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ABSTRACT | Stencil computations arise in a number of compu-

tational domains. They exhibit significant data parallelism and

are thus well suited for execution on graphical processing units

(GPUs), but can be memory-bandwidth limited unless temporal

locality is utilized via tiling. This paper describes how effective

tiled code can be generated for GPUs from a domain-specific

language (DSL) for stencils. Experimental results demonstrate

the benefits of such a domain-specific optimization approach

over state-of-the-art general-purpose compiler optimizations.
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I. I N T R O D U C T I O N

Stencil computations arise in scientific applications in
many domains. Due to the large number of variants
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of the stencil operators that arise in applications, it is
not feasible to construct efficient libraries for stencil
computations. Hence, stencils have been the focus of
a number of domain-specific languages and frameworks
[1]–[15]. Graphical processing units (GPUs) are an attrac-
tive architectural target for stencil computations because
of the high degree of data parallelism. However, achiev-
able performance for many stencil computations is con-
strained by bandwidth to global memory. If the number of
floating-point operations per point is not sufficiently high,
reuse across multiple time steps for an iterated stencil or
across a sequence of stencils is essential to achieve high
performance.

Tiling is a fundamental technique for data locality
enhancement, and can enable significant reduction in
the amount of data movement from/to global memory.
However, the nature of data dependences that arise with
stencils does not permit simple rectangular tiling across
multiple time steps of an iterative stencil computation.
A number of research efforts have therefore addressed the
topic of effective tiling of stencil computations [2]–[8],
[12]–[14], [16]–[29].

In this paper, we present a detailed analysis of con-
straints in achieving high performance with stencils on
GPUs and describe domain-specific and GPU-target-specific
optimization strategies to generate high-performance GPU
code for stencils. While the GPU algorithms discussed in
this paper use CUDA terminology and the implementations
use NVIDIA GPUs as reference hardware, the algorith-
mic strategies are not limited to CUDA or NVIDIA GPUs.
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Fig. 1. Theoretical peak double-precision compute performance, machine balance, and theoretical peak bandwidth for NVIDIA devices over

the last decade.

These optimizations can be implemented using any lan-
guage that allows mapping computations to GPU threads,
e.g., OpenCL, and are applicable to GPUs from other
vendors, e.g., AMD.

Several considerations are important in achieving high
performance for any computation on GPUs: movement of
contiguous chunks of data (coalesced accesses) from/to
global memory; reuse of data in registers and on-chip
scratch-pad memory (shared memory in CUDA terminol-
ogy; called local memory in OpenCL); sufficient concur-
rency, orders of magnitude larger than the number of
physical cores; and minimization of control-flow diver-
gence among threads. The capacity of on-chip scratch-
pad memory in a streaming multiprocessor (SM) is quite
low, typically under 100 kB. As elaborated on later, the
low shared memory capacity limits the maximum tile size.
This further limits both the amount of reuse achievable
for data in shared memory, and the maximum number
of simultaneously active thread blocks in an SM. Low
occupancy can have a deleterious effect on performance,
because the number of instructions across the active warps
that can be issued without stalling on dependent data
might be insufficient to effectively overlap and mask the
high global memory access latency. The total capacity in
the register file per SM on GPUs is almost an order of
magnitude larger than shared memory capacity. Further,
access latency from registers is lower than shared memory.
In this paper, we present details on a code generation
strategy for efficient execution of stencils on GPUs, which
effectively utilizes available register and shared memory
resources to achieve high data reuse and thereby realize
high performance.

The paper is organized as follows. Section II provides
an overview of the main issues in achieving high perfor-
mance with stencil computations. Section III describes a
domain-specific language (DSL) for specifying stencil com-
putations: the STENCILGEN language. Section IV details
the impact of the GPU hardware constraints on the stencil
optimization strategy. GPU code generation algorithms
are described in Section V. Section VI discusses fusion

across multiple stencils. Section VII discusses related work.
Section VIII presents an experimental evaluation of the
described stencil code generation approach, comparing it
with several current general-purpose and special-purpose
code generators and optimizers for multicore processors,
manycore processors, and GPUs. Section IX presents our
conclusions.

II. T I L I N G O F S T E N C I L C O M P U TAT I O N S

In this section, we review the nature of the data depen-
dences and potential for data reuse in executing stencil
computations. Many stencil computations are fundamen-
tally limited by memory bandwidth unless temporal local-
ity is exploited across a sequence of stencils in a processing
pipeline, or across repeated application of a stencil in an
iterated computation.

A. Machine Balance and Operational Intensity

Fig. 1 provides data on the peak double-precision
floating-point performance [Fig. 1(a)] and peak
global-memory bandwidth [Fig. 1(b)] for GPUs from
NVIDIA. Five generations of GPUs are shown: pre-Fermi
(C1060), Fermi (M2090), Kepler (K40), Pascal (P100),
and Volta (V100). The peak machine double-precision
floating-point performance (GFLOPSmc) has increased by
over two orders of magnitude, from under 100 GFLOPS for
the C1060 to around 10 TFLOPS for the Volta V100. The
peak global memory bandwidth (BWmc) has also increased
across successive GPU generations, but not to the same
extent: from 100 GB/s to nearly 1000 GB/s. Therefore,
as seen in Fig. 1(c), there has been a rise in the machine
balance parameter, MB = (GFLOPSmc)/(BWmc), from
about 0.5 FLOPs per byte for the C1060 to around 8 FLOPs
per byte for the Volta V100. As elaborated on below,
in order to achieve close to peak performance, the
operational intensity (OI) of a computation (ratio of the
number of arithmetic/logic operations to the number of
bytes of data movement from/to memory) must be higher
than the machine balance parameter.
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Fig. 2. Examples of 1-D, 2-D, and 3-D stencils. (a) 1-D stencil.

(b) 2-D stencil. (c) 3-D stencil.

Consider the examples of 1-D, 2-D, and 3-D stencils in
Fig. 2. For the 1-D stencil, 3(N − 2) floating-point opera-
tions are executed and a total number of 2N − 2 distinct
array elements are accessed (N elements of a and N − 2
elements of b). If full reuse in registers/cache is achieved
for each accessed array element, the achieved operational
intensity would be (3(N − 2))/(8(2N − 2)), i.e., approxi-
mately 3/16 FLOPs per byte for double-precision compu-
tation (8 B per data element). For the 1-D stencil computa-
tion, the maximal possible operational intensity of 3/16
FLOPs per byte is considerably lower than the machine
balance parameter of modern GPUs. If an implementation
of some algorithm has an upper bound of OIalg for achiev-
able operational intensity, and the peak memory band-
width of the machine is BWmc, the maximum achievable
computational performance is OIalg × BWmc. Equivalently,
the maximum fraction of the machine’s peak performance

GFLOPSmc that an implementation of an algorithm can
achieve is OIalg/MB.

As the dimensionality of the grid increases, the maxi-
mum achievable operational intensity also increases. For
the 2-D stencil in Fig. 2(b), the number of floating-point
operations is 5(N − 2)2, and the number of accessed array
elements is N2 + (N − 2)2, with an OI upper bound of
around 5/16 FLOPs per byte for double-precision compu-
tation. For the 3-D stencil shown in Fig. 2(c), the OI upper
bound rises to 7/16 FLOPs per byte, but is still an order of
magnitude lower than the machine balance parameter for
current GPUs.

