Several of these methods allow users to specify which class loader will be used to

load the class into the JVM. The introduction of multiple class loaders significantly

complicates not only the precise resolution of dynamic class loading, but also the

design of most static analysis algorithms. One complication is the introduction of

namespaces : classes loaded into the JVM are identified by their fully qualified name

and by the defining class loader. This means there can be multiple classes with

identical fully qualified names present in the JVM. An even greater concern is the

49

possibility of user-defined class loaders. A user-defined loader can load a completely

different class than the one specified by the string parameter of a dynamic class

loading method. They can also alter the bytecode of the classes they load. For these

reasons, we assume that all classes that could be dynamically loaded can be uniquely

identified by their fully qualified names—that is, each such name appears in only one

namespace. Further, we assume that all class loaders designated for use at dynamic

class loading sites will load the classes specified by the provided string parameter and

will not alter the bytecode in a manner that could affect the flow of string values to

dynamic class loading sites.

3.4 Experimental Evaluation

We implemented the proposed analysis and evaluated its ability to resolve dynamic

class loading and reflective instantiations in the 10,238 classes from the Java 1.4

standard libraries. The methods shown in Figure 3.4 were used as the hotspots input

to JSA. A site was considered resolved if JSA returned a finite number of possible

string values for the String parameter representing the fully-qualified name of the

class to be loaded.

3.4.1 Manual Investigation

To establish a “perfect baseline” to which we could compare our results and inves-

tigate the affects of the open-world assumptions, we performed a manual investigation

of the entire set of library classes. During the investigation we examined all poten-

tial hotspots as defined above. Not considered were occurrences where the target

50

string was a constant string literal. For example, a call to forName with the lit-

eral "com.sun.media.sound.JavaSoundAudioClip" was not included in the set of

interesting hotspots, since it is trivial to resolve statically.4

The study was conducted under the three open-world assumptions described in

Section 3.3. Under such assumptions, it is impossible to determine the run-time

values of certain method parameters and fields due to potential future interactions

with unknown client code. No analysis technique can resolve such client-dependent

sites in the absence of client code. Thus, we focused our investigation on the client-

independent sites for which the run-time behavior could be completely determined

by examining only the library code. Each such site was placed into one of three

categories:

1. Static dependent (SD)

2. Environment variable dependent (EVD)

3. Dynamic dependent (DD)

Dynamic class loading sites that were categorized as static dependent (SD) had

a target string whose values were statically determinable (i.e., depended only on

compile-time constants). The values of many target strings flow from methods which

access environment variables; sites that were dependent on such strings were cate-

gorized as environment variable dependent (EVD). The remaining sites, which were

labeled DD, depended on string values that were not statically contained in the li-

brary code or in environment variables but yet were not directly derived from client

code. For example, a site whose target string’s value flowed from a file read was

classified as DD.

4This example is from class sun.applet.AppletAudioClip, where the call is used to determine
if the system has the Java Sound extension installed. If the call fails, a default component is used.
In general, checking for the existence of extensions is a common use of dynamic class loading in the
Java libraries.

51

Assumption SD EVD DD Total
OCI 18 32 3 53
SCI 33 35 12 80
LCI 40 35 15 90

Table 3.1: Manual investigation of the Java 1.4 standard libraries: categorized counts
of invocations of dynamic class loading methods under various open-world assump-
tions.

It is possible for the value of a target string to be dependent on several categories

of sources. The categorization of such instances adhered to an intuitive hierarchy

imposed over the categories. For example, if a string was dependent on both an

environment variable accessed through a call to System.getProperty and on input

from a configuration file, it would be classified as dynamic dependent (DD). This

hierarchy was also applied to the key and default parameters of methods that are

entry points for environment variable values. If such a method’s key value flowed from

a file read and the resulting environment value flowed to a dynamic class loading site,

that site would be classified as DD.

It is important to emphasize that this classification was performed using human

intelligence. The results of the classification represent the best possible solution that

any purely-static or environment-variable-aware analysis could hope to achieve. By

using these results as a baseline, we can judge how well our analysis performs in

absolute terms, instead of simply measuring the improvement over the original JSA.

Table 3.1 shows the results of this manual investigation. Under OCI, the fully

open-world assumption, 53 dynamic class loading sites were fully contained within

the library code. SCI assumes that client code can only affect string values through

the manipulations of public and protected entities. Under this assumption 80 dy-

namic class loading sites could not be directly manipulated by outside code. In other

52

words, by assuming that reflection used in client code will respect encapsulation, SCI

considers 27 more sites to be fully contained in the library code (i.e., sites that cannot

be affect by client code) than OCI. Under the most liberal LCI assumption, which

assumes that clients can only affect the values of public entities, 90 dynamic class

loading sites present in the library code could not be affected by clients.

The results of this investigation indicate several key characteristics of dynamic

class loading in the Java 1.4 libraries. First, assumptions made about client interac-

tions could significantly affect the precision of an analysis attempting to resolve these

dynamic features. Second, dynamic class loading that derives the value of the target

string from environment variables is usually closed. By this, we mean that all enti-

ties other than the actual value of the environment variable, including the key and

default parameters, can be determined completely statically and in no way can be

affected directly by client code. This is indicated by the fact that between the most

restrictive OCI to the most relaxed LCI, only 9% of the instances originally classified

as EVD become client-dependent, as opposed to 55% of those classified SD and 80%

of those classified DD. Many of the DD sites relied on string values which flowed

through parameters and fields, thus OCI assumed they could be affected by client

code. The final characteristic is that a large number of client-independent sites are

indeed dependent on environment variables—those classified as EVD. Under the most

natural SCI assumption, over 40% of dynamic class loading sites were classified as

EVD. Such sites cannot be resolved by any purely static analysis. To our knowledge,

our approach is currently the only analysis that leverages these characteristics.

3.4.2 Resolution of Dynamic Class Loading

Table 3.2 shows the results of resolving dynamic class loading sites in the Java

1.4 standard libraries using four versions of JSA. These four versions operate under

53

Analysis version JSA1 JSA2 JSA3 JSA4
SD 22 22 22 27
EVD 0 16 28 32
Resolved 22 38 50 59
% of total 32% 56% 74% 87%

Table 3.2: Precision of string analyses for the Java 1.4 standard libraries: number of
SD and EVD dynamic class loading sites resolved by JSA. The percentages are with
respect to 68, the total number of SD and EVD sites from the manual investigation.

the SCI assumption, thus a total of 80 dynamic class loading sites were considered

(Table 3.1). Of these, the approaches we investigated could only resolve sites that

had target string values which could be statically or semi-statically determined—

i.e., those which were manually classified as SD or EVD, of which there were 68.

Row SD shows how many of the manually-classified SD sites were identified by the

analysis as being SD. Similarly, row EVD shows the number of manually-classified

EVD sites that were reported by the analysis as being EVD. Row Resolved shows

the total number of sites that were resolved by the analysis, either as SD or as EVD.

There were 68 manually-classified SD/EVD sites; the last row in the table shows the

percentage of these 68 sites that the corresponding version of JSA was able to resolve

(i.e., Resolved/68).

All four versions of JSA used in this experiment operate under the SCI open-world

assumption. To this end, all versions corrupt the values of parameters to public and

protected methods since it is assumed values from client code and reflective calls

could flow to these entities. The values returned by public methods (these can be

overwritten by clients), methods not contained within the code body being analyzed,

reflective methods, and native methods are also corrupted. In other words, JSA

treats these return values conservatively by assuming they could be any Unicode

54

string. Since the only values not corrupted by JSA must be fully contained in a single

package, we executed the versions of JSA on the individual packages that comprise

the Java 1.4 libraries.

The first version was JSA in its original form with minor bug fixes, and some

alterations to accommodate the open-world assumption. The corresponding results

are shown in column JSA1. Since this version did not use our semi-static extension,

it was able to resolve only sites whose string values were completely statically deter-

minable. Thus, this state-of-the-art approach could resolve only 22 of the 80 total

SD/EVD/DD sites, which is 32% of the 68 SD/EVD sites. Column JSA2 shows the

gains from enhancing JSA with the semi-static technique from Section 3.1.1. This

addition enables JSA2 to resolve 16 more sites than JSA in its original form (JSA1).

The version from column JSA3 added the type extension outlined in Section 3.1.2.

Although this version did not increase the number of resolved SD sites, it was able

to resolve an additional 35% of all EVD sites, by allowing more precise tracking of

string values that flow from environment variables (e.g., as illustrated by the call to

doPrivileged in Figure 2.1). The final version, shown in column JSA4, added the

more precise treatment of fields described in Section 3.1.2. As a result, the analysis

was able to resolve an additional 15% of all SD sites and 11% of all EVD sites.

Overall, the version that contained all our extensions JSA4 resolved 74% of all

client-independent sites (SD/EVD/DD) and 87% of all sites classified SD/EVD; for

the original version of JSA, the corresponding percentages were 28% and 32%. JSA4

was unable to resolve nine instances that our manual investigation classified as SD or

EVD. This was due to some deficiencies in JSA’s ability to model the flow of string

values. Several of these instances relied on complex data structures, such as HashMap,

which JSA is currently unequipped to model. The remaining values passed through

55

Analysis version JSA1 JSA2 JSA3 JSA4
sec per 1000 Jimple 1.69 1.72 1.74 1.81
MB 20.4 20.4 20.5 21.7

Table 3.3: Analysis cost: running time (seconds per thousand Jimple statements) and
memory usage (MB).

operations that were beyond the modeling abilities of JSA, such as being parsed by

a StringTokenizer.

Analysis cost. The experiments were executed on a PC with an Intel Core Duo

T2400 (1.83GHz) processor and 2 Gb of memory, running a Windows XP OS. The

JVM heap size (JVM option Xmx) was set to 1.5 Gb. As stated earlier, each version

of JSA was executed once for each of the 358 packages comprising the Java 1.4 library.

Table 3.3 shows the time and memory used by each version of JSA to conduct the

complete experiment. All measurements are the average of three complete runs of

the experiment. The time measurements average number of seconds each version

took to analyze a thousand Jimple statements (there were over 1.3 million Jimple

statements analyzed in total). The time measurements do not include the cost of

building the Jimple intermediate representation. The row labeled MB displays the

maximum memory used by the corresponding version of JSA, averaged over all the

packages.

It is important to note that for the versions of JSA incorporating the semi-static

extension (JSA2, JSA3, and JSA4), a pre-processing phase was not included in the

timing. This pre-processing step resolves the string values of key and default pa-

rameters of methods that are entry points for environment variables. This step can be

incorporated into JSA, but doing so efficiently would require a significant engineering

effort that is beyond the scope of this work. In the worse case, the pre-processing

56

Analysis version JSA1 JSA2 JSA3 JSA4
Resolved 6 19 28 37

Table 3.4: Precision of string analyses for the Java 1.4 standard libraries: number of
reflective instantiation sites resolved by JSA.

phase is no more expensive than JSA1 and is easily justified by the increased pre-

cision gained through the use of semi-static values. Once the key/default values

have been determined, our extensions only slightly increase the cost of JSA. Each

extension increases the running time of the analysis by a few tenths of a second per

1000 Jimple statements. The biggest cost in terms of both time and memory is the

addition of the field extension. This is due to the creation and storage of additional

data structures that our implementations uses to track the flow of fields. Overall,

the cost of using JSA to resolve instances of dynamic class loading appears to be

reasonable when applied at the package scope of the Java libraries.

3.4.3 Resolution of Reflective Instantiations

Section 3.2 presented an approach which tracks Class objects obtained from dy-

namic class loading sites to resolve calls to reflective instantiation methods. We imple-

mented this approach in the four versions of JSA using an intraprocedural flow analy-

sis. This analysis tracks the flow of Class objects to calls to Class.newInstance and

transitively to invocations of Constructor.newInstance (for the remainder of this

dissertation, references to newInstance indicate both the Class and the Constructor

methods). As described in Section 3.2.1, a call x.newInstance() is resolved if all pos-

sible values for x flow from resolved dynamic class loading sites. The extended versions

of JSA were applied to the Java 1.4 standard libraries. The results of this evaluation

57

are shown in Table 3.4. Row Resolved shows the number of calls to newInstance

resolved by each version of JSA.

The ability of each successive version of JSA to resolve more calls to reflective in-

stantiation methods than its predecessor is due to its increased ability to resolve invo-

cations of dynamic class loading. This indicates that at least some of the newInstance

sites are indirectly dependent on environment variables. The dependency is illustrated

in Table 3.5, which shows the number and type of dynamic class loading sites which

were used to resolve reflective instantiation. Comparing row Total in Table 3.5 with

row Resolved in Table 3.4, it should be noted that there does not exist a one-to-

one relationship between the number of resolved newInstance sites and the number

of dynamic class loading sites that are needed to resolve them. This is due to the

flow of the results of several dynamic class loading sites to the same invocation of

newInstance.

The original version of JSA resolves dynamic class loading using only purely static

string values. The Class objects from 8 loading sites flow to 6 distinct calls to

newInstance. It should be noted that this version was able to resolve 22 instances

of dynamic class loading (see Table 3.2). The Class objects from the remaining 14

resolved sites did not flow to invocations of newInstance. A manual investigation

revealed that these objects were used for purposes other than instantiation. Examples

of such uses include comparisons—e.g., ClassX.equals(ClassZ)—and gaining access

to reflective objects such as Method and Field—e.g., Class.getMethod(String,

Object[]).

The semi-static extension in JSA2 allow it to resolve additional dynamic class

loading sites (Table 3.2). The Class objects from 14 of them enabled the resolution

of 13 additional invocations of newInstance. Thus, the use of environment variable

values enabled JSA2 to resolve a total of 19 reflective instantiation sites. Over 57%

58

Version JSA1 JSA2 JSA3 JSA4
SD 8 8 8 13
EVD 0 14 25 29
Total 8 22 33 42

Table 3.5: Categorized counts of resolved dynamic class loading sites whose Class

objects flow to newInstance.

of the reflective instantiation sites resolved by JSA2 are indirectly dependent on

environment variables.

JSA3 was able to resolve 28 newInstance sites (see Table 3.4). The increase is

due to the resolution of 11 new EVD dynamic class loading sites which flow to 9

additional calls to reflective instantiation. Finally, JSA4 was able to resolve a total of

59 dynamic class loading sites (Table 3.2). Of these sites, objects from 13 classified

as SD and 29 classified as EVD flow to 37 invocations of newInstance. Of these 37

reflective instantiation sites, 31 rely on information gained from our modifications to

JSA and 26 of them could not have been resolved by a purely static analysis.

3.4.4 Summary of Experiments

A manual investigation of the Java 1.4 libraries determined that over 40% of the

client-independent instances of dynamic class loading depend on values stored in en-

vironment variables. These instances are impossible to resolve by any purely static

analysis. The experiment shows that augmenting the current publicly available im-

plementation of JSA with the extensions proposed in this chapter allowed it to resolve

an additional 46% of all client-independent sites. In addition, this augmentation suc-

cessfully identifies 87% of all sites manually-classified as dependent upon only static

59

or semi-static (those flowing from environment variables) string values—i.e., SD and

EVD sites.

By further extending JSA with a lightweight flow analysis, it is possible to deter-

mine the set of classes that can be instantiated at many calls to newInstance. One

potential use of this information is to make popular call graph algorithms such as

RTA [7], XTA, MTA, and FTA [140] more precise when analyzing applications that

make use of reflection. Our evaluation showed that the augmented version of JSA

was able to resolve 37 newInstance calls where as the original version of JSA resolved

6. Moreover, 70% of the total number of resolved newInstance sites relied on values

that flowed from dynamic class loading sites which were dependent on environment

variables. These sites cannot be resolved in a purely static manner.

3.5 Conclusions and Future Work

This chapter presents a semi-static approach that utilizes configuration informa-

tion to aid in the resolution of dynamic class loading in Java applications. This

technique produces results that are tailored to the current execution environment

and the configuration of the analyzed application, by relaxing the restrictive and

sometimes impractical constraints assumed by most purely static analyses. We also

present extensions of string analysis that allow better tracking of class names and

environment variable names. In an experimental study conducted on the Java 1.4

standard libraries, our approach was able to resolve 46% more dynamic class loading

sites than the state-of-the-art string analysis. We also demonstrate how the informa-

tion gained from resolved dynamic class loading sites can be used to determine the

classes that can potentially be instantiated through the use of reflection. The use of

configuration information, and our modeling extensions to JSA, increases the number

of resolvable reflective instantiation sites from 6 to 37.

60

CHAPTER 4: IMPROVING THE SCALABILITY OF

STRING ANALYSIS

The precision of many static analyses could be increased if they were able to

precisely answer questions such as ‘Which classes can be dynamically loaded?”, or

“Which methods are being invoked through the use of reflection?”. As shown in the

previous chapter, a string analysis can be employed to aid in deriving the answers

to these difficult questions. However, many static analyses either incorporate a very

simple string analysis or none at all. For example, the CHA call graph construction

algorithm in the popular Soot analysis framework [144] only validates hard-coded

string values passed to calls to Class.forName(string). As our experiments in

Section 3.4 demonstrated, many instances of dynamic class loading cannot be resolved

by such a limited technique. Thus, without direct user input, the call graph generated

by Soot will either be unsound or very imprecise at these instances. This is but one

example; other analyses that build call graphs for Java applications (either as an

end-result or as a component in a larger framework) do not consider string values at

all (e.g., [71, 123, 126,139].)

There are many possible reasons why a static analysis might not integrate a string

analysis; one being the difficultly associated with developing a precise string analysis.

However, JSA is a very comprehensive and well designed library, so why are not more

developers of static analyses choosing to use it? One explanation can be found in the

high cost associated with running JSA on certain applications. To put this cost into

perspective, in Section 4.3 we present 25 benchmark applications that were used in

61

our experiments. We executed JSA on each application with the JVM heap size (JVM

option Xmx) set to 6 Gb. Of the 25 benchmark application, JSA could not complete

an analysis of 3 due to the JVM exhausting its allocated heap memory. This result

becomes more alarming when considering that in this experiment we did not include

any of the Java standard library classes in the input to JSA. A whole-program analysis

would have to consider these library components, possibly increasing the input to JSA

by thousands of classes. This level of overhead is simply not practical for many static

analyses.

In this chapter we describe techniques that increase the scalability of JSA. We

begin in Section 4.1 by presenting several algorithmic transformations to JSA. These

transformations parallelize portions of JSA allowing it to leverage modern multi-core

architectures. Several of these transformations are also designed to reduce the mem-

ory footprint of the analysis. In Section 4.2 we introduce several new simplifications

to the intermediate graph generated by JSA’s front-end (see Section 2.2 for a descrip-

tion of the design of JSA). Through these simplifications we can greatly reduce the

overhead associated with the JSA’s back-end for some applications. We implemented

our proposed techniques and evaluated their effectiveness on the 25 benchmark appli-

cations mentioned above. The results of this empirical study are shown in Section 4.3.

Overall, our most advanced version of JSA’s front-end realizes an average speedup of

1.54 times relative to the running time of the original version while reducing the av-

erage memory footprint by 43%. Incorporating our new simplifications allowed for an

overall (front-end + back-end) speedup of over 180 times for two benchmark applica-

tions. Moreover, these simplifications allowed JSA to easily complete analysis of the

three benchmark applications that previously exhausted the allotted heap memory.

62

4.1 Design of Parallel String Analysis Algorithm

The trend in modern computer systems is moving away from single processing

units in favor of multi-core architectures (see Section 2.3). In such systems, speedup is

achieved by dividing the workload across the multiple processors which run in parallel.

This architecture allows multiple sequential applications to execute concurrently on

the same system without competing for processor resources. Multiple cores also

allows multi-threaded applications to realize a significant speedup; just as multiple

applications can execute on separate cores in parallel, so can the threads of a single

application.

The publicly available version of JSA is a sequential program. Thus, JSA realizes

little benefit from the architecture of a multi-core system. Recall that JSA is com-

posed of two components (see Section 2.2): a front-end that takes the input classes

and generates a graph representing the flow of string values through the input; and

a back-end which takes the flow graph and generates finite state automata for re-

quested hotspots. In this section we propose several transformations to the design

of JSA’s front-end. These transformations parallelize significant portions of the work

performed by this stage of JSA. We focus on the front-end for two reasons: (1) though

JSA’s back-end is theoretically more expensive, our experimental study of 25 bench-

marks show that in practice the front-end requires the majority of the execution time

for a large number of our benchmarks; (2) though there may be a way to parallelize

the back-end, such a design is far from intuitive. We feel a better use of our effort is

to focus on reducing the size of the input graph, thus reducing the amount of work

being required of the back-end.

We first introduce a very simple and intuitive parallelization of the front-end.

This design introduces what we consider to be the basic unit of work for JSA and

63

Simplify

Flow

Graph

Inter

Flow

Graph

Master

Intra

CFG

Liveness

Analysis

Alias

Analysis

R.D.

Analysis

Slave 1

Intra

CFG

Liveness

Analysis

Alias

Analysis

R.D.

Analysis

Slave N

Input

Classes

Figure 4.1: Parallel JSA design: intuitive.

the master/slave structure being used. We then present a significant refinement to

this basic design. As stated in Chapter 2, excessive current memory allocations can

tax the memory management system and become a bottleneck for multi-threaded

Java applications. This refinement is designed to reduce the memory footprint of

the front-end and potentially reduce the amount of concurrent memory allocation.

Further, this reduced memory design provides an opportunity to parallelize portions

of the graph simplifications performed by JSA.

4.1.1 Intuitive Design

From the description in Section 2.2 it becomes natural to think of a method as

a unit of work for JSA. Each stage of JSA’s front-end fully completes its analysis

of a single method before progressing onto the next one. Prior to the building of

the interprocedural flow graph, only a limited amount of information flows between

the analysis of one method to another. The only information that flows between

the analysis of two methods in these stages occurs in the Intra CFG phase (see

Section 2.2) when a method invocation is discovered. Recall that a Class Hierarchy

64

input AppClasses : set of Jimple classes
output ResultSet : set of results generated by the slave threads
procedure Master(AppClasses)

1: ResultSet := workloads := ThreadSet := ∅
2: hierarchy := NewHierarchy(AppClasses)
3: workloads := LoadBalance(AppClasses)
4: while workloads 6= ∅ do
5: n := workloads .RemoveAny()
6: slave := newThread(n, hierarchy)
7: slave.start()
8: ThreadSet := ThreadSet ∪ {slave}
9: end while

10: while ThreadSet 6= ∅ do
11: slave := threadSet .RemoveAny()
12: slave.join()
13: ResultSet := ResultSet ∪ slave.getResults()
14: end while
15: return ResultSet

Figure 4.2: Algorithm for the master stage.

Analysis of the input classes is performed to determine the targets of the virtual calls.

For each target discovered, a new Call statement is added to the CFG. A pointer to

this newly created Call object is then recorded in a data structure associated with

the target method. This information is used to identify interprocedural edges during

the final construction of the flow graph. This data transfer between methods can be

eliminated by annotating Call statements with the signature of their target method.

During the Interprocedural Flow Graph phase, interprocedural edges are discovered

by looking up the Method object that corresponds to a Call’s annotated target in a

table that maps a method signatures to a Method.

With the change to the identification of interprocedural edges and the stipulation

that a method represents a unit of work, a natural algorithmic transformation can

be performed to parallelize the front-end of JSA. This intuitive design is shown in

Figure 4.1. The design uses the classic Master-Slave design pattern [11]. In this

pattern, the master thread of execution is responsible for dividing the work into

65

approximately equal sub-tasks. These subtasks are then delegated to identical slave

components which run in separate threads of execution. The master component

collects the partial results created by the slaves and combines them in a meaningful

manner.

Figure 4.2 presents the pseudocode for the Master component of our intuitive

parallel design for JSA. It first gathers the class hierarchy information for the entire

set of input classes (line 2). It then calls the method LoadBalance which takes the

entire set of input classes. It is the responsibility of LoadBalance to separate the

methods of the input classes into roughly equivalent workloads. Our load balancing

heuristic weights each method by the number of Jimple statements it contains. It

then creates a number of workloads and counts of the number of Jimple statements

assigned to each. At first all the workloads contain 0 Jimple statements, so methods

are arbitrarily assigned. After all workloads have a method assigned to them, methods

are assigned to the workload that contains the least number of Jimple statements.

For each workload a unique slave thread is initialized (line 6) and its start method

is invoked. The ideal number of workloads is equal to the number of hardware threads

available on the execution system so that each slave can execute on a unique core.

Once all the slaves have started, the master monitors their progress. It randomly

selects a slave and invokes slave.join() (line 12). This causes the master thread to

wait until the selected slave has completed its workload. Once the slave has completed

the master gathers its results and selects another slave on which it performs the same

actions. Once all the slaves have completed their workloads, the combined result sets

are then passed to the Inter Flow Graph stage.

The slaves are instances of a class which extend java.lang.Thread. Recall that

it is by overriding the run method of a Thread object that a user specifies the code

that is to be executed in the new thread. Figure 4.3 presents the pseudocode for the

66

input WorkLoad : set of Jimple method bodies
input Hierarchy : CHA hierarchy information for all input classes
procedure run(WorkLoad ,Hierarchy)

1: CFGSet := IntraproceduralCFGs(WorkLoad ,Hierarchy)
2: LiveSet := LivenessAnalysis(WorkLoad ,CFGSet)
3: AliasSet := AliasAnalysis(WorkLoad ,CFGSet ,LiveSet)
4: RDSet := ReachingDefAnalysis(WorkLoad ,CFGSet ,LiveSet ,AliasSet)

Figure 4.3: Intuitive design: algorithm for slave object’s run method.

run method of our slave class. The methods invoked by run correlate to the flow

analysis stages shown in Figure 4.1. The slave first creates an intraprocedural CFG

for all the methods in its workload. These graphs are then used in the execution of

the liveness analysis. The CFGs and the results of the liveness analysis are then used

to perform the alias analysis. Finally, the results of all the prior analyses are used in

a reaching definitions analyses. Notice that the slaves execute the flow analyses in a

manner that is very similar to the sequential version of JSA. The results generated

by these stages are stored in sets until the thread has completed. These sets are then

gathered by the master thread.

This design has several advantages. First, it is a fairly simple modification from

the sequential version of JSA. Second, there is very limited communication between

threads. Each worker thread only communicates with the master thread. This com-

munication occurs during worker’s initialization (to receive its workload) and at its

conclusion (to report its results). The communication at the end of a thread’s life

represents the only communication that requires synchronization. This very limited

communication model greatly reduces the possibility of a bottleneck due to synchro-

nization.

One potential weakness of this design is the memory resources it requires. This

design actually increases the overall memory footprint required by JSA. This increase

67

Simplify

Flow

Graph

Inter

Flow

Graph

Master

Intra

CFG

Liveness

Analysis

Alias

Analysis

R.D.

Analysis

Intra

Flow

Graph

Slave 1

Intra

CFG

Liveness

Analysis

Alias

Analysis

R.D.

Analysis

Intra

Flow

Graph

Slave N

Input

Classes

Figure 4.4: Parallel JSA design: reducing memory footprint.

is due to the thread structures, and the redundant data structures maintained by

each slave (e.g., each thread maintains a list of all method signatures in the input

classes.)

4.1.2 Reducing the Memory Footprint

In the simple parallel version of JSA presented above, the slave components are

responsible for building the CFGs and executing the flow analyses. Each of these

stage fully analyzes all of the methods in the slave’s workload. Once a stage has

completed it passes its entire result set to the next stage. The master thread collects

the complete result sets from each of the slaves and passes the combined information

to the Inter Flow Graph stage. Assuming that local memory used by the individual

slave stages and the master stage is less than the combined results of slave stages, the

Inter Flow Graph stage will contain the peak memory use for JSA’s front-end.

One possible transformation could leverage the fact that to process a single method

m, the stages of the slave component only require the results from the previous

stages for m. This implies that one method could be fully analyzed by all four

68

input WorkLoad : set of Jimple method bodies
input Hierarchy : CHA hierarchy information for all input classes
procedure run(WorkLoad ,Hierarchy)

1: while WorkLoad 6= ∅ do
2: curMeth := WorkLoad .RemoveAny()
3: curCFG := IntraproceduralCFGs(curMeth,Hierarcy)
4: curLive := LivenessAnalysis(curMeth, curCFGS)
5: curAlias := AliasAnalaysis(curMeth, curGFG, curLive)
6: curRD := ReachingDefAnalysis(curMeth, curCFG, curLive, curAlias)
7: curIntraFG := IntraFlowGraph(curMeth, curCFG, curLive, curAlias , curRD)
8: IntraFlowGraphs := IntraFlowGraphs ∪ {curIntraFG}
9: InterConnectInfo := InterConnectInfo ∪ getInterInfo(curIntraFG)

10: end while

Figure 4.5: Reducing memory footprint: algorithm for slave’s run method.

stages before work on the next method starts. Such a transformation would make

it possible to parallelize a portion of the flow graph creation process by creating an

intraprocedural flow graph for each method. Figure 4.4 shows the high-level design of

such a transformation. The master component of this new design is identical to the

master component of the intuitive design. It is the slave component that has been

modified.

Figure 4.5 shows the new run method for slave objects. The new method iterates

over all the methods in the workload. Each method is removed and individually ana-

lyzed by each stage. The new procedure call, IntraFlowGraph, creates the intraproce-

dural flow graphs for each method. After a method’s intraprocedural flow graph has

been created, all non-interprocedural information associated with that method is re-

leased for garbage collection (i.e., everything except for calling relationships between

methods). The Intra Flow Graph stage (Figure 4.4) builds an intraprocedural flow

graph for a single method A in exactly the same manner as the Inter Flow Graph

stage of the intuitive design (Figure 4.1) would if method A was the only input. The

69

only difference is that Intra Flow Graph maintains additional interprocedural infor-

mation for each method. This information indentifies nodes which may be connected

by interprocedural edges in the final interprocedural flow graph. This interproce-

dural information and the intraprocedural flow graphs are collected by the master

thread once a slave completes its workload. The information is passed to the Inter

Flow Graph stage (Figure 4.4). This stage is now greatly simplified; it iterates over

the calling information discovered in the Intra Flow Graph stage and connects the

appropriate nodes. The graph simplification is same as in the sequential version of

JSA.

This design offers several improvements over the previous design. First, a large

portion of the building of the interprocedural graph has been parallelized. Secondly,

passing a single method through the first four stages could potentially reduce the

number of cache misses. In the original design, if method m were the first method

analyzed by the Intra CFG stage, the corresponding CFG data structures would

not be accessed again until the stage had finished analyzing all the methods in the

workload. Given a large enough workload this would mean that m’s CFG would

no longer be in cache when it was first accessed by the Liveness Analysis stage. In

the worst case every access to a CFG made by the Liveness Analysis stage could

result in a cache miss. By passing a single method through all the slave stages the

relevant objects for that method are more likely to remain in cache. Lastly, the total

memory footprint for certain inputs will be reduced. By creating an intraprocedural

flow graph for each method, all the purely intraprocedural information from the slave

stages can be garbage collected immediately, eliminating the tremendous build up of

information being passed to the Inter Flow Graph stage.

70

Simplify

Flow

Graph

Inter

Flow

Graph

Master

Intra

CFG

Liveness

Analysis

Alias

Analysis

R.D.

Analysis

Intra

Flow

Graph

Slave 1

Intra

Simplify

Intra

CFG

Liveness

Analysis

Alias

Analysis

R.D.

Analysis

Intra

Flow

Graph

Slave N

Intra

Simplify

Input

Classes

Figure 4.6: Parallel JSA design: parallel flow graph simplification.

4.1.3 Parallel Graph Simplification

The final stage of JSA’s front-end is the simplification of the complete interproce-

dural flow graph. As our experiments will show, the reduction of the flow graph can

have a significant impact on the running time of the back-end. In the general cases,

to achieve maximum benefit of the simplifications, the entire interprocedural graph

must be considered. Currently, the multi-threaded designs proposed above leave the

simplification step as a sequential element in the design, thus ensuring that the com-

plete graph is considered. Another option is to introduce a new stage which performs

the simplifications on the intraprocedural flow graphs, then performs a second, ab-

breviated version of the simplification algorithm on the interprocedural graph. This

is the design shown in Figure 4.6.

The new stage labeled Intra Simplify in the slave components simplifies the in-

traprocedural flow graphs immediately after they are created. This design allows

for a large portion of the graph simplification process to run in parallel potentially

reducing the overall running time.

71

The intraprocedural simplifications must be performed with care in order to pre-

serve the desired semantics of the interprocedural graph. Consider the algorithm JSA

uses to simplify the interprocedural flow graph: (1) all nodes are put into a worklist

(2) a node n is randomly removed from the worklist, its type (e.g., JoinNode) and

its incoming edges are inspected to determine if a simplification can be performed (a

description of the simplifications can be found in Section 2.2), (3) if a simplification

has been performed on n all of its predecessors are added to the worklist (if they are

not already on it). Notice that the simplifications performed by JSA depend only

on the type of the node being considered and its incoming edges, not the order in

which they are simplified. Since each intraprocedural graph is a sub-graph of the

interprocedural graph, the only information that is missing is at the nodes that will

be connected by interprocedural edges. Therefore, any node in the intraprocedural

graphs can be simplified as long as its incoming edges will remain the same in the

interprocedural graph. By exempting nodes which could possibly have new incom-

ing edges in the interprocedural graph from the intraprocedural simplification, the

semantics of the final graph will be preserved. The nodes which must be exempt

are those which represent: (1) formal parameters of methods, (2) variables that are

assigned values returned by method calls, (3) and aliased actual parameters.

Figure 4.7 presents the new intraprocedural graph simplification algorithm. It is

important to note that we are not introducing any new simplification but specifying

how the existing simplification made by JSA can be applied at the intraprocedural

level. This procedure takes as input a graph (a set of nodes and edges) and a set of

nodes ExemptNodes . The nodes contained in ExemptNodes are identified in the Intra

Flow Graph stage as being nodes which could possibly have interprocedural predeces-

sors (incoming edges from other methods). The procedure returns a simplified version

of the input graph. The algorithm is driven by a worklist that is initialized with all

72

input IntraGraph : set of nodes and edges that comprise an intraprocedural graph
input ExemptNodes : set of nodes that are potentially effected by interprocedural edges
procedure simplify(IntraGraph ,ExemptNodes)

1: worklist := IntraGraph − ExemptNodes

2: while worklist 6= ∅ do
3: n := worklist .RemoveAny()
4: if ContainsEq(n, IntraGraph) then
5: eqn := GetEq(n, IntraGraph)
6: MergeNodes(n, eqn, IntraGraph)
7: else if n instance of JoinNode then
8: if ContainsSelfLoop(n, IntraGraph) then
9: RemoveSelfLoop(n, IntraGraph)

10: end if
11: if ContainsOnePredecessor(n, IntraGraph) then
12: Condense(n, IntraGraph)
13: end if
14: else if n instance of ConcatNode then
15: if LeftArgEmptyString(n, IntraGraph) then
16: ReplaceConcat(n, IntraGraph)
17: end if
18: end if
19: if ModifiedOutGoingedges(n, IntraGraph) then
20: for each suc ∈ GetSuccessors(n, IntraGraph) do
21: if suc /∈ ExemptNodes then
22: worklist := worklist ∪ {suc}
23: end if
24: end for
25: end if
26: end while

Figure 4.7: Simplification algorithm for intraprocedural flow graphs.

the nodes from the input graph except for the nodes contained in ExemptNodes . A

node n is removed from the worklist and is checked at line 4 to determine if an equiv-

alent node exists in the graph. Two nodes are equivalent if they are the same type

(e.g., both Join nodes) and they have the same incoming edges. Two Init nodes are

equivalent if they contain equivalent automata. If an equivalent node is found, n and

the node are merged (lines 5 and 6). If there are multiple equivalent nodes, GetEq will

arbitrarily return one of them. If no equivalent nodes are found and n is a JoinNode,

it is checked to determine if it contains a self loop (an edge from n to n.) If such an

73

input InterGraph : set of nodes and edges that comprise the interprocedural graph
input StartNodes : all Init nodes and nodes with an incoming interprocedural edge
procedure simplify(InterGraph ,StartNodes)

1: worklist := StartNodes

2: while worklist 6= ∅ do
3: n := worklist .RemoveAny()
4: if ContainsEq(n, InterGraph) then
5: eqn := GetEq(n, InterGraph)
6: MergeNodes(n, eqn, InterGraph)
7: else if n instance of JoinNode then
8: if ContainsSelfLoop(n, InterGraph) then
9: RemoveSelfLoop(n, InterGraph)

10: end if
11: if ContainsOnePredecessor(n, InterGraph) then
12: Condense(n, InterGraph)
13: end if
14: else if n instance of ConcatNode then
15: if LeftArgEmptyString(n, InterGraph) then
16: ReplaceConcat(n, InterGraph)
17: end if
18: end if
19: if ModifiedOutgoingEdges(n, InterGraph) then
20: worklist := worklist ∪GetSuccessors(n, InterGraph)
21: end if
22: end while

Figure 4.8: Simplification algorithm for interprocedural flow graphs.

edge exists it is removed (lines 8 and 9). Similarly, if n is a JoinNode that has only

one predecessor, n is removed and its edges are redirected (line 12). Lines 14 through

18 perform the simplification for concatenation nodes whose leftmost argument is the

empty string. Finally, if the outgoing edges of n have been modified, then all of the

successors will be added back into the worklist since their incoming edges may have

been modified (lines 19–25) . The one special case is when the successor is an element

of ExemptNodes , in which case it is ignored.

When the intraprocedural graphs are joined by interprocedural edges in the Inter

Flow Graph stage, the complete graph may not be minimal. There are two possible

reasons why a node in the interprocedural graph may require further simplification.

74

First, the node may have new incoming interprocedural edges meaning that it was

exempt from the intraprocedural simplification. The second case occurs when, in the

new global context, there are new node equivalencies.

The bulk of the algorithm for the Simplify Flow Graph stage shown in Figure 4.8 is

identical to the intraprocedural simplification algorithm. The main difference is that

the interprocedural version specifies a set of seed nodes StartNodes from which to

start the simplification process. StartNodes contain all the nodes that were exempt

from the intraprocedural simplification, as well as all the Init nodes. No other

nodes need to be checked for equivalence since nodes from separate methods that do

not have incoming interprocedural edges could not possibly have the same incoming

edges (only Init nodes do not have incoming edges.) The remainder of the algorithm

performs the same simplifications. The seed nodes are removed from the worklist

and are examined to determine if a simplification is possible (lines 2–18). If a node

is simplified all of its successors are added to the worklist to determine if further

simplifications are possible.

4.2 New Flow Graph Simplifications

It has been shown that the simplifications performed by JSA can reduce the

running time of the back-end [20]. By performing these simplifications a gamble is

being made that the amount of time it takes to perform the reductions will be less

than the time saved by performing them. By parallelizing the simplifications of the

graph we have reduced the cost of the initial wager. Since the cost of performing

the simplifications is now reduced, we can incorporate further simplifications. In this

section we present three new graph simplifications which may reduce the cost of the

back-end.

75

"Oregon"

concat

"Joseph, "

Figure 4.9: Concatenation exam-
ple: not simplified.

"Joseph, Oregon"

Figure 4.10: Concatenation exam-
ple: simplified.

4.2.1 Concatenation Simplification

JSA simplifies the flow graph by bypassing Concat nodes if the first argument of

the node has exactly one edge and it comes from an initialization node representing

an empty string value (e.g., s=""+z;). Now that the cost of simplification has been

reduced we can perform a second reduction similar to this one. If a Concat node has

exactly one incoming edge for both the first and second arguments and these edges

originate from Init nodes we can replace the Concat node with a new Init node.

An example of this situation is shown in Figure 4.9. In this example two Init nodes

are being concatenated. By inlining the concatenation we can remove the Concat and

replace it with the Init node as shown in Figure 4.10. In this example the values

of the original Init nodes were only being used in the concatenation and we can

remove those nodes as well. The next section discusses how this transformation can

be accomplished.

This simplification requires a small addition to the algorithm shown in Figure 4.6.

Figure 4.11 shows the necessary changes. Line 4 performs a check to determine if

the arguments of the Concat node are single Init nodes. It then creates a new Init

node in line 5 by concatenating the values of the two original Init nodes. This

concatenation is achieved by redirecting all of the transitions which directly lead to

the accept state in the automaton associated with the left argument to the start state

76

1: if n instance of ConcatNode then
2: if LeftArgEmptyString(n, IntraGraph) then
3: ReplaceConcat(n, IntraGraph)
4: else if LeftArgSingleInit(n, IntraGraph)

∧
RightArgSingleInit(n, IntraGraph)

then
5: nInit := CreateCombinedInit(n.leftArg,n.rightArg)
6: ReplaceNode(n,nInit)
7: end if
8: end if

Figure 4.11: Concatenation simplification: algorithm for new concatenation simplifi-
cation.

of the automaton associated with the right argument. Line 6 replaces the original

Concat node with the new Init node. This is achieved by deleting all the Concat’s

incoming edges and copying all of its outgoing edges to the new node.

4.2.2 Removal of Extraneous Nodes

If a user of JSA wanted to determine all possible error messages displayed when

an exception is thrown in her application she might designate the constructors of

certain exception types as hotspots5. If this were the case, the code sample shown

in Figure 4.12 would contain exactly one hotspot at line 31, the instantiation of

IllegalArgumentException. The only value that flows to this hotspot is "Error

in copy..."; however, when JSA is applied to this code it creates the flow graph

displayed in Figure 4.13. The flow graphs generated by JSA contain the flow of

all string values in the input classes regardless of whether these values can affect

any hotspots. In this example, the only node that is required is labeled "Error in

copy...", and all other nodes can be discarded. By removing extraneous nodes it

5Class java.lang.Exception and many of its extensions contain constructors that require a
String argument. This argument specifies the message associated with an exception object.

77

1 public boolean saveCopyIntern (int modus, boolean confirm)

2 {

3 String title, hstr, titleToken, confirmMsg, confirmOpt;

4 boolean fileExists, isNew, backup, saveAs, copy, save;

5

6 backup = modus == SAVE_BACKUP;

7 saveAs = modus == SAVE_AS;

8 copy = modus == SAVE_COPY;

9 save = modus == SAVE_FILE;

10 if (backup){

11 titleToken = "dlg.savebackup";

12 confirmMsg = "msg.confirm.backup";

13 confirmOpt = "confirmBackup";

14 opcode = OP_BACKUP;

15 }else if (save){

16 titleToken = "dlg.savefile";

17 confirmMsg = "msg.confirm.savefile";

18 confirmOpt = "confirmSave";

19 opcode = OP_SAVE;

20 }else if (saveAs){

21 titleToken = "dlg.saveas";

22 confirmMsg = "msg.confirm.saveas";

23 confirmOpt = "confirmSaveAs";

24 opcode = OP_SAVEAS;

25 }else if (copy){

26 titleToken = "dlg.savecopy";

27 confirmMsg = "msg.confirm.savecopy";

28 confirmOpt = "confirmFileCopy";

29 opcode = OP_SAVECOPY;

30 }else

31 throw new IllegalArgumentException("Error in copy...");

32

33 }

Figure 4.12: Sample code from the JPWS benchmark.

may be possible to achieve a speedup in running time for JSA’s back-end since it may

eliminate useless computations.

Figure 4.14 presents an algorithm that will identity all extraneous nodes in a

graph (i.e., those which will not affect the values of hotspot expressions). The al-

gorithm takes as input a set of nodes EffectNodes . These are the nodes that are

78

������������

�	
��
���
���
���

�	
��
����	����

����
��
��	
������

�����������	����

�	
��
�������

���������	
���

�	
��
���������

����������
���

�����	
��
�����	����

�����	
��
�������	
���

�����	
��
��������
���

�����	
��
����������

Figure 4.13: JSA flow graph of JPWS sample code.

predetermined to have a possible effect on at least one hotspot. In the complete in-

terprocedural graph EffectNodes will contain only the nodes that represent hotspots.

These nodes are identified during the construction of the intraprocedural flow graphs.

The removeExtraneous procedure performs a reverse traversal of all the paths leading

to these nodes in the graph. All nodes encountered on these paths have the potential

to affect the value of a hotspot. Inversely, all nodes not on observed paths are extra-

neous and cannot affect a hotspot expression. These nodes can be removed from the

graph.

This simplification can be performed on intraprocedural graphs with a few simple

additions to the EffectNodes set. For an intraprocedural graph, EffectNodes should

include nodes contained in the graph that represent hotspot expressions. It also must

include any values which could possibly escape the method being modeled by the

graph as these values could affect hotspots in other methods. Thus, in addition to

79

input Graph : the graph being simplified
input EffectNodes : set of nodes that are identified as potentially affecting hotspots
output RevisedGraph : simplified graph contain only information that can affect hotspots
procedure removeExtraneous(Graph,EffectNodes)

1: worklist := EffectNodes

2: seen := ∅
3: while worklist 6= ∅ do
4: n := worklist .RemoveAny()
5: if n /∈ seen then
6: seen := seen ∪ {n}
7: preds := GetAllPredecessors(n,Graph)
8: worklist := worklist ∪ preds

9: end if
10: end while
11: return RevisedGraph := Trim(Graph, seen)

Figure 4.14: Algorithm to remove all nodes that cannot affect the value of hotspot
strings.

hotspot nodes, EffectNodes must also contain: (1) all return nodes, (2) all nodes

that represent aliased formal arguments, and (3) parameters to method calls (only

to methods that are contained in the original input classes). By performing the

simplification at both the intra and interprocedural levels, the memory footprint of

JSA may be reduced by discarding unnecessary information as soon as possible.

4.2.3 Propagation of Anystring Values

If a programmer wanted to understand all of JEdit’s potential debug messages,

JSA could be used to aid in this endeavor. All calls to the Debug method could be

flagged as a hotspots. Consider the code example shown in Figure 4.15. The call

to Debug at line 16 would be a hotspot. The intermediate flow graph JSA would

generate for this example is shown in Figure 4.16.

As shown, all the possible values for method flow to a single Join node. The

values then flow to the right argument of a Concat node whose left hand argument

80

1 public void doSwitchBranch(String [] params, String method){

2

3 if(method == null){

4 String type = params[0];

5 if (type.equals("Z"))

6 method = "getBoolean";

7 else if (type.equals("B"))

8 method = "getByte";

9 else if (type.equals("C"))

10 method = "getChar";

11 else if (type.equals("S"))

12 method = "getShort";

13 else

14 method = "getObject";

15 }

16 Debug("Invoking method "+method);

17

18 }

Figure 4.15: Sample code from the JEdit benchmark.

is "Invoking method ". From the finite state automaton JSA produces for this flow

graph, all that can be determined about this invocation of Debug is that it will display

a string starting with "Invoking method " followed by any Unicode string value. The

reason for the infinite number of possibilities can be observed by again examining

the flow graph in Figure 4.16. Notice that one of the values flowing to the Join

node is <any string>6. Under JSA’s open-world assumption (see Section 2.2.3) this

value represents that doSwitchBranch is a public method and therefore the method

parameter might be assigned string values from un-analyzed code. Since the anystring

value subsumes all others, the specific "getBoolean", "getByte", etc. string values

are lost after the Join. In general, the outgoing value of any Join node that has an

<any string> node as a direct predecessor will be anystring. This means that any

Join node with such a predecessor can be removed, all its incoming edges deleted,

6An <any string> node is an Init node which represents the anystring value.

81

"getByte" <any string>

"Invoking method "

concat

"getBoolean" "getObject" "getChar" "getShort"

Figure 4.16: JSA flow graph of JEdit sample code.

1: if n instance of JoinNode then
2: if HasAnyStringPred(n, IntraGraph) then
3: node := GetAnyStringPred(n, IntraGraph)
4: RemoveIncomingEdges(n, IntraGraph)
5: RedirectOutgoingEdges(n,node, IntraGraph)
6: end if
7: end if

Figure 4.17: AnyString propagation simplification:
algorithm for propagating anystring values through
the flow graph.

<any string>

concat

"Invoking method "

Figure 4.18: Reduced
flow graph of JEdit sam-
ple code.

and replaced with a much simpler <any string> node. Such a simplification can be

achieved with an addition to the algorithm shown in Figure 4.6.

Figure 4.17 presents the addition that must be made to the intraprocedural sim-

plification algorithm to propagate the anystring value through the flow graph. As

the algorithm iterates over all the nodes in the graph, it checks to determine if the

current node n is a Join node. If it is, the algorithm checks all of its immediate

predecessors to see if one is an <any string> node (line 2). If such a relationship is

discovered, the incoming edges to the Join node are removed (line 4) and its outgoing

edge is redirected such that it originates from the <any string> node (line 5). A

very similar addition to the interprocedural simplification algorithm will achieve the

82

same result in the complete flow graph. Figure 4.18 present the flow graph after the

above simplification was applied and the extraneous nodes removed.

4.3 Experimental Evaluation

To evaluate the effectiveness of our proposed parallelization of JSA and new graph

simplifications, we performed an empirical study on 25 benchmark applications. This

section presents that study. We first discuss the benchmarks and the experimental

setup. We then present the evaluation of our parallel designs and we conclude with

the results from our investigation of the new flow graph simplifications.

4.3.1 Benchmarks and Experimental Setup

Table 4.1 presents the 25 benchmark applications that were used in this study. For

each benchmark Num Classes shows the number of class files that are unique to the

application; this number does not include library classes that may be referenced by

the application. Column K Jimple Stmt displays the number of Jimple statements

contained in the application’s class files. Column Num Hotspots presents how many

of the following hotspots are found in each application:

• java.lang.System.out.println(String)

• java.lang.System.err.println(String)

• java.lang.Class.forName(String)

• java.io.File(String)

• java.sql.Connection.prepareStatement(String)

• java.io.Writer.write(String)

• java.sql.Statement.excute(String)

• java.sql.Statement.excuteUpdate(String)

• javax.swing.Jlabel(String)

• javax.swing.JTextArea(String)

• java.lang.System.getProperty(String)

83

Benchmark Num Classes K Jimple Stmt Num Hotspots

Buoy 188 14586 0
Compress 24 3088 36

DB 15 3119 66
Fractal 25 3718 45

GattMath 55 8241 13
Jack 68 12536 328

Javac 188 26574 51
JavaCup 42 10474 107

Jb61 45 7433 33
JEdit 851 124830 458

Jess 163 13282 51
JFlex 75 15455 39
JGap 174 15331 34
JLex 25 8241 61
Jpws 193 28425 167
Jtar 130 6974 49

Mindterm 135 30626 94
MpegAudio 67 15082 43

Muffin 278 37748 200
Rabbit 76 10148 84
Sablecc 267 36155 101

Sockecho 24 4340 3
Sockproxy 26 4640 3

VietPad 215 24998 78
Violet 130 9959 12

Table 4.1: Benchmarks statistics: number of classes, Jimple statements, and hotspots.

These hotspots have been areas of concern discussed in other papers [19, 20, 120,

121] or are frequently used methods. All of the benchmarks have been well established

in previous work [71,110,116,119,122,126,148] and were selected to represent a large

variety of applications in terms of function, size, and number of hotspots.

84

All experiments were performed on a Dell PowerEdge R300 with a Quad Core

Intel R©Xeon R©X3363, 2.83GHz, 2x6M Cache, 1333MHz FSB and 8Gb of RAM. The

execution environment was running a Linux 2.6.18 operating system. All experiments

were executed on a Java HotSpot(TM) 64-Bit Server VM.

To limit the effects of garbage collection and to maximize resource utilization all

experiments were executed with the following JVM options set:

• -Xmx6000m: Sets maximum Java heap size to 6Gb.

• -Xms4000m: Sets the initial Java heap size 4Gb.

• -Xss1000m: Sets the stack size for each thread to 1Gb.

4.3.2 Evaluation of Proposed Algorithms on Front-End Run-

ning Time and Memory Usage

To evaluate our proposed parallel designs described in Section 4.1 and the new

graph simplifications detailed in Section 4.2, we implemented 5 versions of JSA:

• JSA-ORIG: JSA in its original form with minor bug fixes.

• JSA-INTU: A parallelized version of JSA based on the intuitive design de-
scribed in Section 4.1.1.

• JSA-RMEM: This version of JSA was parallelized using the algorithmic trans-
formation designed to reduce the memory usage described in Section 4.1.2.

• JSA-PSIM: JSA-RMEM with the addition of the parallel graph simplification
stage presented in Section 4.1.3.