B. Time Tiling of Stencils

In order to increase performance with such stencils, it is
essential to exploit reuse across time steps in an iterated
stencil computation. With time-iterated stencils, the output
array produced by the application of the stencil operation
on the input array is in turn used as the input array
for the next application of the stencil. Fig. 3 illustrates
a 1-D three-point stencil iterated over three time steps.
Since the arrays subject to the stencil computation are
typically much larger than cache, reuse of data across
the iterated application cannot be achieved without tiling,
i.e., computing for a number of time steps for a subset
of the array elements within a tile before accessing other
array elements for the first time step. However, as seen
in Fig. 3(a), a simple rectangular 2-D tiling strategy is
not feasible because dependences would be violated if all
iteration space points within one tile were contiguously
executed.

Fig. 3(b) shows a valid tile shape for the 1-D sten-
cil example. All data dependences to a tile are from
iteration-space points in a tile to the left. As long as the

Fig. 3. Time tiling to enhance data reuse with stencil computations. (a) Rectangular tiling is invalid since dependencies are violated.

(b) Parallelogram tiles preserve dependences but intertile dependences inhibit parallelism across tiles. (c) Overlapped tiling enables

concurrent execution of tiles at the expense of redundant computation. (d) Split tiling allows concurrent execution without redundant

computation but tiles are less regular.

PROCEEDINGS OF THE IEEE 3



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Rawat et al.: Domain-Specific Optimization and Generation of High-Performance GPU Code for Stencil Computations

tiles are executed from left to right, all dependences will be
preserved. However, the serializing intertile dependences
are undesirable. Fig. 3(c) shows overlapped trapezoidal
tiles. The iteration-space points within a tile depend only
on other points included within the same tile. Thus, con-
current execution of tiles is feasible. However, some redun-
dant computation is necessary, as can be seen in Fig. 3(c)
with the iteration-space points that belong in multiple tiles.
Fig. 3(d) shows another strategy called split tiling that also
enables concurrent tile execution. With this strategy, a tile
belongs in one of multiple groups (the number of groups
grows with the dimensionality of the arrays and stencil
operator). Tiles within the same group can execute con-
currently, and the different groups are scheduled in order.
In Fig. 3(d), all green-colored tiles execute first, followed
by the orange-colored tiles. Split-tiling has no redundant
computational overhead. However, the tiles exhibit greater
irregularity than with overlapped tiling, making it more
challenging to achieve high performance on GPUs. In this
paper, we present details on a stencil optimizer for GPUs
that uses the overlapped tiling strategy.

C. Combining Overlapped Tiling With Streaming

The intertile concurrency enabled by overlapped-tiling
comes at the price of redundant computation (and redun-
dant data movement). While the fraction of redundant
computation can be made very small for 1-D overlapped
tiling, the overhead can be very significant for 3-D stencils.
Consider a thread block of 8× 8× 8 threads that computes
two time steps of a 3-D order-1 stencil. The thread block
generates output after two time steps for 8×8×8 elements,
which means that the output after the first time step must
be generated for a domain of size 10×10×10, which in turn
requires that input over a 12×12×12 domain must be read.
Thus, 123 data elements must be read in to produce results
for 83 elements, almost half of them being also read by
neighboring thread blocks. The amount of computation for
the intermediate time step is proportional to 103 = 1000,

out of which 1000−512 = 488 are redundant. This problem
of redundant computation overhead for 3-D stencils gets
worse with an increase in stencil order and time tile size.
Increasing the tile size can lower the overhead, but the
maximum limits of thread-block size and shared memory
on an SM prohibit tiles much larger than 8× 8× 8.

Since overlapped tiling for all the dimensions of a 3-D
stencil incurs high overhead on GPUs, an alternative is to
use overlapped tiling along two of the three spatial dimen-
sions, and sequentially stream along the third. We first
describe overlapped tiling with streaming for a 2-D stencil.
Fig. 4(a) shows a 2-D stencil where overlapped tiling is
applied along both x- and y-dimensions with 2-D blocks;
the figure only shows overlap along the x-dimension. Next,
Fig. 4(b) shows streamed execution along the y-dimension
with 1-D block. We can imagine the 2-D domain sliced
into 1-D lines along the streaming dimension. We observe
that due to the dependence pattern, only three consecutive
lines need to be read from the input domain to compute
one line of the output domain. In general, an order-k 2-D
stencil will need to read 2k + 1 consecutive input lines to
compute one output line. The lines are cached in three
distinct shared memory buffers per time steps, represented
by different colors in Fig. 4(b). The number over the
buffers indicates the logical timestamp (LT) at which the
particular buffer is populated.

In the prolog, three input lines are loaded into the
buffers at t = 0, so that an intermediate result can be
computed at t = 1 (LT = 4). After LT = 4, the data
held in the buffer populated at LT = 1 are no longer
needed, and this buffer can be subsequently used to cache
a new input line. After this initial prolog, we can compute
one intermediate result at t = 1 for every new input line
read at t = 0. When we have three intermediate result
lines available at t = 1, we can compute one line of the
final output at t = 2 at LT = 9. In the steady state,
we compute one output line at t = 2 by reading one
input line at t = 0, and computing one intermediate line
at t = 1.

Fig. 4. Overlapped tiling and streaming for 2-D stencil. (a) Overlapping tiling with 2-D blocks. (b) Streaming along dimension y with 1-D

block.
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This scheme requires only three buffers per time step,
irrespective of the number of lines. In general, for an
order-k stencil, 2k + 1 buffers will be required per time
step. The buffer that holds the oldest value at LT = r
can be reused to store the newest value at LT > r . If the
different lines along y are computed sequentially, one after
the other, we refer to it as serial streaming. However,
the iteration space could also be partitioned along the
y-axis, with the different partitions being assigned across
thread blocks. Each thread block serially streams through
its portion of the iteration space, but different blocks can
concurrently stream through their partition of iteration
space. We refer to this as concurrent streaming.

Streaming can be extended to 3-D Jacobi stencils by
interpreting the line in Fig. 4(b) as a plane. Since stream-
ing eliminates redundant computations along the stream-
ing dimension and reduces the amount of shared memory,
it is attractive to combine it with overlapped tiling. For a
3-D stencil, overlapped tiling along two of the dimensions
and streaming along the remaining dimension enables
sufficient intertile concurrency, and significantly reduces
the amount of redundant operations (computations and
global-memory loads) since the required shared memory
capacity per thread block corresponds to a 2-D slice and
not a 3-D slice.

If the time tile size is 1, only spatial reuse is exploited.
Such spatial blocking, also known as 2.5-D blocking, was
used by Micikevicius [17] to optimize 3-D finite difference
computation. Nguyen et al. [16] used the corresponding
time tiled blocking, also known as 3.5-D blocking, to accel-
erate LBM and seven-point 3-D Jacobi stencil on multicore
CPU and GPU. Section V describes a systematic approach
to determine the best tiling strategy for a given problem.

III. O V E RV I E W O F A S T E N C I L D S L

To allow specification of stencil computations, we define
STENCILGEN, a DSL used as input to the code generation
techniques described in subsequent sections. The use of a
DSL enables the easy identification of the stencil patterns
so that stencil-specific optimizations may be performed.
A code generator can easily determine the high-level
semantic properties of a DSL code region. In principle, such
properties could also be inferred from an equivalent code
region written in a general-purpose language. However,
in such a scenario, it is necessary that a variety of precise
compiler analyses establish important properties such as
lack of aliasing, values of induction variables, etc. The use
of a DSL helps avoid these problems. The STENCILGEN

language describes:

• the point operation for each data element, as well as
boundary conditions and time iterations;

• the region of data on which a stencil is applied.

Note that general-purpose programming is allowed out-
side the stencil regions, i.e., STENCILGEN can be used both
as standalone and embedded DSL.