• JSA-NSIM: JSA-PSIM with the addition of the new graph simplifications
presented in Section 4.2.

Each version was executed on the set of benchmarks listed in Table 4.1. The input

for an execution was the entire set of classes for the benchmark, all the hotspots

listed above and the number of slave threads the implementation was to use to build

85

Implementation 1 Thread 2 Threads 3 Threads 4 Threads Mem. Red.
JSA-ORIG 1 NA NA NA 1
JSA-INTU .99 1.20 1.21 1.21 -5%

JSA-RMEM 1.08 1.33 1.36 1.30 44%
JSA-PSIM 1.07 1.54 1.52 1.53 43%
JSA-NSIM 1.02 1.39 1.44 1.40 41%

Table 4.2: Front-end time and memory results: Average speedup achieved for 22
benchmark applications. Column Mem. Red. displays the average percentage
memory reduction achieved; the results of JSA-ORIG were used as the baseline.

the flow graph. Since JSA-ORIG is a serial implementation it was only executed on

1 thread. The remaining implementations were executed using 1, 2, 3, and 4 slave

threads. This progression was used so that the speedup of the parallelism could be

observed. The maximum of 4 threads was selected because the system used in this

study contained 4 cores. If more than 4 threads were used by our parallel versions

of JSA, the slaves would begin to compete with each other for processing resources.

Each implementation was executed 5 times for each input. During these executions,

time measurements for the front-end and the back-end were taken. The lowest mea-

surements observed (being the fastest execution time) during the 5 executions was

recorded. Similarly, memory measurements were recorded for the lowest maximum

memory footprint observed for each benchmark. In other words, during a single exe-

cution the memory usage was monitored and the maximum amount used was noted.

Out of 5 executions the lowest maximum was recorded to represent the lowest possible

amount of memory needed to completely analyze the benchmark. Due to duplicated

structures and information, the memory footprint for the parallel implementations

grows with each additional slave, therefore memory measurements for these versions

were recorded only when the input required 4 slave threads.

86

Table 4.2 displays the average speedup each version of JSA was able to achieve

(compared to JSA-ORIG) when building the flow graphs for 22 benchmark applica-

tions (listed in Table 4.1). Column Mem.Red. displays the average percentage of

memory reduction (i.e., 1 − (JSA-RMEMMEM/JSA-ORIGMEM)) observed during the

analysis. The results from the JEdit, Jess, JGap benchmark applications are not

included in the averages. This is because JSA-ORIG, JSA-INTU, JSA-RMEM, and

JSA-PSIM could not complete an analysis of these benchmarks; they all exhausted

the 6Gb heap. The averages present a very coarse overview of the results of our

experiments. The complete set of results is shown in Appendix A.

JSA-INTU. Notice that, on average, when JSA-INTU runs sequentially (only

uses 1 thread of execution) it is a little slower than JSA-ORIG. This is to be expected

since it naively executes the load balancing heuristic, and creates special structures

that are needed for multiple threads. When concurrent execution is used, this design

produces a very modest speedup in the building of the flow graph. Using four slave

threads, on average, this version only achieves an average speedup of 1.21 over JSA-

ORIG. The Thread structures and the duplicated information slightly increases the

memory footprint of this version.

There are several reason why a more substantial speedup was not achieved. The

first being that the graph simplification portion of the front-end is still sequential in

this version. Depending on the input this phase can represent a significant amount

of work. Another factor that was dependent upon the input benchmark was the ef-

fectiveness of our load balancing heuristic. For the majority of the applications our

heuristics appeared to be perform adequately with slave threads completing within a

few hundred milliseconds of each other. However, for a few benchmark a single slave

would perform the majority of the work. One such example is Violet. This applica-

tion actually ran slower when multiple threads were used. This can be attributed to

87

poorly balanced workloads. Violet contains several methods which contain a large

number of String objects. These methods may have a similar number of Jimple

statements as other methods but require much more analysis time. A load balancing

heuristic which weights methods by both number of Jimple statements and String

objects might produce better balance. However, our heuristic generates the workloads

for the largest application, JEdit, in less than 15 ms. A more complicated heuristic

would take more time which might offset any gains in a large number of applications.

Another likely reason for the underwhelming results is contention for memory

resources. As stated in Section 2.3, one of the common causes of bottlenecks in

parallel Java applications is excessive object allocation [67]. In this design the Intra

CFG stage creates multiple objects for each Jimple statement present in the input

classes. In this design all slave threads will start in this stage and remain there until

all the methods in their workload have been converted to CFGs. This is a prolonged

period when all threads are contending for memory resources. Finally, there might

have been some contention for processor resources. Even though JSA-INTU used at

most 4 threads of execution, these threads may have been contending for processing

resources with the JVM, which is a multi-threaded application itself.

JSA-RMEM. This version attempts to reduce contention for memory resources

by running a single method through all of the intraprocedural flow analyses before

beginning analysis of the next method. This technique produced an average speedup

of 1.08 over JSA-ORIG even without using concurrency. This speedup can be at-

tributed to the reduction of memory used by this version. On average JSA-RMEM

used 44% less memory than JSA-ORIG. This reduction meant that cache misses and

access times to certain data structures (e.g., HashMaps) were reduced. However, it

proved to be even less scalable than JSA-INTU. The greatest speedup of 1.36 was

88

achieved when 3 threads were used. However, when 4 threads were used the average

speedup actually declined.

This version suffers from many of the same problems that JSA-INTU incurred.

It still executes all of the graph simplification as a sequential step. Even though

the heavy object allocation performed by the Intra CFG stage has been diffused,

ultimately the same number of objects will be created thus creating contention for

memory resources. These issues, load balancing inconsistencies, contention for pro-

cessing resources, and the new Intra Flow Graph stage meant that this version ran a

little slower on average when 4 threads were used, compared to using 3 threads.

JSA-PSIM. This version parallelizes a portion of the flow graph simplification

performed by the front-end of JSA through the introduction of a Intra Simplify stage.

The addition of this stage only slightly increases the memory footprint and sequential

running time of this version as compared to JSA-RMEM. However, this version is able

to achieve a maximum speedup of 1.54 when compared to JSA-ORIG. The biggest

gain is seen when only 2 slave threads are used. It is likely that contention for memory

and processor resources is too great to realize scalability for these benchmarks on this

experimental system.

JSA-NSIM. This implementation is the same as JSA-PSIM with the addition

of the new graph simplifications proposed in Section 4.2. These additions increase

both the building time of the flow graph and the memory footprint when compared

to JSA-PSIM. This is to be expected since the new simplifications introduces more

work. However, it is important to notice that even with the increased work JSA-NSIM

completes the building of the flow graph in a shorter amount of time than JSA-ORIG,

meaning that using concurrency can offset the cost of the new simplifications.

89

4.3.3 Back-End Running Time

The flow graphs generated by the front-end of JSA-ORIG, JSA-INTU, JSA-

RMEM, and JSA-PSIM for a given application will be identical. Since we made

no effort to modify the back-end, the running times for this portion of these im-

plementations are approximately identical (times can vary due to garbage collection

and other interactions with system resources.) JSA-NSIM produces a reduced flow

graph that preserves the details of the graph that are needed for hotspots but removes

certain irrelevant information. The additional reductions performed by JSA-NSIM

have the potential to significantly reduce the running time of the back-end for certain

inputs.

Table 4.3 shows the timing results for JSA-ORIG and JSA-NSIM (using 4 slave

threads to build the flow graph) for the 22 benchmark applications that JSA-ORIG

was able to fully analyze. As can be seen, for the majority of the applications it takes

JSA-ORIG longer to build the flow graph than it does for the back-end to compute the

finite state automata for the hotspots. The exceptions are Javac, JWPS, Mindterm,

and Muffin. For JWPS and Muffin the difference is very significant; it takes the back-

end 147 times longer for JWPS and 109 times longer for Muffin. This imbalanced

relationship is likely due to the potential for doubly-exponential blowup when the

back-end converts the MFLAs to DFAs. This kind of blowup does not occur often

but is more likely to happen in complicated flow graphs which contain numerous

hotspots that are connected. Since our simplification which propagates anystring

values breaks connected graph components, this exponential blowup is less likely to

occur in our graphs. As shown in the table, JSA-NSIM’s back-end completes 1138

times faster than JSA-ORIG’s for JPWS and 1073 times faster for Muffin. This time

savings implies that JSA-NSIM achieves an overall speedup of 230 for Jpws and 184

for Muffin.

90

JSA-ORIG JSA-NSIM (4 Threads)
Apps Front Back Total Front Back Total Speedup

Buoy 1502 23 1525 1274 9 1283 1.18
Compress 650 325 975 621 314 935 1.04

DB 690 373 1063 527 319 846 1.25
Fractal 664 512 1176 993 174 1167 1.00

GattMath 1319 72 1391 989 19 1008 1.37
Jack 1701 1362 3063 1287 502 1789 1.71

Javac 3021 7325 10346 2189 211 2400 4.31
JavaCup 2861 1795 4656 2421 502 2923 1.59

Jb61 1322 623 1945 932 373 1305 1.49
JFlex 6129 961 7090 5443 37 5480 1.29
JLex 1340 415 1755 725 222 947 1.85
Jpws 4023 594057 598080 2072 522 2594 230.56
Jtar 1755 763 2518 1381 400 1781 1.41

Mindterm 3138 3478 6616 2418 94 2512 2.63
MpegAudio 2760 311 3071 2302 208 2510 1.22

Muffin 5496 604409 609905 2729 568 3297 184.98
Rabbit 1579 973 2552 1472 276 1748 1.45
Sablecc 5611 47034 52645 2723 45695 48418 1.08

Sockecho 759 264 1023 557 190 747 1.36
Sockproxy 754 234 988 622 227 849 1.16

VietPad 5949 4121 10070 2796 113 2909 3.46
violet 1375 52 1427 985 25 1010 1.41

Table 4.3: Running time (in ms) for JSA-ORIG and JSA-NSIM.

JSA-ORIG, JSA-INTU, JSA-RMEM, JSA-PSIM were unable to analyze the JEdit,

Jess, and JGap benchmarks on the system where our experiments were conducted.

For these applications the back-end stage of JSA experienced a similar blowup as it

did for JWPS and Muffin. However, for these benchmarks it exhausted the allotted

heap memory before the analysis could be completed. Table 4.4 shows the time re-

sults recorded for JSA-NSIM when it was applied to these benchmarks. Again, our

new simplifications greatly reduced the resources needed by the back-end. It is also

interesting to note that for JEdit the concurrent building of the flow graph appears

to scale better than other benchmark applications (achieving over a 3 times speedup

with 4 slave threads). This indicates that our proposed parallel algorithms may be

91

Benchmark 1 Thread 2 Threads 3 Threads 4 Threads Back-end

JEdit 20451 9533 6877 6053 1021
Jess 1730 1418 1363 1350 457

JGap 1995 1591 1764 1873 556

Table 4.4: Running time results in ms for JSA-NSIM.

more relevant for large applications or whole-program analyses where library classes

must also be considered.

4.4 Conclusion

This chapter presents multiple techniques to increase the scalability of the Java

String Analyzer (JSA) library. These techniques include algorithmic transformations

which parallelize portions of JSA’s front-end, allowing it to leverage modern multi-

core architectures. In an empirical study of 25 benchmark applications it was shown

that for 22 of the benchmarks our most advanced parallel version of JSA’s front-end

was, on average, able to achieve a speedup of 1.54 over the original sequential version

of JSA. Moreover, the parallel design reduced the average memory footprint for these

22 applications by approximately 43%. For the remaining 3 applications all version

of JSA exhausted the allotted heap memory.

JSA’s front-end builds a flow graph which represents the flow of string values

through the input classes. This flow graph is the input to the back-end. We present

three new simplifications to this graph which preserve relevant details at expressions of

interest (hotspots) while eliminating several sources of superfluous information. These

reductions have the potential to decrease the amount of work that must be performed

by the back-end. On average, these new simplifications added 200 ms to the running

92

time of the front-end of the most advanced parallel version of JSA. However, for two

applications, these simplifications reduced the running time of the back-end from over

590,000 ms to under 600 ms. Moreover, our simplifications allowed JSA to complete

an analysis of three benchmark applications that previously exhausted a 6Gb heap.

93

CHAPTER 5: ASSUMPTION HIERARCHY FOR A CHA

CALL GRAPH CONSTRUCTION ALGORITHM

Performing interprocedural static analysis of software written in an object-oriented

programming language, such as C++ or Java, requires information about the calling

relationships between program methods. This information is abstractly represented

in a call graph where the nodes of the graph represent methods and directed edges

represent calls between methods. These representations are often critical components

of modern static analyses, e.g., [19,41,42,45,46,62,71,78,88,104,107,109,111,128,141,

143]. The building of a call graph for OO languages is complicated by the existence of

polymorphism and virtual calls. There has been extensive work conducted in the area

of call graph construction which addresses this issue with varying degrees of precision

and expense, e.g., [2, 7, 9, 14, 27, 28, 57, 58, 61, 77, 83, 84, 94, 95, 112, 130, 133, 134, 140,

148,149].

Class Hierarchy Analysis (CHA) [27] was one of the first, and simplest, call graph

construction algorithms. For a virtual call site x.m() where C is the compile-time type

of x, CHA assumes that all subtypes of C are possible run-time receiver types of the

call. As shown in Figure 5.1, a call graph created with CHA may contain infeasible

edges. In this example the graph has an edge from main to Z.m even though an

instance of Z is never created (for this example it can be assumed that the only

calls made are shown in the code). In spite of its inherent imprecision, many static

analyses use CHA to fulfill their need for a call graph, e.g., [19,41,62,104,128]. This

94

class A{

public static void main(...){

X x = new X()//c1

if(...) x = new Y();//c2

x.m();//c3

}

}

class X { void m(){...}}

class Y extends X { void m(){...}}

class Z extends X { void m(){...}}

c2c1

c3 c3 c3

Z.mY.mX.m

Y.initX.init

A.main

Figure 5.1: CHA imprecision example: code and resulting call graph.

is often due to the relative ease of implementing the algorithm and its fast running

time (O(N) where N is the size of program).

Although the graph shown in Figure 5.1 contains an infeasible edge (main→ Z.m),

it is sound—i.e., it contains all feasible edges (ignoring any implicit calls made from

the JVM). The “perfect” call graph, the one that represents only and all possible

run time calls between methods, is a sub-graph of the graph shown. A call graph

is unsound if it does not represent all possible run-time calling relationships. For

example, if the call graph in Figure 5.1 did not contain the edge main→ Y.m it would

be unsound.

An unsound call graph could have disastrous affects on the analysis relying on it.

Consider the very simple analysis that removes dead code from the production version

of an application. Assume this analysis defines dead code as any private method

which is neither reachable from main nor called implicitly by the JVM. Such an

analysis could be implemented by removing private methods that are not reachable

from main (i.e., the call graph does not contain a path from main to the method) or

reachable due to calls made by the JVM. For such an analysis, an unsound call graph

95

could result in a method mistakenly being identified as dead code. In such a scenario

the method would be removed, potentially causing failure of the application.

Unfortunately, the truly-dynamic nature of Java (Section 2.1) presents a signifi-

cant challenge for any static call graph construction algorithms. In the general case it

is impossible to statically determine the run-time actions of the Java constructs that

allow for reflection, dynamic class loading, and interfacing with native methods. This

fact requires developers of call graph construction algorithms to make assumptions

about the effects of these dynamic features. These assumptions fall on a continuum.

At one extreme of the continuum, the algorithm simply ignores dynamic features.

This action will produce an unsound call graph whenever it is applied to applications

that use such features. This option was leveraged heavily in the past when relatively

few applications were using dynamic constructs. However, this solution is no longer

viable for modern applications which are more and more frequently supporting dy-

namic architectures. As shown in Chapter 3, the Java libraries also make use of these

dynamic features and thus almost any application indirectly employs such features

due to its use of library classes.

The other extreme assumption results in the call graph construction algorithm

very conservatively estimating all possible effects of dynamic features. For example,

consider a program P with a method m which contains a statement stmt that calls the

reflective method Method.invoke. Recall from Section 2.1.2 that Method.invoke

results in the invocation of the method being represented by Method. Since it is

possible for reflection to break encapsulation, it could be conservatively assumed that

a call to Method.invoke could result in any method in P being invoked. Thus in

the call graph an edge would be added from m to every other method in P. A similar

treatment would be applied to all dynamic features. Such a conservative treatment

will create a sound result (under a closed-world assumption), but for most static

96

analyses the relevant information will be obfuscated by infeasible edges. Clearly,

such an approach would be impractical for the example analysis above which removes

dead code from applications. For any application that uses reflection in a method that

is reachable from main (including library methods), the overly conservative call graph

would assume that all methods could be reachable, and consequently no method could

possibly be identified as dead code.

In this chapter we explore the effects of different assumptions made about dynamic

features on two related static analyses. Our study first examines a hierarchy of

assumptions about dynamic features that can be applied to a May Be Loaded (MBL)

analysis. This analysis is typically thought of as preprocessing step of a CHA analysis.

Its goal is to determine the set of classes that must be considered when the CHA

analysis is being performed. We then examine assumptions that can be applied to a

CHA call graph construction algorithm.

The remainder of this chapter is organized as follows: Section 5.1 provides an

overview of an MBL analysis and describes how certain dynamic features of Java

can render the results of the analysis unsound. We provide an overview of a CHA

call graph construction algorithm in Section 5.2 and describe how dynamic features

can introduce unsoundness into the graphs it generates. Section 5.3 discusses the

specific assumptions about dynamic features that we will be examining. Section 5.4

presents our experimental study of both the MBL analysis and the CHA call graph

construction algorithm. The chapter is summarized in Section 5.5.

5.1 May Be Loaded Analysis

A whole-program analysis, such as a CHA call graph construction algorithm,

operates under a closed-world assumption. In other words, the analysis assumes

that it has access to all relevant code entities. In the case of CHA, the analysis is

97

performed on a set of classes AppClasses. To be a sound analysis for an application

P , the following must hold: AppClassesP ⊆ AppClasses where AppClassesP is the

set of all classes which could possibly be loaded into the JVM during any execution

of P . Typically, AppClasses will be much larger than the set of classes written by

the application developers of P , for it will also include all the library classes that

are directly and transitively accessed by P . For many applications, AppClasses will

contain thousands of classes. Due to its large size, and the lack of access to the

source code of libraries, it is impractical to expect a CHA client to manually specify

AppClasses. Conversely, including every class accessible from the classpath could

generate an AppClasses set that includes an unwieldy number of irrelevant classes.

A large set could significantly increase the memory and time needed to complete the

CHA analysis. It could also lead to numerous infeasible edges being added to the

call graph depending upon how dynamic features are represented (as can be seen in

Section 5.3.2).

The use of a May Be Loaded analysis is one approach of automatically estimating

the classes that need to be included in AppClasses. A MBL analysis examines the

code of an applications looking for actions that could cause a class to be loaded into

the JVM. According to the JVM specification [87] the following actions will cause a

class X to be loaded (Loading Actions):

1. An instance of X is created

2. A non-constant static field of X is assigned or used

3. A static method of X is invoked

4. A subclass of X is initialized

5. X is initialized due to certain reflective methods

6. X is initialized due to JVM startup

98

input cm : class containing main
input Cls : set of all classes available on the classpath
output MBLCls : set of classes that may be loaded by P
procedure MaybeLoaded(cm ,Cls)

1: ClassWorklist := {cm}
2: while ClassWorklist 6= ∅ do
3: c : class := ClassWorklist .RemoveAny()
4: if c 6∈ MBLCLs then
5: MBLCLs := MBLCLs ∪ {c}
6: for each stmt : statement ∈ c do
7: cl : class := null

8: if stmt instanceof new X then
9: cl := X /*Loading Action (1)*/

10: else if stmt instanceof X.fld then
11: cl := X /*Loading Action (2)*/
12: else if stmt instanceof X.m(. . .) then
13: cl := X /*Loading Action (3)*/
14: end if
15: if cl 6= null then
16: superCls := GetSuperClasses(cl ,Cls) /*Loading Action(4)*/
17: LCLs := LCLs ∪ {cl} ∪ superCls

18: ClassWorklist := ClassWorklist ∪ {cl} ∪ superCls

19: end if
20: end for
21: end if
22: end while
23: return MBLCLs

Figure 5.2: Simple May Be Loaded (MBL) analysis.

Figure 5.2 present an algorithm for a simple MBL analysis. The algorithm takes

as input the class cm containing the main method for an application P , and the

set of all classes in the “world”7. Since all executions of P start with main, cm

is guaranteed to be loaded into the JVM. The MBL analysis initializes a standard

worklist with cm. The algorithm continues as long as the worklist is not empty. It

7In practice this set is usually all classes available on the system classpath and the application
classpath. This practice could be unsound for applications that use custom class loader which can
load classes from alternate locations.

99

removes any class from the worklist. If the class has not previously been analyzed,

all of its statements are examined (lines 3–6). MBL assumes that all code in a loaded

class could be reached during an execution of P . If a statement instantiates a new

class X or accesses a static field/method of X, then X and all of X’s superclasses are

added to the worklist (lines 6–20).

Note. An analysis similar to the one presented in Figure 5.2 can be conducted

by leveraging the constant pool structure contained inside every class file [87]. The

constant pool is a table of structures that represent entities that are referred to by

the code contained in the class. Accessing this structure would be more efficient than

inspecting every statement. However, we present the above algorithm for clarity and

for further refinement to address certain dynamic features that could not be addressed

by solely using the constant pool.

5.1.1 Effects of Dynamic Features

The MBL analysis described above would be able to determine all classes loaded

by P due to

1. An instance of X is created

2. A non-constant static field of X is assigned or used

3. A static method of X is invoked

4. A subclass of X is initialized

For the remainder of this dissertation we will refer to this set of actions as statically

determinable class loading actions. Unfortunately, it would not be sound for many

Java applications (i.e. AppClassesP 6⊆ AppClasses). The above analysis does not

consider the dynamic features of Java which can cause classes to be loaded into the

JVM.

100

The analysis does not address the classes that are loaded by the JVM upon startup.

Recall, from Section 2.1, that different implementations of the JVM will perform dif-

ferent actions upon startup, including default loading of commonly used Java library

classes. Not only are these classes loaded into the JVM, but their static initializer

methods are invoked. Thus, even if these classes are not explicitly used by P their

code could still affect P ’s run-time behavior.

Similarly, the above analysis does not contain any mechanisms to address dynamic

class loading methods. As discussed in Section 2.1.1, in the general case it is impossi-

ble to determine the classes that will be loaded by methods such as Class.forName.

However, there are techniques that can be used to aid in the resolution of certain

invocations of these methods.

The set AppClasses calculated by the analysis would not include classes that may

be loaded by native methods. As described in Section 2.1, native methods essentially

have all capabilities of Java methods including the ability to load classes into the

JVM. The algorithm shown in Figure 5.2 makes no provisions for such interactions.

The unpredictability of custom class loaders introduces another potential source

of unsoundness. Class loaders developed by third party users are not required to

adhere to the conventional actions of standard Java loaders. They can instrument

the code of any class Z during the loading process, possibly altering the semantics of

Z and the set of classes that could be loaded by Z. Custom loaders can load classes

from sources that are not listed on the classpath. They can even substitute a specified

class with an arbitrary replacement at loading time.

Any class Q loaded by the dynamic features listed in this section will not be

present in the set AppClasses calculated by the above MBL analysis unless Q would

have been loaded in a statically determinable manner elsewhere in P (e.g., an instance

of Q is created using the new operator.) Missing even a single dynamically loaded

101

class has the potential to greatly impact the results of a MBL analysis, as that class

could load a number of other class, and those classes will load yet other classes, and

so on.

In Section 5.3 we present a hierarchy of assumptions that a MBL analysis could

make about the interactions of such dynamic features. We specify how the simple

algorithm presented in Figure 5.2 can be modified to remain sound under each as-

sumption.

5.2 Class Hierarchy Analysis

Class Hierarchy Analysis (CHA) was formally introduced by Dean et. al. [27] as a

technique to conservatively estimate the possible receivers of dynamically-dispatched

messages. This information could then be used by optimizing compilers to replace

certain dynamic calls with far less expensive static ones. While this work considered a

language which was dynamically typed, in Java the existence of static types simplifies

the analysis to the following basic operation: given a call site x.m(), where the de-

clared type of x is C, the possible run-time type of x must be a non-abstract subtype

of C and the run-time target method for each such subtype can be determined by a

simple bottom-up traversal of the class hierarchy.

In this section we present a CHA call graph construction algorithm which is mo-

tivated by the CHA call graph construction algorithm in Soot. The pseudocode rep-

resents Soot’s algorithm at a high level. However, the presented version is relatively

simple and does not fully address the complexities of the Java language. Later we will

describe how this version can be altered to remain sound under certain assumptions

about the dynamic features of Java.

102

• P = the program being analyzed

• AppClasses = set of classes (including library classes) that comprise P

• DoPrivileged = set of doPrivileged methods

• JVMStartupMethods = set of methods called by the JVM on startup

• JVMStartupClinits = set clinits for all classes loaded by the JVM on startup

• MainClinit = clinit for the class declaring the main method

Figure 5.3: CHA algorithm notation.

5.2.1 CHA Call Graph Construction Algorithm

To create a call graph for an application P , CHA takes as input a set of Java

classes AppClasses (this set is the result of running an MBL analysis on P) and a

representation of P ’s main method. From these inputs CHA generates:

• A set of reachable methods Reach. These are methods which may be invoked
during an execution of P starting in main.

• A call graph with nodes m ∈ Reach and edges e ∈ Reach × Reach × CallSites.
A call graph edge (m, n, c) indicates that method m contains a call site c at
which one possible run-time target method is n.

We now present the pseudocode for a CHA call graph construction algorithm.

Figure 5.3 provides definitions of several sets and variables that will be referenced in

the algorithm.

CHAMain. The algorithm employs a standard worklist approach (Figure 5.4).

The worklist is initialized with the main method, the clinit for the class containing

the main method, the clinit methods for the JVM startup classes8, and a set of

methods that are invoked implicitly by the JVM upon startup (line 1). Method n is

8These are the same startup classes as discussed in Section 5.1

103

input AppClasses : the set of all application classes
input MainMethod : the main method of the application
output Reach := ∅ : set of reachable methods
output CallGraph := (∅, ∅) : call graph
procedure CHAMain(AppClasses ,MainMeth)

1: worklist := {MainMethod} ∪ {MainClinit} ∪ JVMStartupClinits ∪ JVMStartupMethods

2: while worklist 6= ∅ do
3: n := worklist .RemoveAny()
4: if n /∈ Reach then
5: Reach := Reach ∪ {n}
6: methSet := ProcessBody(n)
7: worklist := worklist ∪ methSet

8: end if
9: end while

Figure 5.4: Main procedure for CHA.

arbitrarily removed from the worklist and, if it has not already been analyzed, it is

added to Reach and is passed to ProcessBody. This procedure determines the set of

methods which could possibly be called by n. These newly discovered methods are

added to the worklist. The worklist iteration continues until worklist = ∅ indicating

that all methods that are reachable from main have been analyzed.

ProcessBody. The ProcessBody procedure shown in Figure 5.5 analyzes a

method m to determine the set of methods methSet that can be called by m. First,

m is examined to determine if it is a constructor for some class C. If it is and C

overrides java.lang.Object.finalize, an edge is added from m to C .finalize and

C .finalize is added to methSet (lines 4–7). This edge represents that if an instance of

C is created, the JVM may invoke its finalize method9. A more complete discussion

of finalizer methods is available in Section 2.1.5.

9This is the same treatment that Soot 2.2.3 provides for finalize methods. It can lead to an
unsound call graph since it does not consider situations where C does not declare a finalize method
but some superclass of C does. In this situation if an instance of C is created the finalize method
of its superclass will be invoked when the instance of C is garbage collected.

104

input m : method
output methSet : set of method which could be called from m
procedure ProcessBody(m)

1: methSet := ∅
2: if isConstructor(m) then
3: decClass := getDeclaringClass(m)
4: if hasFinalizeMethod (decClass) then
5: fin := getFinalizeMethod (decClass)
6: AddCallGraphEdge (m,fin)
7: methSet := methSet ∪ {fin}
8: end if
9: end if

10: for each st : statement ∈ m do
11: if (st instanceOf v = new X) ∨ (st contains X .fld) ∨ (st contains X .n()) then
12: methSet := methSet ∪ AddClinits(m, st ,X)
13: end if
14: if containsMonomorphicCall(st) then
15: n := getInvokedMethod(st)
16: methSet := methSet ∪ {n}
17: AddCallGraphEdge(m,n, st)
18: if n ∈ DoPrivileged then
19: arg0 := getFirstArg(n)
20: methSet := methSet ∪ ResolveVirtualCall(m, arg0 , getRunMeth(arg0), st)
21: end if
22: end if
23: if containsVirtualCall(st) then
24: n := getInvokedMethod(st)
25: rec := getCompileTimeReceiver(st)
26: methSet := methSet ∪ ResolveVirtualCall(m, rec,n, vc)
27: if isThreadStartMeth(n) then
28: methSet := methSet ∪ ResolveVirtualCall(m, rec, getRunMeth(rec), st)
29: end if
30: end if
31: end for
32: return methSet

Figure 5.5: Processing the bodies of newly discovered reachable methods.

At line 10 ProcessBody begins to iterate over every statement st in m. If st

requires a class X to be loaded into the JVM due to a statically determinable class

loading action, then X is passed to the AddClinits procedure (lines 11–12).

AddClinits. Procedure AddClinits (shown in Figure 5.6) adds a call graph

edge from m to all the appropriate clinit methods. Though the JVM implicitly

105

input m : calling method
input st : statement causing X to be loaded
input X : new loaded class
output clinitSet : set of called clinits
procedure AddClinits(m,st,X)

1: clinitSet := ∅
2: if containsClinit(X) then
3: clinit := getClinit(X)
4: clinitSet := clinitSet ∪ {clinit}
5: AddCallGraphEdge(m, clinit , st)
6: end if
7: if hasSuperType(X) then
8: Y = getSuperType(X)
9: clinitSet := clinitSet ∪ AddClinits(m, st ,Y)

10: end if
11: return clinitSet

Figure 5.6: Adding edges to static initializer methods (i.e. clinits).

calls clinit methods, the algorithm creates an edge from the method m to X.clinit

to depict that the actions of m caused the invocation of X.clinit . When the static

initializer method of a class is invoked, so too is the static initializer method of its

super type, if the super type is has not already been initialized. This possibility of

additional clinits being invoked is addressed in lines 7 and 9. AddClinits returns

all clinit methods that have been added to the graph so that they may be analyzed.

ProcessBody. After st as been analyzed for interactions with clinits, it is

checked for monomorphic calls—i.e. invocations with JVM opcode InvokeStatic or

InvokeSpecial [87]—(Figure 5.5 line 14). If is contains such a call, an edge is added

from m to the called method (lines 14–22).

Each monomorphic site is examined to determine if it contains a call to an

AccessController.doPrivileged method. The doPrivileged methods are used

for access control operations and decisions. They allow or reject access to critical

system resources. The methods in the set DoPrivileged all take an argument of type

106

input m : method
input rec : class or interface
input n : method
input c : call site
output recSet : set of possible reciever methods
procedure ResolveVirtualCall(m,rec,n,c)

1: recSet = ∅
2: subTypes = getSubTypes(rec)
3: if isInterface(rec) then
4: for each X ∈ subTypes do
5: recSet := recSet ∪ ResolveVirtualCall(m,X ,n, c)
6: end for
7: else
8: for each X ∈ subTypes do
9: dn := Dispatch(X ,n)

10: recSet := recSet ∪ {dn}
11: AddCallGraphEdge(m, dn, c)
12: end for
13: return recSet

14: end if

Figure 5.7: Resolving all possible targets of a virtual call.

PrivilegedAction or PrivilegedExceptionAction. Objects of these types declare

a method run. This method contains the code that requires access to the requested

system resource. If access to the resource is granted the run method is implicitly

invoked. Thus, an edge is added from m to run. Since run is a virtual call, dynamic

dispatch has to be accounted for as can be seen at line 20.

The algorithm addresses virtual calls in lines 23–30. For each virtual call site

(those with JVM opcodes InvokeVirtual or InvokeInterface) found in the method,

ProcessBody determines the compile-time target method and the compile-time re-

ceiver type of the call. This information is passed to ResolveVirtualCall (Figure 5.7).

A special case is needed for calls to void start() methods belonging to the class

Thread. When invoked, these methods cause the thread to begin execution. Upon

invocation of a start method the JVM calls the run method of the specified thread.

107

input X : class
input n : method
output z : method
procedure Dispatch(X, n)

1: if z ∈ X ∧ Signature(z) = Signature(n) then
2: return z
3: else if hasSuperType(X) then
4: Y := getSuperType(X)
5: Dispatch(Y ,n)
6: end if
7: return ERROR {should never reach here}

Figure 5.8: Virtual dispatch.

The additional call to ResolveVirtualCall at line 28 ensures that an edge is added to

the implicitly called run method.

ResolveVirtualCall. As shown in Figure 5.7, ResolveVirtualCall implements

a simple Class Hierarchy Analysis. If the compile-time receiver type rec is an in-

terface, ResolveVirtualCall recursively calls itself for all subtypes of rec (line 5). If

it is a class, ResolveVirtualCall iterates through every subtype X of rec (including

rec if it is a concrete class) and calls Dispatch on each (line 9). Dispatch, which

is shown in Figure 5.8, ascends the class hierarchy starting at X searching for a

method which has a signature that matches n’s. Once a match is found, it is re-

turned to ResolveVirtualCall . An edge is then added for all possible receivers at

line 11. It should be noted that the intent of Signature(z) = Signature(n) at line 1

of the Dispatch procedure is to check whether the method names, return types, and

parameter types lists of z and n match. This simulates how Java 1.4 resolved virtual

dispatch. However, in Java 1.5, and subsequent versions, the dispatch model changed

slightly. In Java 1.5, an overriding method can also return a subtype of the type

returned by the overridden method [52].

108

5.2.2 Effects of Dynamic Features

The call graph construction algorithm presented above addresses some, but not

all, of Java dynamic features. It does make allowances for the actions taken by the

JVM upon startup. These accommodations are realized through the use of the sets

JVMStartupMethods and JVMStartupClinits . The first includes methods which the

JVM can invoke on startup; these can include initializeSystemClass() from the

System class and runFinalizer() from the Finalizer class. JVMStartupClinits

includes the clinits for all the classes the JVM automatically loads on startup.

These sets are given as inputs to the algorithm.

The algorithm also models several implicit calls made by the JVM, including calls

to run methods of Thread and PrivilegedAction objects. Even though these calls

are made by the JVM, the above algorithm depicts the calling edge as coming from

the application code. This representation is apt in that actions in the client code

(e.g., invocations of a Thread object’s start method) caused the JVM call.

Similarly, the algorithm represents edges to X.clinit as orienting from the client

code that could cause X to be loaded into the JVM. This treatment of clinits can

lead to a large number of spurious edges in the graph. A class’s clinit is only

called once when the class is loaded into the JVM. However, a call graph generated

by the above algorithm could depict numerous calls to the same clinit. Some of

these multiple invocations will be valid whereas others will be infeasible. Consider the

example shown in Figure 5.9 and assume that the only calls to jumar and fifiHook

are at lines 4 and 5, respectively. Also, assume that all fields are static. First notice

that method fifiHook accesses two static fields of the Hammer class. In a call graph

generated by the above algorithm, each access would result in a an edge being added

from fifiHook to Hammer.clinit even though the clinit would only be invoked on

the first access.

109

1 public class AidClimber {

2 public void etrier(){

3 double ps = Piton.strength;

4 if(ps > 3.0){this.jumar();}

5 this.fifiHook();

6

7 }

8 private void jumar(){

9 int pw = Piton.weight;

10 int hw = Hammer.weight;

11

12
13 }

14 private void fifiHook(){

15 boolean pl = Piton.hasLoop;

16 boolean hl = Hammer.hasLoop;

17 int hw = Hammer.weight;

18

19 }

20 }

Figure 5.9: Example that demonstrates complexities of when clinits are invoked.

Edges to clinit methods can be invalid due to interprocedural relationships as

well. Notice that all three methods in Figure 5.9 access a static field of the class Piton.

In the call graph created by the algorithm above, every method of AidClimber would

have an edge to Piton.clinit. However, the edges from jumar and fifiHook are in-

feasible since the only paths of execution on which they are invoked pass through

etrier. Since Piton.clinit can be invoked at most once, and it must be in-

voked prior to etrier’s access of strength, it will not be invoked again in jumar

or fifiHook. The call graph will also contain edges from jumar and fifiHook to

Hammer.clinit. Even though Hammer.clinit will only be invoked once, both edges

are valid since there are paths of execution where its first invocation can be in either

jumar or fifiHook.

110

To eliminate some of these infeasible edges to clinit methods, the CHA call

graph construction algorithm in Soot 2.2.3 employs an intraprocedural dominance

analysis. This analysis identifies statement dominance in a method’s control-flow

graph. Statement B is dominated by statement A if there is no path of execution

that executes B without first executing A. This analysis is applied individually to each

method in the call graph. Edges to clinit methods that are found to be infeasible

due to dominance relationships are removed from the graph.

The algorithm makes no attempt to address the ramifications of dynamic features

in the code. For example, it does not provide a treatment for calls to dynamic class

loading methods. Many of these loading methods invoke a class’s clinit immediately

after loading it. Ignoring such calls has the potential to generate an unsound call graph

since calls to clinits may not be represented. Similarly, reflective instantiation

is not addressed. As described in Section 2.1.2, calls to Class.newInstance and

Constructor.newInstance can create new instances of a class. These calls result

in an implicit invocation of a class’s constructor. These indirect calls will not be

represented in a call graph created by the algorithm above. Further unsoundness will

be introduced if a method is indirectly invoked through the use of a reflective object

Method. Again, these implicit calls are not represented in the call graph.

The algorithm also does not address native methods. This means that the graph

will not represent the native code that could be executed. The transition from Java

to a native language is an unrealistic expectation for most static analysis tools. One

of the biggest challenges with incorporating native methods into an analysis is the

lack of source code, much less addressing different language features and semantics.

However, by ignoring native methods the CHA algorithm might miss callbacks to

the Java code. Recall that native methods have the capabilities of Java methods:

they can load new classes into the JVM (resulting in clinit methods being invoked),

111

create instances of classes, and call Java methods. These calling relationships will

not be represented by the above algorithm.

Finally, the call graph created by the algorithm may not present a sound abstrac-

tion of possible calling relationships if the application under analysis makes use of a

custom class loader. The ability of a custom class loader to instrument the code it

loads makes it extremely difficult for any static analysis to generate a sound result.

In the case of call graphs, a custom loader could load unexpected classes which could

result in calls to clinit methods not being represented. It could alter or remove ex-

citing method calls or insert new invocations. Such actions would not be represented

in the call graph.

5.3 Assumption Hierarchies

Making conservative assumptions about the effects of unknown external code is

a common practice for many static analyses (e.g. [19, 63, 108, 113,115,129,141,150]).

Even if not stated explicitly, many static analyses for Java applications make implicit

assumptions about the effects of the language’s dynamic features. In this section we

present two hierarchies of assumptions. The first hierarchy is for the MBL analysis,

and the second is for the CHA call graph construction analysis. These assumptions

pertain to the dynamic features of Java which can cause the analysis to be unsound.

It should be noted that the assumptions presented do not constitute all the possible

assumptions such analyses could make.

5.3.1 MBL Assumptions

In Section 5.1 we described the dynamic features which could load a class into the

JVM. Presented below are a range of assumptions that would be practical for an MBL

112

analysis to make about these dynamic features. These assumptions form a hierarchy

starting with the most relaxed assumption and building to the most conservative. The

result set generated under each assumption is a superset of the result set generated

under the preceding assumption.

Overly Optimistic

For a program P , it may be possible to determine all the classes that could be

loaded into the JVM by performing a straightforward static analysis of P ’s source

code using the algorithm presented in Figure 5.2. Therefore a static analysis could

make the following assumption:

Statically Discernable Loading Assumption (SDLA): This is an overly
optimistic assumption that assumes all classes loaded in the JVM will be

loaded by the set of statically discernable loading actions defined above.
It also assumes that this set can be determined by starting the analysis

at the class which contains the main method for P .

Notice that this assumption does not automatically indicate that the analysis will

produce unsound results for applications that use dynamic features. It is possible

that every class that could be loaded by a dynamic feature could also be loaded by

statically determinable means. For example, consider an application that contains the

call Class.forName("X"). If that same application contains the call X x = new X(),

then X will be in the set returned by the MBL analysis without the need to explicitly

address that dynamic class loading method. This, of course, is a very optimistic

assumption and will likely be unsound for the majority of Java applications.

JVM Startup

The MBL algorithm presented in Figure 5.2 starts its analysis at the class con-

taining the main method for an application. However, many implementations of the

113

JVM will pre-load classes before executing main. It is unlikely that every application

will explicitly make use of these pre-loaded classes. Thus, a slightly more conservative

assumption than SDLA would be:

JVM Startup Loading Assumption (JSLA): This assumption recognizes
that an implementation of the JVM may pre-load classes. However, it

assumes all other classes loaded into the JVM can be determined statically.

This assumption can be accommodated with a simple addition to the algorithm

presented in Figure 5.2. The new version not only initializes the worklist with the

class containing main as before but also includes a set of classes JvmSt . This set

represents the classes that the JVM loads on startup.

There are several techniques that could be used to determine the classes that need

to be included in JvmSt . These techniques require slight refinements to JSLA. One

of these refinements is:

JSLA-Global Fit (JSLA-GF): This refinement of JSLA assumes a static
set of classes will encompasses all possible classes that will be loaded by

any implementation of JVM on startup. If a particular implementation

of the JVM pre-loads a class not in JvmSt than the analysis assumes that
the application will statically load it.

This technique uses a one-size-fits-all solution. This is the approach used by the

popular Soot framework. The analysis uses a hard-coded set of classes that it assumes

all implementation of the JVM will load upon startup. This solution will neither be

sound nor precise for all systems and implementations of the JVM. However, it will

likely be more sound than simply ignoring the fact that the JVM loads classes on

startup.

Another approach would require the MBL analysis to incorporate a pre-processing

stage. This stage would examine the JVM which will be executing the MBL analysis.

This examination would determine the set of classes pre-loaded by that particular

114

instance of the JVM. This technique can be combined with the global set technique

under the following assumption:

JSLA-Semi-Static (JSLA-SS): This assumption extends JSLA-GF. It

assumes that the set of startup classes loaded by the JVM currently exe-
cuting the MBL analysis combined with a static set of classes (as defined

by JSLA-GF) represents all classes that could possibly be loaded by the

JVM upon startup.

This technique is similar to the use of semi-static sources of string variables described

in Chapter 3. Using this technique will not guarantee global soundness of the results

generated by a MBL analysis. Instead, it will tailor JvmSt to the system and the JVM

currently under analysis. This approach is made less system-specific by combining

its results with the statically defined set of JSLA-GF.

There are several approaches that could be used to determine the set of classes

a particular JVM loads on startup. It is possible to run the JVM in verbose mode.

In this mode, the JVM will notify the user of every class it loads. By executing an

application that consists of an empty main method (i.e., one that does not explicitly

load any classes) on a JVM in verbose mode, a list of startup classes can be deter-

mined. Another method used to estimate the set JVM startup classes and method

invocations is to use a JVM profiling tool such as JVMPI [70]. JVMPI can determine

the classes the JVM loads and which methods are invoked during the execution of an

application.

It is interesting to note that we used both a JVMPI agent and the JVM verbose

option when executing a version of the JVM on an application consisting of an empty

main. The set of classes generated by techniques varied slightly. To be safe, an MBL

analysis could use the union of the two result sets. The set of startup classes defined

in Soot 2.2.3 (the version used in the experiments presented later) was a subset of

both result sets.

115

1 Gene thisGeneObject;

2 try {

3 thisGeneObject =(Gene) Class.forName(geneClassName).newInstance();

4 }catch (Exception e) { }

Figure 5.10: An example of dynamic class loading from the JGap benchmark.

All Referenced Types

As shown in Chapter 3, the Java libraries make use of dynamic class loading.

These same dynamic features are available to all Java applications. The classes loaded

by these features will not be included in the set MBLCLs by the algorithm from

Figure 5.2.

For example, consider the code shown in Figure 5.10. Notice that line 3 loads a

class specified by the string geneClassName, creates an instance of that class using

newInstance, and casts the resulting object to the type Gene. If Gene is not loaded

in a statically determinable manner elsewhere in JGap, it will not be included in

MBLCLs .

One assumption an MBL analysis could make that would catch such instances is:

All Referenced Types Assumption (ARTA): This assumption extends

JSLA-SS by assuming that all types referenced in a class will be loaded.

An implementation that operates under ARTA could use the type information in

the constant pool of a class10. By considering all type references in the constant pool,

ARTA will include type information from cast operations, parameter declarations,

field declarations, etc. Some of these additional types may represent classes that are

loaded via dynamic class loading methods, such as Gene above.

10Soot uses a similar technique which considers all type information available in a class file.

116

1 Method methodGetComponentOrientation =

2 Class.forName("java.awt.Container").getMethod

3 ("getComponentOrientation", new Class[0]);

Figure 5.11: An example of a call to a dynamic class loading method from the JGap
benchmark.

Using String Values

There are several instances when a class may contain a dynamic class loading site

but its constant pool does not contain a reference to the dynamically loaded class.

For example, consider the code in Figure 5.10 again. Assume the class that is loaded

is a subtype of Gene. Since the subtype is not directly referenced in the class, its type

information will not be contained in the constant pool.

A second example of when the constant pool may not contain type informa-

tion about dynamically loaded classes can be seen in Figure 5.11. In this example,

java.awt.Container is dynamically loaded and a Method object representing its

getComponentOrientation method is retrieved. At no point in time is a cast of

the loaded class performed. Therefore there is no type information to find in the

constant pool.

By employing a static string analysis to resolve dynamic class loading sites as

described in Chapter 3, an MBL analysis may be able to provide treatment for cases

where type information is not available in the constant pool.

The following assumption allows for the incorporation of an intraprocedural string

analysis to aid in the resolution of dynamic class loading sites:

Statically Resolvable Parameter Assumption (SRPA): This assumptions
extends ARTA by assuming that invocations of dynamic class loading

methods will not throw a ClassNotFoundException. It further assumes,
that any string values which flow from method parameters, method re-

turns, and fields can be any string value.

117

The assumption that dynamic class loading methods will not produce a run-time

exception ensures that a string value that can be resolved specifies a legitimate class.

The second part of the assumption limits the string analysis to intraprocedural scope.

This is necessary since without being based on a sound MBL analysis, interprocedural

analyses cannot guarantee soundness.

Truly Dynamic Loading

As stated previously, in the general case it is impossible to determine which classes

can be loaded. Moreover, because of custom class loaders and native methods, this

assumption has to be extended to applications which do not make use of dynamic

class loading features explicitly. The only assumption that could be applied soundly

to every application is:

Fully Conservative Loading Assumption (FCLA): This is a fully con-
servative assumption that assumes that any class in the world could be

loaded by an application due to Java features which dynamically load
classes.

It is, of course, impossible to know every class in the world. A reasonable approx-

imation is to limit the “world” to the classpath of the system and applications under

analysis.

5.3.2 CHA Assumptions

In Section 5.2.2 we described the dynamic features of Java that could cause a

simple CHA call graph construction algorithm to be unsound. Presented below is a

range of assumptions that would be practical for a CHA analysis to make about these

dynamic features. It is important to note that all of these assumptions are predicated

on the assumption that the input AppClasses contains all possible classes that could

be loaded during any execution of P .

118

The assumptions form a hierarchy. Unlike the hierarchy presented for MBL,

CHA’s is rooted at the most conservative assumption and becomes progressively more

relaxed. The assumption at each level in the hierarchy contains the assumptions made

by the preceding level. Consequently, the graphs generated under by one assumption

are subgraphs of those generated under the preceding assumption.

Well-Behaved Loaders

Custom class loaders can dynamically load classes from locations not on a system’s

classpath, load classes other than those specified, and alter the code of any class.

Thus, the only conservative assumption that can be made in the presence of such a

loader is that every method could call every other method in the world. Luckily, most

applications will use class loaders that do not alter the semantics of the classes that

they load. A more reasonable assumption about loaders would be:

Well-Behaved Class Loaders (WBCL): It is assumed that all classes
that are loaded can uniquely be identified in a single name-space, and the

loaders will not alter the semantics of the classes they load.

This assumption does not address other dynamic features of Java. To be fully

conservative under this assumption, certain implicit assumptions are being made.

Specifically, given a use of a dynamic feature dyno, the following assumptions are

made depending on the feature represented by dyno:

• Dynamic class loading features: dyno can invoke any clinit in AppClasses.

• Reflective instantiation—Class.newInstance: dyno can call any default
constructor (one that takes no arguments) in AppClasses.

• Reflective instantiation—Constructor.newInstance: dyno can call any
constructor in AppClasses.

• Reflective invocation—Method.invoke: dyno can call any concrete method
in AppClasses excluding clinits and constructors.

119

• Call to a native method: An edge is added to NativeMethod, a synthetic
method. This method contains an edge to every clinit, constructor, and
method in AppClasses. This represents potential callbacks from native methods.

Respectful Reflection

Under WBCL it is assumed that reflection will break encapsulation. Some uses

of reflection will break encapsulation, as is often the case in frameworks that use

reflection to conduct unit testing. However, for many applications reflection will

respect encapsulation. For such applications the following assumption is appropriate:

Encapsulation Respecting Dynamic Features (ERDF): This assumption
extends WBCL. In addition to well-behaved class loaders it assumes that

all dynamic features will respect encapsulation.

In Java access level modifiers determine the visibility of program components.

There are two levels of access control: (1) Top level—non-nested classes can be de-

clared public or package-private (the default when no modifier is specified) and (2)

Member level—fields, methods, and nested classes can be declared public, protected,

private and package-private (no modifier).

The public modifier specifies that the entity is accessible to all classes in the

world. Package-private entities are only accessible in their own package. The modifier

protected designates that members are accessible in their own package and by a

subclass of its class in another package. A member marked as private can only be

accessed within its own class.

Top level modifiers trump member level ones. For example, if class C is declared

as package-private but contains a member method m which is declared to be public,

m will still only be accessible from its own package.

120

Under this assumption great care must be taken with the nested classes. In Java

it is possible to declare a class in the body of another; such classes are called nested

classes [87]. There are four categories of nested classes:

• Static member classes

• Member classes

• Local classes

• Anonymous classes

A static member class has the same properties as an static member of the enclosing

(i.e., outer) class. It can access all other static members of its top-level classes (recur-

sive nesting is allowed), even those marked as private. It is also possible for a static

member class to declare an instance of an outer class to gain access to all instance

members. A member class is very similar to a static member class except that it

is instance specific and can therefore access all members of an outer class without

creating an instance of it.

As a class member, both static member classes and member classes can be given

a visibility modifier (i.e., private, protected, public or package-private). Just as

nested classes can access all the members of outer classes, outer classes have similar

access to all members declared in nested classes (even recursively nested classes).

The one crucial difference is, nested classes can access inherited protected methods

of their encapsulating classes. However, an outer class cannot access the inherited

protected methods of nested classes11.

Local classes and anonymous classes are declared in a block of code, typically a

method. They are only accessible within the surrounding block just like any other

11Assuming that the superclass of the nested class resides in a different package than the outer
class.

121

local variable. The difference between the two is, an anonymous class is declared

without a name and is only accessible at the point of its declaration. Just like local

variables, local and anonymous classes cannot be assigned a modifier.

Consider an invocation of a dynamic feature dyno in a method m contained in a

class C which resides in a package p. Depending on the feature dyno represents, under

ERDF the following assumptions are made :

• Dynamic class loading features: Since the concept of encapsulation really
does not apply to clinit methods12, it is assumed dyno can still invoke any
clinit in AppClasses.

• Reflective instantiation—Class.newInstance: dyno can call any public

default constructor, any package-private default constructor in p, any private

default constructor declared in C (including all declared in nested static mem-
ber classes). If C is a nested class, then dyno could invoke all protected and
private default constructors of the outer classes of C and any default con-
structor of local classes declared in m (anonymous classes do not contain named
constructors).