Listing 1. A representative stencil in StencilGen language.

The code example in Listing 1 highlights some of the
main features of STENCILGEN. The read-only integer para-
meters M and N are used to describe the dimensions of the
input and output arrays (line 3). Line 2 declares iterators,
each of which will be mapped to a unique dimension of the
computational loop nest. The iterators must be immutable
within the body of the loop nest, and are assumed to be
incremented in unit steps by the increment condition of
the loop. All declared arrays and scalars (e.g., in and
out in line 3) will be passed as arguments to the host
function that will be generated from the STENCILGEN

input. Line 4 specifies the arrays and scalars that need to
be copied from host to device.

Lines 5–9 define a stencil five_point_avg. The sten-
cil definition has as arguments the input and output
arrays/scalars used in the computation. This stencil aver-
ages the five neighboring data elements from array A and
writes the result to an element of array B. All memory
accesses in the stencil function must be scalars or array
elements. Lines 10–12 define a stencil boundary that
performs pointwise copy of elements from array A to
array B at the boundary. Lines 13–20 invoke the sten-
cil functions over subsets of the problem domain. The
iterate construct at line 13 defines a time loop over
the stencil calls. We explicitly unroll the call to stencil
five_point_avg by a minimum number of iterations to
obviate the need for exchanging the input and output after
each time step. For such time-iterated stencils, the STEN-
CILGEN-based code generator automatically determines
the optimal degree of unrolling for the time loop, fuses
the execution of two or more time steps, an optimization
termed time tiling, to exploit the temporal reuse exposed
by the producer–consumer relationship between the time
steps. Finally, line 21 defines the arrays and scalars that
need to be copied back from device to host.

A. Embedding STENCILGEN in C/C++ Code

Every embedded STENCILGEN region is delineated by
#pragma annotations. The starting #pragma specifies
additional code generation parameters, including the size
of the GPU thread block, the dimension along which spatial
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streaming is to be performed, and the size of shared
memory available on the target GPU.

When embedding STENCILGEN regions, the data arrays
are assumed to be allocated by the outside code, and to
be stored contiguously in the C/C++ memory space. The
right-hand-side expressions of the assignment statements
in the stencil body are assumed to be side-effect free. Those
expressions are allowed to contain standard side-effect-
free math functions such as sin, sqrt, etc.

Additional details about STENCILGEN, including its
grammar, are available in [30].

IV. G P U C O N S T R A I N T S F O R S T E N C I L
C O M P U TAT I O N

This section discusses architectural constraints to be con-
sidered when optimizing stencil computations on GPUs.
The basic computational unit of a GPU is a thread. Going
up the hierarchy, threads are grouped into a warp, warps
are grouped into thread blocks, and thread blocks are
grouped into a grid. The number of threads per warp is
architecture specific; 32 and 64 threads form a warp in
NVIDIA and AMD devices, respectively. The GPU host code
explicitly specifies the grid and thread block dimensions
when the kernel is launched. All threads in a warp execute
instructions in a synchronized, lock-step fashion. Warps
within a thread block are mapped to the same streaming
multiprocessor (SM), and can synchronize among them-
selves using synchronization primitives. Each thread has
a fixed number of registers that can be varied at com-
pile time. Threads in a thread block can exchange data
via shared memory. In recent GPU architectures, threads
within the same warp can also exchange data held in
registers via shuffle intrinsics.

Efficient tiling schemes for GPUs must
• perform coalesced access to global memory;
• have sufficient parallelism to tolerate memory access

latencies;
• judiciously use faster storage, such as shared memory

and registers, for caching data.
Shared memory has lower access latency than global

memory, and is well suited to cache data that are accessed
by multiple threads in a thread block. Registers are local
to a thread, and therefore well suited to cache data that
are accessed by a single thread. Registers are the fastest,
and are more plentiful than shared memory in most GPU
architectures. Therefore, it is often beneficial to offload
some storage from shared memory to registers. However,
excessive register usage may result in lower occupancy or
expensive register spills.

In this section, we discuss GPU resource considerations
in determining size/shape of thread blocks and grid for
spatial tiling of stencil computations.

A. Constraints on Thread Block and Grid Size

GPUs have hardware limits on 1) the maximum number
of concurrently loaded threads per SM (Tsm); 2) the max-
imum number of threads in a thread block (Tb); 3) total

shared memory per SM (Msm); 4) the maximum num-
ber of concurrently loaded thread blocks per SM (Bsm);
and 5) the register file size per SM (Rsm). For instance,
Tsm = 211, Tb = 210, Msm = 48 kB, and Bsm = 16, and
Rsm = 216 for an NVIDIA Tesla K20c GPU. The threads in
an SM can be grouped in various ways, e.g., two blocks
of 1024 threads, 16 blocks of 128 threads, etc.

The typical approach to data-parallel execution on GPUs
is to assign one thread for computation of one element of
the result array. In order to tolerate the very high latency
to global memory (several hundred clock cycles), massive
parallelism must be utilized. If a sufficient number of
independent instructions are ready to be issued among the
collection of active warps in an SM, the memory access
latency can be fully overlapped. But even if memory access
latency can be fully overlapped, the peak memory band-
width can limit performance, as discussed earlier. The
only way to overcome the performance limitation from
global memory bandwidth is to exploit temporal reuse on
the accessed data, by buffering it in faster shared memory
or registers. However, the shared memory and/or registers
used for such buffering may result in a reduction in warp
occupancy because fewer thread blocks may now be con-
currently schedulable on an SM due to the register/shared
memory usage per thread block.

Shared memory allows significantly faster access than
global memory, and unlike registers, allows sharing of data
across threads in a thread block. However, the more shared
memory a thread block uses, the fewer thread blocks can
be simultaneously scheduled on an SM. If mb is the bytes
of shared memory used by a thread block, the maximum
number of concurrently active thread blocks cannot exceed
Msm/mb.

Registers are the fastest storage resource available to
a thread. The maximum number of registers per thread
can be controlled via compiler flags for GPUs. If the
maximum possible number of threads are to be active on
an SM, the number of registers used per thread must be
≤ Rsm/Tsm . If a thread uses treg registers, the maximum
number of active threads per SM can be no more than
min(Tsm , Rsm/treg).

If the size of a thread block (number of threads)
is szb, the maximum number of concurrently schedu-
lable thread blocks per SM, maxb, is upper bounded
by maxb ≤ min(Bsm, Tsm/szb, Msm/mb, Rsm/treg.szb). For
bandwidth-bound computations, unless thread coarsening
is utilized to increase instruction level parallelism (ILP),
the block size szb is often chosen to maximize occupancy,
and consequently the thread level parallelism (TLP), i.e.,
szb ×maxb is set as close to Tsm as possible.

Coalesced access to global memory is important since it
minimizes the number of memory transactions for access-
ing a given number of data elements. This requires that
the fastest varying dimension of a multidimensional thread
block be aligned with respect to data access with the fastest
varying dimension of the accessed multidimensional array.
The fastest varying dimension of the thread block is usually
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Fig. 5. Different thread block configurations for a fixed thread

block size of 1024.

chosen to be a multiple (or factor) of the warp size to
benefit from coalescence.