• Reflective instantiation—Constructor.newInstance: dyno can call any
public constructor, any package-private constructor in p, any private con-
structor declared in C (including all declared in nested static member classes).
If C is a nested class, then dyno could invoke all protected and private con-
structors of the outer classes of C and any constructor of local classes declared
in m.

• Reflective invocation—Method.invoke: dyno can call any public method,
any package-private method in p, any private method declared in C (including
all declared in nested member classes). If C is a nested class, then dyno could
invoke all protected and private methods of the outer classes of C (including
those visible through inheritance) and any method of local classes declared in
m.

• Call to a native method: There are several different assumption that could
be made about native methods. We choose to think of native members as
external code entities and therefore assume that they will only access public

methods. Thus dyno could invoke all clinits, and all public constructors and
methods.

12The JVM invokes clinit methods, not the application code, and the concept of encapsulation
does not apply to calls made by the JVM.

122

The above assumed actions for dyno are essentially the same actions that an

analogous conventional object-oriented code could take. Since these actions respect

encapsulation we call them encapsulation safe.

Correct Casting

As discussed earlier, a common use of dynamic class loading methods is to create

an instance of the loaded class using reflective instantiation and casting the newly

created object to the appropriate type. This casting information could be leveraged

under the following assumption:

Correct Casting Information Assumption (CCIA): This extension of

ERDF assumes that casts of reflectively instantiated objects will not cause
a run-time exception13.

This assumption makes it possible to resolve dynamic class loading sites with the

following characteristics:

1. The statement DynoSite, which contains the dynamic class loading site, is of
the form x = Class.forName(...) (or a similar call to another dynamic class
loading method) and DynoSite is not a reaching definition of x.

2. A statement, NewSite, of the form o = x.newInstance() where x is of type
Class post-dominates DynoSite. In other words, there are no paths of execution
starting at DynoSite that do not pass through NewSite. The only reaching
definitions of x at NewSite is DynoSite, and NewSite is not a reaching definition
of o.

3. NewSite is post-dominated by a casting statement of the form q = (CastType)o

and the only reaching definition of o is NewSite.

Since DynoSite is post-dominated by NewSite, and it is the only reaching definition

of x at NewSite, and DynoSite is not a reaching definition of x at DynoSite (this can

13Livshits et al. [89] make a similar assumption so that they can resolve instances of dynamic class
loading in their points-to analysis.

123

happen in loops), it must hold that every execution of DynoSite is followed by an

execution of NewSite. It is also true that the class being instantiated by NewSite is

the same one that was load by DynoSite. A similar relationship is true for NewSite

and the casting operation that post-dominates it.

This set of characteristics is easily extended to dynamic class loading sites which

are post-dominated by a NewSite of the form o = con.newInstance() where con

is of type Constructor. For such instances the following relationships must hold:

(1) DynoSite must be post-dominated by a statement ConSite of the form con =

x.getConstructor(...), (2) the only reaching definition of x at ConSite is DynoSite,

(3) DynoSite is not a reaching definition of x at DynoSite, (4) ConSite is not a reaching

definition for con at ConSite, (5) ConSite must be post-dominated by NewSite, and

(6) the only reaching definition for con at NewSite is ConSite.

For dynamic class loading sites that meet these requirements, it can be inferred

that the loaded classes must be of type CastType or a subtype of CastType. We call

this set of types (CastType and its subtypes) the resolving class set, and we call the

dynamic class loading sites cast resolvable.

Notice that the NewSite statements above are also resolved. If NewSite is of the

form x.newInstance() where x is of type Class, then it is assumed that NewSite can

implicitly invoke any default constructor in the resolving class set (if a class does not

declare a default constructor, its superclasses are searched until one is found). If x

is of type Constructor it is assumed NewSite could invoke any constructor declared

by a class, or a superclass of a class, in the resolving set.

The type information from resolved dynamic class loading sites can be used to re-

solve reflective invocations. Consider a statement of the form m = c.getMethod(...)

and assume that the only reaching definitions of c are a set of resolved dynamic class

loading sites. Each of these resolved dynamic class loading sites has a set of resolved

124

classes associated with it; we call the union of these sets ResolvedDyno. The method

represented by m must be declared in a class, or a superclass of a class, contained

in ResolvedDyno. Carrying this reasoning forward, if for a statement of the form x

= m.invoke(...) all the reaching definitions of m come from resolved instances of

getMethod, then it is possible, using similar logic, to determine the set of methods

that could possibly be invoked; we call this set of methods the resolving method set.

With the capability to resolve certain dynamic features, the CHA call graph con-

struction algorithm’s treatment of these features becomes more precise. Consider an

invocation of a dynamic feature dyno in a method m contained in a class C which

resides in a package p. Depending on the feature dyno represents, under CCIA the

following assumption are made:

• Dynamic class loading features: If dyno is cast resolvable, it is assumed that
it could invoke any clinit in its resolving class set. Otherwise, it is assumed
that dyno can invoke any clinit in AppClasses (as defined in ERDF).

• Reflective instantiation—Class.newInstance: If dyno is cast resolvable, it
is assumed that dyno could invoke any default constructor in its resolving class
set. If dyno is not resolvable then it is assumed that it has the same access as
under the ERDF assumption.

• Reflective instantiation—Constructor.newInstance: If dyno is cast re-
solvable, it is assumed that dyno could invoke any constructor declared by a
class, or a superclass of a class, in the resolving class set. Otherwise, it is
assumed that it has the same access as under the ERDF assumption.

• Reflective invocation—Method.invoke: If dyno is cast resolvable, it is as-
sumed that dyno can call any encapsulation safe method in its resolving method
set (e.g., dyno can call all public methods in the set). If dyno is not resolvable
then it is assumed that it has the same access as under the ERDF assumption.

• Call to a native method: The treatment for dyno is the same as under
ERDF.

125

Correct String Values

The use of casting information will not be able to resolve all instances of dynamic

class loading and reflective instantiation since not all uses of these features will be

post-dominated by a cast. Even if such features are resolved, the resulting resolving

class set could be quite large if the casting type has many subtypes. It may be

possible to resolve more instances of dynamic class loading and reduce the size of

some resolving class sets by making the following assumption:

Correct String Information Assumption (CSIA): This extension of CCIA

assumes that (1) features such as reflection will not affect the string-typed
formal parameters of private and package-private visible methods and

private fields whose values flow to dynamic class loading sites and (2)
dynamic class loading sites will not throw a ClassNotFoundException.

This assumption contains all the assumptions made by CCIA (and transitively

those made by ERDF and WBCL) which includes the assumption that reflection will

respect encapsulation. CSIA further assumes that reflection contained in a package

or class will not affect a very limited number of encapsulation safe method parame-

ters and fields—specifically, string-typed formal parameters of private and package-

private visible methods and private fields whose values flow to dynamic class loading

sites. It also assumes that all string values which flow to such sites designate a valid

class which could be loaded.

The CSIA assumption allows the CHA call graph construction algorithm to incor-

porate information from our version of JSA presented in Chapter 3 (modulo the use

of semi-static environment variables). This version of JSA is very conservative. It

considers the AppClasses generated by the FCLA version of the MBL analysis (i.e.,

all classes on the application and system classpaths). It assumes that all methods in

AppClasses are reachable, and uses CHA to resolve only virtual calls that may affect

the values of string variables. It further assumes that the only entities not affected by

126

dynamic features are local string variables, string formal parameters of private and

package-private methods, private fields and string variables returned by private

and package-private methods, whose values flow to dynamic class loading sites. Since

the assumptions JSA operates under are more conservative than CSIA, a call graph

operating under CSIA can use the information for JSA without a loss of soundness.

The results of JSA can be integrated into the call graph algorithm to aid in

the resolution of dynamic class loading sites. For example, consider a statement

loadSite of the form x = Class.forName(s) where s is of type String. Assume that

JSA is able to determine a finite set classNames of run-time values for s. Due to

the imprecision of JSA not every string value in classNames may represent a fully-

qualified class name that is feasible for loadSite. Under the assumptions made by

CSIA it is possible to remove some of these infeasible values. Since CSIA is based

on a closed-world assumption (as all our assumptions are), strings in classNames

that do not specify the fully-qualified names of classes contained in AppClasses can

be discarded. Since CSIA extends CCIA, it assumes that type information from

cast operations are correct. Therefore, if loadSite is cast resolvable, then strings in

classNames that do not specify the fully-qualified names of classes contained in the

cast resolved class set of loadSite can also be discarded. After infeasible values have

been removed, it can be inferred that the loadSite can load any class whose name is

in classNames. We call this set of classes the string resolved class set and we refer to

loadSite as string resolvable.

Section 3.2 specifies how the resolution of reflective instantiation can be achieved

using string resolved dynamic class loading sites. Reflective invocation sites are re-

solved in the same manner as under CCIA.

127

Consider an invocation of a dynamic feature dyno in a method m contained in a

class C which resides in a package p. Depending on the feature dyno represents, under

CSIA the following assumption are made:

• Dynamic class loading features: If dyno is string resolvable, it is assumed
that it could invoke any clinit in its string resolving class set. Otherwise, it
is treated as specified by CCIA.

• Reflective instantiation—Class.newInstance: If dyno is string resolvable,
it is assumed that dyno could invoke any default constructor in its string re-
solving class set. Otherwise, it is treated as specified by CCIA.

• Reflective instantiation—Constructor.newInstance: If dyno is cast re-
solvable, it is assumed that dyno could invoke any constructor declared by a
class, or a superclass of a class, in its string resolving class set. Otherwise, it is
treated as specified by CCIA.

• Reflective invocation—Method.invoke: If dyno is cast resolvable, it is
assumed that dyno can call any encapsulation safe method in its string resolving
method set (e.g., dyno can call all public methods in the set). Otherwise, it is
treated as specified by CCIA.

• Call to a native method: The treatment for dyno is the same as under
ERDF.

Dynamically Gathered Environment Information

As shown in Chapter 3, the incorporation of dynamically gathered environment

information can increase JSA’s ability to resolve dynamic class loading and reflective

instantiation sites in the Java 1.4 standard libraries. The following assumption al-

lows these same semi-static values to be used to increase the precision of the CHA

algorithm:

Semi-Static Environment Assumption (SSEA): This extension of CSIA

assumes that (1) dynamic features will not affect the string-typed formal
parameters of private and package-private visible methods and private

fields whose values flow to environment variable access methods and (2)
the values of environment variables which can effect dynamic class loading

site will be the same at analysis time and at run time.

128

This assumption allows the incorporation of information from our semi-static ver-

sion of JSA presented in Chapter 3. Just like the static version of JSA and CSIA, the

semi-static version of JSA operates under a much more conservative assumption than

SSEA so its information can be used by a call graph analysis operating under SSEA

without a loss of soundness. As discussed in Section 3.3, making this assumption

about environment variables means that the generated call graph will be tailored to

the system under analysis. Thus, it will no longer be sound in a global context. It

will only be sound for systems where the environment variables are the same as those

observed by the call graph analysis.

Under this assumption there is no change needed to the algorithm’s treatment

of dynamic features. It only enables the string analysis to consider more sources

of string values, increasing the number of dynamic class loading sites that can be

precisely resolved.

Client Resolved

In the general case it is impossible to statically resolve any of Java’s dynamic

features. Several static analyses rely on their clients to specify the actions of such

features. This shifts the onus of soundness from the analysis to its user. This shift of

responsibility is captured under the following assumption:

Client Resolved Features Assumption (CRFA): This extension of SSEA
assumes that if the algorithm is not able to resolve a dynamic feature

using casting information, or string values (including semi-static values),
the user will specify the correct treatment for that instance.

Under this assumption every time the call graph algorithm encounters a dynamic

feature it will first attempt to resolve it using the same techniques as SSEA. However,

if CRFA fails to resolve the instance it will query the user for the set of methods which

129

that feature could be implicitly invoke. It will then add the appropriate edges to the

call graph.

5.4 Experimental Evaluation

To evaluate how the assumptions outlined in Section 5.3 will affect the results of

the MBL and CHA analyses, we performed an empirical study. The results of the

study are presented in this section. We first describe the implementations of both

the MBL analysis and the CHA call graph construction algorithm used in the study.

Then, a brief description the benchmark applications and the experimental setup is

provided. The sections concludes with a discussion of the results of the study.

5.4.1 Implementations

MBL Analysis

Experiments were conducted on 7 implementations of the MBL analysis (see Sec-

tion 5.1). The implementations that were used are:

• SDLA. This is an exact implementation of the MBL algorithm presented in

Section 5.1. It does not explicitly address classes that are loaded by either

the JVM at startup, or classes loaded through calls to dynamic class loading

methods.

• JSLA-GF. This implementations operates under the assumption that a static

set of classes will represent all the classes loaded by the JVM. This particular

implementation uses the same static set of classes as defined in Soot. This is a

set of 49 commonly used classes. The MBL implementation adds these classes

to the initialization of the worklist, ensuring they will be processed.

130

• JSLA-SS. This implementation is a slight modification of JSLA-GF. In addi-

tion to the static set of classes used by JSLA-GF, it incorporates a pre-processing

phase which monitors the current JVM’s startup. It applies both a JVMPI

agent and the JVM -verbose option to a Java 1.4.2 HotSpot(TM) Client VM

executing a program consisting of an empty main to determine the classes that

are loaded by the JVM. The set of observed classes are added to the static set

of startup classes from JSLA-GF for a total of 294 classes.

• ARTA. This implementation operates under the assumption that all referenced

types in a class will be loaded. It extends JSLA-SS, but when it removes a

class from the worklist it accesses the constant pool of the class. All type

information found in the constant pool is then added to the worklist.

• SRPA. This implementation operates under the assumption that an intrapro-

cedural string analysis will be able to determine classes that are loaded by

dynamic class loading sites. SRPA extends ARTA by including a intraprocedu-

ral version of the JSA string analysis. This version of JSA corrupts all non-local

string values when analyzing a method; otherwise it is identical to the original

version. If JSA is able to resolve a dynamic class loading site, the set of resolved

classes are added to the worklist. Note that due to the imprecision of JSA, not

every string value it returns may specify a class on the classpath. These values

are ignored.

• FCLA. This version implements the fully conservative assumption. It sim-

ply returns the set of classes that are available on the system and application

classpaths.

131

• SOOT. This is the MBL analysis used by the CHA call graph construction

algorithm in Soot 2.2.3. This implementation is approximately ARTA without

the semi-static approach to the JVM startup classes.

CHA Analysis

Two categories of CHA call graph construction algorithms were used in this study.

The first category consists of 6 implementations, each of which operates under a dif-

ferent assumption presented in Section 5.3.2. These implementations use the SRPA

version of the MBL analysis to calculate the set of AppClasses they analyze. Recall

that the CHA algorithms requires the user to define two sets: JVMStartupClinits

and JVMStartupMethods (see Section 5.2). The set JVMStartupClinits used by

these implementations consists of all clinit methods which are invoked due to

the loading of the JVM startup classes as defined by the JSLA-SS MBL analysis.

JVMStartupMethods consists of method invocations that were discovered by apply-

ing a JVMPI agent to a Java 1.4.2 HotSpot(TM) Client VM executing a program

consisting of an empty main method. There were 476 methods discovered.

The 6 implementations of this category are:

• WBCL. This implementation operates under the assumption that custom class

loaders will not alter the semantics of the classes they load. It is built on top

of Soot’s CHA call graph construction algorithm. When a dynamic feature is

identified this version adds the appropriate edges as specified in Section 5.3.2.

• ERDF. This implementation operates under the assumption that reflection

will not break encapsulation. It provides the encapsulation safe treatment for

dynamic features as specified in Section 5.3.2.

132

• CCIA. This implementation extends ERDF by incorporating a post-dominance

analysis and a reaching definitions analysis. The information from these anal-

yses is used to resolve instances of calls to dynamic class loading methods,

newInstance methods, and Method.invoke. The conditions for resolution are

described in Section 5.3.2.

• CSIA. This version incorporates JSA to aid in the resolution of dynamic class

loading methods. This version does not make use of any semi-static values.

Note: The version of JSA used by this implementation incorporates all the

extensions of string analysis described in Chapter 3, save the use of semi-static

values. It also incorporates all the graph simplification techniques described in

Section 4.2 and the parallel design described in Section 4.1.3.

• SSEA. This implementation is the same as CSIA, except that the version of JSA

used by this implementation incorporates dynamically gathered environment

information as described in Chapter 3.

• CRFA. This implementation is the same as SSEA except it ignores all unre-

solved dynamic features. It operates under the assumption that the user will

specify the actions that should be taken at such points. This version gener-

ates the same result as if the user specified that no action should be taken for

unresolved features.

The second category of implementations used in this study consist of two versions

of the Soot 2.2.3 CHA call graph construction algorithm. These implementations

consider the AppClasses set generated by the SOOT version of the MBL analysis.

The set JVMStartupClinits used by these implementations consists of all clinit

methods which are invoked due to the loading of the JVM startup classes (this is the

same set of 49 commonly used classes statically defined in the JSLA-GF version of

133

the MBL analysis). The set of startup classes is statically defined and hard coded

into the algorithm. The set JVMStartupMethods is also statically defined and hard

coded into the algorithm. This set contained 13 methods.

The 2 implementations of this category are:

• SCON. This version represents Soot’s CHA call graph construction algorithm

in its most conservative setting. In this setting, Soot provides treatment for dy-

namic class loading calls of the form Class.forName(Sting), and newInstance

calls of the form Class.newInstance(). It resolves Class.forName(lit) calls

where lit is a string literal value. If it is unable to resolve a call to forName, it

will add an edge to all clinit methods in AppClasses. For Class.newInstance

calls, it adds an edge to every default constructor in AppClasses . It does not

provide any treatment for calls to native methods, reflective invocations, calls of

the form Constructor.newInstance(...), or dynamic class loading methods

other than Class.forName.

• SOOT. This is Soot executed in its default settings. By default, Soot only

provides treatment for calls of the form Class.forName(lit) where lit is

string literal value. It adds an edge to the clinit of the class specified by lit.

All other dynamic features are ignored. This version is most comparable to our

CRFA implementation.

5.4.2 Benchmarks and Experimental Setup

Table 5.1 presents the 10 benchmark applications that were used in this study.

They are a subset of the applications used in the empirical study presented in Sec-

tion 4.3. For each benchmark Classes shows the number of class files that are unique

134

App Classes Meths K Jimple Dyno NewInst Invoke Native
DB 15 175 3119 0 0 0 0

Javac 188 1320 26574 0 0 0 0
JEdit 851 6206 124830 313 6 16 0
JGap 174 1035 15331 25 8 4 0
Jpws 193 1616 28425 5 0 0 0

Mindterm 135 1072 30626 5 5 0 0
Muffin 278 2258 37748 11 4 0 0

Sablecc 267 2248 36155 2 0 0 0
VietPad 215 914 24998 22 5 8 3

Violet 130 636 9959 2 4 2 0

Table 5.1: Benchmarks statistics: number of classes, methods, Jimple statements, in-
vocations of dynamic class loading methods, newInstance methods, Method.invoke,
and native methods.

to the application; this number does not include library classes that may be refer-

enced by the application. Column Meths presents the number of methods (including

constructors and clinits) contained in the application classes. Column K Jimple

displays the number of Jimple statements contained in the application’s class files.

Dyno presents the number of invocations of dynamic class loading methods (see

Figure 3.4 for the list of methods) present in the Jimple representation of the appli-

cation’s classes. Similarly, NewInst and Invoke display the number of invocations

of newInstance (both Class and Constructor) and Method.invoke, respectively.

Column Native displays the number of native methods declared in the application.

The benchmarks DB was selected because it is small and contains no calls to any

dynamic features. All dynamic features encountered during an analyses of it must

be contained in the library classes. Javac, JEdit, Jpws, Mindterm, Muffin, Sablecc

and Vietpad represent the 7 largest applications used in experiments presented in

Section 4.3 (they all contain over 20,000K Jimple statements). JGap and Violet

were included because they contained interesting uses of reflection and dynamic class

loading. The JEdit benchmark contains the most invocations of dynamic features,

135

including 313 calls to dynamic class loading methods. This number may be mislead-

ing. It is largely due to JEdit’s use of class literal expressions [51]. A class literal

expression consists of the name of a type followed by a "." followed by the keyword

class. It is used to gain access to the Class object representing the specified type.

For example, X.class returns the Class object which represent X. Some compilers

replace class literal expressions with calls of the form Class.forName(s) where s is

a string literal representation of X’s fully qualified name. Thus, JEdit has many more

invocations of forName in its Jimple representation (which is derived from bytecode)

than in its Java source representation. JEdit contains 32 invocations of dynamic class

loading methods in its Java source representation.

All of the benchmarks were compiled using a compiler that was compliant with

the specifications for Java 1.4 and the Java 1.4 standard libraries. For experiments

conducted on any application bench, the classpath was set to contain only the classes

of bench and the Java 1.4 standard libraries. The environment variables consider by

the semi-static string analysis were from a Microsoft Windows XP (Service Pack 3)

OS.

5.4.3 MBL Results

Table 5.2 presents the results of our empirical study of the MBL analysis. The

numbers in the table represent the number of classes each implementation of MBL de-

termined could be loaded into the JVM for the given benchmark application. Column

SDLA presents the results for the implementation of MBL which operates under the

most relaxed assumption (i.e., all classes will be loaded in a statically determinable

manner). We use this version as our baseline. The results it generates are a subset of

the results returned by the other implementation. Row AVE∆ displays the average

percentage increase in result set size over SDLA.

136

Apps SDLA JSLA-GF JSLA-SS ARTA SRPA FCLA SOOT

DB 2278 2293 2356 3429 3538 10253 3389

Javac 2447 2461 2524 3597 3706 10426 3557

JEdit 3576 3590 3653 4225 4340 11089 4185

JGap 2598 2613 2676 3511 3620 10412 3471

Jpws 2927 2942 2989 3664 3773 10431 3641

Mindterm 2323 2338 2401 3485 3641 10373 3445

Muffin 2454 2469 2532 3592 3701 10516 3545

SableCC 1312 1328 1394 1737 1746 10505 1694

VietPad 2857 2872 2919 3641 3759 10453 3618

Violet 2665 2680 2743 3584 3693 10368 3544

AVE∆ – 0.6% 3.1% 26.4% 28.4% 75.8% 25.5%

Table 5.2: MBL analysis results: number of classes that will be loaded. AVE∆ is
the average percentage increase with respect to column SDLA.

The addition of the static set of JVM startup classes only slightly increases the size

of the result set, as can be seen in column JSLA-GF. The 49 startup classes increased

the result set by about 0.6% on average. This limited growth can be attributed to

the fact that most of the benchmark applications will load these classes in a statically

determinable manner. The addition of the semi-static JVM startup classes increased

the set of startup classes to 294 classes. However, as can be seen in column JSLA-

SS, the addition of these classes only added on average about 3% more classes to the

baseline’s result set.

A sizeable average increase of 26% is realized when all the type information avail-

able in the constant pool is incorporated into the MBL analysis, as can be seen in

column ARTA. This increase is due to the fact that the constant pool may con-

tain references to types that are not actually loaded. It may also contain references

to types that are loaded dynamically through calls like Class.forName(...). A

large number of these dynamically loaded classes may not be loaded in a statically

determinable manner elsewhere in the code.

137

As shown in column SRPA, the addition of the intraprocedural string analysis

increased ARTA’s result set by slightly over 100 classes for most benchmarks (SableCC

being the one exception). The additional classes arise directly or transitively from

instances of dynamic class loading calls for which the constant pool contains no

type information. The fully conservative solution, which assumes that all classes on

the classpath can be loaded, is significantly larger than the other solutions.

Soot’s implementation of MBL most closely resembles ARTA. ARTA produces a

slightly large set due to the inclusion of the semi-static JVM startup classes. The

result set generated by SOOT is missing between 50 and 200 classes for each bench-

mark when compared to SRPA, our second most conservative implementation. The

majority of these missing classes represent classes that SRPA was able to resolve us-

ing a string analysis. If these resolved dynamic class loading sites are executed, these

additional classes will be loaded, implying SOOT is unsound for these cases.

5.4.4 CHA Results

Table 5.3 presents the number of nodes and edges in the call graphs created by

the implementations of the call graph analysis. Column WBCL presents the results

of the most conservative implementation. This version is used as the baseline to

which the other implementations are compared. The graph generated by WBCL for

a particular application is a supergraph of all other implementations’ graphs for that

same application. Row AVE∆N displays the average reduction in the number of

nodes in the graphs generated by the corresponding implementation, compared to

WBCL. Row AVE∆E contains similar information but with respect to the number

of edges.

138

Number of Nodes
Apps WBCL ERDF CCIA CSIA SSEA CRFA SCON SOOT

DB 32537 29060 29046 29045 29044 19242 18738 17705
Javac 33662 30180 30167 30166 30165 20356 19850 18818
JEdit 39083 35640 35625 35624 35624 25855 25043 24048
JGap 32890 29404 29391 29390 29388 19763 19251 18232
Jpws 34663 31162 31148 31148 31145 21558 21214 20256

Mindterm 33268 29779 29764 29762 29761 19601 19370 18343
Muffin 33976 30416 30400 30400 30399 20305 19770 18728

SableCC 33807 30364 30349 30348 30347 20833 9341 8761
VietPad 33647 30157 30144 30144 30143 21869 20334 19338

Violet 33577 30143 30130 30129 30126 20187 19686 18667
AVE∆N – 10.2% 10.2% 10.2% 10.2% 38.6% 43.6% 46.5%

Number of Edges
DB 1696889 921170 831580 779502 774273 238596 297279 214758

Javac 1761197 967652 874079 820521 815220 259640 318844 235447
JEdit 2626960 1513423 1401168 1075290 1069333 338787 423598 314391
JGap 1792150 975737 880632 819586 814309 252615 318010 228600
Jpws 1823623 1005794 907518 848529 842952 280133 347504 257897

Mindterm 1743252 951832 854017 800711 795385 247825 310511 219768
Muffin 1800537 985564 886112 826637 821207 260815 324478 235154

SableCC 1466806 845363 749460 730955 725507 280994 143121 115234
VietPad 2019676 1076309 981160 920010 914611 279680 332829 243409

Violet 1834669 997052 896791 842490 836950 259232 334939 235037
AVE∆E – 44.8% 50.2% 54.1% 54.4% 85.3% 83.1% 87.6%

Table 5.3: CHA call graph construction algorithm results: number of nodes and edges
in the graph created by the corresponding version. AVE∆ is the average percentage
decrease with respect to column WBCL.

The Nodes

The nodes of the call graph represent methods that are reachable from the main

method of an application. By assuming that dynamic features will respect encap-

sulation, an average of 10% of the nodes are removed from the fully conservative

graph. With the addition of each technique—using (1) type information from casting

operations, (2) constant string values, and (3) semi-static string values—the number

of nodes in the corresponding graphs are reduced, but not significantly. This trend

can be seen in columns CCIA, CSIA, and SSEA. The reason that more nodes are

139

not removed is due to the treatment of unresolved Method.invoke calls and calls to

native methods. Starting with the ERDF assumption, it is assumed that all calls to

native methods will have an edge added to a synthetic node representing native code.

This synthetic node will have an edge added to every public method in AppClasses,

representing that native code could potentially call all public methods. Similarly,

all unresolved Method.invoke calls will have edges added to all public methods (in

addition to all other encapsulation safe methods.) This has the effect of making all

public methods reachable. Consequently the only methods that will not be reachable

(and not represented in the graph) are those not reachable from a public method.

Appendix B presents the number and type of dynamic features encountered by the

analysis for each benchmark and each implementation. Every execution of the anal-

ysis encountered both unresolved instances of Method.invoke and calls to native

methods.

If the calls to native methods and Method.invoke are ignored, a substantial re-

duction in the number of graph nodes can be realized (though the call graph could

and likely would be unsound). This fact can be observed in columns CRFA, SCON,

and SOOT. These implementations provide no treatment for native methods and

unresolved Method.invoke calls. For example, the graphs generated by CRFA have,

on average, over 38% fewer nodes than those of WBCL.

This reduction in nodes cannot be entirely attributed to ignoring instances of

reflective invocation and calls to native methods. The CRFA implementation will

ignore all unresolved dynamic features. Therefore, it may be missing nodes which

represent clinit methods due to unresolved dynamic class loading site, as well as

nodes representing constructors due to unresolved calls to newInstance.

SCON provides a conservative treatment for instances of Class.forName. Thus,

all the clinits in its AppClasses should be represented in the graph. However, both

140

SCON and SOOT are using Soot’s internal MBL analysis so the AppClasses they

considered were smaller than the AppClasses considered by the other implementa-

tions. Thus, there may be fewer total clinit methods (as well as fewer construc-

tors and methods). SCON provides a fully conservative treatment for instances of

class.NewInstance, so all of the default constructors in its AppClasses will be rep-

resented. However, it ignores calls to Constructor.newInstance. Thus, non-default

constructors may be missing from its graph.

SOOT ignores all dynamic features except for calls to Class.forName(lit) where

lit is a string literal. On average, SOOT’s graphs contain approximately 1000 fewer

nodes for each application than CRFA.

The Edges

Edges in a call graph represent calling relationships between methods. Unlike the

nodes, there was a dramatic reduction in the number of edges created by consecu-

tive versions of the analysis. By simply assuming that dynamic features will respect

encapsulation, an average of 44% of the edges can be trimmed from the fully conser-

vative graphs (column ERDF). By using information from cast operations to resolve

instances of reflection and dynamic class loading in addition to the assumption that

reflection will respect encapsulation, an average of 50% of the edges can be removed

(column CCIA). The use of a static string analysis by CSIA allows it to produce

graphs that, on average, contain 54% fewer edges than the fully conservative graphs.

By including semi-static values in the string analysis, the number of edges is further

reduced (column SSEA). Thus, by assuming that (1) reflection will respect encap-

sulation, (2) cast operations and dynamic class loading will not generate exceptions,

(3) dynamic features will not affect certain string values which flow to dynamic class

loading sites, and (4) values of environment variables which are used in dynamic class

141

Features CCIA CSIA SSEA SCON

Dyno Loading 16% 46% 50% 23%
newInstance 56% 58% 61% –

Invoke 0% 6% 6% –

Table 5.4: Resolutions results: average percentage of resolved instance of dynamic
features.

loading operations will remain constant, it is possible to generate call graphs which,

on average, will contain 54% fewer edges than the fully conservative call graph.

CRFA, SCON and SOOT all produce unsound call graphs for the above bench-

mark applications. SCON attempts to produce a conservative graph but does not

provide adequate treatment for all dynamic features. Thus, when SCON is compared

to SSEA—our most liberal implementation that does not require user input—the

graphs generated by SCON have, on average, 62% fewer edges than those produced

by SSEA.

CRFA and SOOT produce graphs which are comparable since they both only

provide treatment for dynamic features which they can resolve. However, the graphs

created by CRFA contain, on average, 12% more edges than those produced by SOOT.

These additional edges can be attributed to CRFA’s ability to resolve more dynamic

class loading sites and calls to newInstance and Method.invoke, which SOOT does

not have.

Resolution of Dynamic Features

CCIA, CSIA, SSEA, and SCON all make an effort to resolve certain dynamic

features. Table 5.4 presents the average percentage of reflective sites each version was

able to resolve for all benchmark applications (CRFA and SOOT were not included

142

since they have the same resolution capabilities as SSEA and SCON, respectively).

Row Dyno Loading presents the average percentage of dynamic class loading sites

each version was able to resolve. Row newInstance presents the percentage of calls

to Class.newInstance and Constructor.newInstance that were resolved. Row

Invoke presents the percentage of Method.invoke calls that were resolved. Since

SCON does not attempt to resolve instances of newInstance and Method.invoke,

these table cells are empty. The actual number of sites encountered, and sites resolved

for each benchmark are included in Appendix B.

The use of casting information appears to be only moderately effective at resolving

instances of dynamic class loading. CCIA could only resolve an average of 16%

of such sites. However, it is very successful at resolving calls to newInstance (on

average CCIA was able to resolve 56% of such sites). It was expected that this

technique would be more effective for newInstance sites. For casting information to

be relevant for dynamic class loading sites, the loading site must be post-dominated

by a newInstance site which in turn must be post-dominated by a casting operation.

Therefore, for every resolved dynamic class loading site, there must be a corresponding

resolved newInstance call. One of the reasons this technique was not more successful

in resolving instances of dynamic class loading is due to the fact that the post-

dominance and reaching definitions analyses used by CCIA were intraprocedural.

In most instances, if a reflective instantiation of a class is used in a casting operation,

it is instantiated and casted in the same method. However, it is not uncommon for

the Class objects from dynamic class loading sites to flow through multiple methods

before being instantiated. Furthermore, many of the dynamic class loading site were

not post-dominated by cast operations. For example, many of the Class objects

from the Class.forName calls in Jimple representation of JEdit, which correspond to

143

statements of the form X.class in the source representation, were not instantiated

at all.

CSIA’s incorporation of a static string analysis enabled it to be much more suc-

cessful at resolving dynamic class loading sites. On average, it resolved 46% of the

dynamic loading sites encountered. This increased precision enabled it to resolve

58% of the newInstance sites it encountered. The dynamic class loading sites it was

not able to resolve depended on (1) string values that flowed from formal parame-

ters of public or protected methods which were corrupted under the assumption

that these values could be affected by unresolved reflective calls and native code, (2)

string values passed through structures, such as HashMaps, which our string analy-

sis is not powerful enough to model, or (3) string values that flowed from dynamic

sources. Interestingly, several of the classes resolved by this technique were not found

in set of AppClasses returned by the MBL analysis. In fact these classes were not

included in the classpath for the system or in the application classpath. Several of

these classes only existed in the Java 1.3 standard libraries and the code encountered

by the analyses was deprecated. Several were RMI [93] stub classes that the library

code assumed the client code would create. None of the benchmark applications in-

cluded any such stubs. This library code was most likely reached via an infeasible

path. These instances were considered unresolved by the analysis and were treated

conservatively.

SSEA extends CSIA with a semi-static string analysis. This version performs

a lookup of environment variables whose values flow to dynamic class loading sites

(see Chapter 3 for a detailed description.) The addition of dynamically gathered

environment information allowed SSEA to resolve 50% of all dynamic class loading

sites and 61% of newInstance sites. SSEA consistently encountered the same 5

references to environment variables in the library code that were not set on the

144

experimental system (i.e. JSA’s look-up of these values failed). These missing values

were represented by the anystring value. Consequently, the dynamic class loading

sites these values flowed to were not string resolvable. The fact that these variables

were not set could imply that this code was reached via an infeasible path (at least

for the experimental execution environment), or that these values would be set at

run time. Again, several of the resolved classes were not in AppClasses . However,

some of these classes were available on the classpath. This indicates that the SRPA

MBL analysis was not sound for these instances. These missing classes correspond to

dynamic class loading sites that were resolved using semi-static string values. SRPA

used a weaker form of string analysis and thus did not have knowledge of these classes.

SCON resolved calls to Class.forName that rely on string literal values. This

technique allowed it to resolve an average of 23% of all dynamic class loading sites it

encountered. Again, several of the resolved classes were not in SCON’s AppClasses,

but were available on the classpath. This indicates that Soot’s version of MBL is not

sound either14.

None of the implementations were effective at resolving calls to Method.invoke.

We performed a manual investigation of the 27 unresolved instances that SSEA dis-

covered for the DB benchmark. All 27 were located in the Java 1.4 standard libraries.

Two of them relied on Method objects which flowed from dynamic class loading sites

contained in the same method. The string analysis was unable to resolve these dy-

namic class loading sites due to values flowing from formal parameters of public

methods. The remaining 25 Method.invoke sites relied on Method objects that were

created in other procedures, meaning that our intraprocedural analysis was not ca-

pable of tracking their flow.

14Soot does allow its users to specify a set of classes that they believe will be loaded dynamically;
however, here we study only the fully automated results.

145

5.5 Conclusion

This chapters presents a hierarchy of assumptions a Class Hierarchy Analysis

call graph construction algorithm could make about the dynamic features of Java.

At the top of the hierarchy is the most conservative assumption which generates

an imprecise call graph for an application making use of dynamic features. Each

consecutive level of the hierarchy represents a slight relaxation of the preceding level.

Consequently, a graph created under each level of the hierarchy is a subgraph of

the one generated by the preceding level. These relaxations allow the algorithm to

incorporate various techniques that attempt to precisely resolve instances of dynamic

class loading, reflective invocation, and reflective instantiation. These techniques

include using information from casting operations and string analyses similar to the

ones presented in Chapter 3.

Also presented was a similar assumption hierarchy for a May Be Loaded (MBL)

analysis. Given an application P , this analysis estimates the set of classes that may

be loaded into the JVM during any execution of P . This analysis is often used to

determine the set of class that a CHA analysis must consider when building a call

graph for P . The results of MBL are fundamental to the closed-world assumption

under which CHA operates.

We implemented a version of the CHA analysis and the MBL analysis for each

level of their assumption hierarchies. These implementations were applied to 10 real-

world Java applications in an empirical study. This study provides a concrete example

of the effects of each assumption and the corresponding resolution techniques on the

results of these analyses. On average, our most precise implementation of CHA was

able to resolve 50% of dynamic class loading sites, 61% of reflective instantiation sites,

and 6% of reflective invocation sites. This capability enabled the implementation to

146

generate graphs that, on average, contain 10% fewer nodes and 54% fewer edges than

the graphs generated by the fully conservative implementation.

147

CHAPTER 6: RELATED WORK

In this chapter we present work that is related to the subjects discussed in this

dissertation. We first provide a survey of static and dynamic analyses that explicitly

address some of the dynamic features of the Java language (Section 6.1). As demon-

strated in Chapters 3 and 5, string analyses such as JSA can be very powerful and

useful tools. In Section 6.2 we present an overview of other analyses that use JSA. We

also discuss alternative string analyses. In Chapter 3 we presented a hybrid extension

to string analysis. In Section 6.3 we provide an overview of other hybrid analyses.

In Chapter 4 we presented our techniques to increase the scalability of JSA by mod-

ifying its algorithmic design to take advantage of modern multi-core architectures.

In Section 6.4 we discuss work related to these techniques. Finally, in Section 6.5

we present an overview of relevant work related to the construction of method call

graphs.

6.1 Analyses That Address Dynamic Features

Similar to the work presented in Chapters 3 and 5, other static analyses attempt

to resolve instances of dynamic features in Java applications using techniques of var-

ious degrees of sophistication. In this section we present a few of the most relevant

approaches.

Jax [139] is a Java application compression tool. It performs a variety of code

transformations that reduce the overall size of an application. To preserve program

148

semantics the user must document, in a configuration file, all instances of dynamic

class loading and reflection in the application. Our work presents a fully automated

approach.

The class hierarchy analysis (CHA) call graph construction in the Soot anal-

ysis framework [144] employs a rudimentary string analysis that resolves calls to

Class.forName(String) only if the parameter is a string literal. Our work employs

a more powerful string analysis and, as shown in Section 5.4, our most precise version

of CHA is able to resolve many more instances of dynamic features. Spark [83] is

a points-to analysis engine implemented in Soot; it provides a hand-compiled list of

reflective call sites that appear in the standard libraries. These possible targets are

automatically accounted for in the analysis. However, such a solution is only compat-

ible with the library version and system configuration on which the original manual

check was performed.

Our analysis builds upon the powerful string analysis by Christensen et al. [19].

The authors of this work recognized that their analysis could be used to resolve

instances of dynamic class loading. They present a small case study that investigates

the ability to resolve calls to Class.forName. Our work considers a much wider range

of dynamic class loading methods, as well as their use in the entire Java library. In

addition, our extensions presented in Section 3.1 greatly increase JSA’s ability to

resolve instances of dynamic class loading, as shown in Section 3.4.

The work of Braux and Noye [10] extends classic partial evaluation techniques

[22, 69] to apply them to the Java reflection API. Their work aims to replace invo-

cations of the reflection API with conventional object-oriented syntax. This special-

ization relies on type constraints which must be completed by hand. Conceivably, a

similar approach could be coupled with our work, in order to automatically create

compilations of applications which are specific to a system’s configuration.

149

Sreedhar et al. [129] propose a framework for interprocedural optimizations of

programs that use dynamic class loading called the extant analysis framework. It per-

forms a static analysis that classifies objects as either (1) unconditionally extant

implying that their run-time type can statically be guaranteed, or (2) conditionally

extant meaning that their run-time type cannot be guaranteed—this situation can

arise due to dynamic class loading. They guard any optimizations dependent on

conditionally extant objects with dynamic checks. Nguyen and Xue [101] use a

similar classification approach in a side-effect analysis. Their analysis identifies points-

to and modification sets which may not be complete due to dynamic class loading.

It may be possible to incorporate our techniques for the resolution of dynamic class

loading methods into these analyses. This extension could allow the analyses to pro-

vide a more precise treatment for certain dynamically loaded objects (e.g., identifying

conditionally extant objects that could be treated as unconditionally extant).

The work of Livshits et al. [89] proposes a tiered approach to the resolution of

dynamic class loading and reflection that is similar to our approach presented in

Section 5.3.2. They present a static analysis algorithm that uses points-to information

to determine the objects that could be loaded dynamically. Their algorithm tracks

constant string values that flow to instances of dynamic class loading and reflection.

For cases where they are unable to resolve the target string’s value, they utilize casting

information. If such information is not present, or a precise solution is required,

their approach relies on user specifications. We use similar techniques in a CHA

call graph construction algorithm. Our techniques could enhance the automation

and precision of their analysis. We employ a more advanced string analysis and

incorporate information that currently has to be manually provided to their analysis

by the user. Our encapsulation safe treatment for unresolved instances of dynamic

features also provides an alternative to user specifications.

150

The static analyses listed above are not able to automatically and accurately

resolve instances of dynamic class loading that depend on environment variables. Our

work presented in Chapter 3 shows that such instances constitute a large number of

sites in the Java 1.4 libraries. The proposed used of semi-static values was shown to

be able to resolve many of these instances.

Some existing work [65,66,75,103,106,135] circumvents the typical shortcomings

of static analyses by developing online algorithms. Pechtchanski and Sarkar [103]

present a generic approach to performing online interprocedural analysis. Their ap-

proach identifies when a method analysis should be triggered and when optimistic

assumptions are invalidated. Lee et al. [79] explore how different classloading strate-

gies affect the performance of online interprocedural analyses. Hirzel et al. [65, 66]

present an online version of a subset-based points-to analysis. Qian and Hendren [106]

describe an online version of an XTA call graph construction algorithm. An online

version of escape analysis is presented by Kotzmann and Mossenbock [75]. Sundaresan

et al. [135] present techniques for performing aggressive code patching and collecting

accurate profiles in multi-threaded applications that use dynamic class loading. All of

the above approaches require either (1) modifications to the JVM services that han-

dle dynamic class loading and reflection or (2) instrumentation of application code.

These alterations allow the analyses to observe the actual execution of an applica-

tion, which can be used to resolve any ambiguity introduced by the use of dynamic

class loading. However, as with any purely-dynamic analysis, the results are unsound

and represent only properties of the observed execution, not of all possible execu-

tions. Our approach has a more restricted form of unsoundness, as defined by the

assumptions from Chapters 3 and 5.

151

6.2 Analyses Related to JSA

Many other analyses utilize the JSA library, although to the best of our knowledge

we are the only ones to incorporate it into a call graph construction algorithm. The

creators of JSA have employed it in several tools [20, 73] for Java web technologies

and XML documents. The JDBC-Checker tool [53,54] builds upon JSA to verify the

correctness of dynamically generated SQL query strings. The AMNESIA tool [60]

uses JSA to identify all possible string values of SQL queries to aid in the detection

and prevention of SQL-injection attacks. SAFELI [43] also uses a JSA-like string

analysis to detect possible SQL-injection attacks. Similarly, Wassermann and Su [145]

presents a static analysis framework designed to prevent SQL command injection

attacks. Their framework is built upon JSA. The work by Christodorescu et al. [21]

extends JSA in the implementation of their static analysis that recovers possible

values of C-style strings in x86 executables. The JSA library has also been used

in the implementation of an approach to understand software application interfaces

through string analysis [92]. To the best of our knowledge, no analysis other than

the one by Christensen et al. [19] has employed JSA to resolve instances of dynamic

class loading, nor have we been able to identify any techniques that augment JSA

with the extensions proposed in our work, nor have any parallelization approaches

been proposed for building of the front-end flow graph.

There are many other forms of string analysis that have been studied. For exam-

ple, Tabuchi et al. [136] introduce an approach where string expressions are typed by

regular languages. The work of Thiemann [137] utilized a type system for string anal-

ysis based on a context-free grammar. The approach used by Minamide [96] is based

on the techniques of JSA but does not approximate CFGs to FSAs. Wassermann

and Su adapt Minamide’s approach to track taint information [146]. HAMPI [72]

152

is a solver for string constraints over bounded string variables. It takes constraints

in the form of context-free languages and outputs a string that satisfies all con-

straints. Similarly, Emmi et al. [35] use a constraint solver that allows constraints

over unbounded regular languages to automatically generate test cases for database

applications. Godefroid et. al. [48] use a similar approach for generating test cases

for compilers and interpreters. We used JSA as the foundation for our approach

because it provides an open-source, well documented library that directly applies to

Java applications. It is also widely accepted and used, as described above. However,

other string analyses may be able to make use of our semi-static approach. For exam-

ple, the work by Choi et al. [18] presents an abstract-interpretation-based approach

to string analysis which uses a heuristic widening method to overcome the technical

problem of recursive constraint solving encountered by Tabuchi et al. [136]. Their

empirical study suggests that the precision of their analysis is comparable to that of

JSA’s. Their approach also provides treatment for fields and is context sensitive. By

incorporating dynamically gathered environment information, their analysis may be

able to generate comparable results to our extended version of JSA.

To the best of our knowledge, none of the above string analyses have been incorpo-

rated into a CHA call graph construction algorithm with the purpose of resolving calls

to reflective or dynamic class loading methods. Furthermore, these existing analyses

do not appear to be able to directly benefit from the multi-core architecture of most

modern computing systems.

6.3 Hybrid Analyses

In Chapter 3 we demonstrated how a hybrid string analysis could aid in the

resolution of dynamic class loading. Recent work has focused on similar hybridization

153

of dynamic and static analyses. Ernst [37] provides an overview of early work in this

area. We now briefly describe some of the most relevant work.

Gupta et al. [59] introduced a hybrid approach to program slicing. Their approach

uses dynamic information gathered by a debugging tool to increase the precision of

their static slices. Specifically, they use the execution information from breakpoints

and method calls/returns to prune spurious control flow while statically calculating

slice information. Similarly, Mock et al. [97] use dynamic points-to information to

reduce the number of infeasible data dependences considered by their static program

slicing tool Sprite.

Groce and Joshi [56] use program traces to improve their static model checking

for C programs. They use information from failure traces to generate code slices that

eliminate certain control flow. This pruning has the potential to dramatically reduce

the size of the SAT instances used in their model checking.

Dufour et al. [29,30] introduced the blended program analysis paradigm for perfor-

mance understanding of applications built with frameworks. This paradigm combines

dynamic representations of a program’s calling structure with targeted static analy-

ses. The dynamic analysis isolates an execution of interest and the static analysis is

applied only to that execution. They demonstrate this paradigm by implementing a

blended escape analysis.

Artzi et al. [6] present a “pipelined” mutability analysis. Each stage of the pipeline

represents a lightweight mutability analysis. These analyses classify parameters as

mutable, immutable, or unknown. Once a stage completes its result set is passed to

the next stage. Once a parameter has been identified as mutable or immutable no

succeeding stage can change that classification. One of the stages in the pipeline is a

dynamic analysis which monitors the execution of the program and identifies mutable

parameters.

154

Recent work in the area of automatic test case generation has focused on a hybrid

approach (e.g., [4, 5, 12, 25, 36, 47–50, 68, 90, 91, 124, 142]). The majority of this work

extends and refines an approach which combines the symbolic and concrete execu-

tions of a program. A symbolic execution of a program is a simulated execution where

the program is supplied symbolic constraints for inputs. Every assignment along an

execution path updates the program state with a symbolic expression. Every condi-

tional encountered on the path generates a constraint in terms of symbolic inputs.

The constraints generated by the symbolic execution are simplified using values ob-

served during the concrete execution. A constraint solver is then used to generated

concrete inputs that satisfy the simplified constraints. Csaller et al. [24,25] similarly

combine symbolic and concrete executions to discover likely program invariants and

to support debugging.

Our semi-static version of JSA, like all the analyses listed in this section, uses

dynamic analysis to increase the precision of a static analysis. However, the dynamic

portion of our analysis is extremely lightweight (limited to the gathering of environ-

ment variable information) when compared with the analyses listed above. A more

comprehensive dynamic analysis could be combined with JSA to increase its precision.

However, such a coupling comes at the cost of soundness and performance.

6.4 Scalable Static Analyses

A limited amount of work has been conducted on parallelizing data flow anal-

yses. Notably, Lee and Ryder [81] defined three types of parallelism inherent in

dataflow problems: independent-problem parallelism, separate-unit parallelism, and

algorithmic parallelism. Independent-problem parallelism is the concurrent execution

of dataflow problems that are not related. This form of parallelism does not apply

155

to JSA as each dataflow analysis it uses depends upon the results of its predeces-

sor. Lee and Ryder define separate-unit parallelism as existing in intraprocedural

dataflow analysis of multiple-procedure applications. We describe how this form of

parallelism may be exploited for JSA in Chapter 4. The third form of parallelism

they define is algorithmic, where fixed-point calculations of a dataflow problem are

parallelized. Several researchers have focused on this level of parallelism for different

dataflow problems using different partitioning techniques, e.g., [34,76,80,82,125,151].

Algorithmic parallelism could also be applied to the dataflow analyses used by JSA,

though the communication and load balancing costs associated with such a design

would likely be higher than the separate-unit approach presented in this dissertation.

The work of Dwyer and Martin [32] is similar to our work in that they parallelized

an existing analysis system written in Java in an attempt to increase scalability.

They parallelized FLAVERS [31], a toolset that uses flow analysis to verify user-

specified correctness properties of concurrent systems. FLAVAERS uses different

flow analyses than those used by JSA. Their parallelization exploited algorithmic

parallelism whereas our parallelization of JSA exploited separate-unit parallelism.

Their empirical study used classic parallel programs as benchmark applications (e.g.,

readers-writers) while we used publicly-available, production-level applications in our

study.

Our parallelization of JSA relies on modularity in the analyses performed by JSA.

Other techniques have exploited modularity in static analysis. We outline a few of

the most relevant approaches below. A more complete discussion of modular static

analysis is available in [23].

There are several analyses that make use of summary functions, e.g., [14–17, 40,

117, 147–149]. Most employ a bottom-up traversal of the call graph, and compute

summary functions using the functions computed for the visited procedures. Another

156

technique that exploits modularity computes partial analysis results for each compo-

nent, combines the results for all components and completes the rest of the analysis;

examples include [22, 26, 38, 102, 114]. It should be possible to parallelize both of the

these techniques since there is a clear partitioning of independent work.

Several approaches have relied on pre-computed library summary information to

increase the scalability of whole-program analyses; examples include [13,110,116,126].

This work demonstrates that significant speedups can be achieved through the use

of library summaries. It may be possible to develop similar pre-computed library

summaries for JSA.

6.5 Call Graph Construction Algorithms

There has been a substantial amount of research conducted in the area of call

graph construction for object-oriented programs. This section briefly describes a few

of the approaches that are most related to our work.

We proposed enhancements to a CHA call graph construction algorithm [27].

For a virtual call site x.m() where C is the compile-time type of x, CHA assumes

that all subtypes of C are possible run-time receivers of the call to m. CHA is

context and flow insensitive making it extremely efficient in both time and space

but imprecise. The Soot analysis framework [144] provides an implementation of

this analysis for Java programs and provides a minimal attempt to resolve instances

of dynamic class loading and a conservative treatment of newInstance calls. In

Chapter 5 we demonstrated how our proposed treatments were able to resolve many

more instances of dynamic features. JAN [105] also provides an implementation of

CHA. JAN relies on user inputs to resolve dynamic features. We presented a range

of fully automated treatments for these features.