B. Partitioning Threads Across Thread Block
Dimensions

For a 2-D thread block of size szb, many choices exist
for the extents along the x- and y-dimensions. The per-
formance of a stencil computation can be quite sensitive
to this choice. Let szb = bx × by. Two possible config-
urations for szb = 1024 are shown in Fig. 5. For an
order-k stencil over an N2 domain, the number of global
memory loads is N2(32+ 2k)2/1024 for configuration (a)
and N2(64+ 2k)(16 + 2k)/1024 for configuration (b). For
any value of k, configuration (a) requires fewer global load
transactions for performing the same number of arithmetic
operations. Consider, for example, a 3-D single-precision
seven-point Jacobi stencil executed on a GP100 device. The
version with block size 32×32 incurs 5.91E+07 global load
transactions, achieving 1.2 TFLOPS. In contrast, the ver-
sion with block size 64× 16 incurs much higher 7.59E+07
global load transactions, achieving only 989 GFLOPS.

V. R E S O U R C E O P T I M I Z AT I O N
S T R AT E G I E S

In this section, we discuss various factors that affect the
best choice of tiling strategy for a given stencil computa-
tion. Section V-A describes considerations for the 2-D case,
for streamed overlapped tiling. Section V-B characterizes
3-D stencils based on their access patterns, and describes
optimization techniques for them. We consider a stencil of
order k = 1, with time tile size T = 4, and all operations
in single precision. Tiled code must be appropriately tuned
for different GPUs; for the discussion below, we use hard-
ware parameters of an NVIDIA Tesla K20c as the target
GPU.

A. Overlapped Tiling for 2-D Stencils

Many prior code generators that optimize 2-D sten-
cils perform overlapped tiling along both the dimensions
[3], [4]. In contrast, we partition the N2 input domain

into overlapping strips of size Bx × N : we stream along the
y1-dimension to eliminate redundant computations, per-
forming overlapped tiling along x for intertile concurrency.
Fig. 4(a) illustrates this strategy. The required amount of
per-thread-block shared memory and registers depend on
the thread block geometry.

1) Streaming With 2-D Thread Blocks: In the steady state,
at each step, a Bx × By thread block reads By input
lines along the y-dimension to compute By points of the
iteration space. Each thread traverses the iteration space
at a stride of By along the y-dimension. Each thread block
stores T (By + 2k) lines in shared memory. Consider two
possible choices for By.

• By = 1 (1-D block): For maximum occupancy, each
thread block must have 2048/16 = 128 threads.
In each iteration, a thread block loads one line from
input at t = 0 and generates one line of output at
t = 4. For this, it needs 6 kB of shared memory.
From Section IV-A, it follows that an SM can have
at most min(16, 2048/128, 48 kB/6 kB) = 8 blocks, a
50% loss of occupancy.

• By = 32 (2-D block): Two thread blocks of size
32 × 32 can theoretically be active per SM. Since a
thread block now operates on a chunk of 32 lines
instead of 1, it needs 16 kB of shared memory. Each
SM can have min(16, 2048/1024, 48 kB/16 kB) = 2
active blocks, which implies maximum occupancy.

Clearly, better occupancy is achieved with 2-D blocks.
For a Bx × By block, the computation proceeds as shown
in Fig. 4(b): in the steady state, By − 2k output lines are
generated at time step t , using By lines from the shared
memory buffer corresponding to time step t − 1. With a
sliding-window approach, the By oldest lines in the buffer
can be reused to cache the new lines. The buffer can be
implemented as a circular array, with modulo operations to
find the top and bottom k rows. Since modulo operations
are costly on GPUs as they compile to multiple instructions,
it is beneficial to make By a power of 2, so that they can be
implemented by bitwise operators2 which has a very high
throughput.

2) Concurrent Streaming With 1-D Thread Block and Using
Registers for Storage: As demonstrated above, serial stream-
ing with 1-D thread blocks suffered lowered occupancy
due to high usage of shared memory. If z is the streaming
dimension, then a stencil is termed diagonal-access free
along z-dimension if all stencil offsets (x0, y0, z0) for access
to points on different planes along the z-dimension are
strictly of the form (0, 0, z0). For such diagonal-access-
free stencils, the shared memory requirement can be
decreased by using registers instead of shared memory
to hold the 2k accesses to lines [17]. For a thread block
of 128 threads, k = 1 and T = 4, a thread block now

1Streaming along the x-dimension is usually not beneficial because
it entails noncoalesced accesses while loading the input data.

2a mod b ≡ a and (b − 1) if b is a power of 2.
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Fig. 6. Various grid dimensionalities for a 3-D input.

needs eight registers and 2 kB of shared memory. Thus, the
number of concurrently loadable thread blocks per SM is
min(16, 2048/128, 48 kB/2 kB) = 16. While occupancy is
maximized, this strategy suffers from a low overall number
of thread blocks. To keep all 13 SMs of the K20c GPU
busy, at least 13 × 16 = 208 thread blocks are needed.
However, even a large input domain of size 81922 can only
be partitioned into 8192/128 = 64 blocks.

The number of thread blocks can be increased by using
overlapped tiling along the y-dimension as well. However,
it is only necessary to partition the space into �208/64� = 4
blocks along the y-dimension. Since the thread block is
1-D and each tile in the input grid is 2-D, streaming is
performed within a tile.

This version does incur redundant computation and
data access along the y-dimension, but this is negligible
compared to the reduction in redundant computation and
data access along the x-dimension due to increase in block
size from 32 to 128. The lower access latency of registers,
compared to shared memory is an additional benefit.

B. Overlapped Tiling for 3-D Stencils

Fig. 6 depicts different possible choices of grid dimen-
sionality for 3-D stencils over a 3-D domain: 3-D, 2-D, or 1-
D grid. A 3-D grid implies a halo region on all six sides
of a 3-D interior data cube handled by a thread block,
and suffers from significant redundant computation and
data movement, as discussed earlier. At the other end,
a 1-D grid incurs the lowest overhead from redundant
computation and data movement, but the total number of
thread blocks may be insufficient to keep all SMs of the
GPU busy. A 2-D grid represents a good tradeoff and offers
moderate overhead from redundant computation and data
movement along with adequate number of thread blocks
for the SMs on the GPU.

Streamed time tiling of a 3-D stencil requires T (2k + 1)

planes to be cached in shared memory. For T =4 and k=1,
a 32× 32 thread block needs 48 kB of shared memory, the
maximum per SM on a K20 GPU. This means that only
one thread block can be scheduled at a time on an SM,
limiting occupancy to 50%. For k = 2, the required shared
memory exceeds the hardware limit, forcing a smaller
thread block size. Micikevicius [17] and Nguyen et al. [16]
use registers to offload the caching of some planes from
shared memory to registers for spatial and time tiling.
Details regarding implementation of time tiling code with a
combination of shared memory and registers are discussed
next.

Algorithm 1: Streaming and Using Registers for
Storage for a 3D Order-1 Stencil
Input : in : input array, T : time tile size
Output: out : output array

1 At
v : shared memory buffer for plane pv at time

step t;
2 r t

v−1, r t
v+1 : registers for planes pv+1,pv−1 at time

step t;
// Initial reads

3 r0
v−1 ← load_plane (in[0][. . .][. . .]);

4 A0
v ← load_plane (in[1][. . .][. . .]);

5 for each z from 1 to N − 1 do
6 r0

v+1← load_plane (in[z + 1][. . .][. . .]);
7 __syncthreads ();

// Perform the computation per
time step

8 for s from 1 to T do
9 r s

v+1 = compute_stencil (r s−1
v−1, As−1

v , r s−1
v+1);

10 __syncthreads ();
11 out[z − kT ][. . .][. . .] = r T

v+1;
// Shift data per time step

12 for s from 0 to T do
13 r s

v−1← As
v ← r s

v+1

1) Streaming and Using Registers for Storage: In the sce-
nario above with k = 1 and block size 32×32, if the stencil
is diagonal-access free along the streaming dimension,
then some storage can be offset to registers, increasing the
per thread register pressure by 2T k, and simultaneously
reducing the shared memory requirement to 16 kB. With
this tradeoff, an SM can have two active blocks, achieving
maximum occupancy. If there are register spills due to the
increased register pressure, then the value of T can be
reduced to alleviate the register pressure.

Fig. 7 illustrates this scheme applied to time tile the
seven-point 3-D Jacobi stencil. Each output point at time
step t needs to read data from three input planes at time
step t − 1. The invariant maintained in this scheme is that
the data needed to compute plane pt

v at time step t comes
from registers that hold the values of planes pt−1

v−1 and pt−1
v+1,

and a shared memory buffer that holds the value of plane
pv−1

k at time step t − 1. This is illustrated in Fig. 7(a),
where the red (black) edges indicate that the data is being
read from register (shared memory). The number on the
edges indicates the sequence in which the contributions
are made. Before the plane pt−1

v+1 makes contribution to the
plane pt

v+1, we perform a shift, where the data from the
shared memory buffer holding the value of plane pt−1

v is
moved into the register that held the value of plane pt−1

v−1,
and the data from the register holding the value of pt−1

v+1
is moved into the shared memory buffer. The shifts are
represented as the blue edges in Fig. 7(b). The shift helps
maintain the invariant as the computation streams through
the z-dimension. In the steady state, we can compute one
plane at each time step, as shown in Fig. 7(c).

An implementation sketch of this scheme is presented
in Algorithm 1. The algorithm is presented independently
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Listing 2. A seven-point 2-D associative stencil that accesses two

points from planes along y-dimension.

of the tiling scheme for the other two dimensions. The
initializations at line 1 depend on the tiling scheme used
for the nonstreaming dimensions. Algorithm 1 can be
generalized to all stencils where each plane accesses only
one point per plane from other planes along z-dimension.
If such a stencil accesses a diagonal point (x0, y0, z0), then
appropriate shuffle intrinsic will have to be inserted in the
code, so that each thread maintains a correct central value
in registers.

2) Storage Optimization for Associative Stencils: For sten-
cils that access more than one point per plane from
other planes along z-dimension (i.e., stencils that are not
diagonal-access free along the streaming dimension), the
optimization scheme described above may require too
many registers to be beneficial. For example, a 27-point
3-D stencil with T = 2 will require 36 explicit registers
per thread just for storage. If such a stencil is associa-
tive, we can use an optimization strategy that leverages
contribution reordering to reduce the number of regis-
ters required at each time step to just 2k + 1. A similar
optimization strategy is used by Stock et al. [31] in the
context of high-order stencils on multicore CPUs. Listing 2
shows an example of a stencil that is associative, and
hence is amenable to our optimization. We leverage the
associativity of addition and multiplication to rewrite it as
an accumulation stencil of Listing 3.

Fig. 8 shows the application of this scheme to time tile
the seven-point 3-D Jacobi stencil. An input plane at time

Listing 3. Reading one plane from input at a time, and

accumulating its contribution at different output points.

step t − 1 contributes to three points belonging to distinct
output planes at time step t . There are three invariants
maintained: 1) the plane pt−1

v making the contribution
from time step t−1 is cached in shared memory; 2) contri-
butions to the planes pt

v+1, pt
v−1 and pt

v at time step t are
accumulated in registers; and 3) after the accumulation,
the contribution to the plane pt

v−1 is written out into
a shared memory buffer. This is illustrated in Fig. 8(a),
where the red (black) edges indicate that after accumulat-
ing the contribution, the final result is in register (shared
memory). The number on the edges indicates the sequence
in which the contributions are made. One can make the
following observations from Fig. 8(b): 1) at t = 0, all
the contributions from a plane are made before starting
with the next plane, and therefore one can reuse the same
shared memory buffer for all the planes; 2) at any time
step, at most one shared memory plane is required, and at
most 2k + 1 registers simultaneously receive contributions.
Thus, we only need 2k + 1 registers, and one shared
memory buffer per time step. In a steady state [Fig. 8(c)],
a plane that is in shared memory at time step t can start
making contributions to the accumulation registers at time
step t + 1. Algorithm 2 presents an implementation sketch
for this approach.

VI. F U S I O N H E U R I S T I C S

More complex stencil computations, as arising in image
processing pipelines and multistatement stencils, can be

Fig. 7. Streaming for 2-D overlapped blocks of a 3-D seven-point Jacobi stencil. Red (black) arrows indicate that the value from the

previous time step comes from register (shared memory). (a) Contributions from different planes at time step t−1 to an output point at time

step t. (b) Prolog and data rotation. (c) Steady-state computation for two time steps.
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Fig. 8. Streaming with associative reordering for 2-D overlapped blocks of a 3-D seven-point Jacobi stencil. Red (black) arrows indicate

that the contributions from the previous time step are accumulated and written into a register (shared memory buffer). (a) Contributions

from a single plane at time step t − � to three output points at time step t. (b) Prolog. (c) Steady-state computation for two time steps.

Algorithm 2: Storage Optimization for an Associative
3D Order-1 Stencil
Input : in : input array, T : time tile size
Output: out : output array

1 At
v−1 : shared memory for plane pv−1 at time step t;

2 r t
v−1, r t

v , r t
v+1 : registers for planes pv−1, pv , pv+1 at

time step t;
3 for each z from 0 to N − 1 do
4 A0

v−1← load_plane (in[z][. . .][. . .]);
5 __syncthreads();

// Perform the computation per
time step

6 for s from 1 to T do
7 r s

v+1← bottom_plane_contribution (As−1
v−1);

8 r s
v += mid_plane_contribution (As−1

v−1);
9 r s

v−1 += top_plane_contribution (As−1
v−1);

10 As
v−1 = r s

v−1;
11 __syncthreads();
12 out[z − kT ][. . .][. . .] = AT

v−1;
// Shift data per time step

13 for s from 1 to T do
14 r s

v−1← r s
v ← r s

v+1;

represented by a directed acyclic graph (DAG) where each
vertex represents a single stencil operation identified by
the stencil statements on a set of input domains [3], [32],
and edges represent data produced/consumed by these
operations. Stencils that are iterated a fixed number of
times can also be written in a DAG form, by unrolling
the time loop to expose different nodes for different time
steps.

Fusion of stencil operators in a DAG can be essential
to improve reuse of data between operators. For example,
fusing together nodes which read the same data can enable
better temporal locality, and reduce memory traffic. But on
the other hand, fusing nodes increase resource pressure
(e.g., registers) as the kernel would implement multiple

stencil operators with the same per-kernel resources bud-
get. In this section, we present a simple resource-aware
greedy heuristic to fuse stencil operators in a DAG.

For the fusion of two nodes in the DAG to be valid,
it must preserve data dependences. For Jacobi-like stencils
in a DAG, such fusion is always valid if the fused node
is atomic, i.e., there is no dependence cycle after fusion.
There are many valid fusion schemes for the nodes in
the DAG, but their performance may vary significantly
depending on the profitability of fusion (gains in temporal
locality and memory traffic versus reduction in available
per-operator resources in the fused kernel). The space
of all valid fusion structures can be very large [33],
and exhaustively exploring this space to find the optimal
solution can be prohibitively expensive. To avoid such
exploration, we instead propose a greedy algorithm to
determine which nodes will be fused together, to optimize
a dedicated objective function. Starting from the input
DAG Dg = (V , E), the objective is build the fused graph
D f = (V f , E f ) such that each v f ∈ V f is a convex
partition of nodes from V . A convex partition is an atomic
“macronode,” comprising nodes from V , such that there is
no dependence path going out and back in the macronode.
To form a macronode v f , we fuse node(s) v ∈ V following
a profitability function. Eventually, a single GPU kernel is
generated for each node v f ∈ V f . Note that if a temporary
array is produced in v f by design, and all its uses are
contained in v f , then no global memory transaction is
needed for such temporary array.