157

Rapid Type Analysis [7] is similar to CHA in that it takes a whole program as

input and produces a context and flow insensitive call graph. It differs from CHA in

that it constructs a global set which approximates the set of all types instantiated

in the program. It uses this set to reduce the number of candidate types considered

for each virtual call site. For a virtual call site x.m() where C is the compile-time

type of x, RTA assumes that all instantiated (as determined by membership in the

global instantiation set) subtypes of C are possible run-time receivers of the call to

m. The call graph generated by RTA has been shown to be more precise than that

of CHA [7, 105]. JAN presents an implementation of RTA for Java applications. It

relies on inputs from the users to precisely treat the dynamic features of Java. Sharp

et al. [126] present an RTA implementation for Java applications as a plugin for the

popular Eclipse IDE [33]. This implementation provides no treatment for dynamic

features such as reflection or dynamic class loading. The Soot analysis framework

provides an implementation of RTA with similar treatment of the dynamic features

as their CHA implementation. Our approaches presented in Chapter 5 could be

extended to an RTA analysis enabling it to more precisely model certain uses of

dynamic Java features.

Tip and Palsberg [140] present a series of call graph construction algorithms which

refine RTA’s approach of tracking instantiated types. Rather than creating a global

set for the entire application, they create sets for individual program entities, thus

creating a more precise local view. The most precise algorithm they present is XTA.

XTA creates a distinct set for every method and field contained in the application.

These sets contain the possible types instantiated in the method and pointed to

by the field they are associated with. Tip and Palsberg state that for detecting

unreachable methods the more advanced algorithms perform only marginally better

than RTA, but are more precise at determining call sites with a single target. They

158

mention that the implementations of their analyses, used in their experiments, rely on

the actions of dynamic constructs such as reflection and dynamic class loading being

specified manually. Our techniques for resolving dynamic features could potentially be

generalized to an XTA call graph construction algorithm. The variable-type analysis

(VTA) presented by Sundaresan et al. [134] computes type information for variables

and fields with the help of a type propagation graph. They state that they manually

summarize the effects of native methods on their analysis but make no mention of

other dynamic features of Java.

There is a range of more expensive analyses for call graph construction. One

algorithm is 0-CFA [127], which creates one set of approximate run-time values per

expression. Another is k-CFA, which uses multiple sets per expression, thus modeling

context-sensitivity. Grove et al. [57, 58] present a parameterized algorithmic frame-

work for call graph construction of object-oriented languages. In this framework they

implemented a number of call graph construction algorithms, including 0-CFA and

k-CFA. They state that their framework does not address dynamic class loading. It

would be interesting to see how a context-sensitive approach to string analysis could

increase its precision.

Points-to analysis determines the set of memory locations to which a pointer

variable may refer. This information can be used to resolve virtual dispatch and to

precisely determine possible calling relationships between methods. There has been

extensive work conducted in the area of points-to analysis, as summarized in [64,118].

The points-to analysis of Livshits et al. [89] described above currently provides the

most precise treatment of dynamic features in Java for this type of analysis. Our

techniques for dynamic feature resolution, including our semi-static approach to string

analysis, could potentially increase the precision of points-to analyses for Java.

159

To the best of our knowledge, our incorporation of JSA into a CHA call graph

construction algorithm represents the most precise string analysis to be used to resolve

instances of dynamic class loading for this type of analysis. None of the analyses cited

above use an encapsulation safe approach for conservative treatment of unresolved

dynamic features. To date, the empirical study presented in Chapter 5 is the most

comprehensive study of the effects of assumptions about dynamic features on a CHA

call graph construction algorithm.

160

CHAPTER 7: CONCLUSIONS AND FUTURE WORK

The existence of dynamic features, such as dynamic class loading, reflection and,

native methods, allow modern Java applications to be extremely flexible. Unfortu-

nately, these same features pose a significant challenge to static analyses. In the

general case, it is impossible to statically determine the precise run-time behavior

of these dynamic features. Many static analyses take one of two approaches in their

treatment of dynamic Java features: (1) ignore such features and generate an unsound

result when applied to applications that use them or (2) treat them in a sound but

overly conservative manner possibly obscuring relevant results with spurious informa-

tion. Our work presents techniques that will enable static analyses to more precisely

handle some of the most commonly used dynamic features in Java.

7.1 Incorporating Dynamically Gathered Information

A key dynamic feature commonly used by Java applications that support plugin

architectures are the methods that enable dynamic class loading. Given a string

representation of a class’ fully-qualified name, these methods will load the specified

class into the JVM at run time. For example, a call Class.forName(s) dynamically

loads the class with the name represented by the string expression s. If a static

analysis is able to resolve the possible run-time values of s, it could treat the call

to forName as a static initialization of the classes specified by s. A string analysis

can be used to attempt to resolve s. However, current string analyses will fail to

161

precisely resolve s if it is not a compile-time constant. They will also fail if they are

not powerful enough to model the flow of the string value through the application.

We present a hybrid extension to string analysis that incorporates configuration

information gathered at analysis-time to aid in the resolution of dynamic class load-

ing in Java applications. This approach enables the string analysis to consider values

which are typically treated as dynamic values. A manual investigation of the Java 1.4

standard library revealed that over 40% of the nontrivial client independent dynamic

class loading sites depended on this configuration information. We also present exten-

sions of string analysis that allow it to precisely model the flow of static string values.

In an experimental study conducted on the Java 1.4 standard libraries, our approach

was able to resolve 2.6 times more dynamic class loading sites than the state-of-the-

art string analysis. We also demonstrate how the information gained from resolved

dynamic class loading sites can be used to determine the classes that can potentially

be instantiated through the use of reflection. The use of configuration information

and our extensions to JSA increase the number of resolvable reflective instantiation

sites from 6 to 37.

In the future this work can be extended to incorporate other sources of configura-

tion information, such as configuration files. Various generalizations of string analysis

could also be pursued, such as context sensitivity and more precise handling of value

flow through containers (e.g., sets, maps, and lists). It would also be interesting to

investigate other forms of static analysis that can benefit from a similar environment-

aware approach, by employing techniques such as program specialization.

7.2 Increasing the Scalability of String Analysis

Though it has been shown that a precise string analysis can improve the precision

of some static analyses, many that could benefit have not incorporated any of the

162

existing string analysis algorithms. One of the reasons that many analyses have not

adopted a precise string analysis might be related to the high costs (in terms of

memory and time) associated with performing such an analysis.

We present multiple techniques to increase the scalability of the Java String An-

alyzer (JSA) library [19]. The input to JSA is a set of Java classes and a set of

hotspots (i.e., expressions of interest). JSA conservatively estimates the possible

run-time string values at all instances of those hotspots in the input classes. JSA’s

design consists of a front-end and a back-end component. The front-end creates a

graph which abstractly represents the flow of string values through the input classes.

The back-end converts the flow graph into a context-free grammar and ultimately

generates a finite state automaton for each hotspot expression in the input classes.

The techniques presented include algorithmic transformations which parallelize

portions of JSA’s front-end allowing it to leverage modern multi-core architectures.

Our empirical study of 25 benchmark applications showed that for 22 of the bench-

marks our most advanced parallel version of JSA’s front-end was, on average, able

to achieve a speedup of 1.54 over the sequential version of JSA. The parallel design

also reduced the average memory footprint for these 22 applications by approximately

43%. For the remaining 3 applications, all version of JSA (both parallel and sequential

versions) exhausted the allotted heap memory.

We present three new simplifications to the graphs created by JSA’s front-end.

These simplifications preserve relevant details at expressions of interest (hotspots)

while reducing the size of the overall graph . Since the flow-graph is the input to the

back-end, this reduction can decrease the amount of work that must be performed by

the back-end. On average, these new simplifications added 200 ms to the total running

time of the front-end of the parallel version of JSA. However, for two applications,

the simplifications reduced the running time of the back-end from over 590,000 ms to

163

under 600 ms. These simplifications also enable JSA to complete the analysis of the

three applications that previously exhausted a 6Gb heap.

Our experiments indicate that for some applications, our parallel implementations

were not realizing their theoretical speedup. This can be attributed, in part, to

contention for memory resources between the slave threads. In the future it would

be interesting to see if the use of object pools [55] could reduce this contention. The

experiments also indicated that, though adequate for the benchmarks used in the

experiments, the load balancing heuristic used by the parallel implementations could

be improved. Recall that we used a heuristic that weighted methods by the number of

Jimple statements they contained. It would be interesting to explore more advanced

heuristics that provide considerations for other code features such as the number of

string variables or virtual calls. It would also be interesting to see if the scalability

of JSA can be increased through the use of pre-computed library summaries.

7.3 Assumption Hierarchy for a CHA Call Graph Construc-

tion Algorithm

By increasing the modeling power of JSA, demonstrating that this new expres-

siveness can substantially increase its ability to resolve dynamic class loading sites,

and reducing its execution costs, we have made it practical to incorporate JSA into

a static analysis. We demonstrated this fact by employing it as part of a call graph

construction algorithm.

Class Hierarchy Analysis (CHA) [27] call graph construction algorithms are com-

mon components of many static analyses. Call graphs abstractly represent the calling

relationships between methods of an application. The nodes of the graph correspond

to methods and directed edges represent calls between methods. This information

164

is commonly used by interprocedural analyses. The existence of dynamic feature in

Java, whose exact run-time behavior cannot be determined purely statically, makes

it very challenging to create a sound call graph.

We present a systematic exploration of the effects that dynamic features can have

on the results produced by a CHA call graph algorithm. We also explore the as-

sumptions that such an algorithm can make about dynamic features, and present a

novel hierarchy of such assumptions. The hierarchy is rooted at the most conservative

assumption. Call graphs built under this assumption will be sound but will likely be

very imprecise. Each consecutive level of the hierarchy represents a slight relaxation

of the preceding level. Consequently, the graph created at each level of the hierarchy

is a subgraph of the one generated by the preceding level. These relaxations allow

the algorithm to incorporate various techniques in an attempt to precisely resolve

instances of dynamic class loading, reflective invocation, and reflective instantiation.

These techniques include using information from casting operations, as well as the use

of our semi-static string analysis. Our techniques to improve string analysis scalability

make it practical to include in the call graph construction algorithm.

Also presented is a similar assumptions hierarchy for a May Be Loaded (MBL)

analysis. Given an application P , this analysis estimates the set of classes that may

be loaded into the JVM during any execution of P . This analysis is often used to

determine the set of classes that a CHA analysis must consider when building a call

graph for P . An unsound result generated by a MBL analysis could violate the

closed-world assumption under which CHA operates.

We implemented a version of the CHA analysis and the MBL analysis for each level

of their assumption hierarchies. These implementations were applied to 10 real-world

Java applications in an empirical study. On average, the most precise implementation

of CHA, which uses our semi-static string analysis, was able to resolve 6% of the

165

reflective invocation sites, 50% of dynamic class loading sites, and 61% of reflective

instantiation sites encountered by the analysis. This capability enabled this version

to generate graphs that, on average, contain 10% fewer nodes and 54% fewer edges

than the graphs generated by the fully conservative implementation. These results

indicate that by allowing a few very practical relaxations to the fully conservative

assumption, a call graph’s precision can be greatly increased.

Our experiments indicate that the technique for resolution of reflective calls through

Method.invoke was greatly hampered by its intraprocedural nature. It would be in-

teresting to see how many more instances could be resolved if this limitation were

removed through the use of interprocedural post-dominance and reaching definitions

analyses. Another alternative would be to use a string analysis to identify the name

of the method being represented by the Method object in order to reduce the number

of methods being considered.

An obvious extension of this work would be to apply similar assumptions and

resolution techniques to a more precise call graph construction algorithm. A natu-

ral choice would a Rapid Type Analysis [7] call graph construction algorithm. RTA

maintains a set Instantiated of classes that could be instantiated in methods reach-

able from the main method. Virtual call sites are resolved based on these classes.

Instantiated is updated whenever RTA encounters new X expressions. If an update of

Instantiated implies additional target methods at already-processed call sites, the call

graph is updated to reflect the newly discovered relationship. RTA is arguably more

sensitive to dynamic features than CHA, since even a single conservative treatment

of reflective instantiation would result in RTA generating the same graph as CHA.

166

7.4 Conclusion

We have demonstrated that by reducing the cost of string analysis and increasing

its modeling capabilities, it can successfully be incorporated into a CHA call graph

construction algorithm to aid in the resolution of dynamic Java features. The call

graphs produced by this algorithm contain significantly fewer edges than the graphs

generated by an algorithm that provides an overly conservative treatment for dynamic

features. By increasing the precision of call graphs our work transitively increases

the precision of many static analyses which depend on them. Moreover, our semi-

static and dynamic feature resolution techniques can be incorporated into other static

analyses, increasing their precision directly.

The work presented in this dissertation is a step toward making static analysis

tools better equipped to handle the dynamic features of Java. These include tools that

facilitate software development, testing, and understanding. Increasing the precision

of these tools can decrease development costs and increase software reliability.

167

APPENDIX A: COMPLETE RESULTS FOR PARALLEL

JSA EXPERIMENTS

This appendix presents the complete time and memory measurements for the

experiments conducted on the parallel implementations of JSA presented in Chap-

ter 4. The following implementations were used in the experiments: JSA-INTU,

JSA-RMEM, JSA-PSIM, and JSA-NSIM. Tables A.1, A.2, A.3, and A.4 present the

results of this study. The App column shows the benchmarks used in the experi-

ments. Columns 1 Thread – 4 Threads contain the time, in milliseconds, it took

the implementation’s front-end to complete the construction of the flow-graph using

the specified number of slave threads. The Memory column presents the maximum

memory footprint observed, in Mb, during the execution.

168

App 1 Thread 2 Threads 3 Threads 4 Threads Memory

Buoy 1529 1493 1562 1791 123.6
Compress 693 524 505 478 41.2

DB 747 607 528 557 44
Fractal 657 452 721 723 39.9

GattMath 1352 1259 1190 1253 86.8
Jack 1725 1276 1304 1255 116.4

Javac 3286 2476 2561 2792 285.8
JavaCup 2750 2481 2612 2887 145.9

Jb61 1370 1116 1037 1153 73.1
JEdit 20933 13788 12331 12475 935.2

Jess 2321 1471 1589 1425 112.9
JFlex 6330 6067 5908 5808 155.7
JGap 2057 1623 1609 1632 141.3
JLex 1274 986 814 787 57.2
Jpws 4051 2798 2871 2704 187.3
Jtar 1769 1615 1201 1443 81

Mindterm 3145 2418 2506 2369 217.1
MpegAudio 2833 2557 2384 2354 132.7

Muffin 5572 4355 4507 4389 235.3
Rabbit 1512 1434 1664 1472 115.45
Sablecc 5697 4119 4126 4325 351.9

Sockecho 728 610 534 536 47
Sockproxy 766 625 739 571 44.7

VietPad 6149 4754 4427 3919 325.8
Violet 1403 1636 1490 1604 101.3

Table A.1: Front-end time and memory results for the implementation of the intuitive
parallel design (JSA-INTU). Time results are in ms and memory results are in Mb.

169

App 1 Thread 2 Threads 3 Threads 4 Threads Memory

Buoy 1368 1173 1203 1487 68.56
Compress 648 573 554 580 28.2

DB 710 588 582 568 30.23
Fractal 990 780 837 701 23.6

GattMath 1090 860 947 975 44.4
Jack 1585 1252 1204 1273 61.5

Javac 2980 2375 2351 2485 113.4
JavaCup 2477 2327 2336 2236 54.6

Jb61 1250 1028 1022 1114 36.8
JEdit 20123 12583 9856 9803 408.1

Jess 1927 1532 1620 1591 64.2
JFlex 6635 6014 5772 5757 69.2
JGap 2012 1535 1526 1492 72.3
JLex 1126 791 721 782 29.7
Jpws 3261 2570 2681 2659 112.6
Jtar 1190 963 889 1103 36.9

Mindterm 2855 2268 2233 2209 102.7
MpegAudio 2814 2414 2364 2286 88.3

Muffin 5569 4094 3956 4084 145
Rabbit 1340 1465 1021 1532 51.7
Sablecc 5374 4040 4255 4020 137

Sockecho 725 578 603 593 26.7
Sockproxy 760 579 609 570 27.7

VietPad 4389 3336 3236 3200 177.5
Violet 1251 1082 1014 1180 54

Table A.2: Front-end time and memory results for the implementation of the reduced
memory parallel design (JSA-RMEM). Time results are in ms and memory results
are in Mb.

170

App 1 Thread 2 Threads 3 Threads 4 Threads Memory

Buoy 1381 1198 1224 1377 74.2
Compress 703 555 467 548 26.17

DB 736 583 550 569 27.6
Fractal 964 810 908 880 24.5

GattMath 1035 769 774 802 44.1
Jack 1577 1110 1051 1144 63.2

Javac 3035 2170 1994 1946 111.3
JavaCup 2555 2236 2299 2201 52.6

Jb61 1271 912 882 907 33.4
JEdit 20069 9652 6512 5821 402.7

Jess 1756 1405 1293 1302 61.0
JFlex 6264 5265 5070 5087 72.5
JGap 1812 1485 1677 1679 71.3
JLex 1143 749 734 745 33.1
Jpws 3046 1920 2102 1943 116.7
Jtar 1298 952 1296 948 36.1

Mindterm 2724 1667 1462 1713 107.4
MpegAudio 2969 2363 2321 2186 90.1

Muffin 5564 2662 2592 2541 145.7
Rabbit 1301 1026 1308 971 53.4
Sablecc 5312 2849 2538 2603 140.5

Sockecho 740 535 529 550 28.1
Sockproxy 787 499 544 546 26.22

VietPad 5315 2833 2982 3047 181.9
Violet 1284 945 1051 1047 57.4

Table A.3: Front-end time and memory results for the implementation of the parallel
graph simplification design (JSA-PSIM). Time results are in ms and memory results
are in Mb.

171

App 1 Thread 2 Threads 3 Threads 4 Threads Memory

Buoy 1409 1149 1156 1274 72
Compress 716 565 552 621 25.1

DB 781 595 552 527 33.1
Fractal 922 763 763 993 27.8

GattMath 1172 991 902 989 47.1
Jack 1739 1292 1217 1287 68.6

Javac 3119 2292 2064 2189 118.63
JavaCup 2521 2278 2226 2421 52.8

Jb61 1325 1013 816 932 32.2
JEdit 20451 9533 6877 6053 415.8

Jess 1730 1418 1363 1350 61.5
JFlex 6457 5393 5057 5443 75.4
JGap 1995 1591 1764 1873 74.12
JLex 1153 774 696 725 31.9
Jpws 3090 1952 2134 2072 116
Jtar 1428 1361 1318 1381 39.8

Mindterm 3943 2742 2387 2418 110.7
MpegAudio 2815 2330 2324 2302 90.1

Muffin 4889 2756 2779 2729 149.5
Rabbit 1467 1295 1480 1472 56.6
Sablecc 5319 2956 2652 2723 135.3

Sockecho 786 576 578 557 38.4
Sockproxy 761 576 603 622 27.6

VietPad 5593 3438 3005 2796 152.7
Violet 1283 923 1056 985 56.2

Table A.4: Front-end time and memory results for the implementation of the parallel
JSA with three new graph simplifications (JSA-NSIM). Time results are in ms and
memory results are in Mb.

172

APPENDIX B: COMPLETE RESOLUTION RESULTS OF

THE CHA CALL GRAPH EXPERIMENTS

This appendix contains additional results from the experiments described in Chap-

ter 5. The following seven implementations of a CHA call graph construction algo-

rithm were used in these experiments: WBCL, ERDF, CCIA, CSIA, SSEA, SCON

and SOOT. Tables B.1, B.2, and B.3 present the number of dynamic features that

each implementation encountered in its analysis of a benchmark. The tables also

show how many of these features each implementation was able to resolve. The App

column contains the applications used in the experiments. The sub-columns under

Dyno Loading present information about calls to dynamic class loading methods

the implementation encountered. The sub-columns under newInstance show in-

formation relating to calls to Class.newInstance and Consturctor.newInstance.

Information pertaining to calls to Method.invoke is found under the column head-

ing Method.invoke. Information relating to native methods is presented under the

heading Native. The sub-columns Calls indicate the number of instances of the

dynamic feature the analysis encountered and the sub-columns Res indicates the

how many of these calls the implementation was able to resolve. Since none of the

implementations attempt to precisely resolve calls to native methods, there is no

sub-column Res for this category.

173

WBCL - Fully Conservative

Dyno Loading newInstance Method.invoke Native

App Calls Res Calls Res Calls Res Calls

Db 161 0 101 0 34 0 666

Javac 161 0 101 0 34 0 666

Jedit 449 0 108 0 44 0 669

Jgap 182 0 104 0 36 0 666

Jpws 166 0 101 0 34 0 666

Mindterm 166 0 106 0 34 0 666

Muffin 170 0 104 0 34 0 666

Sablecc 145 0 98 0 23 0 662

Vietpad 183 0 106 0 42 0 669

Violet 166 0 108 0 36 0 666

ERDF - Encapsulation Safe

Dyno Loading newInstance Method.invoke Native

App Calls Res Calls Res Calls Res Calls

Db 150 0 95 0 29 0 636

Javac 150 0 95 0 29 0 636

Jedit 437 0 102 0 39 0 636

Jgap 171 0 98 0 31 0 636

Jpws 155 0 95 0 29 0 636

Mindterm 155 0 100 0 29 0 636

Muffin 159 0 98 0 29 0 636

Sablecc 134 0 92 0 18 0 632

Vietpad 172 0 100 0 37 0 639

Violet 158 0 104 0 31 0 636

CCIA - Correct Casting

Dyno Loading newInstance Method.invoke Native

App Calls Res Calls Res Calls Res Calls

Db 149 24 94 52 29 0 636

Javac 149 24 94 52 29 0 636

Jedit 436 28 101 59 39 0 636

Jgap 170 27 97 55 31 0 636

Jpws 154 24 94 52 29 0 636

Mindterm 154 29 99 57 29 0 636

Muffin 158 25 97 55 29 0 636

Sablecc 133 24 91 52 18 0 632

Vietpad 171 25 99 53 37 0 639

Violet 157 28 103 59 31 0 636

Table B.1: Number of dynamic features encountered and resolved by the WBCL,
ERDF, and CCIA implementations of the CHA call graph construction analysis.

174

CSIA - Static Strings

Dyno Loading newInstance Method.invoke Native

App Calls Res Calls Res Calls Res Calls

Db 149 62 94 54 29 2 636

Javac 149 62 94 54 29 2 636

Jedit 436 342 101 61 39 5 636

Jgap 170 77 97 57 31 2 636

Jpws 154 67 94 54 29 2 636

Mindterm 154 67 99 59 29 2 636

Muffin 158 70 97 57 29 2 636

Sablecc 133 48 91 54 18 0 632

Vietpad 171 74 99 55 37 2 639

Violet 157 66 103 61 31 2 636

SSEA - Semi-Static Strings

Dyno Loading newInstance Method.invoke Native

App Calls Res Calls Res Calls Res Calls

Db 149 67 94 57 29 2 636

Javac 149 67 94 57 29 2 636

Jedit 436 347 101 64 39 5 636

Jgap 170 82 97 60 31 2 636

Jpws 154 72 94 57 29 2 636

Mindterm 154 72 99 62 29 2 636

Muffin 158 75 97 60 29 2 636

Sablecc 133 53 91 57 18 0 632

Vietpad 171 79 99 58 37 2 639

Violet 157 71 103 64 31 2 636

CRFA - Ignore All Not Resolved

Dyno Loading newInstance Method.invoke Native

App Calls Res Calls Res Calls Res Calls

Db 109 40 79 51 16 0 0

Javac 109 40 79 51 16 0 0

Jedit 374 298 89 59 28 4 0

Jgap 123 52 82 54 18 0 0

Jpws 114 45 79 51 16 0 0

Mindterm 114 45 84 56 16 0 0

Muffin 117 45 82 54 16 0 0

Sablecc 111 42 79 51 16 0 0

Vietpad 152 70 92 54 34 2 0

Violet 116 44 88 58 18 0 0

Table B.2: Number of dynamic features encountered and resolved by the CSIA and
SSEA implementations of the CHA call graph construction analysis.

175

SCON - Conservative Soot

Dyno Loading newInstance Method.invoke Native

App Calls Res Calls Res Calls Res Calls

Db 116 17 80 0 16 0 486

Javac 116 17 80 0 16 0 487

Jedit 370 257 89 0 28 0 497

Jgap 130 26 83 0 18 0 489

Jpws 121 22 80 0 16 0 489

Mindterm 121 20 85 0 16 0 490

Muffin 122 21 82 0 16 0 495

Sablecc 70 13 55 0 7 0 254

Vietpad 140 39 88 0 24 0 492

Violet 123 19 89 0 18 0 485

SOOT - Default Soot

Dyno Loading newInstance Method.invoke Native

App Calls Res Calls Res Calls Res Calls

Db 111 17 76 0 16 0 471

Javac 111 17 76 0 16 0 473

Jedit 365 257 85 0 28 0 482

Jgap 125 26 79 0 18 0 474

Jpws 116 22 76 0 16 0 475

Mindterm 116 20 81 0 16 0 475

Muffin 118 21 79 0 16 0 483

Sablecc 66 13 52 0 7 0 245

Vietpad 135 39 84 0 24 0 477

Violet 118 19 85 0 18 0 470

Table B.3: Number of dynamic features encountered and resolved by the SCON and
SOOT implementations of the CHA call graph construction analysis.

176

BIBLIOGRAPHY

[1] http://lse.sourceforge.net/numa/faq/.

[2] G. Agrawal. Demand-driven construction of call graphs. In International Con-

ference on Compiler Construction, pages 125–140, 2000.

[3] A. Aho, R. Sethi, and J. Ullman. Compilers: Principles, Techniques, and Tools.

Addison-Wesley, 1986.

[4] S. Anand, P. Godefroid, and N. Tillmann. Demand-driven compositional sym-

bolic execution. In International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, pages 367–381, 2008.

[5] S. Artzi, A. Kiezun, J. Dolby, F. Tip, D. Dig, A. Paradkar, and M. D. Ernst.

Finding bugs in dynamic web applications. In International Symposium on
Software Testing and Analysis, pages 261–272, 2008.

[6] S. Artzi, A. Kiezun, D. Glasser, and M. D. Ernst. Combined static and dynamic
mutability analysis. In IEEE/ACM International Conference on Automated

Software Engineering, pages 104–113, 2007.

[7] D. Bacon and P. Sweeney. Fast static analysis of C++ virtual function calls.

In Conference on Object-Oriented Programming Systems, Languages, and Ap-
plications, pages 324–341, 1996.

[8] J. Barker. Beginning Java Objects: From Concepts To Code. Apress, 2005.

[9] M. Berndl, O. Lhoták, F. Qian, L. Hendren, and N. Umanee. Points-to analysis

using BDDs. In ACM SIGPLAN Conference on Programming Language Design
and Implementation, pages 103–114, 2003.

[10] M. Braux and J. Noye. Towards partially evaluating reflection in Java. In ACM

Workshop on Partial Evaluation and Semantics-based Program Manipulation,
pages 2–11, 1999.

177

[11] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. Pattern-
Oriented Software Architecture, Volume 1: A System of Patterns. John Wiley

& Sons, August 1996.

[12] C. Cadar, P. Twohey, V. Ganesh, and D. Engler. EXE: A system for automati-

cally generating inputs of death using symbolic execution. In ACM Conference
on Computer and Communications Security, pages 322–335, 2006.

[13] R. Chatterjee and B. G. Ryder. Data-flow-based testing of object-oriented
libraries. Technical Report DCS-TR-382, Rutgers University, 1999.

[14] R. Chatterjee, B. G. Ryder, and W. Landi. Relevant context inference.
In ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-

guages, pages 133–146, 1999.

[15] B. Cheng and W. Hwu. Modular interprocedural pointer analysis using access
paths. In ACM SIGPLAN Conference on Programming Language Design and

Implementation, pages 57–69, 2000.

[16] S. Cherem and R. Rugina. A practical escape and effect analysis for build-

ing lightweight method summaries. In International Conference on Compiler
Construction, pages 172–186, March 2007.

[17] J. Choi, M. Gupta, M. Serrano, V. Sreedhar, and S. Midkiff. Escape analysis
for Java. In Conference on Object-Oriented Programming Systems, Languages,

and Applications, pages 1–19, 1999.

[18] T.-H. Choi, O. Lee, H. Kim, and K.-G. Doh. A practical string analyzer by

the widening approach. In Asian Symposium on Programming Languages and

Systems, pages 374–388, 2006.

[19] A. S. Christensen, A. Møller, and M. Schwartzbach. Precise analysis of string

expressions. In Static Analysis Symposium, LNCS 2694, pages 1–18, 2003.

[20] A. S. Christensen, A. Møller, and M. I. Schwartzbach. Extending Java for high-

level Web service construction. ACM Transactions on Programming Languages
and Systems, 25(6):814–875, November 2003.

[21] M. Christodorescu, N. Kidd, and W.-H. Goh. String analysis for x86 binaries. In
ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools

and Engineering, pages 88–95, 2005.

[22] M. Codish, S. Debray, and R. Giacobazzi. Compositional analysis of modu-

lar logic programs. In ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 451–464, 1993.

178

[23] P. Cousot and R. Cousot. Modular static program analysis. In International
Conference on Compiler Construction, pages 159–178, 2002.

[24] C. Csallner, Y. Smaragdakis, and T. Xie. DSD-Crasher: A hybrid analysis tool
for bug finding. In International Symposium on Software Testing and Analysis,

pages 1–37, 2008.

[25] C. Csallner, N. Tillmann, and Y. Smaragdakis. DySy: dynamic symbolic ex-

ecution for invariant inference. In International Conference on Software Engi-
neering, pages 281–290, 2008.

[26] M. Das. Unification-based pointer analysis with directional assignments. In
ACM SIGPLAN Conference on Programming Language Design and Implemen-

tation, pages 35–46, 2000.

[27] J. Dean, D. Grove, and C. Chambers. Optimizations of object-oriented pro-
grams using static class hierarchy analysis. In European Conference on Object-

Oriented Programming, pages 77–101, 1995.

[28] G. DeFouw, D. Grove, and C. Chambers. Fast interprocedural class analy-

sis. In ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 222–236, 1998.

[29] B. Dufour, B. G. Ryder, and G. Sevitsky. Blended analysis for performance
understanding of framework-based applications. In International Symposium

on Software Testing and Analysis, pages 118–128, 2007.

[30] B. Dufour, B. G. Ryder, and G. Sevitsky. A scalable technique for characterizing

the usage of temporaries in framework-intensive Java applications. In ACM

SIGSOFT Symposium on Foundations of Software Engineering, pages 59–70,
2008.

[31] M. B. Dwyer, L. A. Clarke, G. Naumovich, and J. M. Cobleigh. Data flow
analysis for verifying properties of concurrent programs. In ACM SIGSOFT

Symposium on Foundations of Software Engineering, pages 62–75, 1994.

[32] M. B. Dwyer and M. Martin. Practical parallelization: Experience with a

complex flow analysis. Technical Report KSU CIS TR 99-4, Kansas State
University, 1999.

[33] Eclipse project. www.eclipse.org.

[34] M. Edvinsson and W. Löwe. A parallel approach for solving data flow analysis

problems. In IASTED International Conference on Parallel and Distributed
Computing and Systems, November 2008.

179

[35] M. Emmi, R. Majumdar, and K. Sen. Dynamic test input generation for
database applications. In International Symposium on Software Testing and

Analysis, pages 151–162, 2007.

[36] M. Emmi, R. Majumdar, and K. Sen. Dynamic test input generation for

database applications. In International Symposium on Software Testing and
Analysis, pages 151–162, 2007.

[37] M. D. Ernst. Static and dynamic analysis: Synergy and duality. In International
Workshop on Dynamic Analysis, pages 24–27, 2003.

[38] C. Flanagan and M. Felleisen. Componential set-based analysis. ACM Trans-
actions on Programming Languages and Systems, 21(2):370–416, Mar. 1999.

[39] D. Flanagan. Java In A Nutshell, 5th Edition. O’Reilly Media, Inc., 2005.

[40] J. Foster, M. Fähndrich, and A. Aiken. Polymorphic versus monomorphic flow-
insensitive points-to analysis for C. In Static Analysis Symposium, LNCS 1824,

pages 175–198, 2000.

[41] C. Fu, A. Milanova, B. G. Ryder, and D. G. Wonnacott. Robustness test-

ing of Java server applications. IEEE Transactions on Software Engineering,
31(4):292–311, 2005.

[42] C. Fu and B. Ryder. Exception-chain analysis: Revealing exception handling ar-
chitecture in Java server applications. In International Conference on Software

Engineering, pages 230–239, 2007.

[43] X. Fu, X. Lu, B. Peltsverger, S. Chen, K. Qian, and L. Tao. A static analysis

framework for detecting SQL injection vulnerabilities. In Computer Software

and Applications Conference, pages 87–96, 2007.

[44] Y. Futamura. Partial evaluation of computation process – an approach to a

compiler-compiler. Systems, Computers, Controls, 2:45–50, 1971.

[45] N. Glew and J. Palsberg. Method inlining, dynamic class loading, and type

soundness. Journal of Object Technology, 4(8):33–53, 2005.

[46] N. Glew, J. Palsberg, and C. Grothoff. Type-safe optimisation of plugin archi-

tectures. In Static Analysis Symposium, pages 135–154, 2005.

[47] P. Godefroid. Compositional dynamic test generation. In ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages, pages 47–54,
2007.

180

[48] P. Godefroid, A. Kiezun, and M. Y. Levin. Grammar-based whitebox fuzzing.
In ACM SIGPLAN Conference on Programming Language Design and Imple-

mentation, pages 206–215, 2008.

[49] P. Godefroid, N. Klarlund, and K. Sen. DART: directed automated random
testing. In ACM SIGPLAN Conference on Programming Language Design and

Implementation, pages 213–223, 2005.

[50] P. Godefroid, M. Y. Levin, and D. A. Molnar. Automated whitebox fuzz testing.
In Network Distributed Security Symposium, 2008.

[51] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java Language Specification.

Addison-Wesley, 2 edition, 2000.

[52] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java Language Specification.
Addison-Wesley, 3 edition, 2005.

[53] C. Gould, Z. Su, and P. Devanbu. JDBC checker: A static analysis tool for

SQL/JDBC applications. In International Conference on Software Engineering,
pages 697–698, 2004.

[54] C. Gould, Z. Su, and P. Devanbu. Static checking of dynamically generated
queries in database applications. In International Conference on Software En-

gineering, pages 645–654, 2004.

[55] M. Grand. Patterns in Java: A Catalog of Reusable Design Patterns Illustrated
with UML,Volume 1. John Wiley & Sons, Inc., New York, NY, USA, 2002.

[56] A. Groce and R. Joshi. Exploiting traces in program analysis. In Tools and

Algorithms for the Construction and Analysis of Systems, pages 379–393, 2006.

[57] D. Grove and C. Chambers. A framework for call graph construction algorithms.
ACM Transactions on Programming Languages and Systems, 23(6):685–746,

Nov. 2001.

[58] D. Grove, G. DeFouw, J. Dean, and C. Chambers. Call graph construction
in object-oriented languages. In Conference on Object-Oriented Programming

Systems, Languages, and Applications, pages 108–124, 1997.

[59] R. Gupta, M. L. Soffa, and J. Howard. Hybrid slicing: Integrating dynamic
information with static analysis. ACM Transactions on Software Engineering

and Methodology, 6:370–397, 1997.

[60] W. G. Halfond and A. Orso. AMNESIA: Analysis and monitoring for neu-
tralizing SQL-injection attacks. In IEEE/ACM International Conference on

Automated Software Engineering, pages 174–183, 2005.

181

[61] B. Hardekopf and C. Lin. The ant and the grasshopper: fast and accurate
pointer analysis for millions of lines of code. In ACM SIGPLAN Conference on

Programming Language Design and Implementation, pages 290–299, June 2007.

[62] M. J. Harrold, J. Jones, T. Li, D. Liang, A. Orso, M. Pennings, S. Sinha, S. A.

Spoon, and A. Gujarathi. Regression test selection for Java software. In Confer-
ence on Object-Oriented Programming Systems, Languages, and Applications,

pages 312–326, 2001.

[63] M. J. Harrold and G. Rothermel. Separate computation of alias information for

reuse. IEEE Transactions on Software Engineering, 22(7):442–460, July 1996.

[64] M. Hind. Pointer analysis: Haven’t we solved this problem yet? In ACM

SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools and

Engineering, pages 54–61, 2001.

[65] M. Hirzel, D. V. Dincklage, A. Diwan, and M. Hind. Fast online pointer analysis.

ACM Transactions on Programming Languages and Systems, 29(2):11, 2007.

[66] M. Hirzel, A. Diwan, and M. Hind. Pointer analysis in the presence of dynamic

class loading. In European Conference on Object-Oriented Programming, pages
96–122, 2004.

[67] W. Huang, W. Srisa-an, and J. M. Chang. Object allocation and memory con-
tention study of Java multithreaded applications. In International Performance,

Computing, and Communications Conference, pages 375–382, 2004.

[68] K. Inkumsah and T. Xie. Evacon: A framework for integrating evolutionary

and concolic testing for object-oriented programs. In IEEE/ACM International

Conference on Automated Software Engineering, pages 425–428, 2007.

[69] N. D. Jones, C. K. Gomard, and P. Sestoft. Partial Evaluation and Automatic

Program Generation. Prentice Hall, 1993.

[70] Java Virtual Machine Profiler Interface (JVMPI), 2007.

[71] R. Khatchadourian, J. Sawin, and A. Rountev. Automated refactoring of legacy
Java software to enumerated types. In IEEE International Conference on Soft-

ware Maintenance, pages 224–233, 2007.

[72] A. Kieżun, V. Ganesh, P. J. Guo, P. Hooimeijer, and M. D. Ernst. HAMPI: A

solver for string constraints. In International Symposium on Software Testing
and Analysis, 2009.

182

[73] C. Kirkegaard, A. Møller, and M. I. Schwartzbach. Static analysis of XML trans-
formations in Java. IEEE Transactions on Software Engineering, 30(3):181–192,

March 2004.

[74] A. Kleen. A NUMA API for Linux. Novel Inc., 2005.

[75] T. Kotzmann and H. Mossenbock. Escape analysis in the context of dynamic
compilation and deoptimization. In ACM/USENIX International Conference

on Virtual Execution Environments, pages 111–120, 2005.

[76] R. Kramer, R. Gupta, and M. Soffa. The combining DAG: A technique for

parallel data flow analysis. IEEE Transactions on Parallel and Distributed
Systems, 5(8):805–813, 1994.

[77] C. Lattner, A. Lenharth, and V. Adve. Making context-sensitive points-to

analysis with heap cloning practical for the real world. In ACM SIGPLAN
Conference on Programming Language Design and Implementation, pages 278–

289, June 2007.

[78] A. Le, O. Lhoták, and L. Hendren. Using inter-procedural side-effect informa-

tion in JIT optimizations. In International Conference on Compiler Construc-
tion, pages 287–304, 2005.

[79] K. Lee, Q. Ali, and S. P. Midkiff. Efficient classloading strategies for inter-
procedural analyses in the presence of dynamic classloading. In International

Workshop on Dynamic Analysis, pages 6–13, 2007.

[80] Y. Lee, T. Marlowe, and B. Ryder. Performing data flow analysis in parallel.

In ACM/IEEE Conference on Supercomputing, pages 942–951, 1990.

[81] Y. Lee and B. Ryder. A comprehensive approach to parallel data flow analysis.
In International Conference on Supercomputing, pages 236–247, 1992.

[82] Y. Lee, B. G. Ryder, and M. E. Fiuczynski. Region analysis: A parallel elimina-
tion method for data flow analysis. IEEE Transactions on Software Engineering,

21:913–926, 1995.

[83] O. Lhoták and L. Hendren. Scaling Java points-to analysis using Spark. In

International Conference on Compiler Construction, LNCS 2622, pages 153–
169, 2003.

[84] D. Liang, M. Pennings, and M. J. Harrold. Extending and evaluating
flow-insensitive and context-insensitive points-to analyses for Java. In ACM

SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools and
Engineering, pages 73–79, June 2001.

183

[85] S. Liang. The Java Native Interface. Programmer’s Guide and Specification.
Addison-Wesley, 1999.

[86] S. Liang and G. Bracha. Dynamic class loading in the Java virtual machine.
In Conference on Object-Oriented Programming Systems, Languages, and Ap-

plications, pages 36–44, 1998.

[87] T. Lindholm and F. Yellin. The Java Virtual Machine Specification. Addison-

Wesley, 1999.

[88] Y. Liu and A. Milanova. Static analysis for dynamic coupling measures. In

Conference of the Center for Advanced Studies on Collaborative Research, pages
119–130, 2006.

[89] B. Livshits, J. Whaley, and M. Lam. Reflection analysis for Java. In Asian

Symposium on Programming Languages and Systems, LNCS 3780, pages 139–
160, 2005.

[90] R. Majumdar and K. Sen. Hybrid concolic testing. In International Conference
on Software Engineering, pages 416–426, 2007.

[91] R. Majumdar and R.-G. Xu. Directed test generation using symbolic grammars.
In IEEE/ACM International Conference on Automated Software Engineering,

pages 134–143, 2007.

[92] E. Martin and T. Xie. Understanding software application interfaces via string

analysis. In International Conference on Software Engineering, pages 901–904,
2006.

[93] Sun Microsystems. RMI Specification. 2002.

[94] A. Milanova, A. Rountev, and B. G. Ryder. Parameterized object sensitivity
for points-to and side-effect analyses for Java. In International Symposium on

Software Testing and Analysis, pages 1–11, 2002.

[95] A. Milanova, A. Rountev, and B. G. Ryder. Parameterized object sensitivity

for points-to analysis for Java. ACM Transactions on Software Engineering and
Methodology, 14(1):1–41, Jan. 2005.

[96] Y. Minamide. Static approximation of dynamically generated web pages. In
International Conference on World Wide Web, pages 432–441, 2005.

[97] M. Mock, D. C. Atkinson, C. Chambers, and S. J. Eggers. Improving pro-
gram slicing with dynamic points-to data. In ACM SIGSOFT Symposium on

Foundations of Software Engineering, pages 71–80, 2002.

184

[98] M. Mohri and M.-J. Nederhof. Regular approximation of context-free grammars
through transformation. In J.-C. Junqua and G. van Noord, editors, Robustness

in Language and Speech Technology, pages 251–261. Kluwer Academic Publish-
ers, 2000.

[99] G. Moore. Cramming more components onto integrated circuits. Electronics,
38:114–117, 1965.

[100] H. Müller and K. Klashinsky. Rigi — A system for programming-in-the-large.
In International Conference on Software Engineering, pages 80–86, 1988.

[101] P. H. Nguyen and J. Xue. Interprocedural side-effect analysis and optimisa-
tion in the presence of dynamic class loading. In Australasian Conference on

Computer Science, pages 9–18, 2005.

[102] N. Oxhoj, J. Palsberg, and M. Schwartzbach. Making type inference practical.
In European Conference on Object-Oriented Programming, pages 329–349, 1992.

[103] I. Pechtchanski and V. Sarkar. Dynamic optimistic interprocedural analysis: A
framework and an application. In Conference on Object-Oriented Programming

Systems, Languages, and Applications, pages 195–210, 2001.

[104] M. Pistoia, R. Flynn, L. Koved, and V. Sreedhar. Interprocedural analysis for

privileged code placement and tainted variable detection. In European Confer-
ence on Object-Oriented Programming, pages 362–386, 2005.

[105] S. Porat, B. Mendelson, and I. Shapira. Sharpening global static analysis to cope
with Java. In Conference of the Center for Advanced Studies on Collaborative

Research, pages 19–34, 1998.

[106] F. Qian and L. Hendren. Towards dynamic interprocedural analysis in JVMs.
In Virtual Machine Research and Technology Symposium, pages 139–150, 2004.

[107] G. Rothermel and M. J. Harrold. A safe, efficient regression test selection tech-
nique. ACM Transactions on Software Engineering and Methodology, 6(2):173–

210, 1997.

[108] A. Rountev. Precise identification of side-effect-free methods in Java. In IEEE

International Conference on Software Maintenance, pages 82–91, 2004.

[109] A. Rountev and B. H. Connell. Object naming analysis for reverse-engineered

sequence diagrams. In International Conference on Software Engineering, pages
254–263, 2005.

185

[110] A. Rountev, S. Kagan, and T. Marlowe. Interprocedural dataflow analysis
in the presence of large libraries. In International Conference on Compiler

Construction, LNCS 3923, pages 2–16, 2006.

[111] A. Rountev, S. Kagan, and J. Sawin. Coverage criteria for testing of object

interactions in sequence diagrams. In Fundamental Approaches to Software
Engineering, LNCS 3442, pages 282–297, 2005.

[112] A. Rountev, A. Milanova, and B. G. Ryder. Points-to analysis for Java based
on annotated constraints. In Conference on Object-Oriented Programming Sys-

tems, Languages, and Applications, pages 43–55, Oct. 2001.

[113] A. Rountev, A. Milanova, and B. G. Ryder. Fragment class analysis for testing

of polymorphism in Java software. IEEE Transactions on Software Engineering,

30(6):372–387, June 2004.

[114] A. Rountev and B. G. Ryder. Points-to and side-effect analyses for programs

built with precompiled libraries. In International Conference on Compiler Con-
struction, LNCS 2027, pages 20–36, 2001.

[115] A. Rountev, B. G. Ryder, and W. Landi. Data-flow analysis of program frag-
ments. In ACM SIGSOFT Symposium on Foundations of Software Engineering,

LNCS 1687, pages 235–252, 1999.

[116] A. Rountev, M. Sharp, and G. Xu. IDE dataflow analysis in the presence of

large object-oriented libraries. In International Conference on Compiler Con-
struction, LNCS 4959, pages 53–68, 2008.

[117] E. Ruf. Effective synchronization removal for Java. In ACM SIGPLAN Con-

ference on Programming Language Design and Implementation, pages 208–218,
2000.

[118] B. G. Ryder. Dimensions of precision in reference analysis of object-oriented
programming languages. In International Conference on Compiler Construc-

tion, LNCS 2622, pages 126–137, 2003.

[119] J. Sawin and A. Rountev. Estimating the run-time progress of a call graph con-

struction algorithm. In IEEE International Workshop on Source Code Analysis
and Manipulation, pages 53–62, 2006.

[120] J. Sawin and A. Rountev. Improved static resolution of dynamic class loading
in Java. In IEEE International Working Conference on Source Code Analysis

and Manipulation, pages 143–154, 2007.

186

[121] J. Sawin and A. Rountev. Improving static resolution of dynamic class loading
in Java using dynamically gathered environment information. International

Journal of Automated Software Engineering, 16(2):357–381, June 2009.

[122] J. Sawin, M. Sharp, and A. Rountev. Generating run-time progress reports for

a points-to analysis in Eclipse. In Eclipse Technology Exchange Workshop at
OOPSLA, pages 40–44, 2006.

[123] U. P. Schultz, J. L. Lawall, and C. Consel. Automatic program specialization for
Java. ACM Transactions on Programming Languages and Systems, 25(4):452–

499, 2003.

[124] K. Sen, D. Marinov, and G. Agha. CUTE: a concolic unit testing engine for C.

In ACM SIGSOFT Symposium on Foundations of Software Engineering, pages

263–272, 2005.

[125] V. Sgro and B. G. Ryder. Differences in algorithmic parallelism in control flow

and call multigraphs. In Workshop on Languages and Compilers for Parallel
Computing, pages 217–233, 1994.

[126] M. Sharp, J. Sawin, and A. Rountev. Building a whole-program type analysis
in Eclipse. In Eclipse Technology Exchange Workshop at OOPSLA, pages 6–10,

2005.

[127] O. Shivers. Control-Flow Analysis of Higher-Order Languages. PhD thesis,

Carnegie Mellon University, 1991.

[128] S. Sinha, A. Orso, and M. J. Harrold. Automated support for development,

maintenance, and testing in the presence of implicit control flow. In Interna-

tional Conference on Software Engineering, pages 336–345, 2004.

[129] V. C. Sreedhar, M. Burke, and J.-D. Choi. A framework for interprocedural

optimization in the presence of dynamic class loading. In ACM SIGPLAN
Conference on Programming Language Design and Implementation, pages 196–

207, 2000.

[130] M. Sridharan and R. Bod́ık. Refinement-based context-sensitive points-to anal-

ysis for Java. In ACM SIGPLAN Conference on Programming Language Design
and Implementation, pages 387–400, 2006.

[131] M.-A. Storey and H. Müller. Manipulating and documenting software structures
using SHriMP views. In IEEE International Conference on Software Mainte-

nance, pages 275–284, 1995.

187

[132] M.-A. Storey, K. Wong, and H. Müller. How do program understanding tools
affect how programmers understand programs? Science of Computer Program-

ming, 36(2-3):183–207, 2000.

[133] M. Streckenbach and G. Snelting. Points-to for Java: A general framework and

an empirical comparison. Technical report, U. Passau, Sept. 2000.

[134] V. Sundaresan, L. Hendren, C. Razafimahefa, R. Vallee-Rai, P. Lam,

E. Gagnon, and C. Godin. Practical virtual method call resolution for Java. In
Conference on Object-Oriented Programming Systems, Languages, and Appli-

cations, pages 264–280, 2000.

[135] V. Sundaresan, D. Maier, P. Ramarao, and M. Stoodley. Experiences with

multi-threading and dynamic class loading in a Java just-in-time compiler. In

IEEE/ACM International Symposium on Code Generation and Optimization,
pages 87–97, 2006.

[136] N. Tabuchi, E. Sumii, and A. Yonezawa. Regular expression types for strings in a
text processing language. In International Workshop on Types in Programming,

pages 1–18, 2002.

[137] P. Thiemann. Grammar-based analysis of string expressions. In ACM SIG-

PLAN Workshop on Types in Languages Design and Implementation, pages
59–70, 2005.

[138] T. Tian and C.-P. Shih. Software techniques for shared cache multi-core sys-
tems. Intel Software Network, 2007.

[139] F. Tip, C. Laffra, P. Sweeney, and D. Streeter. Practical experience with an

application extractor for Java. In Conference on Object-Oriented Programming
Systems, Languages, and Applications, pages 292–305, 1999.

[140] F. Tip and J. Palsberg. Scalable propagation-based call graph construction al-
gorithms. In Conference on Object-Oriented Programming Systems, Languages,

and Applications, pages 281–293, 2000.

[141] F. Tip, P. F. Sweeney, C. Laffra, A. Eisma, and D. Streeter. Practical extrac-

tion techniques for Java. ACM Transactions on Programming Languages and
Systems, 24(6):625–666, 2002.

[142] A. Tomb, G. Brat, and W. Visser. Variably interprocedural program analysis
for runtime error detection. In International Symposium on Software Testing

and Analysis, pages 97–107, 2007.

188

[143] P. Tonella and A. Potrich. Reverse engineering of the interaction diagrams from
C++ code. In IEEE International Conference on Software Maintenance, pages

159–168, 2003.

[144] R. Vallée-Rai, E. Gagnon, L. Hendren, P. Lam, P. Pominville, and V. Sundare-

san. Optimizing Java bytecode using the Soot framework: Is it feasible? In
International Conference on Compiler Construction, LNCS 1781, pages 18–34,

2000.

[145] G. Wassermann and Z. Su. An analysis framework for security in web applica-

tions. In FSE Workshop on Specification and Verification of Component-Based
Systems, pages 70–78, 2004.

[146] G. Wassermann and Z. Su. Sound and precise analysis of web applications

for injection vulnerabilities. In ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 32–41, 2007.

[147] J. Whaley and M. Rinard. Compositional pointer and escape analysis for Java
programs. In Conference on Object-Oriented Programming Systems, Languages,

and Applications, pages 187–206, 1999.

[148] G. Xu and A. Rountev. Merging equivalent contexts for scalable heap-cloning-

based context-sensitive points-to analysis. In International Symposium on Soft-
ware Testing and Analysis, pages 225–236, 2008.

[149] G. Xu, A. Rountev, and M. Sridharan. Scaling CFL-reachability-based points-to
analysis using context-sensitive must-not-alias analysis. In European Conference

on Object-Oriented Programming, pages 98–122, 2009.

[150] J. Xue and P. H. Nguyen. Completeness analysis for incomplete object-oriented
programs. In International Conference on Compiler Construction, pages 271–

286, 2005.

[151] A. Zobel. Parallel interval analysis of data flow equations. In International

Conference on Parallel Processing, pages 9–16, 1990.

189