A. Roadmap of the Greedy Fusion Algorithm

The greedy resource-driven fusion algorithm consists of
the following steps.

Step 1) For each stencil operator, compute the amount
of shared memory and registers that will be
needed to cache the data (Section VI-B).

Step 2) Identify pairs of stencil operators that can
be fused without violating dependences
(Section VI-C).
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Step 3) For each pair of stencil operators, compute
the shared memory and registers used when
fusing them in a single kernel, based on the
individual resource usage computed in Step 1)
(Section VI-D).

Step 4) Based on the resource usage of the fused node
computed in Step 3), create a profitability met-
ric that encodes the impact of fusion on the
GPU resources, and the data movement volume
(Section VI-E).

Step 5) Define a custom sort to order the profitability
metrics of various stencil operator pairs, and
choose to fuse the operators of the most prof-
itable pair into a macronode (Section VI-F).
Update the stencil DAG and the dependence
graph, and repeat again from Step 1), until no
more stencil operator pairs can be fused.

Once a fused stencil DAG D f is produced by the
algorithm, an optimized CUDA kernel can be generated
for each node in D f using the algorithms described in
Section V.

B. Computing Resource Requirements of a Stencil
Operator

Without loss of generality, we assume that streaming,
as presented in prior sections, is done on the outermost
dimension of a 3-D domain. As we present in Section V,
to determine the resource requirements of an order-k
stencil operator along the streaming dimension, we must
determine the storage properties for the 2k + 1 accessed
planes. We proceed as follows.

1) If computing an output value at (z0, y0, x0) only
requires a single input value at (zr , y0, x0) from an
input plane zr , then zr is stored as an explicit register
(that is, zr has register storage type). If not, then zr

is cached into shared memory
2) If an output element is to be (over)written again,

e.g., because it is an accumulator, then it is stored in
an explicit register. Conversely, the last assignment
to a copy-out array uses global memory for its stor-
age type.

An explicit register above is implemented with a (scalar)
temporary variable, which contains an array element. The
compiler will place such temporary variables in registers.
These explicit registers are distinguished from implicit reg-
isters that are used to store arrays elements and the inter-
mediate results of computing expressions, as produced by
the compiler during traditional register allocation. We use
this distinction for explanation purpose only, as in the
generated code the explicit registers are thread scalars.

Listing 4 shows two consecutive time steps of a 3-D
seven-point Jacobi stencil defined in the STENCILGEN lan-
guage. From rule 1) above, the statement line 7 should use
a shared memory buffer, storing the input plane A[0, ∗, ∗],
since five different values are read from that plane and
contribute to different output points. From rule 2), three

Listing 4. Two time steps of a seven-point 3-D Jacobi stencil.

explicit registers must be used to store the output values
written to B[1, ∗, ∗], B[0, ∗, ∗] and B[−1,∗, ∗] at lines 2,
3, and 5 respectively.

We represent the resource requirement of a stencil oper-
ator using three attributes: Nreg and Nshm capture how
many explicit registers and shared memory buffers are
used by the operator, and Macc→res is a map from each
accessed data plane to the storage type used for that plane.

C. Identifying Fusion Candidates

The dependence graph Gdep = (V , Edep) captures the
dependences between stencil operators in the DAG. From
Gdep, consider a transitive dependence graph G trans =
(V , Etrans), such that

si →s j ∈ Etrans iff {∃sk | sk ∈ V ∧ sk �= si ∧ sk �= s j

∧ there exists a path from si to sk (denoted as si � sk)

∧ there exists a path from sk to s j i.e., sk � s j }.

G trans is used to ensure the validity of fusion, i.e., that all
macronodes generated by fusion are convex/atomic nodes.
If si → s j ∈ Etrans, then fusing si and s j would break
convexity, unless all nodes along any path si � s j are
also included in the fused node. This definition allows the
fusion of two stencils in producer–consumer relationship,
as long as there are no other operators along any path from
si to s j .

For each unordered pairs of stencil operators (si , s j)
such that si → s j �∈ Etrans, we first compute the total GPU
resources required if si and s j are fused, and then compute
a fusion profitability metric that will quantify the benefit of
fusing si and s j in terms of GPU resource usage and data
movement reduction.

D. Computing the Postfusion Resource Map

We first determine the resource usage of the fused
macronode made of si and s j . Let Mi and M j be the maps
from accessed array planes to GPU resources (Macc→res) for
the operators si and s j . Let Mfused be the resource map for
the fused node. If there is no dependence between si and
s j , then Mfused is simply the union of the resource maps
of the individual nodes, where the rules of union are as
defined in this section.

But if there is a true dependence between si and s j ,
to accurately compute resource usage, it is necessary to
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first build the interleaving of the two operators domain
that captures a fused execution schedule that preserve the
dependence(s). Once this schedule is built, the resource
map of the dependence sink may need adjustments. For
example, in Listing 4, after the contribution at line 5, the
values of plane B[−1,∗, ∗] can be used as input for the
next time step (lines 7–10). There is a true dependence
from the write to plane B[−1,∗, ∗] at line 5 to the subse-
quent reads at lines 7–10. Observe that the accesses along
the streaming dimension are shifted by the dependence
distance in lines 7–10 to ensure that after fusing lines 2–10,
dependences are preserved. It is sufficient to shift by the
dependence distance along the streaming dimension.

Once the schedules are adjusted to represent a valid
fused schedule, the set of planes accessed by si and s j

may intersect. For example, in Listing 4, B[−1,∗, ∗] is
mapped to a register in line 5, and to shared memory in
lines 8–9. In the presence of such storage conflict for a
plane, we always choose the storage that is lower in the
memory hierarchy, i.e., shared memory in this example.

E. Computing the Profitability Metric

Once the resource map for the fusion of si , s j is com-
puted, we determine the profitability of fusing these nodes
using five metrics as follows.

Dm represents the savings, in terms of data move-
ments, after fusing si and s j . For every array leading to
a true dependence between si and s j , data movements
are reduced after fusion, as this array does not require as
much global memory transfers after fusion versus without
fusion. To capture this, when Dm is incremented by 2, this
models a saving in a store and then subsequent load of
that array. There is no explicit data movement saving for
arrays carrying write-after-read dependence. If there is a
write-after-write (or read-after-read) dependence between
si and s j but no read-after-write dependence, then Dm

is incremented by 1 to represent the reduction in multi-
ple writes (reads) to (from) the same location in global
memory.

Sreg represents the total number of accesses that are
mapped to the same explicit registers in si and s j after
fusion, i.e., Sreg = num_registers(Mi )+ num_registers(M j )−
num_registers(Mfused). Similarly, Sshm represents the total
number of accesses that are mapped to the same shared
memory buffer in si and s j after fusion, i.e., Sshm =
num_shared(Mi )+ num_shared(M j )− num_shared(Mfused).

Finally, Treg represents the total number of explicit regis-
ters in the fused node, and Tshm the total amount of shared
memory used.

F. Constructing the Objective Function

Once all metrics above has been computed for all valid
stencil operator pairs, they are sorted based on their
profitability. We use a customized sort operation ≺, which
models a total order of the list of candidate fusion pairs.

The set of rules that are used to order two pairs ci , c j ∈
L tuple is as follows:

a) (Dm )ci < (Dm)c j ⇒ ci ≺ c j ;
b) (Treg + Tshm)c j < (Treg + Tshm)ci ⇒ ci ≺ c j ;
c) (Tshm)c j < (Tshm)ci ⇒ ci ≺ c j ;
d) (Treg)c j < (Treg)ci ⇒ ci ≺ c j ;
e) (Sreg + Sshm)ci < (Sreg + Sshm)c j ⇒ ci ≺ c j ;
f) (Sshm)ci < (Sshm)c j ⇒ ci ≺ c j ;
g) (Sreg)ci < (Sreg)c j ⇒ ci ≺ c j ;
h) i < j ⇒ ci ≺ c j .

Rule h) is only used to ensure that a total order can be
found in case of tuples with strictly identical metrics.

It is possible for two or more candidate pairs to have the
same metric, and the order in which the sorting rules are
applied determines how such case is handled. For example,
if the objective is to minimize data movements, ≺ follows
the rule sequence a) → b) → c) → d) → e) → f) →
g)→ h), where a) is the primary sorting rule, and ties are
further sorted by implementing the remaining sorting rules
[e.g., b), c), etc.].

Once sorted, the topmost tuple of L tuple is the most
profitable candidate for fusion. If the fusion 1) does not
exceed the hardware limit on shared memory, and 2) does
not result in a prohibitively high stencil order (and con-
sequently high quantity of redundant computations) if si

and s j are in producer–consumer relationship, then these
nodes are fused. The stencil DAG is modified by replacing
the original operators by the node modeling their fusion,
and the dependence graph is updated as needed. The
process is then repeated on this updated DAG, until no
further fusion is feasible or profitable.

VII. R E L AT E D W O R K

Automatic high-performance GPU code generation for
stencils has been a topic of active research for both CPUs
[2], [9]–[11], [20], [34] and GPUs [4]–[8], [12], [13],
[18], [19]. The main issues discussed in this paper about
developing high-performance code for stencil computa-
tions have also been addressed in similar or equivalent
ways in these efforts. In this section, we provide a brief
discussion of the related work.

PPCG [19] is a polyhedral source-to-source compiler
that generates classically time tiled OpenCL and CUDA
code from an annotated sequential program. Patus [2] is
a code generation and autotuning framework for stencil
computations that can generate spatially tiled CUDA code
without shared memory usage from the input DSL stencil
specification. Mint [6] is a pragma-based source-to-source
translator implemented in the ROSE compiler [35] that
generates a spatially tiled CUDA code from traditional
C code. Unlike these approaches that generate code for a
single GPU device, Physis [7] translates user-written struc-
tured grid code into CUDA+MPI code for GPU-equipped
clusters. Zhang and Mueller [21] develop an autotun-
ing strategy for 3-D stencils on GPUs. Their framework
uses thread coarsening along different dimensions with
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Table 1 Benchmark Characteristics

judicious use of shared memory and registers to improve
performance of spatially tiled 3-D stencils.

Overtile [4] and Forma [3] are DSL compilers that
generate time-tiled CUDA code from an input stencil DSL
specification. PolyMage [32] is a DSL-based code generator
for automatic optimization of image processing pipelines.
All these approaches use overlapped tiling to fuse the
stencil operators in the computation, with the intermediate
arrays stored in shared memory. The code generated for
3-D stencils by Overtile and Forma uses overlapped tiling
along all three spatial dimensions and therefore incurs
higher data movement and redundant computation over-
head than streamed tiling [15]. Grosser et al. [5] imple-
ment the split-tiling approach of [10], and hexagonal tiling
[12] for temporal tiling in GPUs. ChiLL [36] is a compos-
able loop transformation framework which allows the user
to script loop transformations for stencil computations.

Micikevicius [17] presents a CUDA implementation of
3-D finite difference computation that performs spatial
tiling, and uses registers to alleviate shared memory pres-
sure. Nguyen et al. [16] extend this implementation to a
3.5-D blocking algorithm for 3-D stencils: streaming along
one dimension, and temporal tiling along the other two
dimensions. For CPUs, their approach reduces the cache
footprint, and for GPUs, it reduces the shared memory
required to time tile a class of cross stencils.

In context of CPUs, the Pochoir [9] stencil compiler uses
a DSL approach to generate high-performance Cilk code
that uses an efficient parallel cache-oblivious algorithm
to exploit reuse. The Pochoir system provides a C + +
template library that allows the stencil specification to be
executed directly in C + + without the Pochoir compiler,
which aids debugging. Henretty et al. [10] propose hybrid
split tiling and nested split tiling, to achieve parallelism
without incurring redundant computations. Halide
[20] is a DSL language for image processing pipelines.

Table 2 Benchmarking Hardware

It decouples algorithm specification from its execution
schedule. The advantage of this separation is that one can
write multiple schedules for the same computation without
rewriting the entire computation. Halide schedules can
express loop nesting, parallelization, loop unrolling, and
vector instruction. The performance of the optimized code
depends on the efficacy of the schedule. The schedule can
be either written manually by a domain expert, or gener-
ated by extensive autotuning (e.g., with OpenTuner [37]);
these approaches either require some degree of expertise
with Halide DSL, or are time consuming. Recently,
Mullapudi et al. [38] extended the scheduling strategy of
PolyMage [32] to automatically generate schedules for
Halide. Bandishti et al. [11] propose diamond tiling to
ensure concurrent startup as well as perfect load-balance
whenever possible. Yount et al. describe the YASK
[34] framework to simplify the task of defining stencil
functions, generating high-performance code targeted for
Intel Xeon Phi architecture. In Section VIII, we present
experimental results with several of these stencil
optimizers. Olschanowsky et al. [39] focus on large-scale
PDE benchmarks as those written using Chombo [40]
framework. Chombo parallelizes the application across the
nodes using MPI, where each MPI process operates over
a set of boxes, and each box applies a sequence of stencil
operations over its domain. They evaluate the benefits
of interloop stencil optimizations like loop shifting, loop
fusion, wavefront tiling, and overlapped tiling on various
box sizes. Davis et al. [41] use modified macro dataflow
graphs to represent the stencil computation, and then
apply fusion, rescheduling, and tiling optimizations to
reduce communication volume and storage requirements.
The stencil operations in the optimized graph can then be
reinterpreted as relations bounded by affine constraints,
to enable automatic code generation using ISL [42]. They
also propose a cost model to compare schedules based on
the memory traffic.

Table 3 Compilation Flags for GPU, Multi-Core CPU, and Xeon Phi
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Fig. 9. Performance of single-precision benchmarks on Pascal and Volta GPU devices.

Wahib and Maruyama [13] pose kernel fusion as an opti-
mization problem, and use a codeless performance model
to choose a near-optimal fusion configuration among
other possible variants. The space of feasible solutions
is pruned using a search heuristic based on a hybrid
grouping genetic algorithm. Gysi et al. [8] also propose
a model-driven stencil optimization approach. Like Wahib
and Maruyama [13], they use a codeless performance
model to find the best fusion configuration among all valid
topological sorts of the stencil DAG. The model has been
used to guide kernel fusion in the Stella library [43].
Prajapati et al. [44] propose an analytical model that
predicts the execution time of the code generated with
hexagonal tiling.

VIII. E X P E R I M E N TA L E VA L U AT I O N

A. Evaluation on GPUs

1) Experimental Setup: We have implemented the tiling
schemes and fusion heuristics described in Sections V and
VI into the STENCILGEN code generator, and we compare
below the performance of the STENCILGEN -generated

code against PPCG-0.08 [19], OpenACC-17.4 [45], and
the auto-scheduler branch of Halide [38]. The benchmarks
used in evaluation are listed in Table 1. We evaluate the
performance of both single- and double-precision versions
of the benchmarks on Pascal GP100 and Volta GV100
devices; the hardware is detailed in Table 2. For PPCG
and STENCILGEN, the generated code was compiled using
NVCC 9.1 [46]. The Halide generated code was compiled
with LLVM 3.7. The compilation flags are listed in Table 3.

2) Code Generation: PPCG performs classical time tiling
along with thread coarsening. Mapping multiple iterations
to a thread exposes instruction level parallelism. Coarsen-
ing within the sustainable per thread register pressure aids
register level reuse, and helps hide memory access latency
by exposing instruction-level parallelism [47]. We created
multiple versions by tuning the block size and unrolling
factors for PPCG, and report results for the version with
best performance. STENCILGEN does not have the support
for thread coarsening at present. For each benchmark,
we leverage operator associativity to alleviate pressure
on GPU resources. GPUs allow compile-time flexibility in
assigning the number of registers per thread. The perfor-

Fig. 10. Performance of double-precision benchmarks on Pascal and Volta GPU devices.
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Fig. 11. Performance of benchmarks on Skylake and Xeon multicore CPU.

mance of the same code with varying registers per thread
can vary dramatically. This flexibility particularly affects
the fusion heuristics for 3-D benchmarks. We use STENCIL-
GEN to generate multiple versions for the 3-D benchmarks
with different number of explicit registers. The versions
with higher limit of explicit registers have a greater
degree of fusion, and are compiled with higher registers
per thread (e.g., maxrregcount= 64 for heat and poisson,
maxrregcount= 255 for hypterm). Pascal and Volta devices
can load the read-only data through the cache used by
texture pipeline. To enable this feature, the read-only data
in STENCILGEN -generated code is automatically anno-
tated with the __restrict__ keyword. Both PPCG and
STENCILGEN -generated codes are compiled with different
registers-per-thread settings to find the best configuration.
To ensure coalescence, the fastest-varying dimension of the
thread block is never chosen as a streaming dimension.

3) GPU Performance Results: Figs. 9 and 10 plot
the performance of STENCILGEN-generated single- and
double-precision codes, respectively, against different code

Fig. 12. Performance of benchmarks on Xeon Phi 7250.

generators on the two GPU devices. STENCILGEN sys-
tematically outperforms the other code generators in our
experiments, by a factor up to 9×. Our optimization
scheme for associative stencils helps reduce shared mem-
ory requirement for stencils like gaussian, j3d27pt, and
chebyshev, allowing us to achieve higher occupancy, and
consequently higher performance. We achieve 1.0 TFLOPS
(2.1 TFLOPS) for double-precision gaussian stencil, 1.2
TFLOPS (1.7 TFLOPS) for double-precision j3d27pt stencil,
and 2.2 TFLOPS (2.6 TFLOPS) for double-precision cheby-
shev stencil on GP100 (GV100) device. For the 2-D stencils,
the best performance is achieved by overlapped tiling
along both x- and y-dimensions, and concurrent-streaming
along y-dimension. For the 3-D stencils, overlapped tiling
along x- and y-dimensions, and serial-streaming along
z-dimension gives best performance. For 3-D order-2
time-iterated stencils, restricting the fusion to two time
steps yields better performance due to lower recomputa-
tion volume.

Despite applying a plethora of optimizations, we achieve
only 37% and 58% (44% and 36%) of the single-precision

Fig. 13. Energy expended per FLOP on Pascal device.
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Fig. 14. Energy expended per FLOP on Skylake and Xeon multicore CPU.

(double-precision) peak performance on GP100 and
GV100, respectively. This serves to highlight the
bandwidth-bound nature of stencil computations. For
theoretically compute-bound stencils like hypterm and
denoise, high register pressure lowers the achieved
occupancy, making it difficult to hide the memory access
latency. One can further reduce the bandwidth, and
improve the ILP by exploring optimizations like thread-
coarsening, vectorized loads, and hiding access latency via
data prefetching.

B. Stencil Computations on CPUs

1) Experimental Setup: Many frameworks explicitly
target stencil optimizations on CPU [2], [10], [11],
[20], [34]. We evaluate the CPU code generated by
diamond tiling [11] and Halide with autoscheduling sup-
port [38] against a baseline OpenMP code on two differ-
ent multicore CPU processors, and a Xeon Phi processor.
We also evaluate Intel’s latest stencil optimization frame-
work, YASK [34], on the Xeon Phi processor. Due to the
limitations of the framework, we could only generate YASK
code for 3-D stencils. We use three different compilers,
namely ICC-17.0 [48], LLVM-5.0 [49], and GCC-7.2 [50]
to compile the generated C/C++ stencil code, and report
the highest performance.

2) CPU Performance Results: The performance is plotted
in Figs. 11 and 12. One can observe that diamond tiling
outperforms both Halide and the baseline code with its
time tiling and concurrent start optimizations. On Xeon
Phi, the performance of YASK is far superior to that of
other frameworks. YASK performs optimizations like vector
folding, cache blocking, and temporal wave-front tiling,
that are specifically tuned for the Xeon Phi architecture.

For the multicore CPUs, only diamond tiling is able to
achieve nearly 30%–45% of the machine peak for j3d27pt
stencil. Despite the high performance, YASK is able to
achieve only 15% of the machine peak.

C. Energy Efficiency

Figs. 13–15 plot the energy expended in a single
floating-point operation for GP100, multicore CPUs, and
Xeon Phi, respectively. For the stencil codes compiled
with NVCC, we use the NVIDIA Management Library
(NVML3) to measure the Joules/FLOP ratio. For multi-
core CPUs and Xeon Phi, we use RAPL4 to obtain the
measurement. Although typically measurements indicate
that faster code versions have a lower Joules per FLOP
ratio, data show situations where a faster code has a
lower energy efficiency as when comparing Halide and
OpenMP versions of j2d9pt-gol on Xeon Phi. We conjecture
the use of more power-hungry instructions (e.g., FMA) and
additional in-processor data traffic as possible causes for
this slight decrease in energy efficiency, as unfortunately
obtaining fine-grain power measurements to determine the
root cause is not feasible with our energy measurement
setup.

3https://developer.nvidia.com/nvidia-management-library-nvml
4http://web.eece.maine.edu/ vweaver/projects/rapl/

Fig. 15. Energy expended per FLOP on Xeon Phi 7250.

16 PROCEEDINGS OF THE IEEE



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Rawat et al.: Domain-Specific Optimization and Generation of High-Performance GPU Code for Stencil Computations

Note that the benchmarks running on GP100 have a
much lower (1× – 0.1×) Joules/FLOP ratio that the mul-
ticore CPUs and Xeon Phi, while also achieving slightly
higher peak performance. It indicates that the current gen-
eration of GPU devices appear more energy efficient than
these CPU processors in executing such bandwidth-bound
stencil computations.

IX. C O N C L U S I O N

Stencil computations are at the computational core for
many applications. Unlike dense linear algebra computa-
tions, where efficient libraries are widely available, the
variety of manifestations of stencil patterns makes it infea-
sible to create libraries for stencils. However, the funda-
mental characteristics of the data access patterns for stencil

computations can be used to devise domain-specific and
target-specific optimizations in a source-to-source trans-
former and code generator for stencils. This paper has
presented an analysis of the fundamental considerations
in achieving high performance for stencil computations
on GPUs, focusing on tiling strategies that make effective
use of key resources like shared memory and registers.
Experimental results demonstrate the significant benefits
from use of domain-specific optimization over state-of-the-
art general-purpose optimizers. �
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